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Abstract—Federated learning has emerged recently as a
promising solution for distributing machine learning tasks
through modern networks of mobile devices. Recent studies have
obtained lower bounds on the expected decrease in model loss that
is achieved through each round of federated learning. However,
convergence generally requires a large number of communication
rounds, which induces delay in model training and is costly in
terms of network resources. In this paper, we propose a fast-
convergent federated learning algorithm, called FOLB, which
performs intelligent sampling of devices in each round of model
training to optimize the expected convergence speed. We first
theoretically characterize a lower bound on improvement that
can be obtained in each round if devices are selected according
to the expected improvement their local models will provide to
the current global model. Then, we show that FOLB obtains this
bound through uniform sampling by weighting device updates
according to their gradient information. FOLB is able to handle
both communication and computation heterogeneity of devices
by adapting the aggregations according to estimates of device’s
capabilities of contributing to the updates. We evaluate FOLB
in comparison with existing federated learning algorithms and
experimentally show its improvement in trained model accuracy,
convergence speed, and/or model stability across various machine
learning tasks and datasets.

Index Terms—Federated learning, distributed optimization,
fast convergence rate

I. INTRODUCTION

Over the past decade, the intelligence of devices at the
network edge has increased substantially. Today, smartphones,
wearables, sensors, and other Internet-connected devices pos-
sess significant computation and communication capabilities,
especially when considered collectively. This has created
interest in migrating computing methodologies from cloud
to edge-centric to provide near-real-time results [1].

Most applications of interest today involve machine learning
(ML). Federated learning (FL) has emerged recently as a
technique for distributing ML model training across edge de-
vices. It allows solving machine learning tasks in a distributing
setting comprising a central server and multiple participating
“worker” nodes, where the nodes themselves collect the data and
never transfer it over the network, which minimizes privacy
concerns. At the same time, the federated learning setting
introduces challenges of statistical and system heterogeneity
that traditional distributed optimization methods [2]–[11] are
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Fig. 1: Different from standard federated learning algorithms
which are based on uniform sampling, our proposed methodol-
ogy improves convergence rates through intelligent sampling
that factors in the values of local updates that devices provide.

not designed for and thus may fail to provide convergence
guarantees.

One such challenge is the number of devices that must par-
ticipate in each round of computation. To provide convergence
guarantees, recent studies [12]–[15] in distributed learning have
to assume full participation of all devices in every round of
optimization, which results in excessively high communication
costs in edge network settings. On the other hand, [6], [8],
[10], [16]–[19] violate the statistical heterogeneity property. In
contrast, FL techniques provide flexibility in selecting only a
fraction of clients in each round of computations [20]. However,
such a selection of devices, which is often done uniformly,
naturally causes the convergence rates to be slower.

In this paper, we take into consideration that in each
computation round, some clients provide more valuable updates
in terms of reducing the overall model loss than others, as
illustrated in Figure 1. By taking this into account, we show that
the convergence in federated learning can be vastly improved
with an appropriate non-uniform device selection method. We
first theoretically characterize the overall loss decrease of the
non-uniform version of the recent state-of-the-art FedProx
algorithm [21], where clients in each round are selected based
on a target probability distribution. Under such a non-uniform
device selection scheme, we obtain a lower bound on the
expected decrease in global loss function at every computation
round at the central server. We further improve this bound
by incorporating gradient information from each device into
the aggregation of local parameter updates and characterize a
device selection distribution, named LB-near-optimal, which
can achieve a near-optimal lower bound over all non-uniform
distributions at each round.

Straightforwardly computing such distribution in every round
involves a heavy communication step across all devices which
defeats the purpose of federated learning where the assumption
is that only a subset of devices participates in each round. We
address this communication challenge with a novel federated
learning algorithm, named FOLB, which is based on a simple
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yet effective re-weighting mechanism of updated parameters
received from participating devices in every round. With
twice the number of devices selected in baseline federated
learning settings, i.e., as in the popular FedAvg and FedProx
algorithms, FOLB achieves the near-optimal decrease in global
loss as that of the LB-near-optimal device selection distribution,
whereas with the same number of devices, FOLB provides a
guarantee of global loss decrease close to that of the LB-near-
optimal and even better in some cases.

Another challenge in federated learning is device hetero-
geneity, which affects the computation and communication
capabilities across devices. We demonstrate that FOLB can
easily adapt to such device heterogeneity by adjusting its re-
weighting mechanism of the updated parameters returned from
participating devices. Computing the re-weighting coefficients
involves presumed constants which are related to the loss
function characteristics and solvers used in distributed devices,
and more importantly, may not be available beforehand.
Even estimating those constants may be difficult and incur
considerable computation and communication overhead. Thus,
we show a greater flexibility of FOLB that its re-weighting
mechanism can group all presumed constants into a single
hyper-parameter which can be optimized with line search.

A. Outline and Summary of Contributions

Compared to related work (discussed next), in this paper we
make the following contributions:
• We provide a theoretical characterization of fast federated

learning based on a non-uniform selection of participating
devices. In particular, we establish lower bounds on
decrease in global loss given a non-uniform device
selection from any target distribution, and compare these
bounds directly with FedProx. We demonstrate how local
gradient information from each devices can be aggregated
to improve the lower bound and also compute a near-
optimal distribution for device selection (Section III).

• We propose FOLB, a federated learning algorithm which
employs an accurate and communication-efficient approx-
imation of a near-optimal distribution of device selection
to accelerate convergence (Section IV).

• We show a successful generalization on FOLB in federated
learning with computation and communication heterogene-
ity among participating devices (Section V).

• We perform extensive experiments on synthetic, vision,
and language datasets to demonstrate the success of FOLB
over FedAvg and FedProx algorithms in terms of model
accuracy, training stability, and/or convergence speed
(Section VI).

B. Related work

Distributed optimization has been vastly studied in the
literature [2]–[11] which focuses on a datacenter environment
model where (i) the distribution of data to different machine
is under control, e.g., uniformly at random, and (ii) all the
machines are relatively close to one another, e.g., minimal cost
of communication. However, those approaches no longer work
on the emerging environment of distributed mobile devices

due to its peculiar characteristics, including non-i.i.d. and
unbalanced data distributions, limited communication, and
heterogeneity of computation between devices. Thus, many
recent efforts [6], [8], [10], [12]–[24] have been devoted to
coping with these new challenges.

Most of the existing works [6], [8], [10], [12]–[19] either
assume the full participation of all devices or violate statistical
heterogeneity property inherent in our environment. McMahan
et al. [20] was the first to define federated learning setting
in which a learning task is solved by a loose federation of
participating devices which are coordinated by a central server
and proposed the heuristic FedAvg algorithm. FedAvg runs
through multiple rounds of optimization, in each round, it
randomly selects a small set of K devices to perform local
stochastic gradient descent with respect to their local data.
Then, the locally updated model parameters are sent back to
the central server where an averaging is taken and regarded as
new parameters. It was shown in [20] to perform well in terms
of both performance and communication cost. More recently,
[25] shows convergence rate of FedAvg when the cost function
is strongly convex and smooth. Federated multi-task learning
was proposed in [26] that allows slightly different models
in different devices and framed the problem in multi-task
learning framework. More recent work in [23], [24] propose
federated optimizers and algorithms that improve over FedAvg
in terms of convergence rate subject to a number of assumptions
about the loss functions and non-i.i.d. distributions of data.
However, heterogeneity in computation and communication
across devices have not been a focus of these models.

Very recently, [21] proposed FedProx with the main
difference from FedAvg of adding a proximal term in every
local loss function to keep the updated parameters across
devices more similar. FedProx follows the same steps as
FedAvg, however, it provides convergence rate for both convex
and non-convex losses and deals with statistical heterogeneity.
FedProx also allows any local optimizer at the local devices.
Our work utilizes the idea of adding a proximal term to local
loss function, however, our proposed algorithm FOLB takes a
unique approach that aims at a near-optimal device selection
distribution to maximize the loss decrease at every round of
optimization. On the other hand, FedProx and FedAvg select
devices uniformly at random in each round.

Other aspects of federated learning have also been studied,
such as privacy of user data [27]–[31], fairness in federated
learning [32], federated learning over communication systems
[33]–[37], and federated learning for edge networks [38], [39].
We refer the interested reader to comprehensive surveys in
[40], [41] and references therein for more details.

II. PRELIMINARIES AND MODELING ASSUMPTIONS

We first formalize federated learning, including the standard
system model (Section II-A), learning algorithms (Section II-B),
and common theoretical assumptions (Section II-C).

A. System and Learning Model

Consider a network of N devices, indexed k ∈ {1, ..., N},
where each device possesses its own local (private) dataset Dk.
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Each data point d ∈ Dk is assumed to contain a feature vector
xd and a target variable yd. The objective of federated learning
is to train a machine learning (ML) model of interest over
this network, i.e., to learn a mapping gw : xd → ŷd from a
given input sample xd to a predicted output ŷd parameterized
by a vector w, with each device processing its own data to
minimize communication overhead.

For our purposes, an ML model is specified accord-
ing to its parameter vector w and loss function f(w) =
(1/|D|)

∑
d∈D l(w,xd, yd) to be minimized. Here, D is the

training dataset available, and l(w,xd, yd) represents the error
between ŷd and yd (e.g., the squared distance). Thus, we seek
to find w that minimizes f(w) over the data D = ∪kDk

in the network. In federated learning, this minimization is
not performed directly, as each device k only has access to
Dk. Defining Fk(w) = (1/|Dk|)

∑
d∈Dk

ld as the local loss
function at k over Dk, if we assume that |Di| = |Dj | ∀i, j,
i.e., each device processes the same amount of data, we can
express the optimization as an average over the Fk(w):

min
w

f(w), where f(w) :=
1

N

N∑
k=1

Fk(w). (1)

More generally, nodes may process different amounts of data,
e.g., due to heterogeneous compute capabilities. In such cases,
we can replace the factor 1/N with pk = |Dk|/|D| for a
weighted average of the Fk(w) [21], [42]. This is the approach
we take throughout this paper.

Federated learning algorithms differ in how (1) is solved. In
our case, we will assume that a central server is available to
orchestrate the learning across the devices. Such a scenario is
increasingly common in fog or edge computing systems, where
an edge server may be connected to several edge devices, e.g.,
in a smart factory [42]. We will next introduce the standard
algorithms for federated learning in these environments.

B. Standard Federated Learning Algorithms
Federated learning algorithms generally solve (1) in three

steps: local learning, aggregation, and synchronization, which
are repeated over several rounds [20]. In each round t, the
server selects a set Kt of K devices among the N total to
update the current estimate wt for the optimal set of parameters
w?. Each device k ∈ Kt selected then updates wt based on
its local loss Fk(w), producing wt+1

k , and sends this back to
the server. The server then aggregates these locally updated
parameters according to

wt+1 =
1

K

∑
k∈Kt

wt+1
k , (2)

and synchronizes the devices with this update before beginning
the next round.

FedAvg [20] is the standard federated learning algo-
rithm that uses this framework. In FedAvg, the loss Fk(w)
is directly minimized during the local update step, us-
ing gradient descent techniques. Formally, each device cal-
culates wt+1

k = wt − η∇Fk(wt), where ∇Fk(wt) =
(1/|Dk|)

∑
d∈Dk

∇l(wt,xd, yd) is the average of the loss
gradient over device k’s data. It is also possible to use multiple
iterations of local updates between global aggregations [15].

More recently, FedProx was introduced [21], which differs
from FedAvg in the local update step: instead of minimizing
Fk(w) at device k, it minimizes

hk(w,wt) = Fk(w) +
µ

2

∥∥w −wt
∥∥2 . (3)

The proximal term µ
2 ‖w −wt‖2 added to each local loss

function brings two modeling benefits: (i) it restricts the
divergence of parameters between devices that will arise due to
heterogeneity in their data distributions, and (ii) for appropriate
choice of µ, it will turn a non-convex loss function Fk(w)
into a convex hk(w,wt) which is easier to optimize. The
approach we develop beginning in Section III will build on
FedProx. Note that by setting µ = 0, hk(w,wt) = Fk(w)
and we get back the setting in FedAvg. Thus, our algorithm
FOLB naturally applies on FedAvg and our theoretical results
still hold if all Fk(w), k = 1, . . . , N are strongly convex.

C. ML Model Assumptions
For theoretical analysis of federated learning algorithms, a

few standard assumptions are typically made on the ML models
(see e.g., [15], [21], [42]). We will employ the following in
our analysis:

Assumption 1 (L-Lipschitz gradient). Fk(w) is L-
Lipschitz gradient for each device k ∈ {1, ..., N}, i.e.,
‖∇Fk(w)−∇Fk(w′)‖ ≤ L ‖w −w′‖ for any two parameter
vectors w,w′. This also implies (via the triangle inequality)
that that the global f(w) is L-Lipschitz gradient.

Assumption 2 (B-dissimilar gradients). The gradient of
Fk(w) is at most B-dissimilar from f(w) for each k, i.e.,
‖∇Fk(w)‖ ≤ B ‖∇f(w)‖ for each w.

Assumption 3 (σ-bounded Hessians). The smallest eigenvalue
of the Hessian matrix ∇2Fk is −σ for each k, i.e., ∇2Fk �
−σI for the identity matrix I. This implies that hk(w,wt) in
(3) is µ′-strongly convex, where µ′ = µ− σ.

Assumption 4 (γ-inexact local solvers). Local updates will
yield a γ-inexact solution wt+1

k of minw hk(w,wt) for every
k and t, i.e.,

∥∥∇hk(wt+1
k ,wt)

∥∥ ≤ γ ‖∇hk(wt,wt)‖. We
assume that γ is in the range [0, 1] since γ = 0 corresponds
to solving to optimality, and γ = 1 happens with the initial
parameters wt+1

k = wt
k and since the function h(w,wt) is

convex, the local optimization algorithm at device should reduce
the gradient norm, e.g., gradient descent algorithm.

In [15], [42], Assumptions 3&4 are replaced with a stronger
assumption that the Fk(w) are convex. This corresponds to
the case where σ ≤ 0 in Assumption 3, meaning ∇2Fk is
positive semidefinite, and FedAvg can be used to minimize
the Fk(w) directly without a proximal term. Similar to [21],
the results we derive in this work will more generally hold for
non-convex Fk(w), which is true of many ML models today
(e.g., neural networks). We also note that FedProx makes a
similar assumption to Assumption 4 in deriving its convergence
bound [21], i.e., on the precision of the local solvers. In Section
V, we will present a technique where each device k estimates
its own γk based on its local gradient update.

Technical approach: In the following sections, we first in-
vestigate the general non-uniform device selection in federated
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Algorithm 1: Federated learning with non-uniform
device selection.

Input :K,T, µ, γ,w0, N, P tk k = 1, ..., N

1 for t = 0, . . . , T − 1 do
2 Server samples (with replacement) a multiset St of

K devices according to P tk, k = 1, ..., N

3 Server sends wt to all devices k ∈ St
4 Each device k ∈ St finds a wt+1

k that is a
γtk-inexact minimizer of arg minw hk(w,wt), as
defined in (3)

5 Each device k ∈ St sends wt+1
k back to the server

6 Server aggregates the wt+1
k according to

wt+1 = 1
K

∑
k∈St

wt+1
k

learning and show that in each round, a device’s contribution
in reducing the global loss function is bounded by the inner
product between its local gradient and the global one. Hence,
a near-optimal device selection distribution is introduced, that
samples devices according to the inner products between their
local and global gradients. Unfortunately, trivial solutions to
compute or estimate this distribution are excessively expensive
in communication demand. We next introduce FOLB to address
this challenge with the core idea of using 2 independent sets of
devices, one for estimating the global gradient and another for
carrying out local optimization. The locally updated parameters
from the second set are then re-weighted by the inner products
between their gradients and the estimated global gradient and
aggregated to form a new global model. We also analyze
the version using a single set of devices and how to handle
communication and computation heterogeneity with FOLB.

III. FEDNU: NON-UNIFORM FEDERATED LEARNING

In this section, we develop our methodology for improving
the convergence speed of federated learning. This includes non-
uniform device selection in the local update (Section III-A), and
inclusion of gradient information in the aggregation (Section
III-B). Our theoretical analysis on the expected decrease in
loss in each round of learning leads to a selection distribution
update that achieves an efficient lower bound (Section III-C).

A. Non-Uniform Device Selection

As discussed in Section II-B, standard federated learning
approaches select a set of K devices uniformly at random for
local updates in each round. In reality, certain devices will
provide better improvements to the global model than others
in a round, depending on their local data distributions. If we
can estimate the expected decrease in loss each device will
provide to the system in a particular round, then the device
selections can be made according to those that are expected to
provide the most benefit. This will in turn minimize the model
convergence time.

Formally, we let P tk be the probability assigned to device k
for selection in round t, where 0 ≤ P tk ≤ 1 and

∑N
k=1 P

t
k =

1 ∀t. In our federated learning scheme, during round t, the
server chooses a multiset St of size K by sampling K times
from the distribution P t1 , ..., P

t
N . Note that this sampling occurs

with replacement, i.e., a device may appear in St multiple times
and K is the cardinality of this multiset. Each unique k ∈ St
then performs a local update on the global model estimate wt to
find a γ-inexact minimizer wt+1

k of hk(w,wt) in (3), which the
server aggregates to form wt+1. Algorithm 1 summarizes this
procedure, assuming averaging for aggregation; if k appears in
St more than once, this aggregation effectively places a larger
weight on wt+1

k .
Given the introduction of P tk, we call our methodology

FedNu, i.e., non-uniform federated learning. A key aspect will
be developing an algorithm for P tk estimation in each round.
The following theorem gives a lower bound on the expected
decrease in loss achieved from round t of Algorithm 1, which
will assist in this development:

Theorem 1. With loss functions Fk satisfying Assumptions 1-4,
supposing that wt is not a stationary solution, in Algorithm 1,
the expected decrease in the global loss function satisfies

E[f(wt+1)] ≤ f(wt)− 1

Kµ
E
[ ∑
k∈St

〈∇f(wt),∇Fk(wt)〉
]

+B
(L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 , (4)

where µ′ = µ− σ > 0, and the expectation E is with respect
to the choice of K devices following probabilities P tk. As a
corollary, after T rounds,

E[f(wT )] ≤ f(w0)− 1

Kµ
E
[ T−1∑
t=0

∑
k∈St

〈∇f(wt),∇Fk(wt)〉
]

+B
(L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

) T−1∑
t=0

∥∥∇f(wt)
∥∥2 ,

where the expectation is with respect to the random selections
of S0, S1, . . . , ST−1.

The full proof of Theorem 1 as well as proofs of later
theorems/propositions are presented in appendix.

Theorem 1 provides a bound on how rapidly the global loss
can be expected to improve in each iteration based on the
selection of devices in Algorithm 1. It shows a dependency on
parameters L, B, γ, and µ of the ML model. In particular, we
see that E[f(wt+1)] ∝ B2, meaning that as the dissimilarity
between local and global model gradients grows larger, the
bound weakens. Intuitively, B depends on the variance between
local data distributions: as the datasets Dk approach being
independent and identically distributed (i.i.d.) across k, the
gradients will become more similar, and B will approach 1. As
they become less i.i.d., however, the gradients will diverge, and
B will increase. Hence, Theorem 1 gives quantitative insight
into the effect of data heterogeneity on federated learning
convergence.

Compared to the bound of FedProx [21], which was shown
to work on the particular uniform distribution, our result in
Theorem 1 is more general and applicable for any given
probability distribution. Moreover, our result offers a new
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approach to optimize convergence rate through maximizing
the inner product term E

[∑
k∈St
〈∇f(wt),∇Fk(wt)〉

]
. The

proof of Theorem 1 also takes a different path compared
to that of FedProx in [21], which relies on the uniform
distribution to first establish intermediate relations of f(wt+1)
and f(wt) with f(w̄t+1), where w̄t+1 = 1

N

∑N
k=1 wt+1

k , and
then connects f(wt+1) with f(wt). Our result applies for
any distribution and thus required direct proof of the relation
between f(wt+1) and f(wt) via bounding each of the terms
given by the L-Lipschitz continuity of f .

B. Aggregation with Gradient Information

An immediate suggestion from the expectation term in
Theorem 1 is that any devices which have a negative inner
product 〈∇f(wt),∇Fk(wt)〉 < 0 between their gradients
∇Fk(wt) and the global gradient ∇f(wt) would actually hurt
model performance. This is due to the averaging technique
used for model aggregation in Algorithm 1, which is common
in federated learning algorithms due to its simplicity [15],
[21], [42]. It is consistent with the characteristics of distributed
gradient descent [5], [7], where the global gradient (i.e., across
the entire dataset) can reduce the overall loss while individual
local gradients (i.e., at individual devices) that are not well
aligned with the global objective – in this case, those with
negative inner product – will not help improve the overall loss.

If we assume the server can estimate when a device’s inner
product is negative, then we can immediately improve FedNu
with an aggregation rule of

wt+1 = wt +
1

K

∑
k∈St

sign(〈∇f(wt),∇Fk(wt)〉)(wt+1
k −wt)

(5)

in Algorithm 1 based on the signum function. This negates local
updates from devices in St that have 〈∇f(wt),∇Fk(wt)〉 < 0,
and provides a stronger lower-bound than given in Theorem 1:

Proposition 1. With the same assumptions on Fk and wt as in
Theorem 1, with (5) used as the aggregation rule in Algorithm 1
(Line 6), the expected decrease in the global loss satisfies

E[f(wt+1)] ≤ f(wt)− 1

Kµ
E
[ ∑
k∈St

|〈∇f(wt),∇Fk(wt)〉|
]

+B

(
L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 . (6)

Proposition 1 is clearly stronger than Theorem 1: by
incorporating gradient information, the inner products are
replaced with their absolute values, making the expected
decrease in loss faster. We will next propose a method for
setting the selection probabilities P tk to optimize this bound,
and then develop algorithms to estimate the inner products.

C. LB-Near-Optimal Device Selection

The set St of selected devices affects Theorem 1 through
the expectation E[

∑
k∈St

|〈∇f(wt),∇Fk(wt)〉|]. To maximize
the convergence speed, we seek to minimize the upper bound

on the loss update in each round t, which corresponds to the
following optimization problem for choosing St:

maximize
P t

k

E
[ ∑
k∈St

|〈∇f(wt),∇Fk(wt)〉|
]

subject to
∑
k

P tk = 1, P tk ≥ 0 ∀k.

This problem is difficult to solve analytically given the
sampling relationship between St and P tk.1 It is clear, however,
that the solution which maximizes this expectation will assign
higher probability of being selected to devices with higher inner
product |〈∇f(wt),∇Fk(wt)〉|. A natural candidate which
satisfies this criterion is P tk ∝ |〈∇f(wt),∇Fk(wt)〉|. We
call this distribution LB-near-optimal, i.e., near-optimal lower-
bound, formally defined as follows:

Definition 1 (LB-near-optimal selection distribution). The
selection distribution Plb

t
k achieving a near-optimal lower-

bound on loss decrease in Theorem 1 is called the LB-near-
optimal selection distribution, and has the form

Plb
t
k =

|〈∇f(wt),∇Fk(wt)〉|∑N
k′=1 |〈∇f(wt),∇Fk′(wt)〉|

,

with the corresponding lower bound of expected loss being

E[f(wt+1)] ≤ f(wt)− 1

µ

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|Plb
t
k

+B

(
L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 .

Comparison to FedProx [21]: Our lower bound in (1) of
Definition 1, corresponding to the near-optimal device selection
distribution and achieved by our proposed algorithm FOLB in
Section IV, is more general than the bound of FedProx in [21],
which is restricted to the uniform distribution. Specifically, our
bound in (1) is stronger if

1

µ

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|Plb
t
k ≥

( 1

µ
− B(1 + γ)

√
2

µ′
√
K

−LB
2(1 + γ)2

µ′2K
(2
√

2K + 2)
)∥∥∇f(wt)

∥∥2 ,
which holds since

1

µ

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|Plb
t
k

=
1

µ

∑N
k=1 |〈∇f(wt),∇Fk(wt)〉|2∑N
k′=1 |〈∇f(wt),∇Fk′(wt)〉|

≥ 1

µ

1

N

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉| (Cauchy-Schwarz)

≥ 1

µ
| 1

N

N∑
k=1

〈∇f(wt),∇Fk(wt)〉| (triangle inequality)

≥ 1

µ
|〈∇f(wt),∇f(wt)〉| = 1

µ

∥∥∇f(wt)
∥∥2 .

1Formally, the probability mass function of St is formed from K repeated
trials of the N -dimensional categorical distribution [43] over P t

1 , ..., P
t
N .
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The last inequality holds due to f(wt) = 1
N

∑N
k=1 Fk(wt).

Convergence property. Starting from the lower-bound in
(1), we can show the convergence rate in the form of the
gradient converging to zero when the parameter settings satisfy
certain constraints, similarly to [21]. Furthermore, since the
bound in (1) is stronger than that of FedProx in [21], the
corresponding convergence rate is also faster. Specifically,
applying (1) for all t = 0, . . . , T gives us a series of inequalities,
and taking the sum of these yields the desired form of gradient
convergence (see [21] for more details).

In Definition 1, the expectation term in the bound on
E[f(wt+1)] has been computed in terms of the selection distri-
bution Plb

t
k. Unfortunately, the values of 〈∇f(wt),∇Fk(wt)〉

needed to compute the Plb
t
k cannot be evaluated at the server at

the beginning of round t, since the local and global gradients
are not available at the time of device selection. In the rest of
this section, and in Section IV, our goal will be to develop a
federated learning algorithm that (i) achieves the performance
of the distribution in Definition 1, i.e., provides the same
loss decrease at every round, and (ii) results in an efficient
implementation in a client-server network architecture. We refer
to such an algorithm as an LB-near-optimal-efficient federated
learning algorithm:

Definition 2 (LB-near-optimal-efficient federated learning
algorithm). An iterative federated learning algorithm is called
LB-near-optimal-efficient if it achieves the near-optimal lower-
bound of loss decrease in Definition 1, which corresponds to
the near-optimal selection distribution at every round, and does
not require communication between devices that is significantly
more expensive than standard federated learning.

D. Naive Algorithms for Fast Convergence

We first present two algorithms that are straightforward
modifications of the methods described in this section towards
the goal of satisfying Definition 2. We will see that each of
these fails to satisfy one criterion in Definition 2, however,
motivating our main algorithms in Section IV.

1) Direct computation of LB-near-optimal distribution: The
most straightforward approach to achieving LB-near-optimality
is enabling computation of the LB-near-optimal distribution
Plb

t
k at the beginning of round t and using this to sample

devices. This approach requires the server to send wt to all N
devices, have them compute ∇Fk(wt), and then send it back
to the central server. With these values, the server can exactly
calculate the LB-near-optimal distribution through (1).

Clearly, this algorithm will obtain the LB-near-optimal
distribution, leading to a fast convergence rate (assuming that
this initial round of communication does not significantly
increase the time of each round t). However, this algorithm
requires one iteration of expensive communication between
the server and all N devices. The gradient ∇Fk(wt) is the
same dimension as wt, and the purpose of algorithms like
FedAvg and FedProx selecting K of N devices is to avoid this
excessive communication between a server and edge devices
in contemporary network architectures [42].

As an aside, if we were able to afford this extra communica-
tion of gradients in each round, then why not just carry out the
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Fig. 2: Training loss and test accuracy of our motivating idea
and state-of-the-art approaches on MNIST dataset (µ = 1, see
Sec. VI for details on experimental settings).

exact (centralized) gradient descent at the server? Federated
learning would still be beneficial in this scenario for two
reasons. First, during their local updates, each device usually
carries out multiple iterations of gradient descent, saving
potentially many more rounds of gradient communication
to/from the server [15]. Second, while batch gradient descent
converges slowly, federated learning has a flavor of stochastic
gradient descent which tends to converge faster [16].

2) Sub-optimal estimation of LB-near-optimal distribution:
A possible workaround for the issue of expensive commu-
nication in the first approach is to further upper bound
|〈∇f(wt),∇Fk(wt)〉| ≤ ‖∇f(wt)‖ ‖∇Fk(wt)‖ using the
Cauchy-Schwartz inequality. Since ‖∇f(wt)‖ is the same for
all the devices, we can take P tk ∝ ‖∇Fk(wt)‖. Hence, while
this approach still requires the server to send out wt to all
devices for them to compute gradients, each device k only
needs to send back a single number, ‖∇Fk(wt)‖. This is much
less expensive given the fact that edge devices tend to have
larger download than upload capacities, typically by an order
of magnitude [42].

While this algorithm is closer to the communication ef-
ficiency of standard federated learning algorithms, there is
no guarantee on how accurately ‖∇f(wt)‖ ‖∇Fk(wt)‖ ap-
proximates |〈∇f(wt),∇Fk(wt)〉|, which could result in an
inaccurate estimate of Plb

t
k. Thus, it may not satisfy the LB-

near-optimal criteria of Definition 2.
We demonstrate the better performance when using directly

or estimating the LB-near-optimal selection distribution than
existing state-of-the-art federated learning algorithms in Fig. 2.
Here we run the above two naive algorithms targeting the
LB-near-optimal distribution along with FedAvg and FedProx,
and observe significant improvements over both FedAvg
and FedProx in terms of convergence speed. Our methods
quickly converge after only a few rounds of communication.
This motivates our proposed algorithm, FOLB, which also
targets the LB-near-optimal distribution, however, removes the
communication burden in the naive algorithms.

IV. FOLB: AN LB-NEAR-OPTIMAL-EFFICIENT FEDERATED
LEARNING ALGORITHM

As discussed in Section III-C, the LB-near-optimal selection
distribution given in Definition 1 for maximizing the loss
decrease in round t cannot be computed by the server at the
beginning of round t, since it involves all local gradients of the
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Algorithm 2: FOLB algorithm for LB-near-optimal-
efficient federated learning.

Input :K,T, µ, γ,w0, N

1 for t = 0, . . . , T − 1 do
2 Server selects two multisets St1 and St2 each of K

devices uniformly at random
3 Server sends wt to all k ∈ St1 and k′ ∈ St2
4 for each device k ∈ St1 do
5 Device k computes its gradient ∇Fk(wt)

6 Device k sends ∇Fk(wt) back to the server
7 Device k finds a γtk-inexact minimizer of

arg minw hk(w,wt), as defined in (3)
8 Device k sends wt+1

k back to the server

9 for each device k′ ∈ St2 do
10 Device k′ computes its gradient ∇Fk′(wt)

11 Device k′ sends ∇Fk′(wt) back to the server

12 Server computes ∇1f(wt),∇2f(wt) according to
(IV-A) and aggregates the wt+1

k (IV-A)

current global estimate wt. The straightforward approximation
using Cauchy-Schwartz still requires one iteration of additional
communication where the server sends wt to all devices, and
does not guarantee LB-near-optimality. With the goals of fast
convergence and low communication overhead in mind, the
challenges we face in developing an LB-near-optimal-efficient
federated learning algorithm for FedNu described in Definition
2 are two-fold:
(1) How can we accurately estimate (preferably with per-

formance guarantees) the LB-near-optimal probability
distribution without involving all local gradients?

(2) How can we obtain this estimate efficiently, i.e., with
minimal communication overhead on top of standard
federated learning algorithms?

In this section, we develop a federated learning algorithm
called FOLB (Section IV-A) that addresses these challenges.
The key idea of FOLB is a novel calibration procedure
for aggregating local model updates from devices selected
uniformly at random. This calibration weighs the updates
received by their estimated importance to the model, which
we show matches the performance of Theorem 1 (Section
IV-B). We also demonstrate a technique to further optimize
the communication demand of FOLB (Section IV-C).

A. Proposed FOLB Algorithm

The FOLB algorithm is summarized in Algorithm 2. At the
start of round t, the server selects two multisets St1 and St2 of
devices of size K uniformly at random, and sends wt to each
k ∈ St1 and k′ ∈ St2. Each k ∈ St1 computes its γtk-inexact
local update wt+1

k , sending both wt+1
k and ∇Fk(wt) back to

the server. Each k′ ∈ St2, by contrast, only computes ∇Fk′(wt)
and sends this back, for the purpose of calibrating the updates.

Then, instead of simple averaging, the server aggregates the
received update parameters according to the following rule:

wt+1 = wt +
∑
k∈St

1

〈∇Fk(wt),∇1f(wt)〉∑
k′∈St

2
〈∇Fk′(wt),∇2f(wt)〉

∆wt+1
k ,

where
∇if(wt) =

1

K

∑
k∈St

i

∇Fk(wt), (5)

is the gradient of the global loss f(wt) estimated from the
local losses across devices in Sti , i ∈ {1, 2}, and ∆wt+1

k =
wt+1
k −wt is the change that device k ∈ St1 made to wt at

round t during its local update.
The intuition behind (IV-A) is that the local update of each

device k ∈ St1 is weighted by a measure of how correlated
its gradient ∇Fk(wt) is with the global gradient ∇f(wt).
This correlation is assessed relative to ∇1f(wt), which is
an unbiased estimate of ∇f(wt) using gradient information
obtained from St1. The weights are normalized relative to a
second unbiased estimate of total correlation among K devices,
obtained over St2.

B. Proof of LB-Near-Optimality

We now prove that FOLB obtains the same lower-bound of
loss decrease at every round as the LB-near-optimal selection
distribution. In particular, we have the following theorem:

Theorem 2. In Algorithm 2, with the same assumptions on
Fk and wt as in Theorem 1, the lower-bound achieved on the
expected decrease of the global loss in round t matches (1),
i.e., the LB-near-optimal selection probability distribution.

The following lemma provide a key insight into how St1 and
St2 can be used to estimate the global gradient when computing
the inner products with local gradients, and will help in proving
Theorem 2 in Appendix D.

Lemma 1. Let ∇if(wt) be defined as in (IV-A). Then,

E
[ ∑
k∈St

1

〈∇Fk(wt),∇1f(wt)〉2
]

=
K

N

N∑
k=1

〈∇f(wt),∇Fk(wt)〉2,

and

E
[ ∑
k′∈St

2

〈∇Fk′(wt),∇2f(wt)〉
]

≤ K

N

N∑
k′=1

|〈∇f(wt),∇Fk′(wt)〉|.

C. Optimizing FOLB Communication Efficiency

Theorem 2 establishes the LB-near-optimal property of
FOLB. Algorithm 2 does, however, call for local updates from
2K devices across the two sets St1 and St2 in each round (and
for St1, communication of both the updates and the gradients),
whereas standard federated learning algorithms only sample
K devices.
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To reduce the communication demand further, we can make
two practical adjustments to Algorithm 2. First, we can set
St1 = St2 in each round, i.e., only selecting one set of K random
devices and using the received gradients both for parameter
updates and for normalizing the weights on these updates,
dropping the total to K. Second, similar to the technique in
Section III-B, rather than discarding updates from devices with
〈∇Fk(wt),∇1f(wt)〉 < 0, we can aggregate the negatives
of their ∆wt+1

k , thereby leveraging all K. Our modified
aggregation rule becomes

wt+1 = wt +
∑
k∈St

1

〈∇Fk(wt),∇1f(wt)〉∑
k′∈St

1
|〈∇Fk′(wt),∇1f(wt)〉|

∆wt+1
k .

A key step in the proof of Theorem 2, for (D), relied on the
independence between sampling St1 and St2. With St1 = St2,
this clearly no longer holds. Instead, we have the following:

Proposition 2. In FOLB, with the same assumptions on Fk
and wt as in Theorem 1, and (IV-C) used as the aggregation
rule in Algorithm 2, the lower-bound on expected decrease in
the global objective loss function satisfies

E[f(wt+1)] ≤ f(wt)− K

µN

N∑
k=1

|〈∇f(wt),∇Fk(wt)〉|

+B

(
L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 .

Proof. The proof is similar to that of Proposition 2, with the key
difference being that Lemma 1 now holds with equality.

Comparison: In comparing our result in
Proposition 2 with that of the LB-near-optimal
selection distribution in Definition 1, the new bound
is better when K

µN

∑N
k=1 |〈∇f(wt),∇Fk(wt)〉| >

1
µ

∑N
k=1 |〈∇f(wt),∇Fk(wt)〉|Plb

t
k. This is the case when

the data distribution across different devices becomes more
uniform. To see this, let us consider two extreme cases: (i)
under a uniform distribution of data, Plb

t
k ≈ 1/N and the new

bound is K times better than the LB-near-optimal bound; (ii)
when only one device has data, then the new bound is K/N
times worse than the LB-near-optimal bound. In practice, the
scenarios closer to case 1 will be much more prevalent than
those similar to case 2, and thus most of the time, the new
bound tends to be better than the earlier one.

V. HANDLING COMPUTATION AND COMMUNICATION
HETEROGENEITY

A practical consideration of distributed optimization on
edge devices is the heterogeneity of computing power and
communication between those devices and the central server.
In this section, we show how FOLB can be easily adapted to
handle heterogeneity by tweaking the aggregation rule slightly.

A. Modeling heterogeneous communication and computation

Each device participating in the federated learning process
has a different communication delay when communicating
with the central server and computation resources reserved for
optimization. We model these two aspects as follows:

Communication delay: For each device k, we assume that
the time it takes for one round of communication between
device k and central server is bounded above by T ck . This value
T ck can be obtained with high confidence by taking the 99th
percentile of the distribution used to model the communication
delay, e.g. exponential distribution.

Computation resources: Each device k can only reserve a
certain amount of resources to carry out optimization of the
local function hk(w; wt). Thus, we relax our assumption of
having an uniform γ-inexact local solver in all devices to allow
each device to have particular γk-inexact local solver where
γk can differ at every round of optimization and computed

as γk =
‖∇h(wt+1

k ,wt
k)‖

‖∇h(wt
k,w

t
k)‖

. Note that we assume γk ∈ [0, 1] as
in the case of local solvers being gradient descent algorithm.
Hence, let τ is the amount of time for an optimization round
dictated by the central server, we allow each selected device
k to perform any optimization within τ − T ck time and return
the updated parameter wt+1

k and γk back to the central server.
This scheme allows great flexibility and practicality since a
device can use any amount of resources available and any local
optimization algorithm that it has access to at every round.

B. FOLB with communication and computation heterogeneity

We show that FOLB can easily adapt to the inherent hetero-
geneity nature of communication and computation by adjusting
it aggregation scheme to find a near-optimal convergence rate.

New loss bound with heterogeneity presence. We first
prove the following theorem showing the decrease of loss
function in non-uniform FedProx with heterogeneity presence:

Theorem 3. With the same assumptions as in Theorem 1 and
the presence of communication and computation heterogeneity,
suppose that wt is not a stationary solution, in non-uniform
FedProx, we have the following expected decrease in the
global objective function:

E[f(wt+1)] ≤ f(wt)− 1

Kµ
E

[ ∑
k∈St

(
〈∇f(wt),∇Fk(wt)〉

−B
(
L

µµ′
+

1

µ
+

3LB

2Kµ′2

)
γk
∥∥∇f(wt)

∥∥2)]

+

(
LB2

2µ′2
+
LB

µµ′

)∥∥∇f(wt)
∥∥2 ,

where the expectation is with respect to the choice of K devices
following probabilities P tk, k = 1, . . . , N .

Implications of Theorem 3. Theorem 3 states that in the
presence of communication and computation heterogeneity, the
bound of loss decrease at a round depends not only on the inner
products between local and global gradients but also on the
optimality of the solutions returned by the individual devices.
In other words, a device is more beneficial to the global model
if the following two conditions hold:

(1) The local gradient ∇Fk(wt) is well aligned with the
global gradient ∇f(wt).

(2) It has enough resources to perform optimization to find a
decent solution, i.e., small γk.
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Both of these conditions are intuitive and reflecting the
importance of each device during the learning process. Un-
fortunately, we cannot evaluate any of the two criteria before
selecting devices without expensive prior communication and
computation. However, we show that FOLB can handle these
challenges easily by tweaking the aggregation rule.

Near-optimal selection distribution. From Theorem 3,
we can obtain a similar optimal selection probability dis-
tribution to that of Theorem 1 which focuses on de-
vices with high values of Itk = 〈∇f(wt),∇Fk(wt)〉 −
B
(

L
µµ′ + 1

µ + 3LB
2Kµ′2

)
γk ‖∇f(wt)‖2. In other word, a near-

optimal distribution will select device k with probability:

Plbh
t
k =

|Itk|∑N
k′=1 |Itk′ |

with the loss decrease satisfies:

E[f(wt+1)] ≤ f(wt)− 1

µ

N∑
k=1

(
〈∇f(wt),∇Fk(wt)〉

−B
(
L

µµ′
+

1

µ
+

3LB

2Kµ′2

)
γk
∥∥∇f(wt)

∥∥2)Plbh
t
k

+

(
LB2

2µ′2
+
LB

µµ′

)∥∥∇f(wt)
∥∥2 .

FOLB aggregation for communication and computation
heterogeneity. FOLB with heterogeneity of communication
and computation adopts the following aggregation rule:

wt+1 = wt +
∑
k∈St

1

It1k∑
k′∈St

1
|It1k′ |

∆wt+1
k ,

where It1k = 〈∇1f(wt),∇Fk(wt)〉 −
B
(

L
µµ′ + 1

µ + 3LB
2Kµ′2

)
γk ‖∇1f(wt)‖2, and ∇1f(wt) is

defined in (IV-A).
Avoiding constant estimations: In the new FOLB that deals

with heterogeneity, updating the global parameter according
to Equation V-B becomes more complicated compared to
Equation IV-C due to involving the set of constants B,L, µ′

which need to be estimated before hand or on-the-air. Instead
of requiring all these constants to be estimated, we propose
to use a hyper-parameter ψ = B

(
L
µµ′ + 1

µ + 3LB
2Kµ′2

)
that will

be learned though hyper-parameter tuning similarly to µ in
FedProx. For tuning ψ, we can use a simple line search with
a exponential step size, e.g. ψ ∈ {10−1, 1, 10, 102} which is
used in our experiments and found to be effective.

VI. EXPERIMENTS

In this section, we experimentally compare our proposed
algorithm with existing state-of-the-art approaches and demon-
strate faster convergence across different learning tasks in both
synthetic and real datasets. We also confirm the advantage of
taking into consideration the individual device optimization
capability in the presence of communication and computation
heterogeneity, showing our approach more suitable for practical
federated learning implementations.

A. Experimental settings

We first describe our setup of datasets, compared algorithms,
testing environment and how statistical and system heterogene-
ity is simulated. We adopt closely the setup in a very recent
work [21] on FedProx and provide details of their setup and
the changes we made here for completeness.

Dataset. We use the a standard set of datasets used in multi-
ple other works on federated learning [8], [21]. Particularly, we
use 10-class MNIST [44], 62 class Federated Extended MNIST
(FEMNIST) [45], and synthetic datasets [8], [21] to study with
a multinomial logistic regression model, which extends the
binary logistic regression model to multi-class scenarios and
uses a different linear predictor function for each class to
predict the probability that an observation belongs to that class.
The synthetic datasets are generated with Gaussian distributions
which are parameterized with a set of control parameters to
vary the level of heterogeneity (see [8], [21] for more details).
Synthetic iid and Synthetic 1 1 denote two datasets with no
heterogeneity (i.i.d. distribution of data) and high heterogeneity,
respectively. For non-convex setting, similarly to [20], [21], we
consider a text sentiment analysis task on tweets using Sent140
[46] dataset and next-character prediction task on the dataset of
The Complete Works of William Shakespeare [20]. For MNIST,
FEMNIST, sent140, and Shakespeare, we consider 1000, 200,
143, 772 devices, respectively. Particularly, for MNIST and
FEMNIST datasets, the data is distributed on each device
following a power law under the constraint that each device
gets images from only two digits. For Sent140, each twitter
account corresponds to one device, while in Shakespeare, each
speaking role corresponds to one device.

Compared algorithms. We compare FOLB with current
state-of-the-art algorithms in the federated learning setting,
including the recent FedProx [21] and the original FedAvg
[20]. For both FOLB, FedProx and FedAvg, we use k = 10
devices in each round of optimization and investigate the
effects of K on performance in a later set of experiments.
For FedProx, we set µ = 1, 1, 1, 0.001, and 0.01, for 5
datasets respectively, as suggested in the original paper [21].
For our algorithm FOLB, we apply a similar line search on
µ ∈ {10−4, 10−3, 10−2, 10−1, 1} and ψ ∈ {10−1, 1, 10, 102}
when FOLB with heterogeneity consideration is tested. Here,
we consider the versions of FOLB that only samples one set
of devices in each round of optimization for communication
efficiency, i.e., we use the aggregation scheme in (IV-C) and
(V-B). Thus, the communication cost of FOLB, FedAvg and
FedProx are the same.

Computation and communication heterogeneity simula-
tion. For all algorithms, we simulate the computation and
communication heterogeneity by allowing each device to pick a
random number between 1 and 20 to be the number of gradient
descent steps that the device is able to perform when selected.
We initialize the same seed in all the compared algorithms
to make sure that these numbers of gradient descents are
consistent on all the algorithms. For FedProx and FedAvg,
the received parameters from local devices in every round are
simply averaged to get the new set of global model parameters.

Environment. We performed all experiment on a 8x2080Ti
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(a) Training loss (Lower is better.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

T
e

s
t 

A
c
c
u

ra
c
y

Rounds

µ = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

Rounds

µ = 0.001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

Rounds

µ = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

Rounds

µ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

Rounds

µ = 1.0

(b) Test accuracy (Higher is better.)

Fig. 3: Effectiveness of our proposed aggregation rule in FOLB compared to simple averaging in FedProx (similarly in FedAvg)
across a wide range of proximal parameter µ.
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Fig. 4: Performance comparison between FOLB and FedProx
considering different neural network models, i.e., CNN and
MLP with 3 layers, over the MNIST dataset and µ = 0.01.
FOLB results in a more stable model accuracy and outperforms
FedProx.
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Fig. 5: Performance comparison between FOLB and FedProx
considering different number of devices. With increasing the
number of devices in each round, FOLB converges faster and
stabilizes quicker than FedProx. We use MNIST dataset with
a 3-layer CNN and µ = 0.01.
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(a) 1 class per device (most extreme)
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Fig. 6: Testing accuracy with different non-IID settings of the MNIST dataset, i.e., randomly assigning images of only a fixed
number of different digits to each device. FOLB performs better than FedProx specially in the most extreme non-IID setting.

GPU cluster using TensorFlow [47] framework. Our codebase
is based on the publicly available implementation of FedProx

[21] approach 2. For each dataset, we use stochastic gradient
descent (SGD) as a local solver.

2https://github.com/litian96/FedProx

https://github.com/litian96/FedProx
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Fig. 7: Training loss of FOLB, FedProx and FedAvg on various datasets using linear model (multinomial logistic regression).
FOLB can reach lower loss value than the others.
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Fig. 8: Testing accuracy of FOLB, FedProx and FedAvg on various datasets using linear model (multinomial logistic regression).
FOLB can reach higher level of accuracy than the others.
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Fig. 9: Training loss of FOLB, FedProx and FedAvg on
various datasets using non-linear model (LSTM). FOLB can
reach lower loss value than the others.

 0

 0.2

 0.4

 0.6

 0.8

 0  200  400  600  800

T
e
s
t 
A

c
c
u
ra

c
y

Rounds

(a) Sent140

 0

 0.2

 0.4

 0.6

 0.8

 0  10  20  30  40
T

e
s
t 
A

c
c
u
ra

c
y

Rounds

(b) Shakespeare

Fig. 10: Testing accuracy of FOLB, FedProx and FedAvg on
various datasets using non-linear model (LSTM). FOLB can
reach higher level of accuracy than the others.

B. Experimental results

1) Quantifying the effectiveness of the proposed aggregation
rule: We first compare our new aggregation rule with the
simple averaging in FedProx (similarly in FedAvg). We vary
µ with values from the set {10−4, 10−3, 10−2, 10−1, 1} in both
FedProx and FOLB, and fix ψ = 0 in FOLB. The training loss
and test accuracy on the first real dataset MNIST are shown
in Fig. 3.

From Fig. 3, we observe the better performance of our
proposed aggregation rule compared to that of simple averaging
in FedProx (and similarly in FedAvg). Specifically, with
FOLB, the loss value is always smaller than that of FedProx
and its accuracy is higher than that of FedProx at the
same time. This is especially significant in early iterations,
showing faster convergence rate of FOLB. Our results prove
the better effectiveness of our proposed aggregation scheme
that principally aims at maximizing a lower-bound of loss
decrease in every iteration (4).

Moreover, the better performance of our aggregation

rule is more compelling with smaller values of µ. This
observation again verifies the critical role of our lower-
bound in (4) and our goal of maximizing it. Since max-
imizing the lower-bound leads to our approach of maxi-
mizing E

[∑
k∈St
〈∇f(wt),∇Fk(wt)〉

]
, which is weighted

by 1
µ in (4), with smaller µ, the results of maximizing

E
[∑

k∈St
〈∇f(wt),∇Fk(wt)〉

]
have bigger impact in max-

imizing the lower-bound. This observation of having better
actual loss values draws a strong correlation between our lower-
bound in (4) and the actual loss decrease and maximizing the
lower-bound is sensible.
Experiments with different neural network models. In
earlier experiments, we used a multinomial logistic regression
model. Now we compare the performance of FOLB and
FedProx when using a Convolutional Neural Network (CNN)
or Multi-Layer Perceptron (MLP) with 3 layers each. The
results are illustrated in Fig. 4. We find that FOLB converges
faster and is much more stable compared to FedProx.
Experiments with different number of devices in each
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Fig. 11: Accuracy of FOLB with and without heterogeneity consideration. Heterogeneity-aware FOLB avoids major drops of
accuracy between iterations and is more robust than vanilla FOLB.

round. We present the results with a varying number of devices
participating in each round in Fig. 5. As expected, more devices
make convergence stable and fast. However, we find this effect
significantly better with FOLB compared to FedProx, thanks
to our aggregation scheme. With a small number of devices
in each round, FOLB is quite similar to FedProx since our
aggregation scheme becomes closer to simple averaging.
Experiments with different non-IID settings. We simulate
various non-IID scenarios on the MNIST dataset by only
assigning random images from a fixed number of different
digits to each device, i.e., 1, 2, 5, 10. For example, in the
most extreme case, each device only has random images from
only one digit. The results are demonstrated in Fig. 6 and
show a recurring observation that FOLB outperforms FedProx,
especially in the extreme cases of non-IID (common in reality).

2) Comparisons on various datasets and models: We
compare FOLB with FedProx and FedAvg algorithms. Figs. 7
and 8 present the training loss and test accuracy of all the
algorithms on linear model (multinomial logistic regression)
and Figs. 9 and 10 report results for non-linear model (LSTM).
It is evident that FOLB consistently outperforms FedProx
and FedAvg in terms of both reducing loss and improving
accuracy. For example, on the Synthetic 1 1 dataset, FOLB
is able to reach a low loss value and high accuracy level in
only within 20 iterations while the other two methods never
reach that level within 100 iterations and seem to converge at
much higher loss and lower accuracy. On the other datasets,
FOLB reduces loss value (and also increasing accuracy) faster
than both FedProx and FedAvg, and can even reach lower
loss and higher accuracy level than the other two algorithms.

TABLE I: Number of rounds of each method to reach a certain
accuracy level on each dataset (Note that on Shakespeare,
FedAvg failed to reach the given accuracy within 40 rounds).

Methods Accuracy FOLB FedProx FedAvg

Synthetic iid 70% 50 57 113
Synthetic 1 1 70% 19 154 177
MNIST 80% 11 25 25
FEMNIST 65% 34 58 86
Sent140 65% 31 132 82
Shakespeare 45% 20 25

In Table I, we report the number of optimization rounds that
each algorithm needs to perform in order to reach a certain
accuracy level (this is chosen based on the maximum accuracy
that all three algorithms can reach on each dataset). We see
that, usually FOLB only requires half number of rounds taken
by FedProx andFedAvg to reach the same level of accuracy.
For example, on Synthetic 1 1 dataset, FOLB only needs 19
rounds while FedProx and FedAvg require 154 and 177 rounds
respectively. One exception is on Synthetic iid where data is
independent and identically distributed across different devices,
however, FOLB still need fewer rounds than FedProx and
FedAvg. Note that due to computation heterogeneity, even on
Synthetic iid, FedAvg performs poorly compared to FedProx
and FOLB which directly address heterogeneity. These results
again verify the faster convergence rate of FOLB compared to
FedProx and FedAvg.

3) FOLB with and without communication and computation
heterogeneity consideration: In this last set of experiments, we
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compare FOLB with different aggregation rules, i.e., (IV-C) and
(V-B) which are corresponding to before and after taking into
account the heterogeneity of communication and computation
respectively. Fig. 11 shows the test accuracy of these two
variants on Synthetic 1 1 and EMNIST, where the performance
of FOLB varies the most (Fig. 8) and with different values
of ψ which controls how much heterogeneity contributes in
computing aggregation weight of each local update in (V-B).
The results show that by taking into account the inherent
heterogeneity, FOLB is more stable than the other variant.
In particular, with heterogeneity, FOLB is able to avoid most
major drops in accuracy and stays at high accuracy level toward
later iterations without any significant fluctuations. On the other
hand, the vanilla FOLB can reach high accuracy but fluctuates
widely even in later iterations. In addition, from Fig. 11, ψ
can take value in a wide range, i.e., [0.1, 10] and still helps
stabilize FOLB well.

VII. CONCLUSION

In this work, we have introduced FOLB - a fast-convergent
federated learning algorithm, and shown that FOLB theoreti-
cally achieves a near-optimal possible lower-bound for the over-
all loss decrease at every round of communication/optimization.
FOLB encloses a novel adaptive aggregation scheme that takes
into account both statistical and system heterogeneity inherent
in the modern networking environments of massively distributed
mobile devices. More importantly, we have shown that across
different tasks and datasets, FOLB significantly reduces the
number of rounds to reach a certain level of loss value and
accuracy.

For future work, a promising direction is to study a device
selection methodology that couples decisions across multiple
time periods to bring greater performance gains in the long
term. This involves deriving new lower-bound that reflects the
performance after a number of optimization rounds and taking
into account the communication and computation heterogeneity
in all those rounds.
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APPENDIX

A. Proof of Theorem 1

Proof. From the L-Lipschitz continuity of f , we have

f(wt+1) ≤ f(wt) + 〈∇f(wt),wt+1 −wt〉+
L

2

∥∥wt+1 −wt
∥∥2

We will separately bound the last two terms on the right-hand
side of the above inequality:
• Bounding

∥∥wt+1 −wt
∥∥: Let ŵt+1

k =
arg minw hk(w,wt). Due to the µ′-strong convexity of
hk(w,wt) and the γ-inexact local solver assumption for
wt+1
k , we have:∥∥ŵt+1

k −wt+1
k

∥∥ ≤ 1

µ′
∥∥∇h(ŵt+1

k ,wt)−∇h(wt+1
k ,wt)

∥∥
≤ γ

µ′
∥∥∇Fk(wt)

∥∥ ,
and, similarly,

∥∥ŵt+1
k −wt

∥∥ ≤ 1

µ′
∥∥∇Fk(wt)

∥∥ .
Hence, by the triangle inequality and B-dissimilarity of ∇Fk,
we obtain:∥∥wt+1

k −wt
∥∥ ≤ 1 + γ

µ′
∥∥∇Fk(wt)

∥∥ ≤ B(1 + γ)

µ′
∥∥∇f(wt)

∥∥ .
Now, noting wt+1 = 1

K

∑
k∈St

wt+1
k , we can write∥∥wt+1 −wt

∥∥2 ≤ ( 1

K

∑
k∈St

∥∥wt+1
k −wt

∥∥)2
≤ B2(1 + γ)2

µ′2
∥∥∇f(wt)

∥∥2 ,
where the first inequality follows from the Cauchy-Schwarz’s
inequality, and the second follows from applying (A) to each
k in the sum.
• Bounding 〈∇f(wt),wt+1 − wt〉: By definition of the

aggregation step for wt+1, we can write

〈∇f(wt),wt+1−wt〉 =
1

K

∑
k∈St

〈∇f(wt),wt+1
k −wt〉. (-4)

For each term in the sum, we can express

wt+1
k −wt =− 1

µ
∇Fk(wt) +

1

µ
(∇Fk(wt)−∇Fk(wt+1

k ))

+
1

µ
(∇Fk(wt+1

k ) + µ(wt+1
k −wt)).

Thus,

〈∇f(wt),wt+1
k −wt〉 = − 1

µ
〈∇f(wt),∇Fk(wt)〉

+
1

µ
〈∇f(wt), ∇Fk(wt)−∇Fk(wt+1

k )〉

+
1

µ
〈∇f(wt), ∇Fk(wt+1

k ) + µ(wt+1
k −wt)〉

≤ − 1

µ
〈∇f(wt),∇Fk(wt)〉

+
1

µ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt)−∇Fk(wt+1

k )
∥∥

+
1

µ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt+1

k ) + µ(wt+1
k −wt)

∥∥ ,
where the inequality follows again from Cauchy-Schwarz.
Noting that

∥∥∇Fk(wt)−∇Fk(wt+1
k )

∥∥ ≤ L
∥∥wt+1

k −wt
∥∥

by Assumption 1, and that ∇Fk(wt+1
k ) + µ(wt+1

k − wt) =
∇h(wt+1

k ,wt) by definition, we have

〈∇f(wt),wt+1
k −wt〉 ≤ − 1

µ
〈∇f(wt),∇Fk(wt)〉

+
LB(1 + γ)

µµ′
∥∥∇f(wt)

∥∥2 +
Bγ

µ

∥∥∇f(wt)
∥∥2 ,

where we have applied (A) to the middle term, and Assumptions
4&2 to the last term on the right hand side. Combining this
with (A), we have

〈∇f(wt),wt+1 −wt〉 =
1

K

∑
k∈St

〈∇f(wt),wt+1
k −wt〉

≤ − 1

Kµ

∑
k∈St

〈∇f(wt),∇Fk(wt)〉

+
B

µ

(L(γ + 1)

µ′
+ γ
)∥∥∇f(wt)

∥∥2 .
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Substituting (A) and (A) into (A) and taking the expectation,
we obtain

E[f(wt+1)] ≤ f(wt)− 1

Kµ
E

[ ∑
k∈St

〈∇f(wt),∇Fk(wt)〉

]

+B

(
L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 ,

where the first and last terms on the right hand side are not
written in expectation as they do not depend on the selection
of devices in round t.

B. Proof of Proposition 1

Proof. The key difference from Theorem 1’s proof is in the
decomposition of 〈∇f(wt),wt+1 −wt〉 in (A). In this case,
we write

〈∇f(wt),wt+1 −wt〉 =
1

K

[ ∑
k∈S+

t

〈∇f(wt),wt+1
k −wt〉

+
∑
k∈S−t

〈∇f(wt),wt −wt+1
k 〉

]
,

where S+
t = {k ∈ St : 〈∇f(wt),∇Fk(wt)〉 ≥ 0} and

S−t = {k ∈ St : 〈∇f(wt),∇Fk(wt)〉 < 0}. For k ∈ S+
t ,

the derivation follows (A). On the other hand, for k ∈ S−t ,

〈∇f(wt),wt −wt+1
k 〉 ≤

1

µ
〈∇f(wt),∇Fk(wt)〉

− 1

µ
〈∇f(wt), ∇Fk(wt)−∇Fk(wt+1

k )〉

− 1

µ
〈∇f(wt), ∇Fk(wt+1

k ) + µ(wt+1
k −wt)〉

≤ − 1

µ
|〈∇f(wt),∇Fk(wt)〉|

+
1

µ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt)−∇Fk(wt+1

k )
∥∥

+
1

µ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt+1

k ) + µ(wt+1
k −wt)

∥∥
≤ − 1

µ
|〈∇f(wt),∇Fk(wt)〉|

+
LB(1 + γ)

µµ′
∥∥∇f(wt)

∥∥2 +
Bγ

µ

∥∥∇f(wt)
∥∥2 .

Substituting these expressions in (B) gives the result.

C. Proof of Lemma 1

We sequentially prove the two statements in the following:

Proof of Eq. 1. We expand
∑
k∈St

1
〈∇Fk(wt),∇1f(wt)〉2 as

follows:∑
k∈St

1

〈∇Fk(wt),∇1f(wt)〉2

=
1

K2

∑
k∈St

1

( ∑
k′∈St

1

〈∇Fk(wt),∇Fk′(wt)〉
)2

=
1

K2

∑
k,k′,k′′∈St

1

〈∇Fk(wt),∇Fk′(wt)〉〈∇Fk(wt),∇Fk′′(wt)〉

Since |St1| = K, the summation in the last equality has K3

terms. Across all possible multisets St1, there are N3 possible
combinations of k, k′, k′′. Since device selection in Algorithm 2
occurs uniformly at random, each combination k, k′, k′′ has the
same probability of appearing in the summation. Therefore, we
can write the expectation as a summation over all combinations
of three devices from [N ] = {1, ..., N}, and simplify the result
as follows:

E
[ ∑
k∈St

1

〈∇Fk(wt),∇1f(wt)〉2
]

=
K3

K2N3

∑
k,k′,k′′

〈∇Fk(wt),∇Fk′(wt)〉〈∇Fk(wt),∇Fk′′(wt)〉

=
K

N3

∑
k∈[N ]

( ∑
k′∈[N ]

〈∇Fk(wt),∇Fk′(wt)〉
)2

=
K

N

∑
k∈[N ]

(
〈∇Fk(wt),

1

N

∑
k′∈[N ]

∇Fk′(wt)〉
)2

=
K

N

∑
k∈[N ]

(
〈∇Fk(wt),∇f(wt)〉

)2
,

where the last step follows from the definition of ∇f(wt) =
1
N

∑
k∈[N ]∇Fk(wt).

Proof of Eq. 1. By definition of ∇2f(wt), we have∑
k′∈St

2

〈∇Fk′(wt),∇2f(wt)〉

=
1

K

∑
k′,k′′∈St

2

〈∇Fk′(wt),∇Fk′′(wt)〉.

Then, similar to the proof of Eq. 1, we can write the expectation
as a summation over all possible combinations of device pairs,
and simplify:

E
[ ∑
k′∈St

2

〈∇Fk′(wt),∇2f(wt)〉
]

=
K2

KN2

∑
k′,k′′∈[N ]

〈∇Fk′(wt),∇Fk′′(wt)〉

=
K

N

∑
k′∈[N ]

〈∇Fk′(wt),
1

N

∑
k′′∈[N ]

∇Fk′′(wt)〉

=
K

N

∑
k′∈[N ]

〈∇Fk′(wt), f(wt)〉 ≤ K

N

∑
k′∈[N ]

|〈∇Fk′(wt), f(wt)〉|.

That complete the proof.

D. Proof of Theorem 2

Proof. As in Theorem 1, we begin with the L-Lipschitz
inequality for f(wt+1) given in (A), and bound the last two
terms on the right-hand side:
• Bounding

∥∥wt+1 −wt
∥∥: In (IV-A), define

P̂ tk =
〈∇Fk(wt),∇1f(wt)〉∑

k′∈St
2
〈∇Fk′(wt),∇2f(wt)〉

, (-24)
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i.e., an approximation of the LB-near-optimal selection proba-
bility in (1). Following the procedure for this bound in Theorem
1, for the update rule (IV-A) of FOLB, we can write∥∥wt+1 −wt

∥∥2 ≤ ( ∑
k∈St

1

P̂ tk
∥∥wt+1

k −wt
∥∥)2

≤
( ∑
k∈St

1

P̂ tk

)2B2(1 + γ)2

µ′2
∥∥∇f(wt)

∥∥2 .
• Bounding 〈∇f(wt),wt+1−wt〉: Similar to the procedure

for this bound in Theorem 1, we can write

〈∇f(wt),wt+1 −wt〉 =
∑
k∈St

1

P̂ tk〈∇f(wt),wt+1
k −wt〉

≤ − 1

µ

∑
k∈St

1

P̂ tk〈∇Fk(wt),∇1f(wt)〉

+
∑
k∈St

1

P̂ tk
B

µ

(L(γ + 1)

µ′
+ γ
)∥∥∇f(wt)

∥∥2 ,
where the equality follows from the FOLB aggregation, and
the inequality follows from (A).

Now, substituting (D) and (D) into (A), we have

f(wt+1) ≤ f(wt)− 1

µ

∑
k∈St

1

P̂ tk〈∇Fk(wt),∇1f(wt)〉

+
∑
k∈St

1

P̂ tk
B

µ

(L(γ + 1)

µ′
+ γ
)∥∥∇f(wt)

∥∥2
+
( ∑
k∈St

1

P̂ tk

)2B2(1 + γ)2

µ′2
∥∥∇f(wt)

∥∥2 .
Note that, with random selection of St1 and St2, we can
define two random variables

∑
k∈St

1
〈∇Fk(wt),∇1f(wt)〉

and
∑
k′∈St

2
〈∇Fk′(wt),∇2f(wt)〉 which follow the

same distribution and E
[∑

k∈St
1
〈∇Fk(wt),∇1f(wt)〉

]
=

E
[∑

k′∈St
2
〈∇Fk′(wt),∇2f(wt)〉

]
. Taking expectation with

respect to the uniformly random selection of devices in the
two sets St1 and St2, and using Taylor’s expansion give us

E[f(wt+1)] ≤ f(wt)− 1

µ
E
[ ∑
k∈St

1

P̂ tk〈∇Fk(wt),∇1f(wt)〉
]

+B
(L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 .

Since St1 and St2 are independent sets of random devices, the
above inequality is equivalent to

E[f(wt+1)] ≤ f(wt)

− 1

µ

E
[∑

k∈St
1
〈∇Fk(wt),∇1f(wt)〉〈∇Fk(wt),∇1f(wt)〉

]
E
[∑

k′∈St
2
〈∇Fk′(wt),∇2f(wt)〉

]
+B

(L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 .

In the term with expectations, we can apply Eq. 1 and 1
from Lemma 1 to the numerator and denominator, respectively,
giving

E[f(wt+1)] ≤ f(wt)− 1

µ

∑
k∈[N ]〈∇f(wt),∇Fk(wt)〉2∑
k′∈[N ] |〈∇f(wt),∇Fk′(wt)〉|

+B
(L(γ + 1)

µµ′
+
γ

µ
+
BL(1 + γ)2

2µ′2

)∥∥∇f(wt)
∥∥2 ,

which is equivalent to (1).

E. Proof of Theorem 3

Proof. From the L-Lipschitz continuity of f , we have

f(wt+1) ≤ f(wt) + 〈∇f(wt),wt+1 −wt〉+
L

2

∥∥wt+1 −wt
∥∥2 .

We will bound the last two terms in the right-hand side of the
above inequality as follows:
• Bound

∥∥wt+1 −wt
∥∥: Similar to the proof of Theorem 1,

we derive the following bound:∥∥wt+1 −wt
∥∥2 ≤ ( 1

K

∑
k∈St

∥∥wt+1
k −wt

∥∥)2
≤ B2

K2µ′2

( ∑
k∈St

(1 + γk)
)2 ∥∥∇f(wt)

∥∥2 .
• Bound 〈∇f(wt),wt+1−wt〉: Following the similar steps

in the proof of Theorem 1, we obtain the following:

〈∇f(wt),wt+1
k −wt〉 ≤ − 1

µ
〈∇f(wt),∇Fk(wt)〉

+
1

µ
〈∇f(wt), (∇Fk(wt)−∇Fk(wt+1

k ))〉

+
1

µ
〈∇f(wt), (∇Fk(wt+1

k ) + µ(wt+1
k −wt))〉

≤ − 1

µ
〈∇f(wt),∇Fk(wt)〉

+
1

µ

∥∥∇f(wt)
∥∥∥∥∇Fk(wt)−∇Fk(wt+1

k )
∥∥

+
1

µ

∥∥∇f(wt)
∥∥∥∥(∇Fk(wt+1

k ) + µ(wt+1
k −wt))

∥∥
≤ − 1

µ
〈∇f(wt),∇Fk(wt)〉+

LB(1 + γk)

µµ′
∥∥∇f(wt)

∥∥2
+
Bγk
µ

∥∥∇f(wt)
∥∥2 ,

≤ − 1

µ
〈∇f(wt),∇Fk(wt)〉+

LB

µµ′
∥∥∇f(wt)

∥∥2
+
B

µ

(
L

µ′
+ 1

)
γk
∥∥∇f(wt)

∥∥2 ,
and, consequently,

〈∇f(wt),wt+1 −wt〉 =
1

K

∑
k∈St

〈∇f(wt),wt+1
k −wt〉

≤ − 1

Kµ

∑
k∈St

〈∇f(wt),∇Fk(wt)〉

+
B

µ

∑
k∈St

(
L

µ′
+ 1

)
γk
∥∥∇f(wt)

∥∥2 +
LB

µµ′
∥∥∇f(wt)

∥∥2 .
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Combine (E), (E) and (E), we obtain:

f(wt+1) ≤f(wt)− 1

Kµ

∑
k∈St

〈∇f(wt),∇Fk(wt)〉

+B
∑
k∈St

1

(
L

µµ′
+

1

µ
+

LB

Kµ′2

)
γk
∥∥∇f(wt)

∥∥2
+

LB2

2K2µ′2

(∑
k∈St

γk

)2 ∥∥∇f(wt)
∥∥2

+

(
LB2

2µ′2
+
LB

µµ′

)∥∥∇f(wt)
∥∥2 .

Thus,

E[f(wt+1)] ≤ f(wt)− 1

Kµ
E

[ ∑
k∈St

(
〈∇f(wt),∇Fk(wt)〉

−B
(
L

µµ′
+

1

µ
+

LB

Kµ′2

)
γk
∥∥∇f(wt)

∥∥2
− LB2

2K2µ′2

∑
k′∈St

γk′γk
∥∥∇f(wt)

∥∥2)]

+

(
LB2

2µ′2
+
LB

µµ′

)∥∥∇f(wt)
∥∥2

≤ − 1

Kµ
E

[ ∑
k∈St

(
〈∇f(wt),∇Fk(wt)〉

−B
(
L

µµ′
+

1

µ
+

3LB

2Kµ′2

)
γk
∥∥∇f(wt)

∥∥2)]

+

(
LB2

2µ′2
+
LB

µµ′

)∥∥∇f(wt)
∥∥2 .

This completes the proof.
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