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SPACE-TIME RESONANCES AND THE NULL CONDITION
FOR (FIRST ORDER) SYSTEMS OF WAVE EQUATIONS

FABIO PUSATERI AND JALAL SHATAH

ABSTRACT. In this manuscript we prove global existence and lineamgsgtic behavior of small solutions
to nonlinear wave equations. We assume that the quadratiofone nonlinearity satisfies a non-resonance
condition which is a generalization of the null conditionayi by Klainerman[2/1].

1. INTRODUCTION

Global existence and asymptotic behavior of small solstitonnonlinear wave equations has been a
subject under active investigation for over fifty years. Qmea of research, where much progress has
been made, focuses on identifying nonlinearities that teaglobal solutions for small initial data. In this
manuscript we consider first order systemsfor R? , of the form

Oru = iAu + Q1(u,v) + Ry (u,v)
(W) O = —idv + Q2(u,v) + Ra(u,v)
u(l,z) = u0(z),v(l,z2) = v (),

whereA = |V|, Q;(u,v) are bilinear in(u,v) and their complex conjugates, afit] are of degree or
higher.

In this paper we focus on determining some general conditioaturally arising from thepace time
resonance analysishat guarantee global existence and scattering. Ouresmnant condition imposed on
the Q;, roughly states that time resonant wave interactions shioellimited to waves with different group
velocities (spatially non-resonant waves).

Since cubic and higher order terms do not require any camditi ensure global existence, we will drop
the R;’s from any further consideration. Moreover by introducihg notation for bilinear pseudo-product
operator

Toie(frg) = F! / m(&,m) F ()€ —n) dn,

whereg = Fyg is the Fourier transform qf, and without any loss of generality, we reduce the system to a
single scalar equation

Ou—idu =Ty, (e (W,u) + Ty e (@w) + Ty ()@, a)
(1.1)
u(l,z) = u'(z).

with quadratic nonlinearities. Here and throughout thespap — stands forn: andu respectively.

To motivate our work, we start by recalling recent applimasi of the space time resonance method to
several problems. This method was introduced’in [7, 9] whereresonant nonlinearites were treated for
Schrédinger equations, which correspondgTd (W) with |[V|?2 = —A. In these works, most of existing
results on global existence and scattering of small saiatiwere reproduced and explained by studying
space time resonant frequencies. Subsequently the meth®applied to gravity water waves [8], which
corresponds tal = |V|'/2, and to capillary wave$ [10], which correspondsite- |V|/2. Thus it is natural
to us to apply this method to system](W), whete= |V|, which can be reduced to a system of nonlinear
wave equations. Our main result is:
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Theorem 1.1. Assume that systeffl.1) is non-resonant in the sense of definition] 2.2, and that thialin
datum satisfiék

(1.2) quoHHg + H/lwzu()HHl + HU()”HN <e€

for some large enough integé¥. Then, ife is small enough, there exists a unique global solutioflid)
with
€
lu®)ll < 5

Moreover,u(t) scatters inH? to a linear solution ag — co.

Our non resonant condition definednl2.2 turns out to inchheeclassical null condition for wave equa-
tions [21], wave equations which are not invariant underfilieLorentz group, as well as other systems
where global existence and asymptotic behavior of smalitieois was not known.

Background. Since our system can be reduced to nonlinear wave equatangjve a brief review of
some of the main results about the long time existence ofisakifor systems of quadratic nonlinear wave
equations oR+3:

(1.3) Ou; = al* ;0°u;0%u), + cubic terms

wherei = 1,..., N for someN € N, and the sum runs oveir k = 1,..., N, and all multi-indices
a, 3 € N*with |af,|8] < 2, |a] + |B] < 3, with the usual convention th&, = —3° = ;. Let us first
recall that in3 space dimensions general quadratic nonlinearities hangeriange effects: thé&? norm of
the nonlinearity, computed on a linear solution, decaysatbiorderline non-integrable rate ©of'. Thus,
guadratic nonlinearties can contribute to the long timealiin of solutions. It is in fact known since the
pioneering works of Johm [1L, 12] that finite time blowup caeur even for solutions with small data. On
the other hand, for some very general classes of quadratilmearities solutions were shown to exist and
almost globally by John and Klainerman [13] and Klainerm®@i |

The main breakthrough in identifying classes of nonlineavevequations where solutions with small
data exist globally and scatter was in the works of Klainerril], Choquet-Bruhat and Christodoulou
[2], and Christodoulou |3]. The class of nonlinearitiesttbatisfy the “null condition” were introduced by
Klainerman[[21], and for semlinear systems

(1.4) Oui = Y alf,0%u;0%u + cubic terms
laf,|8]=1
are given by the condition

(1.5) Z afzﬁfagg =0 forany¢ € R?suchthat-&2 + &7 + &2+ €2 =0.

For such systems it was shown by Klainerman [21] tha$ i 1 dimension small data solutions exists
globally. This seminal work of Klainerman is based on themance of Minkowski space under the Lorentz
group and on energy estimates using the vector fields thargenthe Lorentz group [19].

Later on, building on Klainerman'’s original ideas, the gdeob of bypassing the use of the full invariance
under the Lorentz group was dealt with by other authors. B} Klainerman and Sideris proved almost
global existence of solutions for quadratic systems] (In3jlivergence form, under the sole assumption
of translation, rotation and scaling invariance. Furthevedopments were made by Sideris inl[27] 28],
where global existence of nonlinear elastic waves is pravaher the assumption of the null condition.
Similar results include the almost global existence of twhs contained in the works of Keel, Smith and
Soggel([17], 18]. It also worth mentioning that several workgehdealt with the question of identifying other
conditions (weaker than the null condition) under whichoglicexistence of solutions df (1.3) can be proven;
see for instance Lindblad [24], Alinhdc|[1], Lindblad anddR@nski [25] 26], and Katayamia [14].

1 See the remark at the end of secf{idon 2 for some comments dlms4t initial conditions.
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Another approach that identifies the effects of nonlinesribn the long time behavior of solutions is
based on time resonant computations. For ODE’s this is thecR@-Dulac normal form. For PDE'’s
normal forms were used by Shatahl[30] and Sinon [32] whodtkakespectively, the Cauchy problem and
the final state problem for the Klein-Gordon equatior8in- 1 dimensions (see also Kodama]23] for an
early appearance of normal forms in the PDE setting). Siméaults were obtained by Klainerman using
the vector fields method [20].

In the past several years a new algorithmic method, called'space-time resonance method”, was
developed by Germain, Masmoudi, and Shatah, to study long biehavior of spatially localized small
solutions to dispersive equations. By bringing togetheagdfrom both vector fields and normal forms, this
new method proved to be effective in proving new results [&]%s well as simplifying already existing
ones[[7/ 9, 16]. A description of this method can be foundjn [7

Notations. We useR to denote indistinctly any one of the components of the veatdRiesz transforms
R =%, whereA := |V|. L? norms will be denoted either k- ||, or || - [,- Fors > 0,p > 1, we define
the usual Sobolev norms

lellwsr == IKVY¢ll Lo »

”(ID”WSJ’ = ”ASSOHLIH
where(z) := (1 + |z2)"/*. We letH* := W2 and F* := W2,
Finally we write A < B to meanA < C B for some positive absolute constarit

2. RESONANCE ANALYSIS AND NON-RESONANT BILINEAR FORMS
Resonance analysisRecall that to compute resonance for an equation of the type
) 1
iug + P(;V)u = Ton(em) (u, 1),

we write Duhamel’s formula in Fourier space for the “profits’u, namelyf := e~ V)y,

A~ t . ~ A~
2.1) F(t,€) = wo(€) + /O / P EN (€, m) f(5,m) 5, € — ) dn ds,

wherep(§,n) := —P(§) + P(n) + P(n — &) (with obvious signs modifications occur(f depends also on
1), and define théme resonant set

T ={(&,n) : p(n) =0} (no oscillations ins) ,

the space resonant set

S ={(&n) : Vyp(&,n) =0}  (no oscillations in),

and thespace-time resonant set
X=TNS.

Since for systen{(111) bothhandu are present in the bilinear terms, there are three typegafictions
that we need to analyze.

The - - case.The phaser__ = —|¢| — |n| — |£ — 7| clearly vanishes only & = n = 0:

T ={n=£=0}.
Since the time resonant set is reduced to a point, we canrgegnormal form transformationThis allows
us to obtain the.®> decay in a more direct fashion (without the need to resortdighted estimates). For
completeness we compute
S ={n=X, 0<X<1},
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and
A ={{=n=0}.
The + + case. The phasep; . = —|{| + || + |£ — 1| vanishes on
Thr={n=2x 0<A<1}.
A simple computation shows that
S ={n=2x 0<A<1Y
whence
Ry =S = T4y
The space time resonant set is very large, thus some addistmctures are needed to help in controlling
these resonances. The first structure will be imposed onntieeaction by requiring the symbagl, ; to
vanish on#, . The second structure is present in the phase

n—=E&
|§|V§<P++ = Hsﬁ++ - |77|Vn<P++a

and can be interpreted by saying that all resonant wavesthavsame group velocity and thus are spatially
localized in the same region. This fact together with . = .7, , allows to control these resonances by
solely relying on weighted energy estimates.

The - + and + - casesUp to the change of variab&a — £ — n, these two case are the same. Therefore,
we will just focus on the-+ case. Since the phasegds . = —|¢| — |n| + |£ — |, then

‘7—4-:{77:)\57 ASO}U{£:0}>
S ={n=X, A<0 or A>1}U{{=0},
R ={n=2, A<0}U{E=0}
Again the setZ_, is very big and additional conditions are needed to ensuteaglexistence and linear

asymptotic behavior of solutions. These conditions arelairto the -+ interaction, i.e.g_. vanishes on
Z— . and the fact that

€| Vep_y = ﬁﬁp—Jr + nVpo—+.

However this interaction presents an additional difficater the++ case sinceZ_, C ., which
requires both normal forms transformation and weighteiineses. The fact that this is an added difficulty
is explained below.

Non-resonant bilinear forms. From Duhamel’s formula for equation (1.1) in Fourier spdue quadratic
term is expressed as

A t . A~ A~
Baa(t,€) = /1 / eises (€M gy () fu(s,m) fu(s, € — 1) dnds

wheref, = fandf_ = f and

Per,e2(&sm) = — &l + a1l — | + e2ln]

for ¢; = £. The quadratic interaction is given in terms of its symdol. To define non-resonant bilinear
forms we start by defining the class of symbols that we will balithg with,

2 notice thatmi2(&, € — 1) = —ma2(&,n).
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Definition 2.1. A symbolm = m(&, n) belongs to the class; if

e |t is homogeneous of degree

e It is smooth outside of¢ = 0} U {n =0} U {{ —n = 0}.

e For any labeling &y, &2, &3) of the three Fourier variables, n, ¢ — n) the following holds:
for |&| <[], 6] ~ 1 m:A(!{ﬂ,%,&)

for some smooth functionl.

Loosely speaking, symbols i, are Coifman-Meyer [4] except, possibly, along the akes 0, = 0 and
& —n = 0, where they can have singularities like linear Mihlin-H@&mder multipliers. Symbols i are
essentially of the form¢|*m for somemg € By. The boundedness of these bilinear operatord.ois
given in the appendiXJA. With the clags defined above we can define a non-resonant system as

Definition 2.2 (Non-resonant bilinear forms). System[(1.11) is called non-resonant if

(22) q:l::l:(£> 77) = a(£> U)‘Pii (57 77) + b(£7 77) : vn@:l::l: (57 77) ;
with a € B_1 andb € By. Additionally we require that

(1) ) (3)
@3)  Viegal&n o [§—nlVipalen) = L& #En) 6 &)
€] || 1€ — 1|
for someugf) € By, and
(2.4) 1 Toen) (£ D] o SUF2 D RG] oo + DN F | poollgl 12
j=0 j=0

for somek € N.

Some comments about this definition. Equation](2.2) asHeatsbilinear interaction vanishs o,
the space time resonant set. The presence.of in equation [(Z.R) allows us to perform normal form
transformation on one part of the bilinear terms (integratoy parts ins), while the presence oV, ¢+
allows us to treat the remaining part by weighted estimateedration by parts im). Theclassical null
conditionis equivalent tax = 0 (see below). Equatio (2.3) essentially avoids havittgn) ~ ]5\_1 which
would be too singular to handle. Equatign {2.4) is neededtddailure of theL? x L> — L? estimate
for symbols inBy. It would be possible to avoid this last technical restoistby resorting to the use of
Besov spaces, but for the sake of simplicity we do not pursisenatter here (see also remarki 3.1 for more
comments about this aspect).

Examples of non-resonant systemsNow we give examples of non-resonant systems and explairthmeyw
relate to existing definitions on “ null systems”, and how definition is a natural extension of previous
ones.

Classical null forms.Quadratic (semilinear) nonlinearities satisfying thd nahdition [1.5) are linear com-
binations of

(2.53.) Qij (’LL, ’U) = &uajv — @-u@w ,

(2.5b) Qoi(u,v) = dudv — dudw ,

(2.5¢) Qo(u,v) = dudw — Vu-Vo.
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By letting (u+, v+ ) = (Opu F iAu, Opv FiAv), one can reduce systemis (1.4) to first order systems in the un-
knownsuy andv,. Then, one can check that the respective symbols of the ahdM®rms, corresponding
to interactions of., andv,,, are given (up to a constant factor) by

%jﬁf‘l = O+ (&m0 04~ (€51) = Oy p++-(& M) Dy 04— (1)

€1,€ i i — fz
my; (&) = <€1m + 62m> = O Peres (§51)

€1,€2 o n g -7 o 2
me(6,m) = 2 (1 a2 m) Voerea(Em)2.

These symbols are of the forfn_(2.2) with= 0 and vanish on the space resonant set. Thus classical null
forms are spatially non-resonant, and therefore can béettday weighted estimates and without normal
forms transformation. Note that in our system the interactions have”, _ C .#,_, and our symbols
(2.2) only vanish on the smaller sét. . To treat these interactions a normal form transformasareieded,
leading to terms which are not well spatially localized. STbauses a difficulty that will be elaborated on
below.

The classical quasilinear null forms are also non-resomatitat their symbols satisfy (2.2) where the
homogeneities ofi andb are increased by. However, for general first order systems of the typel (1.1),
quasilinear equations lose derivatives in the energy astisnunless there are cancellations present. In the
special case where the first order quasilinear system comesd second order system of wave equations
with quasilinear null terms, cancellations are presenh@energy estimates. Thus, our results will apply
for such nonlinearities as w@ll

mi (&, n) =2

Systems with multiple speedsor systems

(26) atUg — ng/luE = Z qu,k@ﬂﬂ (u]', uk)

g,k
the phases are given byc || + ¢;|¢ — 1| + cx|n|. In the case:; # £c;, one has? = {0, 0}, so that our
results will trivially apply. Ifc; = ¢, Z = {0,0} unlessc, = +c,. Therefore, in the case, # +c,
global existence can be obtained provided a suitable nafliion is imposed af0,0}. This is similar to
the work on quadratic NLS [9]. The full non-resonance caadits then needed only for interactions of the
form —c,|&| + o[ — 0| £ ¢¢|n|. This extension is similar to the result of Sideris and[TU[29e also refer
the reader to the work of Katayama and Yokoyama [15] and eafars therein for more on systems with
multiple speeds. Some examples of interest that can bedreaing our techniques are:
1. First order systems of the form

2.7) { Ayu + icAu = |v|?

O +iAv = Ty, (v,v) + ud

wherec > 1 andm is non-resonant as in definitidn 2.1. Here no special nuldi@n at the origin is
assumed on the bilinear form in the first equation. This systees not satisfy any existing null condition
criteria set by the vector fields method. In fact we beliewa this system is not amenable to analysis by
the vector fields method due to the simultaneous failure ®@Librentz invariance and the need of a normal
form transform.

Our method works by first applying a normal form transformatbnw (notice that the phase is bounded
below by (¢ — 1)|£]), and then handling the singularity introduced by such asf@mation through a
spread-tight splitting explained in sectigh 3.

3 More specifically, in the quasilinear case the most effigpeobf of the analogue of Theordm11.1 would consist of twostep
1) establishing energy and weighted energy estimatestliyi@t the second order wave equation so to obtain the weiditands
in (3:8); 2) run our proof to show the decay of solutions.
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2. Systems of wave equations of the form

Oyu = (9v)? + du(dw)?
(2.8) Oyv = dvow + Q(v,v)
Oew = vdw + du(dv)?

whered, := 0? — 2A, ¢ # 1 andQ is any null form. This is an example of a nonrelativistic syst
satisfying the weak null condition. Global existence carobtined with a weaker decay arof the form
|0ul] ;o S t71FE, fore < 1.

Non-locality and absence of Lorentz invariancehe class of systemg (W), under the non-resonance condi-
tion given by definitio 22, includes the class of seconaowdave equations

(2.9) Ou = T1Q(Tou, T3u)

where theT;’s are zero-th order operator afdis any combination of the nonlinear ternhs (2.9a)-(R.5c) (or
their quasilinear version). For systems [as](2.9) the aaifahe Lorentz boostd,; = z;0; + t0; on the
nonlinearity produces some terms which are too singularetediimated. This makes the classicall [21]
vector fields method difficult to apply.

In [27,[28] Sideris considered quasilinear hyperbolic eyst governing the motion of isotropic, homoge-
neous, nonlinear elastic waves. Like systems with mulspkeeds, these systems are only classical invariant,
i.e. they do not possess Lorentz invariance. By imposinglacandition on the nonlinear terms of the form
F(Vu)V2u, he was able to show global existence of solutions. As meetidn the introduction, several
other works have dealt with the problem of long time existefor classically invariant systems &+,
see for examplé [22, 1[7, 18]. Our methods are also appli¢atitee systems considered in these works.

A remark about the initial dataln contrast with the results mentioned previously, ouriahitlata belong
to a low weighted Sobolev space. In particular we only askrfar € H? and\x!z/luo € H', see[(TR).
In comparison, the spaces used[inl [22,[27, 17] would requitel)'uo € A(L?), fori = 0...k and some
k > 7. This means that we can allow more oscillating data. For @anfor data behaving at infinity like
cos |z|/|z|*, we can allow anyx > I, whereas in the other works one would neeg .

3. OUTLINE OF THE PROOF

Before we outline the proof of Theordm11.1 we would like torpaiut two difficulties in our problem:
a) Although the space-time resonance method is algorithitsiamplementation on the space-time resonant
set is very much problem dependent. This is due to the fatthiesaforementioned set can be large with
no clear criteria, set by the method, to address how largarge! Its application to nonlinear dispersive
equations has been restricted so far to cases where thamesat is very small. In particular, for problems
such as the Schrodinger equation, the resonant set is a apthfor gravity water waves, there are no qua-
dratic time resonances. However for hyperbolic systenssst is large. For the system we are considering
here the space time resonant set d@imensional in & dimensional space. Treating such a big space-time
resonant set required new ideas, which we present in thisiscapt.
b) When space resonant frequencies are different from timenaed frequencies, and when both types of
resonances are present in the bilinear interactions, aaldomm transformation is needed

U —u+ Tm(u7u) g f — f+/eissp(g’n)m(&77).]6(3777)]@(376 - 77) d77 .

The bilinear ternil},, (u, u) need not be well localized in space since the outcome of tieeaiction may
have a different group velocity, i.6V: # 0, which is the case fof (1.1). Thus weighted estimates on this
bilinear interaction tend to grow at a fast rate with time. &er to these bilinear interactions sigread
terms This is in contrast to non space resonant frequencies vanewell spatially localized and for which
weighted estimates tend to grow very slowly. We refer to sbitihear interactions atight terms The
presence of tight and spread terms is problematic and ejaicareful analysis when trying to establish
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the decay of solutions. This is the case here fortheinteractions, as was the case for the 2D Schrodinger
equation[[9]. Our strategy in obtaining the pointwise decfigolutions will be explained below in more
details.

Reduction of system(TL.1). By isolating the terms in equation (1.1) that are most diffitm estimate, we
can considerably simplify our notation and presentation.

Reduction to the-+ case. As the analysis of resonances in seclibn 2 showed;-thénteractions lead to a
more complicated resonant set thanthe and— — interactions. The-+ case actually contains the difficult
aspects of both the + and—— cases. More precisely, in the+ case we will need to decompose the phase
space in two sets: one containigg but not”__ N .7, , and the other one containing__ N .7, but
not%_.. The analysis on the set containigg_ and._, N .7, , would be enough to take care of the
++ and the—— interaction, respectively.

Therefore, from now on we focus only on this type of interaatiand we will drop the-+ indices for
lighter notations.

Reduction tou(¢,n) = ﬁ andb(¢,n) = 1. Recall that we are imposing the restrictién {2.3)nThis

. By the symmetry
betweern and{ — 7, we can then assume thats of the formuq(&,n)/|n| for somepy € By. Moreover,
since the presence of symbols in the cl&gss irrelevant for our estimates on the terms corresponding t
the symbolu (&, n)p(€,n), we can simply assume thais given byl/|z|.

Finally, since we assume thasatisfies[(Z}4), and since we will show tHgk/u| .~ is controlled with
a decay oft—! (see remark3]1 below) we can reduce matteris to1. It will be clear to the reader what
minor modifications are necessary to perform the estimates §enerab € B, and satisfying[(Z14).

In view of these reductions the non-resonant equation besom

@1 fe / [ eeen (HED 1 0,t6.)) (s, — )i

Furthermore, we recall thal¢ ¢ vanishes on the resonant set, and in particular the foligwdantity holds:

(3.2) Ve = 1~ ﬂso + 0.

n=s
In—¢
Splitting of the profile f. Integrating by parts ir in the terms containing the phagene get

F6,6) ™ fo©) +9(6,€) + h(t, ) E Fol€) + a6, €) + ho(t, €) + hu(t,€)
where
(3.30) a6 / “*’f"ﬁkm—n)f@,n)dn,
; def [ [ isoten) ; ;
(3.3b) ot €) % / / GRENT, o) (5, € — ) f(s,m) dnds,
(330) it [ [ eren Lo, (fs.e ~its.n) dnds.

This splitting can be understood in the followmg mannery tpmes from the normal form transforma-
tion, has very good time decay but is spatially spreadj2 a spatially tight term due to the presence of
V(& n); and 3)h, is a cubic inf.

Regardingy = ho(f, f) as a bilinear form off = fy + g + h, we can decompogi,

ho(f, f) = ho(fo, fo + h) + ho(fo,9) + ho(g, f) + ho(h, h) 4 ho(h, g) + ho(h, fo)
= h0(97 f) + hO(h7 h) + h*>
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and thus decomposgfurther
(3.4) f="fo+g+ho(h,h) + ho(f,g) + h1 + hs.

Strategy of the proof and organization of the paper. The proof of global existence will follow from the
following a priori bounds o, = e/ f :

{ lullgr S, Mullgz ST, Jlull oo || Bull o S 5

3.5
(39) lefls S0 Wafla S1 [leaf| <o,

~

and a continuation of the local-in-time solution. Hekeis a suitably large number amcgnd-y are arbitrarily
small fixed positive constants. This leads us to define theesjeby the norm associated to these bounds:
lullx = sup [t lull g + [full g2 + t(Jull oo + | Rull o)
t>1
(3.6) ,
7 2 fll e+ NAxf g+ l2Pag] ] -

Remark3.1 The presence of Rul|; . iS not surprising because the Riesz transform is alreadsepten
the interaction symboV, . However we remark here thatifis any symbol inB, satisfying [2.4), the
sameX -norm above would work. Indeed, as a byproduct of our esémate have

1
k < = 2
(3.7) HR uHLoo S 3 [e—l— Hu||X]

for anyk. This is becaus&™ estimates om = e~y + e~ g 4+ e~} are obtained by
a) using Sobolev's embedding @n [le=#g||; < [le=#g|ly1 for p > 1, and then showing
tle= ™ gllwip < lull;
b) estimating weighted.?> norms of the main components by means of[{All) of(A]2), and using
the same argument i) on the remaining components.

In both of these operations the presence of Riesz transfoet@mes irrelevant.
A key aspect of our proof is the different treatment of the pormentsy andh, and the different treatment

of some components éfitself. In particular, the bound ojfu|| - will follow from the following bounds on
g andh:

2 2 2
. lgllen S e, lleglz S Ollali Idzglen S llulk.
' 2 2 itA 1 2
AaPy| | Stk (€]l  Hlullk -
2 2 2 2
. Iells S Elulls Ihllge S Nl Nohllze S Ol Azl S i,
' 2 2 2 2 i 2
AlPh|| |, Steluly [42Ph|| L S el (le ]| S Hiul-

wherea andb are (small) positive constants satisfyiag< v < b < g anda < %
These a priori bounds will imply global existence provided tlata is small:

(3.10) e (g + )| S lullx = llullx S ||€ foll + € g+ )|y S e+ lulk

which in turn gives|ul| y S e.

From [3.5) and(319) we see thahas the same energy and pointwise estimate’s asd better weighted
estimates tharf. Thus, the bilinear terms that need to be boundedyare(h, h), ho(f,g) andhy. All
the remaining bilinear terms, denoted hyin [3.4), are easier to estimate because their argumenmsysat
stronger bounds.

In what follows we briefly describe the organization of th@@atogether with the main steps needed in
the proof. Estimates for the Sobolev norms are pretty siteigvard, since we are dealing with a semilinear
equation. These are shown in secfidon 4.
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In sectior b we obtain weighted ardd® estimates for the spread componegntThis component is the
one whose responsible for the fast growth in time of the wteigjinorms. On the other hand, since it consists
of a bilinear term with no time integration, its decaylif® can be obtained very easily.

In section[® we prove a priori bounds on weighteti norms ofhq(h, k). Thanks to the presence of
the symbolV, ¢, and to the identity[(3]2), we can always integrate by parteast twice in time and/or
frequency . As a consequence we can prove ihél, h) satisfies the stronger weighted bourids](3.9) that
hold for theh component.

Sectiorl ¥ contains the> estimate forhg(h, h). In order to obtain the~! decay we perform an angular
decomposition of the phase space into two regions. Onerregiatains the space resonant.gebut is away
from the time resonant sef. In this region we can perform a normal form at the expensatobducing
only a mild singularity when one of the Fourier variablesighas. For the quadratic boundary terms arising
in the integration by parts in time, the decay is obtained straightforward manner, as it is done for the
g component. For the cubic terms the decay is obtained as aqoasce of ?-weighted estimates. The
complimentary region is away fro¥’ N .7¢ and containsZ. There we can combine the identify (3.2) and
the fact thatp can be divided by, ¢, to conclude, roughly speaking, thét e ~ V¢ in this region. This
implies a good control on weighted norms, and decay is obthloy interpolating in an appropriate fashion
these norms.

The cubic termsiy(f, g) andh; are estimated in sectién 8, using again the decompositieng + h.
Also for these terms the pointwise decay is a consequendedf*tweighted bounds. Some results from
linear Harmonic analysis and the proof of Theofeml A.2 areigeal in the Appendix.

Quantities controlled by the X norm. Here we give some estimates which will be useful in our proof.
They follow from interpolating between the various compuseof theX-norm [3.6).

Lemma3.2. For0 < k< N —1,and2 < p < oo, one has

) k(1-—
ta(kvap)HuHX s Where O[(k‘,N,p) =

(3.11) HVkuHLP S t(l—%)

In particular, for any0 < k£ < 3, ande sufficiently small,

(3.12) a(k,N,p) < k) =N .
N
We also have
1
(3.13) lullyie S ——5llullxy  for2<p<4,
t(1_5>

and
(3.14) 1511 < L _pull,  forda<p<o

| Al =413 S

Proof. The proof of [3.111) follows from interpolation between tHé" and theL> bounds given by[(3]6).
The proof is standard and can be found(ih [8]. Inequality3Bfillows from the dispersive estimafe (A.3)
for the linear wave propagator, and from the definition of #h@orm [3.6). Similarly, it is easy to derive

(3.13) from [A.3) and the bounds dja: f|| ;1 provided by [3.5),
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4., ENERGY ESTIMATES

Energy estimates o, h, andh, are straight forward. To estimatewe use Theoref Al2 and (A.4) to
get

ol = A7l S 1A ol + A7 o el
S A gl + (1 s + A7 12) Nl

1 L s 2
S t—%HuthaHuHx + (¢ [lullx + Nl fllz2) Tt Mullx < llullx

providede and~ are small enough, anly is large enough so that+ dy < % To estimatehg in HY we
write

t
Vol o = H [ e (7. s

t t
. . 1
S [ g e R S Il [ 555 ds <l

HN

To estimatehg in H? we integrate by parts in and rewrite it by

t
ho(t, &) = /1 /%e““@(g’")vnf(t,n)f(t,g—n) dnds + symmetric term

so to obtain

t
1 —1s —1s K]
lrolls = | [ 574 (e ag coay)

H?2

t
1 . , |
5/1 ; [He_ZSAwaHQH628AfHW174+He_ZSAfoLGHeZSAfHW2,3] ds

t
1|87 1
2 é 2
5“U|’X/1 g |:\/§+S%SN:| ds§|]uHX,

providedéy < . Finally, to estimate:; note that
t
hl (t,.%') — / 6—is/1 [(A—le—isAasf) eis/lf + (A—le—isAf) eis/lasf] ds
1

Sincee™ 10, f = T,(f, f) for ¢ € By, we have that™*19,f ~ u?* as far as estimates are concerned. One
can then proceed in the same way as dong faiove to obtair || ;v < |ull%-

5. WEIGHTED AND L™ ESTIMATES ONg

Estimate of sup, t~7||g|| ;> and sup, |zAg|| ;1. By Plancharel's Theorem estimatitigg|| ;- is equiva-
lent to estimatd] (£)°V¢g| .. Applying V¢ to g we get:

60 Veil©) = [eVepten e L fe - pan+ [ Wf|(|)v He—mdn=i+TT.

SinceV¢y € By, we can use Theorefn A.2 and the dispersive estirhaié (A.3)tsirn

T9cp(em) (eim%w) S tlle

12 =t S

Hu||L4 S \/II( >f||L2\/—Hu||X S 'l -

L2
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II can be directly estimated i by using theorerl Al2[[(Al4), and Sobolev's embeddings:
Jiad

<

~

H?2

itA
1 g2 = e zflzs

e"tAﬁeim:Ef xfllg2 + |le

’ itAi H Heit/l
W1,4

2
lull xtlJullx < lullx -

N\[II( >f||H2||xf||H2~\/'

Since we have already estimated fffenorm of Vg (¢), in order to estimatém~1V¢g(¢) in H? we just
need to boundr~1|¢|Vg(€) in H'. From [5.1) we have

EVed(€) = / ”“”tlélvgwwf( WA —n)dn

Sincel¢|Vep = \Z—:g\‘:@ + 7|V, integrate by parts in to obtain

(5.2) €Ved(e) = / e £ fo g_m (€ —m)dn + / ¢, f () F(€ — ) dn

+ “similar term” = T + I + “similar term”,

where “similar term” denotes the term whe¥g hits the other profile. Sincg; is assumed to be in the class
By, we see thal = te AT, wo(e,n) (1w, w), With pg € Bo. Then by Theorer Al2 anf (3113) we can estimate

11l g7 = )| Tooem ()| g S tlllifpra S llull -

The term/I can be handle as follows:

it A it/ 2
Il = (|2 f | o < lle™afllwrsllullwrs S NAZf g llull gz S Nullx -

Bounds onsup, t~!||Az?g|| ;1. In the previous section we saw tHatV g is made of the following three
types of contributions:
1

/ e o €, m) () F(€ — ) i, / e, F(m) f (€ — ) dn, / et

In order to achieve the desired bound dmn?g, apply V¢ to the above terms and estimate the resulting
expressions. Using (3.2) to deduce tﬁ%ﬁﬁ € By, we get contributions of the form

Fm)Vef(&—n)dn

(5.33) [ et ate.minie ~ndn
(5.3b) [t ol Ved(e ~n)dn
(5.3¢) / eiwvnﬂn)vgf(g —n)dn
(5.30) [ €1t @) VR )

plus similar or simper terms. The first term is the one whislegithe highest growth in
_ 2 2
17 G381 = | Ty (0| o S Ellelins S tlull -

We can take care of the contribution coming frdm (5.3b) &n8dpwith anL’ x L3 estimate, followed
by Sobolev’'s embedding. This will give

177 B3+ 7 E3Y) 0 S tllulk-
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Finally, always by means of theorém A.2, Sobolev’s embegicamd [[A.4), we can crudely estimate:

|7 68 1 = AT e (471647, el )

S A7 e

S 12

|1
A|$|2f”H1 + HeitAfHWLS

2
S tlullx -

2f|

W6

Al

Hl

L™ estimate fore*g. By choosing large enough
- B B
ol S NAT W ullyrre S (A7 0y aallullypr 2
1 1
< < = —_ON < Zull?
Sllull s allullyrec S I Hullxt%t lull x < 7 lullx-

le

6. WEIGHTED ESTIMATES ONhq(h, h)
Before estimating weighted norms &af we need the following lemma:

Lemma 6.1(Bounds om;h). Letdy be the quantity defined i@.12) Then

L 45 2
(6.1) 10ch | g2 S tg—_tw M5,
1
(6.2) |20ch|l g2 S tl—_ﬂMNHU”%(a

wherec— denotes a number smaller but arbitrarily closecto

Proof. Recall thath = hg + hy with hg andh; defined by[(3.3b) and (3.Bc) respectively. To estintate)
let § be arbitrarily small and estimate

10holl g2 = % o=t (= af A p) | S < e s | alle A

H2 ™1
< 0l g el = =t
To prove [6.2) forhg, we applyV, to 9,hg, obtaining the following terms:
(6.3a) [ T (e )t Vet
(6.3b) / MV o (&) f(tm) £ (8, € — ) dn
6:30) [ itVeee e (e m it it~ o

To bound[(6.3a), we note that it is of the type
[ ot mVede. — n)dn

So letd be an arbitrarily small number and use Theoreml(A.2) to get
1638) 2 = [l Ty (7 F, ™2 f) || o S [l F] s 2L

1
5 SN 112
N ull xtMJullx = tl—_t’” Mullx -

<
~ t1—25
The term[(6.3Db) is of the form

[ emen e n)—RZJ!CS(_tLSU—\_ 2 oy
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so by Hardy’s inequality it can be estimated in the same ¢ashs[(6.3a). To estimate (613c), we integrating

by parts to get terms liké (6.Bb) arid (6.3a).

Sinceeimatf is a quadratic expression yﬁ hy is essentially a cubic term (with a singularity of the type
A~1 on one of the three profiles). The presence of an extra terrasigdlly equivalent to the gain of !
present i hy. Therefore, the bounds(6.1) amd (6.2) farcan be proven similarly to what we did above
for hy. We skip the detailg

Estimate of sup, ||zho|| ;2. For simplicity of notations, in the remainder of this sentiwe will denote
ho(h, h) simply by hy. Recall that

~ de t 2.8 ~ ~
ho(t,€) zf/l/e PEDT0(€,m)h(s, & —n)h(s,n) dnds,
t
://%e“*”(fvn)vnh(t,n)h(t,g—n)dnds +  symmetric term
1

By Plancharel’s Theorem, estimatifigho|| ;- is equivalent to estimaﬂé(@zvgioup. To this end, we first
compute, usind (3]2), an expression mrvgf}o:

A t . A ——~
(6.4) €[ Veho(€) = /1 / 5 0u"* o€, m)h(n) Bh(E — 1) d s
t A A
(6.5) T /1 / $ 1V eV, (€ MR (m)A(E — 1) dn ds
t . A A
T /1 / ¢ €|V o€ Y (m)h (€ — ) iy ds

t . ~ A
+/1 /ewvnw(f,n)h(n)lé\vsh(é—n) dnds.

Integrating by parts in time in (6.4), and in frequency[itbfje we obtain (after collecting terms appropri-
ately):

(6.62) €[Veho(€) ~ / N (€ ) () RR(E — ) i
t . ~ —
(6.6b) - /1 / 5 & p(E, m)Ouhi(m) RR(E — ) dy ds
t . ~ ~
(6.60) 4 / / &% €1V e — 11V ] V(€Y (m)h (€ — ) diy ds
t . A ~
(6.60) - /1 / €50 o €,V h(m)h(€ — ) dn ds.
t . ~ ~
(6.6¢) T / / €50 (€, () [V — 0[] h(E — ) dn ds

plus a boundary integral{ {€J6a) at= 1), a term symmetric td_(6.6b) corresponding to the case where
hits the other profile, and a term obtained whéphits |5|. The bound on these terms are either similar or
easier thar[{6]16) and thus will be ignored.

We now make some observations that will further simplify calculations:

(1) In (6.6&) we can write
161V = V4] f(& =n) = 1€ =0l Vef (€ =) — p(&mVef (€ —n).
The integral corresponding to the first summand above wiél giterm analogous o (616d), and can therefore

be considered among the “similar terms”. The second summcemthstead be treated by integration by parts
in time, yielding “easier terms”.
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(2) Using [3.2), one can see that

€1 11951 Tl 1) = ol ) Vo -+ s ) S
Using the above identity we see that
t . A A~
6.7) D)= | [ (e V(€ mhlh(€ — )y ds
isp /| 1 7 7 o :|t
(6.8) +/e 1o (€, m) €7l (mh(§—n)dnds 1
i s/ 1 7 7
6.9) - [ [ rnitemg=o. (it = m) dnds.

All of these terms can be considered among the “similar asateterms”: [6.17) is essentially IiWéo(h, h),
while (6.8), respectively( (619), is similar to one of the tridsutions that will appear when integrating by
parts in frequency i (6.6a), respectively[in (8.6b). Inwief the above observations, we write

(6.10) €IV ho(t,€) ~ 6.83)+ @6B)+ 6.60)=: A(t,¢).
Estimate of|zhg|| ;.. From [6.10) we have
lzholl 2 = HJT_lVgilouL2 = H/l_lf_llf\vsiloHLQ ~ A Al

and since all the bilinear terms present haugy in their symbol, we can integrate by parts in frequency
before we estimate. Thus

N F1(66a)= Tho(em) (e‘imznh, Reimh) + Toem) (e‘imh, eimath) ,

and using[(A.b) we can estimate

1 . i i —1 )
HZF 1mﬂm S | Toem (e “h, Re tAh)HL% + | g e, (e tAh’emeh)HL%

, , , 1
A A A 2
S llehll g2l hll s + 10l s || 2R o S O lullx 7 llullx S Tull -
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Similarly, by using lemmBa®6l1 we get

1 . .
‘Zf—quEB){ / [ Touo(emy (7 20sh, Re™ )| ¢ ds
[ it (0 arn) | ds
5/1 HanhHL?HeZSAhHL3d8+/1 |e~**40h|| s |z RA|| 2 ds
t 1
Shull [ s ds S full
1 S S3
1 ) .
HZ}'_ldEE){ / =||T; Lo(e) (€ ~4 Agh, e“Aa:h)HLg ds
L2

—is/A 2 isA
+/l SH NG )(e Alz|°h,e h)‘Lgds

t t
5/ L2 azh|| k] o ds+/ o T I e
15 L

11 11
2
Sl [ Lt + i [ st <

Estimate of| Azhg || 1. This is similar to estimating—! of (6:6a), [6.6b), and(6.6d) iiF!. This can be
done in a similar fashion to the previous paragraph. In fagsé¢ estimates are even easier, sincelthe
singularity is not present any more. We only show how to bgliAd* (6.6d)| 1, the other estimates being
very similar. By lemma®g]1, we have

17 @59)]

/ | Tuoen (7*420,h, Re“AR) | ;1 ds + / | Thoe (7*40,h, S0 Rh) | ds

5/ Hw@shwaHe“AhHW1,sds+/ He_iS/lashHWLs”thHHldS
1
3 [P 1 4
< Jlul% / L grov L ds < ul
1 S 8

Estimate of Suptt_aH|3:|2Ah0HL2. By reducing the bilinear interacting to the prototypes giue (6.6a),
(6.6B), and[(6.6d). we proceed as follows Apply¥g to (6.6&) produces terms of the form:

(6.11a) / t2e M 1o (&,m) Vi€, m)h(n)h(€ — 1) dn
(6.11b) / £ EN uo(€,) Ve (€,mh(mh(E — ) dn
(6.110) / £ 1 (6 0) Voo (€, (n)Veh(€ — 1) di.

Integrating by parts im whenever there i¥, ¢ reduces[(6.111) to terms of the following type

(6.12a) / £PEDNT o (€ (€ — 1) di

(6.12D) / t P& 1o (&, m)Vyh(n)R(E — 1) dn
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To estimate[(6.12a) we note that for any symbele By, V,u0(¢,n) = “é(_gnnl) + £ 6"(5{17) for some symbols
Lo, o € Bo, consequently

T2 > < tlle™ ™ hl| e A7 R 1 S
sincey < a. We can deal similarly witH (6.12b):

» 1 1
IBI2B) 2 5 el o S tlull—z [Alefh

1 1 9 9
t—||ul| v —=1|{z)h < M|l < t*u
Nl =@l S el S el

2
Sl -

L2

Next applyV, to (6.6B) and integrate by parts inwheneverv, ¢ is present in the symbol to get terms
of the type:

3 . ~ N
(6.132) / / 5 €PN g (€, 1)V ()€ — ) dn ds
Yo P h(E—n)
13b isp(€,m) 3
(6.13b) /1/86 po(&:m)9sh(n) €l dnds
t . ~ ~
(6.13¢) /1 / s €2 16 (&, m)sh(n) Veh(€ — n) dn ds

From lemmd®6J1, and choosing a small enodgive have

t . . t . .
TR % [ 5T (0unc )] s 5 [ slleba0unl] a0l s

t t
1 3 L oysy 1 3
S [ st szl ds Sl [ spms™ mgs ds 5 fuller
! is/A is/A h ! is/A is/A h
|@.13B) - ,S/ 51| Tuo(e.m) (e_ls Osh, €' —> ds,S/ s ||le7"*0sh)| e, ds
1 A L2 1 L A 1=

t
1
S [ s llil@nl, ds < e

provided we choosé/ large enough so thdty + v < a. Observe thaf(6.13b) and (6.13c) are similar to
each other through Hardy’s inequality.
Finally to estimatév,(6.6d) we have terms of the type

(6.14a) /j/ sVep € PV 0 Vyh(n)h(€ — 1) dipds
(6.14b) /1 t / eV eV 1|V nh(n)h(€ — 1) dn ds
(6.140) /1 t / eV o |V 1) V(€ — ) dn ds
Integrating by parts im leads to the following types of bilinear forms
(6.15a) [ [ weoc avihmiie ) dns
(6.15b) [ [ Veo e by ce ) dns

We can bound(6.15a) by dif x L> estimate, since we have control oveh in L with a sharp bound of
t~1, seel(3J). To estimate(6.15b) we interpolate betweenviitahle weighted.? bounds in theX norm
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(3.9) to obtain
TN < [ T (e ol ds [ e lalb] o] s

T+ T+
< [ Slelblyug el ds 5 [ 3ol i, o

t
1 : :
Sl [ Satvrster as < Julee.

Estimate of sup, t‘bH !w\zllzhoHLQ- In order to boundz|>A2h in L2 we need to estimate the? norm of
§Ve of (6.6a), [6.6b) and (6.6d).

To estimate|{V(6.63)| ;. and [|{V(E.6B)|, . we recall that all the terms reduce [0 (8.12), dnd (6.13).
For these terms it is possible to proceed in the exact samewvaie did before in the previous paragraph,
since the presence of an extra derivative does not causeaamy ke just show how to deal with (6.12a):

16 @128 2 < tlle™ ™ h| gl AR 2

1
S tullxs5t™ (I8l + 1A s |

15-65
sis 545 2
< 5 Jul ()l S 5 bl S £l

~

since we can choos¥ large enough so that+ éy < a.
To estimate t{(6.6d) appli¢|V, to the equation, using (3.2), to get

(6.16a) / t e V0 [n|Voh(n) Rh(E — 1) dn ds

(6.16b) /1 t [ ol V2htai(e — n) ands

(6.16c) /1 t / €PN o [V h(n) 1€ = 0| V(€ = ) dn ds
(6.16d) /1 t / 5 €9V 10 [n|V,,0sh(n) Rh(E — n) dn ds

4+  “similar and easier terms”

The term [6.16a), respectively (6.16b), can be bounded®{), using respectively ah? x L* and an
L? x L™ estimate (recall that we have control Bf, in L>°).

To estimate[(6.16c), we use the presenc& g to integrate by parts. Up to “similar or easier terms”,
this gives

t
1 . . .
(6.17) [ [ 5e e nivii i€ = 0/ e =g s.
Using Sobolev’'s embeddings, we can estimate

G0 5 [ e A e e s ds < [ |42 A] Aw Sl s

t
1
2 b 2 ,b
N HUH)(/I ;5' ds < ||u||Xt .

Finally, observe tha{{6.16d) is similar o (6.13a) and carebtimated in an analogous fashion. This
concludes the proof of weighted estimateshgn
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7. L™ ESTIMATE FORehg(h, h)

Although the termh,, is tight and satisfies stronger weighted estimates ghéimese bounds are not good
enough to imply that®4hq(h, h) decays liket~! in L>°. We will achieve such a bound by dividing the
interactions according to the resonance analysis cartieth@ectior P.

Angular partition of the phase space. Let us introduce the cutoff function

£ n-¢
7.) w6 =% (&
€l In—¢]
with ¥ smooth non—decreasing function such that
v [ 1 for z>1
(7.2) X(@) = { 0 for z<-—1.
Observe that on the support pfwe have|§| \n 5‘ —1/4, which implies in particular
&, b
&bl — 4
Therefore, the support gf does not includeZ_ ... Moreover on the support af— y, that |s% | g 1/4,
frequencies are localized arousl | and away fromy_  N.7°, . Letx; = yandxy_ =1— d write

hO(h7 h) = h+(h’a h) + h- (h’a h)
with

A~ t . ~ A~
(7.3) b (€)= / / ¢EN T, (€, m) v (€ R mA(E — n) dn ds

Estimate of sup, ¢|e”"h.(h, h)|| ... This is the term whose frequencies are away from the timengzso
set.7. Therefore we can integrate by parts in time to obtain

t

(7.48)  hi(t,€) = / eiw%mm)ﬁ(n)ﬁ(s—n) dn}

(7.4b) / / oo S teonpo, (i~ ) dnds
i) / / oo SR . (e ) duds

The bound osup, ¢||e"b(1)|| .
we note that in physical space

itA
(7.5) e"b(t) = Tvgé%mx (5 n)(

1

follows from the assumptions on the initial data. To bowmg, ¢||¢™b(t)|, ...,

e_itAh, eit/lh) .

By the definition of the cutoff does not vanish on the supportpf. Nevertheless, dividing by intro-
duces some singularity, which we need to take care of. Nowlamndhat
(7.6) et b(t) ~ T “tAR, ep)

o (&m) +HQ(5 1) (
Il [€—=nl

for someypy, u, € By, so that this term is analogousd@3.33d), which was estimated in sectfdn 5. To verify
the claim first note that

1L 1+l +[—nl _uo(i,n)+u6(§,n)

p&n) 2 &t llnl ] Il

(7.7)
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where the last identity holds singe n + [¢||n| > 2[¢||n| on the support of.,.. Furthermore, sinc& ¢
vanishes af = 0, one can see thatz2&n) — L&) 1t then follows

TR T =l
Vpp&m) _ polém) | molén)
7.8 1 = .
(78 oEm Wl -l
To estimate the remaining term let us denote/tyy, n) = %ﬁf)m(g,n) and by
. t . ~ ~
(7.9) B(t)i= 7 [ [ oeuemo. (i — ) dnds

Using the dispersive estimate, and interpolating betwegightedZ? norms we see that
t t
t]|B(t)|| SJ/ He_“/lﬂp (e_“AE?sh, e’SAh) HWlldS < / He_“/1 €24 (e_ZSA(‘)Sh, e“/lh) Hlds
1 1

" 1
< / llele™ A Tiejay, (e A0uh, €#4R) |2 |||z 26 Tiepny, (7 540,h, €*4R) Hj ds .
1

Therefore to obtain the desirdd® decay oft !, it will be sufficient to prove the following bounds:
—1s —1is s 1
(7.11a) er AT|§|2w (e Aﬁsh,e Ah)H2 < —zHuH§(
S

. 4 . 1
(7.11b) H|:U|2e_ZSA 2 (e7#40,h, e’SAh)HZ < Sl

~
S4

Proof of (Z114&) We need to look at the different terms of

(7.12) Fi= 69 [ @2 lghute.moshtaiie — ) dy.
Using [32) and integrating by parts in frequency, we get

(7.13a) [ s T ms (€ mOLR) Rr(E — )
(7.13b) [ €5 €19 = V) (€€ ) 2:ha)i(e — n)dn
(7.13¢) [ el IV, 0.hmhie ~ n)dn

(7.130) [ S EAelt€mdLhn) I — €19i(e ) d

plus similar and easier terms. We now proceed to estimataltbee terms.
Estimate of||(Z134&)|,. We integrate by parts in frequency using the presenc¥,gb. This gives the
following contributions:

(7.14a) / €55% €| 10 (€, 1) DV yh(m)h(€ — 1) dn
(7.14b) / 5% |€ 0 (&, m)Dsh(n)Vyh(€ — 1) dn
(7.14¢) / €IV o (€, m)Osh ()A€ — ) di

4+ “similar terms”.
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where, as usuayy denotes a generic symbol in the clds (7.14&) and can be bounded byIar% x L3
estimate, withy small enough, using (8.2):

|Z143) .. = HT\ﬁ\uo &n) ( ~#40,xh, eiSAh) HL2

S lle™40,zhl| le** 4R 4

12
W T-28 L3

1

1

1)

—55" lullx S = lullx .
51

provided we have chose@rsmall enough, and/ large enough. One can estimdte (7]14b) in a similar fashion
2
by anLs x [T% making use oﬂI(B]l)
SinceV,uy = \nl +

1
S <87 |lull}
S

uo € By, then [7.14k) can be written as

|£ nl

. 1. . .
is/A —is/A is/A is/A is/A
(7.15) e T\ﬂ%(fﬂ?) (Ze 8sh,e h) +e T|5|N6/(f»77) ( 8 h, Ze h> =]+1I.

By Theorem[(A.2) and Sobolev’'s embeddings we can estimate

1 .
_e—zs/lash

Il 5 5

HEZSAhHV{/l,S < Hezs/lashHHl _185N ||UHX
W1,6 §3

~

I s 2 1 5 L3
S =8V ullx s lullx S —llullx
S S$3 sS4
if N islarge enough so thady < % 1T can be estimated in a similar fashion.
Next we estimatd (7.1Bb). Using successivelyl(3.2) And),(@r& can see that

B _ EIVae&n) L o€ m) 119(€,m)
1EIVe — In[Vy] ([€](E,m)) = po(€;m) ) = [¢] m +[¢] E—ul

Therefore, the contribution coming frofn (7.13b) is ideatito those of[(7.1l5) that we have just estimated
above.
To estimate[(7.13c) we note that

-F_l(]BE): e_iSATul(ﬁ,n) (e_“Aasxh, eis/lh)
since ‘(H |) € By by (Z12). This can be estimated using lenima 6.1

. . 1
isA A 0+6
@IS 2 S fle™ O] vz 1Rl ag S 1Oswhl gz < 527N Jull
1 s 2 1 o546 L3
< =8N u|5 = s20F Mullx < —llully
S S sS4

providedN is large enough.
Finally, (Z.13d) is given by

—is 1 —is 8 —1is —1is E]
(7.16) e e o) (Ze A0sh, e Amh> + e Mo (€740h, € h)

These terms are similar to each other and can be bounded Ustngeni A.2 and estimate (6.1):

provided, as usualy is chosen large enough.

6_iSA isA <||—isA isA e—is/l
Thotem Tﬁsh,e zAh H1~He 8shHL6H€ :EAh“L3+ Tash

e

1 5 3 I3
SlOshl| g [|w AR < SNl < —lull
sS4

~
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Proof of (ZZIIB) In order to prove[{Z.11b) we need to estimate fRenorm ostﬁ, whereF is given by
(Z.12). First we integrate by parts in frequency to redueehitinear term to prototypes given Hy (7.13a)-
(7.134d), then we apply’.. Here we note that i, hits the phase we lose a factor«fTherefore, each time
we differentiatec’*% in (Z.13&)4Z.130d), we can perform the same estimates ahoihe iprevious section and
get the stated bounds~i. Thus the only care we need to take is whenWhehits the bilinear symbol, or
whereV, hits the profilefz(g — ). These are the terms we will explicitly show how to bound.

From the discussion above we can red|j®g (Z.134), to

(472) [ see it maniin "= an
(7.17b) [ sei = lluale mo.h(a) Teh(e ~

where, as usualy, denotes a generic symbol in the cld&s Now, observe thaf(7.1Fa) arld (7.17b), are
analogous td (7.14c) and (7.14b),respectively, with aradattor ofs. This shows immediately thdi(7.17a)

and [Z.17b) satisfy.? bounds of ordes ™1, whenceV¢(7.134) does too.
Let us first recall thaf(Z.13b) is given by the following tvesms:

[ eelenate. i - man. [ eleluienohm EL

Applying V, to these terms, and disregarding the terms wiigiits the oscillating phase, we get

(7.182) [ e tlnatem Vet — ) dn
(7.180) [ lelmoteno. <>,§(£_nf)d

plus other “similar or easier” contributions. The first teatmove is very similar td (7.16) and can therefore
be bounded in an analogous fashion. The second term can hdédmbby means of Theordm A.2, Sobolev’s
embedding, lemma 8.1 as follows:

ezs/l

="

i 6z's/l
T, = [Tl (" 0uk )

3 He"”@shme
L2

‘WLG

15 3
S Oshll gzl {x)hll 2 < N+V|| 1% <= Hu||x-
s

Next we consider
(138)= / €5 1 (€, )95V b () (€ — ) dy

and applyV, to it. We get only one contribution which differs from the enghich have been previously
estimated, namely

(7.19) [ (e mov i Veh(s — ) dn
This term can be treated again using Theorleml(A.2), Solso@wbedding, and lemrha b.1:
(@32 = T ey (7 0sh, e ah) || 2 S [le™™0uhl[ ol € bl
S 10.ahl el 55+l £ Sl

providedN is large enough.
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Finally applyingV, to (Z.13d), there are only two contributions that differrfrahe ones previously
obtained and already estimated, which are

s 88]% 7
(7.20a) [ e 2Pl v, ehts -
(7.20b) [ (e mouhn), V(s ~ ) dn.
As in the previous estimates, we can bound
—18 1 18
208 2 = | Ty (g0 aia ) |
L
1 . . .
S e_“/l—ash’ e“A/l]w\2hH +He_’8AE?ShHL6 e“A/l]w\zhH
A W16 H1 L3
1 . 1
<10l Al S sl S Sl
s1

Similarly, using [(A.4), we also have
|2 12 = || Ty ey (€7 0h PR, S e 0uh ]y

S [10shl| g2

eiSA|33‘|2hH
w16

1 1

2 2 3

k| S Slhullesullx S <l
s

This concludes the proof df (7.111b), and hence shows thesdks bound on., .

Estimate ofsup, t||e? h_(h, h)|| ;. This is the term whose frequencies are localized arounceenant
set#, and, therefore, is the hardest to treat. By definition, fezgies in the support df — x . are away
from . N .7¢ and, in particular, satisfy

(7.21) §-(&—mn)+ &l —nl > %Iéllé’ —n|  orequivalently  cos(§,£ —1n) > —i.

This fact allows us to exploit the space-resonance of thegtt@ough the following identity:

7,22 o bl e (il —al) o

£ (&—n)+ €€ —n|
Thanks to the above identity arld (8.2), we can expRésg in terms ofV,¢. This will introduce some
singularity which needs to be carefully analyzed, but, awalty, it will imply good weightedL?-estimates
for h_. From these we will deduce the™ decay ofe’*h_, similarly to how we did forh.,..
In real space

t
itA itA —is/A —isA is/A
e h_(h,h) = e /1 e T, oemx—(€m) (e7*h, e h) ds,

whence, using the dispersive estimate,

i 1 ' —is —1s s
He mh_Hoo S Z/l He ATV7,¢(§,77)X,(§777) (e Ah,e Ah)HW2,1 ds
1 ! —is/A —is/A is/A
S 2/1 He D9 o(emx—(em) (7 hye h)HldS

1 ! 2 —is/A —isA is/A
S 2/1 H|33| R () (e7**"h, e*h)

1

—3 ; 2
e ZSAh,€ZSAh)H ds

2

1
2

2

—is/A
% er T|f|2Vnso(£,n)x7(£,n) (
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Therefore, in order to provgeh_|| < 1 it will suffice to establish the two following estimates:
. : 4 1
—isA —isAy _isA 2
(7.243) H:L"e " TP, pemx—(em (7 h, e h)Hz S S_%HuHX
, . . 1
2 —isA —isAy _isA 2
(7.240) [lee™ T e e (7 o™ ), S el

As usual, we try to bound ifi? the expression

e [ Vol - (€ mai(e — ) dn.

Using [3.2) as already done previously, this produces thexfimg terms

(7.25a) /se’wlf\s@(& M Vo€ m)X— (& n)h(n)Rh(E — ) dy
(7.250) [ A 1T = 10193) (706 mbx— (€] b€ = )
(7.25c) /e“‘”\flvns@(&n)x-(f,n)fl(n) €[V e = 0| V) A(E =) dn
(7.250) [ ATl € m T (€ ) d

plus “similar and easier terms”. Notice that the first ternmtains a factor ofs, and has two symbols
vanishing:p andV, . Also, all of the terms[(7.25b)-(7.2bd) contaiW g, symbol.
To estimate[(7.25a), we have from (7.22)

(7.26) et = L= I 90 — (e il v,

so that

(7.27) [7.25h)- /3eiwﬂl(g,77)|77||V1790(5777)|2V1790(f,U)X—(f,n)ﬁ(n)ﬂ(g —n)dn.

Before integrating by parts ip, notice that on the support gf_, we must havén|, |¢| < 2|p — £]|. This can
be easily seen from the following:

1 3
€ —nl* = €7 + Inl* =26 -0 > &) + n* - Slelinl = FlElinl

so thatmin{[¢[, |n|} < |€ — n|, whence[|, |n| < 2|n — £|. Thus, on the support of_, symbols in53;
behave essentially liki — n|. Now we integrate by parts il (7.27) obtaining a term

(7.28a) /ei”m(& m)x— (&0 V(&) Vyh(n)h(E —n) dn

plus “similar or easier” ones. Notice that even after thiggnation by parts, a symbol liK&, ¢ survives,
so that we can integrate by parts once again. This gives tloavfog contributions:

(7.29a) é/ei”m(&n)X—(&n) 0|V 2 (n)h(& — 1) dn

(7.29b) l/eis“pul(é,n)X—(é,n) NIV h(n)Vyh(€ = n)dn ,

S
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plus other “symmetric and easier terms”. As already donerbefve let) < § < 1 and invoke Theorem
[A.Zto obtain

293, = H ) <e—isAA‘x’2h7 ez’s/lh)H s lHe_iSAA‘x’zhHIpHeiSAhHmﬂ%

1 1
< —s“|IUHX % Nl S =l
S 34
providedo is chosen small enough, aid large enough. Using;(&,n) = uo(&,1)|£ — n| on the support
of x_, and, again, Theorem A.2 and dispersive estimates, we have

1 ’ 2
A js /A —isA
12BN 2 = Ty (7 Al ) | o <~ [l Al
1 2 1 b 2
S 4ty \ 1 Sl 5

In order to estimatd (7.25b) we use subsequehily (3.2)[agd) ¥ obtain

IE1IEIVe = InVa] [Vae(§mx—(§,m)] = 11 (€ m) Ve, n) + uo(g,n)’ﬁ‘g(%

= 11 (&) Vpe(&m).
Therefore,[(7.28b) is of the form

(7.30) /eiwm(é,n)VnsD(f,n)ﬁ(n)ﬁ(é —n)dn,

and we can integrate by parts+#rgaining decay irs. This will give us terms which are easier to estimate
than [Z.29R). We skip the details.
Since on the support of_, symbols inB3; behave likg¢ — 7|, we can write[(7.25c) as

(7.31) / €55 1y (€,1) Vo (& M (W)€ — 0 Vh(E — 1) i

This term is analogous t6 (7.28a) and can therefore be tréatexactly the same way. Finally, notice that
also [Z.250) is of the forni (7Z.2Ba) and can be treated in theesaay.

Proof of (Z.24D) In the previous paragraphs we saw that the contribution efténms [(7.25a)-(7.25d)
essentially reduces to a term like (7.P8a), that is

(7.32) / €55 1y (€,1) Vo0 (€, 1) [0 T h(m)h(€ — ) diy

In order to establisH{7.24b) we need to estimate/thaorm of V, applied to the above term. Applyirig;
to (Z.32), will give three terms:
V¢ hits the phase: This will give a term analogous [fo {I7.32) vaithextra factor ofs in front. Since

I@32)| > < s 7, itimmediately follows that this term satisfies a bound afeors 7.
V¢ hits the symbol: This gives a term of the form

/ & o (€, m) |0l V() (€ — ) dn

which can again be treated by Theorém (A.2) with aitac Wls estimate.
V¢ hits the profllef(g — n): This produces a term analogous [o (7]29b) multiplied bycéofaof s. A

bound of ordes—# then follows from the estimates already performed. Thishkates the proof of (7.24b)
yielding the desired.> estimate forh_(h, h).
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8. WEIGHTED ESTIMATES ONhg(g, f) AND hy

Reduction to cubic terms. From the definition ofy in (3.3B) andy in (3.33) we have

t , R
_ /1 / e EN T, o m)3(s,m) F (s, € — 1) dnds

t ~ A~ ~
81) = [ [ eeerm9 06, "D 5,01 511 - 01516 ) s

where the phasg(¢, n, o) can be any of the combinations

(8.2) Prxx(m0) = =€l + 1§ —nl £ o[ +[n -0l

and we omitted complex conjugates on the profiles as theyraple in our analysis. From the definition
of hy in (3.3¢) we have

nit.8) = [ [ e Lo, (Fssmi(o.6 ) dnds

8.3) / / / isp(&m) w ) §t,0)f (11— 0) (1€ — ) dndods

(8.4) / J[ s B s fs.o - ) fs.o) dndods

wherep(¢,n, o) is the same as i (8.2). Up to relabeling variables] (8.4 isvalent to[(8.11). Both of these
terms are easier to treat thdn {8.3), since the singularithe symbol just pairs with one of the profiles,
while this is not the case far (8.3). Therefore, in what fako we consider that

BO(gaf)+ill(f7f) NI:I(f,f,f)
with H = B3), or, in real space,

(85) H(f, f7 f) . /1t €_iSATM (eiiSAf, 6:I:is/lf) eis/lf ds .

Il
As already done fok, we can consideH as a trilinear function of = fy+g¢+h. Then, we can distinguish
between two main contributions: one where all argumentgigesn byh, and another one where at least one
of the arguments ig. In other words, we can regadd( f, f, ) as being given by (g, f, f) + H(h, h,h).
Sinceg is quadratic inf, H(g, f, f) will be a quartic term, with two singularities of the type!. We first
show how to treaff (h, h, h) and then indicated how to deal witti(g, f, f).

Weighted estimates orf (h, h, h). Inwhat follows we are going to perform weighted estimate#idgh, i, h).
The L™ bound one=*AH (h, h, h) will follow directly from these. It is important to notice ah a formula
similar to [3:2) holds for the cubic phaBeB.2). In particular, if we let;, e, = -1 we have

n—¢§
|£|V£90+,61,62 (éa 7, U) = |,’7 — £| P+ e1,€2 (év m, U) - (61|U| + 62|77 - O-|)v7790+761,62 (57 m, J)
(86) - E1|0-|VCT<)0—|- 61,62(677770-) .
In Fourier spacéd (h, h, h) is given by
(8.7) H(h,h,h) / // isp&ma \n! )ﬁ( o)h(t,n — o)h(t, & —n) dndods

4 As for quadratic phases, one can check Wiat vanishes on the space-time resonant set. Therefore, atitydéwe (B.6)
should not be completely surprising. Nevertheless, it isah@ays the case that such a formula will hold in generalhindase of
the wave equation[ (8.6) is related to scaling invariance.



SPACE-TIME RESONANCES AND THE NULL CONDITION 27

wherey can be any of the phasds (8.2). For simplicity we assyme ¢ , | as this will not have any
impact on our computations. We skip the estimaté @i %, h, h)| ;. as this easy to show, and move on to
estimate weighted norms &f (h, h, h).

Estimate obup, ¢t~ ||zH (h, h,h)|| ;2. Applying V¢ to (8.1) gives the following two contributions:

t
(8.8a) / / / s eiseteno) VoS, ”17‘7”)”0(”’ O vt 0Vt — oYt € — ) dndods

isp(&m.7) .9)j, o)l — o)Vl — ods .
(8.8b) /// |77| h(t,o)h(t,n — o)Veh(t,& —n)dndods

Now observe that

(8.9) w:< 3 6—77)%_#0(6,77)

Bl R

so that

¢ —1s s s s h
@83 . = /1 se Mg e (Tuo(n,o) (e, e h) e AZ> ds|

Using Theorenl’AJ2 and the dispersive estimaiel(A.3), we camd the above quantity by
t
is/A is/
[ 1Tt (€ )
t
, 1
< isAp |2 L
< [ sl nl gzl g as

t
ool 3
< s—||ul|x—=|l{x)h]| ;2 ds < logt ||ul|y -
< [ sl el ol ds < ol
By Plancharel, Theorem A.2, arld (A.4) we have

t
1 —1is 18 18 1S
G = [ e Tt (o) s

a1
et p, ds

L4

L2

/ | T (7,0 (e""n, eiSAh)|‘L24nL§‘|$h||L2 ds

Sllully / e Ah|| 15 57 ds < ull, / 57 ds < ullk

Estimate ofup, || AzH (h, b, h)|| g1 We apply|¢|V to H (h, h, h), use [85), and integrate by parts in time
and frequency. The main contributions after these martipuls are

(8.10a) //teit‘p(é’”’a)%ﬁ(a)ﬁ(n — 0)Rh(§ — 1) dndo
itp(E,m,0 IUO 1,0 ) 7 - - 7 - -
(5.10) / [ e )ity o)l = niVeh(€ = ) dndo ds.

Using Sobolev's embedding and TheorlemlA.2, the first termbeamandled as follows:

1 : , ,
||<£>M)|L2 = tHZTMO(n’U) (GZtAh, elmh) e”ARh'

Hl

< tH eitAh, eit/lh) H HeitAhuwl,S
1,6

A uo(n o) (

A 1 . 1 1
S | o (.0 (4, e”Ah)HHlt—%IIU\IX S tHEZtAhH?/{/lAt_%HuHX S t—%HUIli-
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The second term is similar tb_(818b) and can be estimatedeisdime way, since the presence of an extra
derivative does not cause any harm.

Estimate ofsup,¢~* , and sup; t‘bH/ﬂx\zH (h,h,h) H . We need to applyv, to

(8.104) and (8.10b) and estimate th%( ¢)2d¢)-norm of the resulting contributions. Applying; to (8.10&)
gives as main terms

(8.11a) // +2 6it<p(§,n,0) vf‘ﬂ(é, ”7;;)/‘0(777 U) i’L(O’)i’L(T} N U)Rh(f - 77) dndo
(8.11b) / / t eite(Emo) %ﬁ@ﬁ(n — 0)Veh(€ — ) dndo .
Applying it to (8.10b), and using (8.9), gives:
(8.122) / [ essene D)y — o)l — i T2hle - ) dndods
(8.12b) /1 [ [ s (e mmaln. 0)h(o )it~ ) Vel ~ ) dndods.
To estimate[(8.11a) we ude (B.9), so that
I(6)@11a) ;. = ¢* Touoem) <TN0(7770) (e “h,e mh) 1 tAh) HHl
. , 1 .
2 itA it/ it/
8132 S T R
i i L
(8.13b) + || Ty (.0 (€ By €M) || Zemh p

where% + % =141=1and2 < p,qrs < co. Since[BI3a) can be bounded easily by choosing

p=q=4 We_just show details for the estimate bf (8.113b). Choosing %, using theoreri Al2, and the
dispersive estimate, we can bound:

@IZB) S 1| Tho .y (Do )| .2
1

t13
< 42 1 1 1 < Y 3 < 4b 3
StE—ZlAzhl g —z lullx —=llzhll g S O ullx Sl -
\/Z t12 t12
The term [[8.11b) is similar td_(8.8b) except that it has amaefactor oft, but no time integration.
Since these two facts compensate each other, we can esi@ai#) in a similar fashion, obtaining
1(€)@IIBY| > < ||ull5. We skip the detalls.

To estimate[(8.12a) we note that by Plancharel, Theéremah@ sincex < % we have

t
L] 1 18 {5} 18
QT2 = [ ¢ L (e 0) e aiands
A[w\zhH ds
1 H

A HO(%U)
t
<)
whs
< W @ m) oy

t
1
A 5 b 3
/Hﬁhhuwﬂwuws[ Lo sadslull S Olully,
s3

l eit/lh

A

5

S byl ]l o

24
L9

Hl
1
ZTuo(mU

) (eis/lh7 eis/lh) H

Alz] hH ds
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Finally, we need to estimate the contribution coming froni28). By Plancharel’s Theorem we see that

[|@B.12B)) - 5/1 SHTuo(S,n) (Tuo(np) (eZSAh7 eZSAh) 7628A‘x’h)HL2 ds
5/1 SHTuo(mU) (6ZSAh= 6ZSAh)HL4H628A’35VLHL4CZS

< ! isAy (|2 1 2 < tl a < a 3
N/l 3H€ hHLs%HM@ hHHldSN/ 57 dS”UHX £ Jull -
For theL?(|¢|?d¢)-norm we have

t . . ;
NEEZD 22 % | ol T (Tt (€, h) el | s

If the derivative in thefI ' norm falls on the terna**4|z|h, we can proceed by performing @ x L8 x L*
estimate. This will yield the bounl¢|@12B)|,» < t°. Ifinstead the derivative hit§,,  , .y (e**‘h,e™*h),
we estimate as follows:

/ISHATMO(,W) (eZSAh,eZSAh)HWL%|||:n|h||L2ds,S/l slle*n 2z l€40]] 2 ll|xlh]l p2ds
N R 1
S [ sl i sl s

t
1
S [ 5 dslully S el
1 S
provided2§ + én + v < b. This concludes the proof of weighted estimatestih, h, h).

L estimate onH (h, h, h). The L™ decay fore’ H (h, h, h) can be proven by interpolation of weighted
L?-norms as we explain below. By (A.1) we just need to bown¢2+A2H|1Lz By commuting the weight

x and the derivativet, is is enough to bounme*HHLg + H\xlﬁ/lyx\AHHLg. We just focus on the
second quantity as the first one can be bounded in an eadiwesriasn the previous paragraph we saw that

zAH(h,h,h) ~ F~(@I0a)y+ F ' (BI0D)
We then estimated
{ 1(€)(8.104)[ > < 1Hu||x
14 >V§<183331)\L2 ~ () @BI1A)| ;. < BIZB)S t*ul -
Interpolating between the above two bounds we obtain
(8.14) ]2 AF " @IORY 12 S lul -

To show the analogous bound @~ B.10B) we can use an interpolation argument similar to tre o
adopted in sectionl 7. Namely, we first write

-1 —tss
F aBIOB)—/lA()d,

with the natural definition forA(s). Then it is easy to see that

1 3
Al S ——lully -
S3

Furthermore, in the course of the estimates performed ipringous paragraph 46|V (@.10D)~ |£|@.12a)-
|€|(B-12D), we already showed

1
[zAA] 2 S —SbHuHx

~
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By interpolating these last two bounds we get

ol ¥ A7 @TDY 5 [ Mlel¥ 441w ds S [ 1AAILS A ds < ol
which together with[(8.14) implies the desiréd® bound onH (h, h, h).
Estimates onH (g, f, f). The termH (g, f, f) is given by the following quartic expression:
(8.15) /j oIS - 1Tuo(n N (eXishpetisd g=1f cisd gy gisAf g
We skip the estimate df:@I8)|,;: as this is easy to obtain, and directly move on to estifate|* @I5)| ;. -

Applying Vg to ﬁ(g, f, f), and using[(819), produces two main contributions, whigtressed in real space
are of the form:

t
(8.16a) /1 sze_ZSATuo(g,n) [Tuo(n,a) (u A_lu,u) ,A_lu] ds
t
(8.16b) /1 e_’SAA_lTHO(mU) (u A, u) ez f ds .
We now estimate thé&/'-norm of the above terms. Using TheoremJA.2 as usual,[and)3:k can estimate

t
|BI6R) ;< /1 S N T ooy (WA ) || || A7 0| s s

t
S [ g A7 0l

t
L sy 2 L 2 5426 4
S [ 5 mt ul s ull ds S 257

To estimateIZB]Bb) we distinguish two different cases: where the derivative in thé/*-norm falls on
e*4z|* f and another one when it falls ot 7, (, » (v A~ u,u). In the first case we can estimate:

uo(n o

t
/1 e_iSAA_lTHO(n,U) (uA  u,u) e A2 f ds

L2

t
s/ 147 Tyony (w A ) g p®
/H o (n,0) u/l_lu,u)HWLH% A’w‘2fHL2dS

3 T Y e W A P AN TR
< [ e Il ol sl ds 254254l
In the second case we use again Thedremh A.2[and| (3.14) taoobtai
t _’SATMO(UU) (u/l_lu,u) e z|? f ds L
/H o) (A ) [ s S [l 17 s |, s

L aonp, 12 5+26 4
< [ e Il ol sl ds 254254l
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For appropriate choices 6fy andN, and since adding a derivative only cost$rafactor, the above bounds
guaranted| ABI6a) ;1 , | AGIED)| ;1 < t°]ull’y. This give that| Alz|*@IB)| ;1 < t°)lully, which is an
even stronger bound that what is needed.

Finally, the L> estimate ore™ H (g, f, f) can be obtained by interpolating weight&d-norms as we
have already done in previous sections.

APPENDIXA. TOOLS FROM HARMONIC ANALYSIS

In this appendix we gathered some elementary results ané saultilinear estimates from Harmonic
analysis, as well as the proof of TheoremlA.2. We start bylliegasome dispersive properties of the linear
wave propagatoe’t/:

Lemma A.1. In three space dimensions the following dispersive estésmiaodld:

) 1 3
(A | 8] e S FIHa) 2 22

. 1 1 1
(A2) e 1l e < el A2 ][22 |47 ]|,
Furthermore, for2 < p < ¢

. 1 _4
(A3) e £, < tljnA? b FllL -
P

wherep’ is the dual Holder exponent of

Proof. The first two inequalities are a consequence of the stanblards L>° estimate for the linear wave
equation applied to the propagatéf’:

e A e S

| =

iz + IAf lyiaa]

1 1
see for instance [31], together with the fact thjgf| ;. < |[|z[g]|2.|||z|*g ;. The estimate[{A]3) is a

consequence of the dispersive estimate
: 1
ezt/lf ) 5 - f 4
e A lag, = =l
and basic relations between Besov-norms Ahghorms see again [31j
We also recall two standard inequalities about fractiongdgration:

x
Aa

(A.4)

Sl for 1<pg<oo and o= 2 -
La

2w

)

Sflly for 1<p<2<g<oo,a=2-2 and0<a<?i.

1 .
(A.5) H— ety
A Lo

Theorem A.2. Letp, g, r be given such tha} = % + % and1 < p,q,r < oco. The following hold
(i) If m belongs to the clasB

1T (fs Dl e S M1 2ol 2a -
(ii) If m belongs to the clasB; for s > 0 and k is an integer, then

|4 Tn(£.9)|| S 1A lwesnlglza + 17 ol e
(iii) If m belongs to the clasB8; and M > 3, then
|40 (£.9)

12 N ”f”HSJrk”gHWlaM + ”f”WLMHg”HSHC .
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Proof. Point (i) is, essentially, equivalent to Theorem C.1[ih [§p&ndix C]. (ii) is a consequence of the
proof of (i). (iii) can also be easily obtained from the prad{i) and Sobolev's embedding; it is a substitute
for the lack of anL? x L> estimate. For completeness we provide the proof of (i) ahte¢low.

Let m be a symbol inB,. Away from the coordinate axeg = 0} U {n = 0} U {{ —n = 0} the
Coifman-Meyer theoremni [4] applies to give the desired bednéss result. Let us now consider the case
Inl < [€],1€ —n| ~ 1. Notice that this is the only case we really need to treatesthe other cases can be
reduced to this one by duality. Therefore, we can assume

Tou(f:9) =Y Tn(P<j100f, P<jg) -
J
From the definition of the clash, close to the; = 0 axes we can assume = A (|17|, %,g), for some

smooth function4. By homogeneityn = A (%, %, ﬁ) Expanding this expression %‘ gives

Z”Z“ <%,é—‘> + remainder

By assumption o, the symbolsn, are smooth. Moreover, if we takie large enough, the singularity of
the remainder a} = 0 becomes so weak that the remainder satisfies estimatesfaia@@nMeyer type. We
can then disregard it in what follows.

Expandingmy, in spherical harmonics (denoted By, | € N) yields

St (2)a (&)

k=1 LU

By the Mihlin-Hormander multiplier theorem, the operatassociated to the symbats (‘—Z|> andz; (%)

are bounded on Lebesgue spaces with bounds growing polgitgrim /; on the other hand, since is
smooth, the coefficients, ; » decay faster than any polynomial(ih!’). We can then ignore the summation
over (1,1") and the finite summation ovér Thus, matters reduce to bound

Z/l_k (P<j—100Akajg) :
J

Using the Littlewood-Paley square and maximal functiomestes we finally obtain

D=

. 2
Z A_k <P<j_100/1kfpjg> ,S Z 2_2Jk <P<j—100Akajg>
7 I j .
Lr

sup |27 P00t || (132 (B’ | | S f Mgl o
J .

Lr J

La
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