
EPROF: An Energy/Performance/Reliability Optimization Framework for

Streaming Applications

Yavuz Yetim Sharad Malik Margaret Martonosi

Princeton University Princeton University Princeton University
yyetim@princeton.edu sharad@princeton.edu mrm@princeton.edu

Abstract— Computer systems face increasing challenges in si-
multaneously meeting an application’s energy, performance, and
reliability goals. While energy and performance tradeoffs have
been studied through different dynamic voltage and frequency
scaling (DVFS) policies and power management schemes, trade-
offs of energy and performance with reliability have not been stud-
ied for general purpose computing. This is particularly relevant
for application domains such as multimedia, where some limited
application error tolerance can be exploited to reduce energy [7].

In this paper, we present EPROF, an optimization framework

based on Mixed-Integer Linear Programming (MILP) that se-

lects possible schedules for running tasks on multiprocessors in

order to minimize energy while meeting constraints on applica-

tion performance and reliability. We consider parallel applica-

tions that express (on task graphs) the performance and reliabil-

ity goals they need to achieve, and that run on chip multiproces-

sors made up of heterogeneous processor cores that offer differ-

ent energy/performance/reli-ability tradeoffs. For the StreamIt

benchmarks [16], EPROF can identify schedules that offer up

to 34% energy reduction over a baseline method while achieving

the targeted performance and reliability. More broadly, EPROF

demonstrates how these three degrees of freedom (energy, perfor-

mance and reliability) can be flexibly exploited as needed for dif-

ferent applications.

I. INTRODUCTION

Continuing the trajectory ofMoore’s Law scaling has pushed
microprocessors into a realm where satisfying application per-
formance goals on constrained energy budgets is increasingly
challenging. One approach to addressing this has been to ex-
plore tradeoffs in which gate or circuit level reliability is sacri-
ficed in order to achieve higher performance at acceptable en-
ergy levels (e.g., [5]). Sacrificing reliability for performance
may be acceptable if these errors can be corrected [5], or if
they do not always impact functional correctness. For example,
some gate-level errors are not necessarily visible at the archi-
tecture or software level, e.g. single-bit errors in a branch pre-
dictor or bit-flips in portions of the data cache that are currently
unused [13]. Further, many current software applications can
also tolerate infrequent low-level errors. For example, image
processing and audio applications can both tolerate a modest
numbers of bit-flips in their picture or sound data without any
detectable effect on the application behavior. For both these
reasons, prior work has explored particular instances of this
tradeoff between energy and resiliency (e.g., [1, 7, 10, 11, 14]).
Increasingly, chip multiprocessors are likely to be hetero-

geneous collections of processor cores with different energy,
performance, and reliability characteristics. This heterogeneity
might arise by design (e.g., ERSA assumes 1 reliable core and
N cheaper but less-reliable ones [11]) or might arise through
technology variations that result in heterogeneous processor

behaviors. Our goal is to exploit this heterogeneity to run appli-
cations with “just enough” reliability, and to meet performance
constraints with the least energy. We focus here on applica-
tions where this can be accomplished through static scheduling
of application components on such heterogeneousmultiproces-
sors. Streaming media applications (such as the StreamIt [16]
benchmarks) are ideal candidates for this.

This paper proposes EPROF and evaluates its effectiveness
for static scheduling. The static scheduling is done using the
EPROF framework. One input to EPROF is the energy, per-
formance, and reliability characteristics of each core. The sec-
ond is an application task graph that sets performance targets
(e.g. real-time or soft-real-time deadlines) and reliability re-
quirements. An example might be “This portion of the applica-
tion can tolerate no more than E errors per data set.”. EPROF
uses these inputs in a novelMixed Integer Linear Programming
(MILP) [3, 4] formulation to identify the best possible sched-
ule. The optimal schedule output by the MILP solver will ex-
ploit low-energy processors whenever possible, as long as us-
ing them does not violate timing deadlines (if they are slow),
reliability targets (if they have more frequent errors), or mu-
tual exclusion rules (if resources cannot also be in use by an-
other task within the graph). Our scheduling constraints en-
compass the aspects of the execution of an application on an
occasionally-faulty multi-processor system while still provid-
ing linearity and simplicity in the formulation.

While other research has explored time-only or time-energy
schedulers (e.g., [4, 6]), or considered reliability in the schedul-
ing through duplication [17], ours is the first to develop a
technique for optimizing the three-dimensional energy, perfor-
mance and reliability schedule that exploits intrinsic limited er-
ror tolerance in application classes such as multimedia. The
corresponding MILP formulation is experimentally validated
through scheduling the StreamIt applications on representative
heterogeneous chip multiprocessors (CMPs).

The contributions of this work are as follows:
1. The EPROF scheduling framework is the first to manage
errors in a hardware-software system to exploit energy, perfor-
mance and reliability tradeoffs. Deadlines and error require-
ments can be specified for portions of an application’s task
graph, in order to pinpoint which parts of a program are more
or less error-tolerant.
2. The MILP formulation has several novel components. Our
strategy of making an “infinite” pipeline into a single schedu-
lable stage manages complexity and allows us to schedule full-
sized streaming programs. In addition, we have developed lin-
ear constraints for enforcing mutual exclusion of critical sec-
tions in parallel programs. This allows us to schedule task
graphs for interesting real-world parallel programs. Finally, we
show how reliability constraints can be naturally captured in
linear form.
3. Through experimentation on a range of hardware configu-

TABLE I

EXAMPLE POWER AND ERROR SETTINGS FROM [10]

Core Settings Error Rate (errors/ns) Busy Power (W)
Perfect 0 13.20

Moderate Error 0.067 10.74
High Error 0.212 9.69

rations and benchmarks, our work demonstrates the high lever-
age available to system designers by exploiting energy, perfor-
mance and reliability tradeoffs. For the six StreamIt applica-
tions studied, energy savings of up to 34% are possible while
meeting performance and reliability targets.
The remainder of this paper is structured as follows. Section

II describes the formulation of our scheduling and optimization
framework. Section III describes our experimental methodol-
ogy, and gives experimental results. Section IV discusses re-
lated work, and Section V offers our conclusions and directions
for future work.

II. MILP SCHEDULING FORMULATION

The scheduler takes as input the application and hardware
parameters and achieves a minimum energy schedule that sat-
isfies the deadline and reliability constraints. To achieve this,
it assigns tasks to different cores with different power, perfor-
mance, and reliability characteristics. The scheduler achieves
both pipeline and data parallelism. Its output is the core assign-
ment, schedule and pipeline stage numbers for each task.

A. Hardware Assumptions

We model the hardware as a number of heterogeneous cores
where heterogeneity manifests itself in differing error rates,
clock frequencies and busy/idle powers. The error rate is the
average number of errors that occur in a unit of time. This is
assumed to be an intrinsic property of the core and fixed for
the duration of an application. Due to time dependent factors,
such as aging, error rates may need to be recharacterized and
the tasks will need to be rescheduled for the new settings. Ex-
ample settings for three cores are given in Table I. The data
that relate power to error rates are taken from [10] and are
based on errors introduced due to voltage over-scaling. Note
that these are gate level errors and may be masked at the soft-
ware level [13]. Clock frequency is used as a proxy for core
performance. For power dissipation, there are two components,
busy and idle. On any given cycle, if a core is performing an
operation, it is “charged for” busy power, else it consumes idle
power. For inter-core communication, we assume a general
model that transfers one byte of data in a known time and with
a known amount of energy between any two cores.

B. Application Assumptions

We focus on streaming applications which can be repre-
sented as a collection of tasks that are indivisible units of
computation. These tasks and their data dependencies form a
dependency graph with tasks as vertices and edges represent-
ing the dependencies. These applications execute a stream of
data through the tasks in the order specified by the dependency
graph. A job is a set of tasks. In addition to the deadline
and reliability constraints for the entire application, additional
deadline/reliability constraints may be specified for a job.

TABLE II

ABBREVIATIONS OF VARIABLES, CONSTANTS, SETS

Term Description Type
C Cores Set
J Jobs Set
Tj Tasks belonging to job j Set
Ft Follower Tasks of task t in

the dependency graph
Set

LTj Last Tasks of job j (Leaves
of dep. graph)

Set

LK Lock variables Set
CSl Set of Tasks that acquire

lock l to execute
Set

PBi Busy Power of core i Const
PIi Idle Power of core i Const
CPi Clock Period of core i Const

CPMAX Maximum of Clock Periods Const
FITi Error Rate of core i Const
TLj Error Tolerance of job j Const
Lt Length of task t in cycles Const

SMAX ≤ Sum of task lengths Const
EC Communication Energy for

one unit of communication
Const

TC Communication Delay for
one unit of communication

Const

Wt1t2 Communication weight of
edge t1 → t2

Const

PMAX Predetermined upper bound
on pipelining

Const

Dj Deadline for job j Const
τ Schedule Period Var Real
σt Start of Schedule for task t

in cycles
Var Int≥0

pt Data id of task t Var Int≥0

ati Core Assignment of task t to
core i

Var Binary

st1t2 Communication occurs from
task t1 to t2

Var Binary

pvk k is larger than all stream ids
(k ≤ PMAX)

Var Binary

et1t2 Task t1 runs after task t2 Var Binary

As shown in [15], the relation of faults in the hardware (eg.
a bit flip in the floating point unit) to the change of the output
of the application (eg. a pixel that changes color) strongly de-
pends on the particular application. We observed this issue with
our applications as well; thus we chose to keep this connection
external to the framework and define the reliability constraint
in terms of number of hardware level faults occurring in a job.

In Figure 1, an example dependency graph is shown for the
filterbank StreamIt benchmark. This figure summarizes
the input of the scheduler. Note that computationally inexpen-
sive but memory intensive tasks are manually selected to have
“0” error tolerance for their strong effect on the output whereas
error tolerances for others are varied as explained in Section
III.

The scheduler also needs the task runtimes. This is provided
in terms of clock cycles since the system is heterogeneous, i.e.,
the frequencies of the different cores may be different. This is
then multiplied by the clock period for the core that the task
runs on to get the absolute time. Each unit of data must sat-
isfy the data-dependencies in the dependency graph. Given the

Source_Spl

(l=2178,t=varied)

WRound_Robin

(l=2125,t=0)

256B

FIR1

(l=7710,t=varied)

64B

FIR2

(l=10780,t=varied)

96B

FIR3

(l=10780,t=varied)

96B

Delay1

(l=13470,t=varied)

64B

Delay2

(l=19280,t=varied)

96B

Delay3

(l=19280,t=varied)

96B

WRound_Robin

(l=1923,t=0)

64B 96B 96B

SIR_combine

(l=2225,t=varied,d=varied)

32B

Fig. 1. Example input graph for benchmark filterbank (Task lengths
(l), error tolerance (t), deadline (d) are shown in parentheses and
communication between tasks is marked on edges)

streaming nature of the application, however, multiple units of
data may be processed at the same time through pipelining.
Each edge in the dependency graph has an associated edge

weight, which represents the communicated data bytes if the
tasks at the head and tail of the edge are scheduled on different
cores. To calculate the communication overhead, this weight is
scaled with the per-unit core-to-core energy and performance
communication overheads.

C. Objective Function and Constraints

The MILP formulation needs to handle traditional multipro-
cessor deadline scheduling issues as well as the energy and re-
liability aspects in the current context. Table II provides a sum-
mary of the constants, variables and sets that are used in the
formulation provided in Figure 2.
The Total Energy consumed by the application has three

parts; busy energy, idle energy and communication energy
given by the summation terms of Equation 1. The first part,
contribution from busy power, favors low-power cores whereas
the second part, contribution from idle power, tries to maximize
utilization. The final part, communication overhead, minimizes
the inter-core communication. The scheduler uses these ener-
gies to find the minimum energy schedule for one iteration of
the application.
The Error Tolerance of an application is defined for each

job. This constraint (first part of Equation 2) specifies the up-
per limit on the total number of errors that can occur during
execution of the tasks of this job. The scheduler might want to
pick lower-power cores, but may be limited on that since these
cores have higher error rates. We also need to ensure that every
task can be assigned to only one core and this is achieved by
the second part of the equation.
Scheduling for Communication is formulated using MILP

with a detailed communication model in [3]. Here, we use a
simple model: Equation 3 forces switching variables to be 1
when the tasks at the head and tail of an edge switch cores and 0
when they do not. We use these variables in formulating energy
and time overhead of communication in Equations 1 and 6.

We model Pipelining by assigning a data ID to each task that
indicates which unit of streaming data (or iteration) the task is
working on. This is a relative number, i.e., if t1 has data ID k
and t2 has data ID l, t2 is working on data that is l − k units
newer than t1. Therefore, if they have the same data ID’s then
they are working on the same data (the dependency posed by
the dependency graph should be preserved), otherwise they are
working on different data. Using this method, we can repre-
sent infinitely many iterations as one schedule that will repeat
itself periodically. Equation 4 ensures that a task cannot have
a data ID larger than the task it follows. This means that a
following task cannot work on a newer data set than its prede-
cessor. To implement the deadline constraint in Equation 11,
we use a binary vector, pvk that represents a value greater than
or equal to the highest data ID. (e.g. highest data id = 3 is
represented by pv3 = 1, pvk 6=3 = 0). To define the binary vec-
tor, we use an upper bound on data ID’s, PMAX (length of the
longest path in the dependency graph). Constraints in Equation
5 ensure that only one of these binary variables is 1 and that
the value that the vector represents (an integer between 0 and
PMAX) is larger than or equal to all data ID’s. Note that the
value that the vector represents would be equal to the largest
data ID for an optimal schedule.

Equation 6 assures the Sequencing constraint, i.e. that
the resulting schedule satisfies the graph dependency ordering.
This builds on the sequencing constraints in previous MILP or
ILP schedulers [3, 4], by adding additional terms to support
pipelining which the previous work has not considered. The
schedule variable is in clock cycles; conversion to time is done
using the constantsCPi. This constraint is written for all edges
of the dependency graph, and all core assignments to the head
and tail of these edges. There are, however, two cases where
this constraint does not apply. First, when pipelining takes
place, the dependency edge is no longer valid (this is how the
scheduler extracts pipeline parallelism). Second, every task is
assigned to only one core, so the other assignments should not
take effect. Therefore, we introduce the constant SMAX which
is a value larger than sum of all task lengths. The term before
this constant is negative, thus trivially satisfying the constraint
when either of these cases happen and 0 otherwise. Similarly,
the communication overhead is included when st1t2 is 1 (edge
is across cores), and these two cases do not happen.

Tasks may use locks/critical sections and these cannot over-
lap even in the absence of any data dependency between them.
This problem for unit-length tasks has been investigated in [2].
We model the general case as follows: Tasks that share a lock l
belong to the set CSl. For each pair in a set, the binary variable
mt1t2 , is 1 exactly when t1 is scheduled before t2. Equation 7
prevents these tasks from running at the same time and Equa-
tion 8 ensures that symmetric variables are consistent.

Mutual Exclusion ensures that no task overlaps with an-
other task on the same core. This constraint is found in any
scheduler with an ILP formulation (e.g., [4, 17]). The binary
variable et1t2 is 1 exactly when t1 is scheduled before t2 on
the same core as shown in Equation 9. Equation 10 ensures
symmetric consistency.

The Deadline and Schedule period are two different time
intervals, which are related to latency and throughput. The
schedule period is the period of every repetition of the sched-
ule. The latency of a unit of data is the time interval that starts
with the scheduling interval of the first task and ends at the end
of the last task. The deadline should be larger than the latency;
Equation 11 enforces this. To calculate the latency, we need the
product highest data id × schedule period. (Note how this
deadline constraint puts a limit on pipelining.) As both sides

TotalEnergy :
∑

j∈J,t∈Tj ,i∈C

Lt.ati.PBi.CPi +
∑

i∈C

(τ −
∑

j∈J,t∈Tj ,i′∈C

Lt.ati′ .CPi′).P Ii

+
∑

j∈J,t1∈Tj ,t2∈Ft1

st1t2 .EC.Wt1t2 (1)

ErrorTolerance : ∀j ∈ J :
∑

t∈Tj ,i∈C

FITi.Lt.ati.CPi ≤ TLj , ∀j ∈ J, t ∈ Tj :
∑

i∈C

ati = 1 (2)

Communication : ∀j ∈ J, t1 ∈ Tj, t2 ∈ Ft1 , i ∈ C : st1t2 ≤ 2− at1i − at2i, st1t2 ≥ at1i − at2i (3)

Pipelining : ∀j ∈ J, t1 ∈ Tj, t2 ∈ Ft1 : pt2 ≤ pt1 (4)
∑

k∈0..PMAX

pvk = 1 , ∀j ∈ J, t ∈ Tj :
∑

k∈0..PMAX

k.pvk ≥ pt (5)

Sequencing : ∀j ∈ J, t1 ∈ Tj, t2 ∈ Ft2 , x ∈ C, y ∈ C :

σt2 .CPy ≥ (σt1 + Lt1).CPx + (pt2 − pt1 + at1x − 1 + at2y − 1).SMAX .CPx

+ TC.Wt1t2 .(st1t2 + pt2 − pt1 + at1x − 1 + at2y − 1) (6)

Locks : ∀l ∈ LK, t1 ∈ CSl, t2 ∈ CSl, x ∈ C, y ∈ C, t1 6= t2 : σt1 .CPx ≥

(σt2 + Lt2).CPy + (at1x − 1 + at2y − 1 +mt1t2 − 1).SMAX .CPy (7)

∀l ∈ LK, t1 ∈ CSl, t2 ∈ CSl, t1 6= t2 : mt1t2 +mt2t1 = 1 (8)

MutualExclusion : ∀j1 ∈ J, j2 ∈ J, t1 ∈ Tj1 , t2 ∈ Tj2 , i ∈ C, t1 6= t2 :

σt1 ≥ σt2 + Lt2 + (et1t2 − 1 + at1i − 1 + at2i − 1).SMAX (9)

∀j1 ∈ J, j2 ∈ J, t1 ∈ Tj1 , t2 ∈ Tj2 , i ∈ t1 6= t2 : et1t2 + et2t1 = 1 (10)

Deadline : ∀j ∈ J, t ∈ LTj, i ∈ C, k ∈ 0..PMAX :

Dj ≥ (σt + Lt).CPi + k.τ + (ati − 1 + pvk − 1).(k + 1).SMAX .CPMAX (11)

SchedulingPeriod : ∀j ∈ J, t ∈ Tj , i ∈ C : τ ≥ (σt + Lt + (ati − 1).SMAX).CPi (12)

Fig. 2. Objective function and constraints for the MILP formulation

of this product are variable values (the left depends on pipeline
depth and right depends on the schedule), we write this equa-
tion for all possible values of data ID’s and rule out the ones
that are not actually the highest. Here, we again make use of
SMAX to automatically satisfy the equation when k is not the
highest data ID. Although we do not actually use the highest
data ID, we use a value that is higher than all data ID’s (see
Equation 5). When deadline is a limiting factor, this number is
minimized to be equal to the highest data ID. Even if deadline
is not a limiting factor, we use a value larger than the highest,
so that the schedule is still feasible. We use Equation 12 to
ensure that τ represents the scheduling period. Similarly, τ is
larger than all the end times of the tasks. Since τ is in the ob-
jective function, the scheduler minimizes it and it becomes the
schedule period. Although this formulation does not include it,
an upper limit on τ can be added as a constraint to achieve a
minimum throughput.

III. EXPERIMENTAL RESULTS

A. Methodology

The scheduler was experimentally validated on six stream-
ing benchmarks from the StreamIt suite [16] using different
configurations of an eight-core CMP: audio-beamformer,
fft, filterbank, fmradio, matrixmult, and
mp3decoder. These benchmarks have different distributions
of task lengths as well as parallelism in the dependency graphs.
The ILP formulation was done in AMPL and solved using
IBM’s CPLEX solver running on a Quad-Core Intel Xeon
processor with 16GB memory and Red Hat Enterprise Linux

5.4. The run time for each schedule was limited to 10 minutes.
68% of the schedules gave an exact solution within this time.
For instances that do not complete in this time, the average
optimality gap was found to be 6.4% where optimality gap
is output by the CPLEX solver and denotes the difference
between the proven lower bound (value corresponding to the
solution of the linear programming relaxation of the remaining
search space) and the best integer solution found in the given
time [8].

Possible characteristics of the heterogeneous 8-core CMP
target are taken from Table I, and different configurations are
achieved as combinations of these settings. For example, 2-4-
2 indicates that there are two perfect, four moderate-error and
two high-error cores in the CMP. In addition to these configura-
tions, we experimented with different idle power values (60%,
30%, and 0%) on configuration 2-4-2. These parameters are
chosen to span a wide range of different hardware configura-
tions and the experiments show how the relation between hard-
ware parameters and application characteristics determine the
resulting energy. The benchmarks were compiled for our tar-
get hardware, Intel i7 2.66GHz, using the StreamIt compiler
[16]. The compiler produces the dependency graphs and multi-
threaded C++ code. By instrumenting the output code with
the RDTSC timer instruction [9], which reads a high-resolution
timer in Intel CPUs, we profiled the length of each task through
100k iterations. As the energy and delay values for communi-
cation between the cores were not available, we assumed an
ideal communication medium with coefficients EC and TC
set to zero.

 1.5

 2

 2.5

 3

 3.5

 0 3000 6000 9000 12000 15000 18000

E
n

e
rg

y
 (

m
J
)

Error Tolerance

8-0-0
2-0-6
2-2-4
3-0-5
3-5-0
4-0-4
5-0-3
6-0-2

Fig. 3. Energy vs Reliability for filterbank benchmark running
on different hardware configurations with idle power set to 60% of
busy power. Each configuration is represented with a count triple of
“perfect - moderate error - high error” cores

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.02 0.04 0.06 0.08 0.1 0.12

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Tolerance Ratio (# of Errors / # of Clock Cycles executed)

 60%
 30%
 0%

Fig. 4. Energy vs Reliability for filterbank benchmark running
on configuration 2-4-2 for different idle power/busy power ratios.
(Energy consumption of each curve is normalized to the case when
running on 8-0-0.)

B. Different Configurations for filterbank

Figure 3 shows the scheduler results for the benchmark
filterbank scheduled on a range of CMP configurations
(omitting 2-4-2, which is inspected in detail in later sections, to
avoid redundancy) with idle power pessimistically set to 60%
of busy power. The y-axis is the energy that is consumed in
a schedule period (energy for one data set). The x-axis is the
error tolerance of the application that is varied from 0 to 25k
errors allowed over the roughly 90K schedule period.
The 8-0-0 configuration represents perfect hardware with all

0-error cores and serves as the baseline configuration. The
results focus on two main aspects, core utilization and core
power. The scheduler may choose to achieve maximum paral-
lelism to increase core utilization and reduce Idle energy con-
sumption. On the other hand, the scheduler may prefer less-
reliable lower-power cores to decrease the Busy energy con-
sumption. The choice between these two depends first on the
error tolerance of the application. In addition, the ratio of Idle
and Busy Power plays a role. When Idle Power is high, utiliza-
tion has a higher weight and vice versa.
Consider the configuration 5-0-3; this curve starts at a lower

value than the baseline at 0-tolerance. The reason for that is
that 5 cores are enough to achieve sufficient parallelism, and
increasing the number of perfect cores (high power) increases

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.02 0.04 0.06 0.08 0.1 0.12

N
o

rm
a

liz
e

d
 E

n
e

rg
y

Tolerance Ratio (# of Errors / # of Clock Cycles executed)

audio-beamformer
fft

filterbank
fmradio

matrixmult
mp3decoder

Fig. 5. Energy vs Reliability graph for all benchmarks. 2-4-2
configuration with idle power at 60% of busy power. (Energy
consumption of each curve is normalized to the energy consumption
running on 8-0-0.)

power more than it increases performance, thus increasing the
total energy consumption. Higher error tolerance makes the
configuration 5-0-3 even more advantageous with energy gains
diminishing at around error tolerance = 18000.
Configuration 2-0-6 starts from a higher energy value,

crosses the baseline, and goes to a lower value. At 0-tolerance,
the application runtime increases substantially and 6 idle cores
cause the total energy to be higher than the baseline. However,
with increasing error tolerance, the energy gains of this config-
uration can be as high as 34%making it the most advantageous
configuration.
Finally, Figure 4 shows the effect of idle power on the out-

come. As idle power decreases, the scheduler’s optimiza-
tion leverage gets larger. Further, the energy dissipated at 0-
tolerance decreases and equals that of the 8-0-0 configuration
when idle power is 0%. Since utilization no longer affects the
outcome, the scheduling result is always better than the base-
line.

C. All Benchmarks on Configuration 2-4-2

Figure 5 shows results for all six benchmarks scheduled on
the 2-4-2 configuration with idle power at 60% of busy power.
The energy is normalized to the 8-0-0 baseline. Most of the
benchmarks start from a value that is higher than the base-
line, reach 1 at some point and then flatten out at a low value.
The value at the starting point depends on the utilization when
the benchmark is scheduled on 8 perfect cores. This depends
strongly on the distribution of lengths of tasks. For example,
mp3decoder starts from a lower value than the baseline. The
reason for that is, mp3decoder has two equal but very large
tasks, one medium task and several very small tasks. There-
fore, the reference configuration has 8 cores but only two are
well-utilized. When we turn this into a configuration that has
2 perfect cores with other cores having lower power, it actu-
ally starts from a lower value than the baseline configuration
even though it can only utilize 2 cores. With increasing error
tolerance, the energy drops as tasks can start using low-power
cores.

IV. RELATED WORK

Energy-Resiliency Tradeoffs: Recent work has explored
reducing power consumption by sacrificing resiliency in sev-
eral ways (e.g., [1, 5, 7, 10, 11]). In RAZOR [5], the voltage

is aggressively over-scaled resulting in incorrect values being
latched. However, these errors are subsequently fixed using
circuit and system techniques which incurs additional cost. In
contrast, by judiciously exploiting application error tolerance,
our work does not incur error-correcting overheads. The work
on Error Resilient Systems Architectures (ERSA) [11] has sim-
ilar goals in exploiting perfect and imperfect cores for imple-
menting error resilient applications. However, it does not con-
sider a systematic method to match the error-tolerance, perfor-
mance targets and energy consumption of parts of the appli-
cation with heterogeneous core characteristics. In EnerJ [14],
authors provide a type-checking system to safely execute ap-
plications on a faulty system and show energy gains between
10% and 50%. In their work, the processor provides little or
no effect on the overall energy gain while our work focuses on
the energy consumption of the processors. Furthermore, the
authors have only focused on the correctness instead of qual-
ity assurance, which is one of the main constraints in our for-
mulation. Finally, dynamic voltage scaling [12] provides for
energy-performance tradeoffs, but does not consider reliability,
which is the added focus of our work.
Scheduling using MILP: Mathematical programming for-

mulations of various scheduling problems have been very well
studied, and several of these are relevant to our work. In [4], the
multiprocessor scheduling problem is formulated as an MILP
problem for minimizing the deadline using as few variables as
possible and for different classes of dependency graphs. In con-
trast, our context and resulting formulation adds and integrates
several non-trivial extensions to the general scheduling prob-
lem. Specifically we add (i) a reliability constraint, (ii) commu-
nication overhead between tasks scheduled on different cores,
(iii) pipelining, and (iv) mutual exclusion due to locks/critical
sections. Our communication part differs from the previous
communication model that uses bus-based resource limited
communication [3] by only using data transfer time and en-
ergy. Our mutual exclusion approach differs from prior work
in scheduling with locks [2] as that is not based on ILP. The
scheduler in [17] also refers to energy-performance-resiliency
tradeoffs, however in a different context. They use duplication
to increase the reliability of an application and define a task
to be reliable when it is duplicated and non-reliable when it is
not. The scheduler in [18] considers pipelining but cannot be
applied to infinitely many iterations. Overall, our framework
provides a comprehensive modeling of constraints for the con-
text considered in this paper.

V. CONCLUSIONS AND FUTURE WORK

Emerging CMPs will likely have heterogeneous per-core
power, performance and reliability characteristics, and many
applications can exploit this by trading off limited computation
errors for lower energy. Our research provides an optimization
framework for this by developing an exact MILP formulation
of the static scheduling problem for such applications on these
processors. We demonstrate the practical applicability of this
work for streaming media applications.
Experimental results show how the benefit varies with differ-

ent benchmarks and hardware configurations with up to 34%
energy gains possible for the StreamIt benchmarks. The vari-
ation across benchmarks and configurations demonstrates the
value of automated search space navigation using our MILP
formulation. Going forward, this framework can be further re-
fined to consider different application-level reliability metrics
(e.g. signal-to-noise ratio) and detailed power and communica-
tion models. Furthermore, scheduling heuristics can be devel-

oped using our formulation for scalability and efficiency.

REFERENCES

[1] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge. Opportunities and
challenges for better than worst-case design. In Asia and South Pac.
Design Automation Conf., 2005.

[2] B. S. Baker and J. Edward G. Coffman. Mutual exclusion scheduling.
Theoretical Computer Science, 162, 1996.

[3] A. Bender. MILP based task mapping for heterogeneous multiprocessor
systems. In European Design Automation Conf. IEEE, 1996.

[4] P. E. Coll, C. C. Ribeiro, and C. C. de Souza. Multiprocessor scheduling
under precedence constraints: polyhedral results. Discrete Appl. Math.,
154(5), 2006.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In IEEE Micro Conf.,
2003.

[6] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao. Energy-optimal software partitioning in heterogeneous multi-
processor embedded systems. In Design Automation Conf., 2008.

[7] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing via
algorithmic noise-tolerance. In Intl. Symp. on Low Power Electronics
and Design, 1999.

[8] ILOG. ILOG CPLEX 11.0 User’s manual. 2008.

[9] Intel. Using the RDTSC instruction for performance monitoring. Tech-
nical report, Intel Corporation, 1997.

[10] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing processors from
the ground up to allow voltage/reliability tradeoffs. In IEEE Intl. Symp.
on High-Performance Computer Architecture, Jan 2010.

[11] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. Error resilient
system architecture (ERSA) for probabilistic applications. In Design,
Automation and Test in Europe, 2010.

[12] Z. Lu, Y. Zhang, M. Stan, J. Lach, and K. Skadron. Procrastinating volt-
age scheduling with discrete frequency sets. In Design, Automation and
Test in Europe, 2006.

[13] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin.
Measuring architectural vulnerability factors. IEEE Micro Conf., 23,
2003.

[14] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: Approximate data types for safe and general low-
power computation. 2011.

[15] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the
impact of soft errors on iterative methods in scientific computing. In Int.
Conf. on Supercomputing, 2011.

[16] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A lan-
guage for streaming applications. In Intl. Conf. on Compiler Construc-
tion. Springer-Verlag, 2002.

[17] S. Tosun, N. Mansouri, M. Kandemir, and O. Ozturk. An ILP formulation
for task scheduling on heterogeneous chip multiprocessors. In Intl. Symp.
on Computer and Information Sciences, 2006.

[18] Y. Yi, W. Han, X. Zhao, A. T. Erdogan, and T. Arslan. An ILP formu-
lation for task mapping and scheduling on multi-core architectures. In
Design Automation and Test in Europe, 2009.

