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Abstract 

We measured U/Ca ratios, 
4
He concentrations, 

234
U/

238
U, and 

238
U/

235
U in a subset of 

well-preserved aragonitic scleractinian fossil corals previously described by Gothmann et al. 

(2015). Comparisons of measured fossil coral He/U ages with the stratigraphic age demonstrate 

that well-preserved coral aragonite retains most or all of its radiogenic He for 10’s of millions of 

years. Such samples must be largely or entirely free of alteration, including neomorphism. 

Measurements of 
234

U/
238

U and 
238

U/
235

U further help to characterize the fidelity with which the 

original U concentration has been preserved. Analyses of fossil coral U/Ca show that the 
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seawater U/Ca ratio rose by a factor of 4-5 between the Early Cenozoic and today. Possible 

explanations for the observed increase include (1) the stabilization of U in seawater due to an 

increase in seawater [CO3
2-

], and a resulting increase in UO2-CO3 complexation as originally 

suggested by Broecker (1971); (2) a decrease in the rate of low-temperature hydrothermal 

alteration from Early Cenozoic to present, leading to a diminished U sink and higher seawater 

[U]; or (3) a decrease in uranium removal in reducing sediments, again leading to higher 

seawater [U]. 

 

1. Introduction 

The geochemistry of uranium in seawater has long been of interest due to the use of 

uranium and its daughter isotopes as dating tools (Henderson and Anderson, 2003), and because 

of uranium’s redox sensitive behavior (Anderson, 1987; Barnes and Cochran, 1990; Morford and 

Emerson, 1999; Weyer et al., 2008). Uranium exists in seawater mainly as binary UO2-CO3 and 

ternary Ca-UO2-CO3 complexes (Langmuir et al., 1978; Djogic et al., 1986; Endrizzi and Rao, 

2014, Endrizzi et al. 2016). The tendency for uranium to complex strongly with carbonate and 

with cations such as Ca dramatically increases its solubility (Langmuir et al., 1978; Bernhard et 

al., 2001; Dong and Brooks, 2006), leading to the conservative nature of uranium in seawater 

and its long residence time (3.5-5.6×10
5
 yrs) (Chen et al., 1986). While U(VI) is present in well-

oxygenated seawater, it is reduced to U(IV) in reducing sediments, rendering the uranium 

insoluble (Langmuir, 1978; Anderson, 1987; Cochran et al. 1986; Anderson et al., 1989). 

Experiments with Fe(III) and sulfate-reducing microorganisms indicate that this reduction is 

largely biologically-mediated (Lovley et al. 1991, Lovley and Phillips, 1992). 
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Despite interest in seawater uranium, the magnitudes of uranium fluxes to and from 

the modern ocean are poorly constrained (Table 1). Rivers are the principal source of uranium to 

seawater, and the dissolved uranium in rivers themselves is primarily derived from carbonate 

rocks and black shales (Palmer and Edmond, 1993). Additional sources of U include wind-blown 

dust and groundwater discharge, but the dust flux is likely minor in comparison with rivers, and 

the magnitude of the flux from groundwater discharge is not well known (Dunk et al. 2002; 

Henderson and Anderson, 2003, Tissot and Dauphas, 2015). The main seawater uranium sinks 

are uptake into suboxic sediments and low-temperature hydrothermal alteration of basalt (Dunk 

et al., 2002; Mills and Dunk, 2010; Kinkhammer and Palmer, 1991, Henderson and Anderson, 

2003; Barnes and Cochran, 1990). Additional sinks include uptake in coastal wetland sediments, 

uptake in anoxic sediments, high-temperature hydrothermal alteration, and co-precipitation with 

carbonate minerals and ferromanganese crusts (Barnes and Cochran, 1990; Klinkhammer and 

Palmer, 1991; Dunk et al., 2002; Wheat et al., 2003; Mills and Dunk, 2010). Although published 

estimates for the magnitudes of each source and sink terms exhibit a wide range (~± 50% of 

fluxes; see Table 1), recent work using isotopic constraints on the seawater U budget suggest that 

the Dunk et al. (2002) estimates are likely the most reasonable (Tissot and Dauphas, 2015). This 

budget suggests that ~25% of U is removed in suboxic sediments, ~23% in marine carbonates, 

~22% in coastal sediments and Fe-Mn crusts, ~20% in anoxic sediments, and ~10% in altered 

basaltic crust.   

The magnitudes of the uranium source and sink terms have likely changed relative to 

one another over multi-million-year timescales considering that they are closely linked with 

major geologic processes including continental weathering, ocean oxygenation, hydrothermal 
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alteration, carbonate precipitation. Over the Cenozoic in particular, reconstructions of seawater 

Mg/Ca and Mg isotopes suggest that there may have been a decrease in low-temperature 

hydrothermal alteration rates between the early Cenozoic and today or, alternatively, a decrease 

in silicate weathering rates (e.g., Higgins and Schrag, 2015; Gothmann et al. 2015; 2017). 

Changes in these processes could affect seawater uranium abundances as well, since rivers are 

the main seawater source and low-temperature hydrothermal alteration is a major uranium sink 

(e.g. Dunk et al. 2002).  

Seawater uranium abundances may also be sensitive to changes in uranium 

speciation, which are expected to result from changes in Cenozoic ocean carbonate chemistry 

and major ion composition (e.g., Lowenstein et al. 2003; Tyrrell and Zeebe, 2004; Hönisch et al., 

2012; Hain et al., 2015; Zeebe, 2012). Specifically, Chen et al. (2017) calculate that the most 

abundant uranium complex in modern seawater (Ca2UO2(CO3)3 (aq)) may have decreased in 

abundance relative to total uranium by ~30% between the early Cenozoic and today. While 

changes in speciation alone should not affect the total concentration of dissolved uranium in 

seawater, experimental evidence suggests that uranium removal rates from seawater may depend 

on uranium speciation (Wazne et al. 2003; Hua et al., 2006; Belli et al., 2015; DeCarlo et al. 

2015).  

Finally, uranium abundances and isotopic composition in seawater may be sensitive 

to changes in ocean oxygenation. Recently published δ
238/235

U records provide some constraints 

on variations in the anoxic uranium sink over the Cenozoic (Goto et al., 2014; Wang et al. 2016). 

238
U/

235
U varies in nature due to a mass-independent “nuclear volume” isotope effect. 

Specifically, the heavy isotopes of uranium (those with larger nuclear volumes) are more 
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abundant in U(IV) relative to U(VI) phases, given that reduced U has a lower number of s orbital 

electrons and thus a lower electron density at the nucleus (e.g. Bigeleisen, 1996; Schauble, 

2007). This isotope effect has been observed in experiments where uranium has been reduced 

both by biological and abiotic means (Basu et al. 2014, Stylo et al. 2015, Stirling et al. 2015; 

Brown et al. 2018).Thus, reconstructions of seawater δ
238/235

U can track the relative importance 

of uranium removal by reduction relative to other sinks (e.g., Weyer et al., 2008; Montoya-Pino 

et al., 2010; Brennecka et al., 2011; Kendall et al., 2013). 

In this paper, we present data on U/Ca, 
234

U/
238

U, 
238

U/
235

U, and 
4
He concentrations 

(hence 
4
He/U ages) from a set of well preserved aragonitic fossil corals with ages ranging from 

modern to Jurassic. The coral U partition coefficient (K
D

U/Ca|sw-coral = [U/Cacoral]/[U/Caseawater]) is 

close to 1 and culture experiments have demonstrated that coral U/Ca increases linearly with 

increasing seawater [U] (Broecker, 1971; Swart and Hubbard, 1982; Thompson et al., 2003; 

Robinson et al., 2006). In addition, spectroscopic studies (XAFS) indicate that uranium is likely 

incorporated in the aragonite lattice from seawater without undergoing a coordination change 

and is structurally stable (Reeder et al. 2000). As long as primary aragonite has not recrystallized 

to calcite, these findings suggest that uranium uptake in aragonite is less likely to be 

discriminated against and also that uranium in aragonite may be preserved over long timescales.
 

As a result, it is possible that fossil corals can capture variations in seawater U/Ca. 

Our fossil coral sample set has been screened for diagenesis using x-ray 

diffractometry, scanning electron microscopy, petrographic microscopy, cathodoluminescence 

microscopy, micro-raman spectroscopy, 
87

Sr/
86

Sr measurements, carbonate clumped isotope 

thermometry, and Secondary Ion Mass Spectrometry (SIMS) measurements of trace elements 
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(Gothmann et al., 2015). As reported in this paper, fossil coral uranium integrity is evaluated 

further by 
4
He/U ages as well as measurements of U isotopes (

234
U/

238
U, 

238
U/

235
U). 

Measurements of fossil coral U/Ca indicate a factor of 4-5 increase between the early Cenozoic 

and today that we attribute to an increase in seawater U/Ca. We evaluate the potential for a range 

of geologic processes important for elemental cycling to drive the observed changes in Cenozoic 

fossil coral U/Ca, including changes the uranium river flux, changes in uranium solubility in 

seawater, changes in uranium removal during low-temperature hydrothermal alteration and 

changes in uranium removal in reducing sediments. While it is not possible to determine which 

of these processes is likely to be most important, the U/Ca data allow us to place bounds on 

variations in the fluxes examined.  

 

2 Methods 

2.1 U/Ca measurements 

For full details regarding fossil sample identification, provenance, and ages, the 

reader is referred to the supplementary materials. Small pieces of coral skeleton were cut using a 

dremel tool and crushed into ~1 mm pieces using a mortar and pestle. Aliquots of approximately 

10 mg, corresponding to ~20 chunks of coral aragonite for each aliquot, were dissolved in 1N 

nitric acid (HNO3) for U/Ca analyses. Dissolved samples were centrifuged, inspected for 

insoluble residues, and diluted to a concentration of 60 ppm Ca in preparation for mass 

spectrometry. U/Ca measurements were conducted using a Thermo Finnigan Element-2 

Inductively Coupled Plasma Mass Spectrometer (ICP-MS) at Princeton University. Ratios were 

calibrated using a set of matrix-matched in-house standards with U/Ca ratios spanning our 
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sample range as in Rosenthal et al. (1999). The external reproducibility of an in-house deep-sea 

coral standard prepared the same way as coral samples was ~6% 2σ s.d. (where s.d. is standard 

deviation).  

 

2.2 
4
He measurements and He/U calculation 

Additional ~10 mg aliquots were weighed and wrapped in foil in preparation for He 

extraction. Samples were loaded into a vacuum furnace and heated to 1200°C to degas He. The 

evolved gas was then purified cryogenically and inlet to a MAP 215-50 noble gas mass 

spectrometer at the California Institute of Technology to measure 
4
He concentrations. Sensitivity 

was calibrated through frequent measurements of air standards run at 
4
He concentrations 

spanning the expected range of our samples. The reproducibility of standards run throughout the 

analysis session was <1% 2σ s.d. for 
4
He. Hot blanks, line blanks, and sample re-extracts were 

run routinely throughout the analysis session, and re-extracts were always at or below hot blank 

values, suggesting that all sample 
4
He was extracted from the sample during analysis. Both the 

hot blanks and re-extracts are reflective of our instrument blank, and we use these data to blank-

corrected all samples. We attribute an uncertainty of 0.1 ncc 
4
He to this blank correction.  

 

2.3 Uranium isotope analyses 

A subset of samples was analyzed for both 
234

U/
238

U and 
238

U/
235

U ratios. 

Approximately 50 mg of coral were required for these measurements, and so we were limited to 

analyzing samples with sufficient material. Multiple chunks of coral sample ~1 mm in size were 

powdered using a mortar and pestle in preparation for uranium isotope analyses. Using estimates 
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of coral [U] from U/Ca measurements, coral powders corresponding to 50-100 ng U were 

weighed and dissolved in 10 mL of 0.5 N HNO3. These samples were centrifuged and the 

supernatant was poured off to avoid small amounts of organics and/or insoluble silicate residue. 

Sample U was separated from matrix as described in Wang et al. (2016). Briefly, samples were 

spiked with 25-50 μL of an in-house 
233

U-
236

U double-spike to achieve a 
238

U/
236

U ratio of ~30. 

The spiked samples were dried and re-dissolved in 3N HNO3 in preparation for uranium 

purification. Uranium was separated by eluting through a column filled with Eichrom UTEVA 

(100-150 μm) resin. After eluting the matrix using 3N HNO3, Th was eluted in two steps using 

10N HCl and 5N HCl, and finally U was eluted and collected with 0.05 N HCl. Purified U 

samples were dried down once more, treated with concentrated HNO3 at 130°C to remove 

potential organic matter leached from the resin, and finally dissolved in 0.75 N HNO3 at ~50 ppb 

U with 5% HNO3 in preparation for mass spectrometry.  

Measurements were conducted at Yale University using a Thermo Scientific Neptune 

Plus multicollector inductively coupled mass spectrometer (MC-ICP-MS) with an ESI Apex-IR 

sample introduction system (see Wang et al. 2016 for details). Baseline measurements and gain 

calibrations were performed prior to every analytical session. Beam intensities for 
232

Th, 
233

U, 

234
U, 

235
U, 

236
U, and 

238
U were concurrently measured in low resolution using Faraday collectors. 

All isotopes were collected using 10
11 

Ω resistors with the exception of 
238

U, for which a 10
10 

Ω 

resistor was used, and 
235

U, for which a 10
12

 Ω resistor was used. Sensitivity for 
238

U was ~35V 

for a 50 ppb solution. Data were acquired in 5 blocks of 10 cycles each, with 4.19s integration 

per cycle. Instrumental mass bias was accounted for using the 
233

U-
236

U double-spike. 
238

U/
235

U 

are reported as δ
238/235

U relative to the composition of the U metal standard CRM112a, measured 
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during the same analytical session. One CRM112a standard was measured for every 3 samples. 

Procedural blanks were ~10-40 pg which was <0.05% of the sample U content. In addition to 

samples, we measured a USGS Fe-Mn crust standard (Nod-A-1) taken through the entire 

chemical procedure, to assess the accuracy and long-term reproducibility of the method. For 

Nod-A-1, we measured a value of δ
238/235

U = -0.59 ± 0.10 ‰ (2σ s.d.), and {
234

U/
238

U} = 1.087 ± 

0.030 (2σ s.d.); n = 7. For BHVO-2, a basalt standard, we measured a composition of δ
238/235

U = 

-0.26 ± 0.12 ‰ (2σ s.d.), and {
234

U/
238

U} = 0.997 ± 0.032 (2σ s.d.); n = 12. The average 

measured isotopic compositions for standards are consistent with values published previously 

(Weyer et al., 2008; Tissot and Dauphas, 2015; Wang et al., 2016a). 

 

3 Results and Discussion 

3.1 He/U dating of fossil corals 

After formation of coral aragonite, 
238

U and 
235

U present in coral skeletons decay to 

their lead daughters (
206

Pb and 
207

Pb) producing 
4
He through alpha-decay (described below in 

Eqn. 1).  

[
4
He] = 8 [

238
U] (e

λ238 t
 – 1) + 7 [

235
U] (e

λ235 t
 – 1) + 6 [

232
Th] (e

λ232 t
 – 1), (Eqn. 1) 

Because negligible amounts of Th are incorporated in clean coral carbonate, the third term in 

Eqn. 1 above can be ignored (Bender, 1973; Thompson et al., 2003). Using measured uranium 

and 
4
He concentrations, it is possible to use Eqn. 1 to solve for the age of the sample, t. Previous 

studies have shown that ~70-100% of radiogenic 
4
He produced by uranium decay is retained in 

well preserved fossil corals (Bender, 1973; Fanale and Schaeffer, 1965). For one sample 

presented here that is younger than ~1 Myr, uranium daughters are not yet at secular equilibrium 
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and so He production is a more complicated function of time. We apply the equations presented 

in Bender (1973) to calculate He/U ages for this single sample.  

Because coral skeletons have intricate physical structures and fine (~10-1000 µm 

scale) intersecting features, it is necessary to correct calculated He/U ages for He-loss associated 

with alpha particle ejection from coral aragonite (Bender, 1973; Farley et al., 1996). In Bender’s 

(1973) sample suite, alpha ejection losses as high as 20-30% were calculated from the geometry 

of some samples. This amount of loss is due to similarities in magnitude between the distance 

that emitted alpha particles can travel for aragonite (20 μm; Bender, 1973; Schroeder et al., 

1970) and the width of some features of the coral skeleton (Schroeder et al., 1970; Roniewicz 

and Stolarski, 1999). Assuming a homogenous uranium distribution in the skeleton, Bender 

(1973) calculated the fraction (F) of 
4
He that should be lost for a given thickness of coral 

skeleton. Here we estimate this F-value for our samples based on their skeletal geometry in an 

effort to correct for alpha ejection as in Bender (1973) (Table 2). This correction factor has a 

large uncertainty for two reasons: (1) our treatment of the geometry of the coral skeleton is 

oversimplified, and (2) the assumption of homogeneous [U] in the coral skeleton is inaccurate 

(see, for example, Robinson et al., 2006). For this reason, we assign ± 20% uncertainty to our 

estimated F-values. Not all of the samples studied here require a He-loss correction because we 

were sometimes able to sample dense, massive (non-porous) skeletal material from the base of 

the coral calyx (i.e. the bottom-most part of the coral skeleton). In addition to specifying a value 

for F, Bender used an ‘intersection correction’ (I), corresponding to the point of connection 

between intersecting features of the coral skeleton (for example the intersection point between a 
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coral septum and the coral thecal wall). These intersections decrease the percentage of 
4
He lost. 

We give values for I in Table 2 as well.  

We calculate the corrected 
4
He age from Eqn. 1 above using an adjusted uranium 

concentration: 

Adjusted [U] = Measured [U]*[1 − F ×(1 – I )]    (Eqn. 2). 

The adjusted U concentration discounts the measured U concentration by the fraction of He lost 

due to recoil. Fig. 1 shows our calculated, corrected He/U ages for samples plotted against the 

expected age of the sample from biostratigraphic constraints and Sr isotope measurements 

(Gothmann et al. 2015). Fig. 2 shows a second comparison of our He/U ages relative to the 

expected age of the sample, where samples are plotted on the MacArthur et al. (2001) Sr isotope 

curve. Both Figs. 1 and 2 demonstrate that the majority, but not all, of fossil coral samples 

analyzed agree with the expected age to within uncertainty. Samples with He/U ages younger 

than the expected stratigraphic age (n=9) may indicate yet-unrecognized alteration – specifically, 

addition of diagenetic 
238

U and 
235

U. Fossil coral samples that give He-ages older than expected 

(n=5) may result from He implantation due to infilling clay-rich muds or sediment. Alternatively, 

this He may derive from the decay of Th adsorbed onto the surface of the skeleton throughout 

the coral’s existence (Cheng et al., 2000; Thompson et al., 2003; Robinson et al. 2006). He 

implantation and decay of adsorbed Th should only affect the He-age (and not the coral U/Ca 

ratio). The existence of multiple diffusion domains, which can occur if there are a range of 

crystal sizes present within a mineral, and micro-cracks have been suggested to be important for 

He-loss in calcite (Copeland et al. 2007; Cros et al. 2014; Cherniak et al. 2015; Amidon et al. 
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2015). The presence of such features might also account for some of the variability in He-loss 

from one sample to another. 

We also measured two samples containing a mixture of coral skeleton and secondary 

cement infilling as inferred from x-ray diffraction. These samples give He-ages that are ~30% 

younger than the expected age (see grey squares in Fig. l and notes in Table 2) and are also 

characterized by relatively low U/Ca ratios. Because our He/U age is not lower than the expected 

stratigraphic age by more than 30%, we interpret this result as indicating good preservation of 

the original coral skeleton combined with a minor U contribution from the secondary cement. In 

other words, if our sample is a mixture of primary aragonite (with high U/Ca and high [
4
He]) and 

secondary calcite (with low U/Ca and low [
4
He]), then the He/U age would largely reflect the 

composition of the primary aragonite.  

Our He/U analyses provide constraints on the preservation of U in our fossil coral 

samples. We flag fossil coral samples with He/U ages that underestimate the expected age 

beyond uncertainty due to the possibility that these offsets indicate the presence of a diagenetic 

component. As stated above, because ages that are too-old are likely caused by processes that 

affect He production instead of processes that alter U/Ca ratios, we do not reject these samples. 

Table 3 lists all geochemical criteria from this study used to flag or exclude samples. 

 

3.2 
234

U/
238

U and δ
238/235

U compositions of fossil corals 

3.2.1 
234

U/
238

U  

The modern seawater activity ratio of 
234

U and 
238

U, denoted as {
234

U/
238

U}, is 

enriched in 
234

U ({
234

U/
238

U} = 1.1468; Andersen et al. 2010) relative to secular equilibrium 
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({
234

U/
238

U}  = 1). This can be explained by α-recoil of 
234

U from minerals on land, and 

diffusion of 
234

U (again liberated by α-recoil) from oceanic sediments through pore waters into 

seawater (Ku, 1965; Chen et al., 1986; Henderson and Anderson, 2003; Cheng et al., 2000; 

Pogge von Strandmann et al., 2010). We expect modern coral {
234

U/
238

U} to be within error of 

the modern seawater value. Although recent studies suggest that seawater {
234

U/
238

U} has varied 

over glacial-interglacial timescales (e.g., Esat and Yokoyama 2006; Chutcharavan et al. 2018; 

Tissot et al. 2018), almost all fossil corals studied here have geologic ages >1 Ma. Because the 

decay constant for 
234

U is large compared with the decay constant for 
238

U (its ultimate source), 

the activity ratio of 
234

U to 
238

U in corals approaches secular equilibrium after ~1 Ma (assuming 

closed system behavior). Measured {
234

U/
238

U} ratios greater or less than one for our fossil 

corals should therefore indicate post-depositional alteration of primary U and we can use 

{
234

U/
238

U} in our fossil corals as an additional constraint on preservation. More specifically, 

higher {
234

U/
238

U} could indicate addition of U, for example from groundwaters. Alternatively, 

lower {
234

U/
238

U} might indicate α-recoil loss of 
234

U from our samples. 

Figure 3a and Table S2 show results of {
234

U/
238

U} measurements. Modern samples 

show values consistent with the known activity ratio of modern seawater. Samples younger than 

~1 Ma are enriched in 
234

U/
238

U as is expected based on the modern seawater ratio. Of our 

samples older than 1 Ma, there are 7 fossil samples that deviate from secular equilibrium beyond 

the external reproducibility of our measured Nod-A-1 standard (see Section 2.3).  Two of these 

fossil coral samples have {
234

U/
238

U} ratios even higher than that of modern seawater 

{
234

U/
238

U} (Table S2). Although these samples do not have visibly higher [U] from samples of 

similar geologic age, we flag them in our U/Ca record. The most likely explanation for the high 
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{
234

U/
238

U} values observed in such samples is that 
234

Th from groundwaters, which decays to 

234
U, is added by absorption (Thompson et al. 2003). The absorbed 

234
Th component may 

enhance He production rates, and thus 
4
He/U ages, by only a few percent. Indeed, there is no 

clear relationship between {
234

U/
238

U} and U/Ca, or between {
234

U/
238

U} and the relative 

deviation in He-U age from expected age for fossil samples greater than 1 Ma (see 

supplementary Figs. S2 and S3).  

 

3.2.2 δ
238/235

U  

Modern seawater has a δ
238/235

U composition of -0.392 ± 0.005 ‰ (Stirling et al., 

2007; Weyer et al., 2008; Tissot and Dauphas, 2015). Published measurements of modern coral 

δ
238/235

U span a range of values: ~ -0.37 to -0.5 ‰ with an average of -0.39 ± 0.06‰ (2σ s.d.) 

(Stirling et al., 2007; Weyer et al. 2008; Tissot and Dauphas, 2015; Chen et al. 2018a; Chen et al. 

2018b; Tissot et al. 2018). The most recent, high precision measurements of coral δ
238/235

U 

(n=11) yield an average of -0.37 ± 0.02‰ (2σ s.d.) (Chen et al. 2018a; Chen et al. 2018b; Tissot 

et al. 2018). Modern corals measured in this study (n=5) are consistent with previous 

measurements with an average of -0.36 ± 0.06‰ (2σ s.d.). The similarity between coral and 

seawater δ
238/235

U has been interpreted to reflect equilibrium isotope fractionation between 

uranium species during inorganic aragonite precipitation coupled with biological vital effects 

associated with coral calcification (Chen et al. 2016; 2017; 2018a). Specifically, carbonate 

precipitation experiments show that inorganic aragonite has a δ
238/235

U that is 0.11‰ heavier 

than seawater consistent with 
238

U being preferentially incorporated into inorganic aragonite 

under conditions where the abundance of the neutral Ca2UO2(CO3)3 aqueous species is greater 
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(Chen et al. 2016; 2017). The observation that coral δ
238/235

U is not as isotopically heavy as 

inorganic aragonite could suggest the presence of reservoir effects or precipitation rate effects at 

the site of coral calcification (Chen et al. 2018a). It has recently been shown that δ
238/235

U may 

vary on a fine scale in coral as a result in compositional differences between the centers of 

calcification (COCs, associated with rapid calcification and small crystal size) and coral fibers 

(associated with slower calcification and larger grain size) (Tissot et al. 2018). Our bulk 

sampling should largely minimize heterogeneity in coral δ
238/235

U that could arise from such 

differences, but we do not have quantitative constraints on the exact proportions of COC and 

fibers within each sample.  

In addition to He/U and {
234

U/
238

U}, we use coral δ
238/235

U compositions as a 

constraint on fossil coral preservation. Existing records from Fe-Mn crusts suggest seawater 

δ
238/235

U has likely remained within ±0.09 ‰ of the modern seawater composition over the last 

~80 million years (Goto et al. 2014; Wang et al. 2016a). Assuming that 
238/235

U fractionation 

between seawater and coral has not changed with time, there are six fossil coral samples we 

measure that deviate by more than ±0.09 ‰ from the modern coral average of -0.37 ‰ toward 

heavier δ
238/235

U. Five of these fossil samples also deviate from the modern coral average beyond 

analytical uncertainty based on the reproducibility of the Fe-Mn standard Nod-A-1 (Fig. 3b, 

Table 3). Recent work shows that diagenesis of carbonate sediments in the presence of reducing 

pore fluids can cause an increase in carbonate [U] and a ~0.25 ‰ shift in carbonate δ
238/235

U 

toward heavier values (Romaniello et al. 2013; Chen et al. 2018b; Tissot et al. 2018). Chen et al. 

(2018b) suggest that recrystallization of biogenic aragonite in seawater or marine pore fluids can 

also result in a shift toward heavier δ
238/235

U. While there is no obvious evidence of 
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neomorphism or diagenetic cements for these five samples based on previous diagenetic 

screening (Gothmann et al. 2015), the magnitude of the offset in δ
238/235

U for these samples as 

compared with modern fossil corals is general consistent with the diagenetic offsets observed in 

modern carbonate sediments (Romaniello et al. 2013; Chen et al. 2018b; Tissot et al. 2018).  We 

note, however, that samples with heavy δ
238/235

U do not have anomalously high U/Ca as 

compared with samples of similar age (see supplementary figure S4). This observation suggests 

that if our heavy coral δ
238/235

U are not primary, then their compositions may reflect the addition 

of a small amount of secondary U that is extremely enriched in 
238

U. Their compositions could 

also be explained by replacement of primary coral uranium with a fluid of different δ
238/235

U and 

similar [U]. We flag these samples in our reconstruction of seawater U/Ca to acknowledge the 

possibility that these samples may have a diagenetic uranium component (Table 3). Excluding 

these samples, fossil corals measured in this study yield an average δ
238/235

U of -0.34 ± 0.11‰ 

(2σ s.d.; n=14) – close to the modern coral average of -0.37 ‰ (Fig. 3b, Table S2). Fig. 3b also 

shows that fossil corals exhibit a ~0.05 ‰ change in δ
238/235

U between modern samples and 

Eocene samples, with Eocene samples being higher, although this change is not statistically 

significant (Welch’s t-test, p>0.05).  

Elevated δ
238/235

U values in Eocene fossil corals could reflect an increase in 
238

U/
235

U 

fractionation between corals and contemporaneous seawater. Reconstructions of seawater pH 

suggest that it has increased by 0.3-0.4 pH units between the Early Cenozoic and present 

(Hönisch et al. 2012). In addition, inorganic aragonite precipitation experiments and uranium 

speciation modeling studies suggest that 
238/235

U fractionation depends on pH as well as seawater 

Ca and Mg concentrations, with a <0.06 ‰ decrease in carbonate δ
238/235

U predicted between the 
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early Cenozoic and today (Chen et al. 2016; 2017). The 0.05 ‰ change observed between 

modern and Eocene samples in this study is generally compatible with the decrease in U isotope 

fractionation predicted by Chen et al. (2017).   

 

3.3 Fossil coral U/Ca record 

Fossil coral U/Ca data are presented in Table 2 and Fig. 4a, b. U/Ca ratios are low 

for early Cenozoic samples, and increase by a factor of 4-5 between the Eocene and the present. 

Trends are similar for flagged and included samples, although flagged samples are more 

scattered. Our coral U/Ca record must reflect either (1) large changes in U uptake dynamics in 

coral aragonite through time, or (2) changes in the U/Ca ratio of seawater. We evaluate these two 

possibilities below. 

Culture experiments and surveys of natural coral samples indicate that the U/Ca ratio 

of the aragonitic coral skeleton is anti-correlated with the pH and/or [CO3
2-

] of the growth 

medium (Armid et al. 2008; Inoue et al., 2011; Anagnostou et al., 2011; Raddatz et al., 2014). A 

similar dependence has been demonstrated for inorganic aragonite (Meece and Benninger, 1993; 

DeCarlo et al., 2015) and many other biogenic carbonates (e.g., Russell et al. 2004; Keul et al. 

2013). The inorganic growth experiments of DeCarlo et al. (2015) suggest that the relationship 

arises due to a predominant dependence on [CO3
2-

] and not pH; the apparent pH dependences 

observed in other studies arise from the co-variation of [CO3
2-

] and pH at constant DIC.  

The sensitivity of coral U/Ca to [CO3
2-

] (or pH), differs between surface (usually 

zooxanthellate/symbiotic) and deep-sea corals (usually azooxanthellate/asymbiotic). Deep-sea 

corals exhibit a range in the U/Ca ratio of ± 50% among natural samples collected from waters 
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with pH ranging between 7.5-8.3, and most of the variance is linked to [CO3
2-

] (or pH) 

(Anagnostou et al., 2011; Raddatz et al., 2014). In contrast, culture experiments with symbiotic 

(zooxanthellate) surface corals suggest a much more moderate dependence on seawater 

carbonate chemistry, with bulk coral U/Ca ranging by ~±8% over a pH range of 7.3 to 8.0, and a 

slope of -0.21 μmol/mol U/Ca pH
-1 

(Inoue et al., 2011). The sensitivity of inorganic aragonite 

U/Ca to seawater [CO3
2-

] is also about an order of magnitude less than the sensitivity observed 

for deep-sea corals (DeCarlo et al., 2015). We assume that all corals in our sample set would 

respond to changes in seawater pH with the sensitivity of shallow water corals (-0.21 μmol/mol 

pH
-1

; Inoue et al. 2011) – similar to inorganic aragonite. This may not be a good assumption as 

our fossil coral samples are a mixture of symbiotic and asymbiotic species (see Table 2). 

However, measured U/Ca ratios are similar for both asymbiotic and symbiotic fossil coral 

samples, suggesting that any systematic difference in sensitivity to seawater pH is small (Fig. 4).  

Many independent studies have concluded that seawater pH and [CO3
2-

 ] was 0.3-0.4 

units and a factor of ~3 lower (respectively) than present during the early Cenozoic (Ridgwell 

and Zeebe, 2005; Hönisch et al., 2012; Hain et al., 2015; Tyrrell and Zeebe, 2004; Zeebe, 2012). 

As detailed in Hain et al. (2015), these changes are compatible with current views that pCO2 was 

high in the early Cenozoic, seawater DIC similar to present, and seawater [Ca] was elevated 

(Horita et al., 2002; Lowenstein et al., 2003; Brennan et al., 2013). Applying the -0.21 μmol/mol 

pH
-1 

dependence from modern shallow-water zooxanthellate corals (Inoue et al., 2011) and 

assuming no change in seawater U/Ca we estimate that coral U/Ca would have been ~0.08 

μmol/mol higher during the early Cenozoic than today. This small change would be difficult to 

resolve given the natural range of variability observed for modern surface corals – (0.8 - 2 
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μmol/mol) (Swart and Hubbard, 1982; Min et al., 1995). Instead, we observe that coral U/Ca 

ratios are much lower in samples from the early Cenozoic (Fig. 4) – a change that is the opposite 

sign to that predicted from reconstructions of seawater pH and [CO3
2-

]. As a result, the coral 

U/Ca data do not appear to be related to changes in coral U uptake associated with secular 

change in seawater pH or [CO3
2-

 ] over the Cenozoic. Instead, we favor the alternative 

explanation that the data reflect an increase in the U/Ca ratio of seawater.  

Determining the magnitude of the increase in seawater U/Ca from our fossil coral 

record depends on whether coral U/Ca is predominantly dependent on seawater [U] (Swart and 

Hubbard, 1982; Shen and Dunbar, 1995), or on the seawater U/Ca ratio (Broecker, 1971; Meece 

and Benninger, 1993; Gabitov et al., 2008). In the first case, our record would suggest a factor of 

4-5 increase in seawater uranium concentrations between the Paleocene and today. In the second 

case, changes in seawater [Ca] or changes in seawater [U] could drive the coral chemistry we 

observe. Seawater [Ca] has decreased by a factor of ~2.5 since ~100 Ma (Lowenstein et al. 2001; 

2003; Horita et al. 2002; Timofeeff et al. 2006; Dickson, 2002; 2004; Coggon et al. 2010; 

Rausch et al. 2013; Gothmann et al. 2015), suggesting that roughly half of the increase in coral 

U/Ca could be due to changes in seawater Ca. The remainder of the increase in U/Ca then only 

requires that [U] has risen by a factor of 1.5-2.  

Fig. 4c plots our preferred reconstruction of seawater [U] from fossil corals, 

calculated assuming that coral U/Ca depends on seawater U/Ca with a partition coefficient 

(K
D

U/Ca|sw-coral) of 0.87 based on the average of modern corals measured in this study. To 

calculate seawater [U], we assume that seawater [Ca] decreased linearly from 26 mmol/kg to 

10.6 mmol/kg between 100 Ma and today, as broadly suggested by fluid inclusions trapped in 
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halite (see Fig. 5b; Lowenstein et al., 2003; Horita et al. 2002; Timofeeff et al. 2006; Sarmiento 

and Gruber, 2006). We choose 100 Ma as the start of the seawater [Ca] decline because there are 

no estimates for seawater [Ca] from fluid inclusions between 100 Ma and ~35 Ma (Zimmerman, 

2000; Horita et al., 2002; Lowenstein et al., 2003; Timofeeff et al., 2006; Brennan et al., 2013). 

From only two Paleocene samples, our coral data suggest a ~50% decrease in seawater [U] from 

the Paleocene to the middle Oligocene. Subsequently, U rises by a factor of ~2 between ~40 Ma 

and today.  

 

3.4 Secular variations in seawater [U] 

The abundance of U in seawater reflects a balance between uranium sources and 

sinks:  

dUSW/dt  = Finputs – Foutputs,  (Eqn. 3) 

dUSW/dt  = FRiver – (FLow-T Hydrothermal + FAnoxic + FSuboxic + FCarbonate + FCoastal and Fe-Mn),  (Eqn. 4) 

where the term USW represents the abundance of uranium in seawater (mol), and Fx terms 

represent the U mass fluxes associated with various sources and sinks (mol/yr). The only 

significant source of U to seawater is Friver, the flux of U from chemical weathering on the 

continents. U sinks include FLow-T Hydrothermal, the removal of seawater U in low-temperature 

hydrothermal systems, and FAnoxic and FSuboxic the U sinks in anoxic and suboxic sediments, 

respectively. The term FCarbonate corresponds to the U flux buried in carbonate sediments, and 

FCoastal and Fe-Mn corresponds to the U flux in coastal wetland sediments and in Fe-Mn crusts (Dunk 

et al. 2002; Tissot and Dauphas, 2015). There exists disagreement as to the magnitude of the 

carbonate uranium sink, with estimates ranging from ~5 to ~25 % of the total seawater uranium 
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sink (Dunk et al. 2002; Morford and Emerson, 1999; Klinkhammer and Palmer, 1990; Barnes 

and Cochran, 1990) (see also Table 1).  

  

3.4.1 A relationship between seawater [U] and seawater [CO3
2-

] 

In the following sections, we discuss the possible controls on Cenozoic seawater [U] 

in further detail. First, we consider a hypothesis proposed by Broecker (1971) and Broecker 

(2013), which suggests that the magnitudes of U removal in the major oceanic sinks (carbonate 

sediments, anoxic/suboxic sediments, Fe-Mn crusts, alteration of basalt) are all dependent on 

seawater [CO3
2-

]. Broecker’s hypothesis is grounded in studies of the [U] of highly alkaline 

Mono Lake, which has both [CO3
2-

] and [U] ~100 times greater than seawater (Thurber, 1965; 

Simpson, 1982; Anderson et al., 1982). Similarly high U concentrations have been observed in 

alkaline surface waters of Eastern and Western Mongolia (Linhoff et al. 2011; Shvartsev et al. 

2012). According to Broecker (1971) and Broecker (2013), observations of the correlation 

between [U] and [CO3
2-

] in alkaline lakes suggest that an increase in seawater [CO3
2-

] could be 

accompanied by a proportional increase in seawater [U]. Importantly, because of the long 

residence time of U in seawater (~400,000 yrs; Chen et al. 1986), this control is only relevant 

over million-year timescales.  

Broecker (1971) and (2013) further suggested that if seawater [U] is indeed controlled 

by seawater [CO3
2-

], then coral U/Ca should scale with past seawater [CO3
2-

] and/or seawater 

[Ca]. As shown in the equations below, this relationship assumes that the U/Ca ratio of corals 

records the U/Ca ratio of seawater, that seawater [U] is proportional to seawater [CO3
2-

], and that 
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the saturation state of seawater has not varied greatly over the Cenozoic (Tyrrell and Zeebe, 

2004): 

 U/Cacorals ≈ U/CaSW  and  [U]SW ∝ [CO3
2-

]SW,   (Eqn. 5)   

 U/Cacorals ∝ [CO3
2-

]SW/[Ca]SW,   (Eqn. 6)   

 [Ca]SW × [CO3
2-

]SW = constant,   (Eqn. 7)   

 U/Cacorals ∝ 1/[Ca]
2

sw,   (Eqn. 8)   

Eqn (8) suggests that fossil coral U/Ca should be linearly proportional to 1/[Ca]
2

sw. 

We plot this relationship in Fig. 5 for our samples, where [Ca]seawater is calculated assuming a 

linear decrease in seawater [Ca] from 26 mmol/kg to 10.6 mmol/kg between 100 Ma and today, 

as in Fig. 4c (Lowenstein et al., 2003; Horita et al. 2002; Timofeeff et al. 2006; Sarmiento and 

Gruber, 2006). The observed linear relationship displayed in Fig. 5 between U/Cacoral and 

1/[Ca]
2

sw is generally compatible with the Broecker hypothesis.   

There is good reason to expect seawater [U] to depend on [CO3
2-

]. Uranium’s 

propensity to complex with carbonate in natural waters, and with cations such as Ca, increases its 

solubility (Langmuir et al., 1978; Bernhard et al., 2001; Dong and Brooks, 2006, Endrizzi and 

Rao, 2014) and virtually all dissolved U in seawater exists as a CO3
2-

 complex (Langmuir, 1978; 

Djogic et al., 1986; Reeder et al., 2000; Endrizzi and Rao, 2014). The dominant forms of 

uranium in seawater at pH > 6 are Ca2UO2 (CO3)3 (aq) (~55% of total uranium), MgUO2 (CO3)3
2-

 

(~20% of total uranium), CaUO2 (CO3)3
2-

 (~20% of total uranium), and UO2 (CO3)3
4-

 (~5% of 

total uranium) (Endrizzi and Rao, 2014).  
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In addition to the relationships between [U] and [CO3
2-

] observed in alkaline lakes, 

recent experimental evidence suggests that the magnitude of U removal in many major sinks 

(e.g., carbonate sediments, reducing sediments, and Fe-Mn crusts) could be limited by higher 

[CO3
2-

]. As described earlier, the U partition coefficient for both biogenic and inorganic calcium 

carbonate is observed to decrease with increasing carbonate ion concentrations (DeCarlo et al. 

2015; Armid et al. 2008; Inoue et al., 2011; Anagnostou et al., 2011; Raddatz et al., 2014; 

Russell et al. 2004). Furthermore, experimental studies indicate that the reduction of U(VI) to 

U(IV) appears to be inhibited by higher [CO3
2-

] for both abiotic and biologically-mediated 

reduction (Hua et al., 2006; Belli et al., 2015). These uranium reduction experiments show that 

the highest reaction rates for U reduction are associated with solutions dominated by ‘free’ 

uranium and uranium-hydroxide species, while lower reduction rates are associated with 

solutions dominated by UO2-CO3 species. Thus, the presence of [CO3
2-

] in solution limits 

uranium reduction because the fractional abundance of uranium-hydroxyl species is lower at 

high [CO3
2-

] (Hua et al. 2006; Belli et al. 2015). Finally, Wazne et al. (2003) found that the 

amount of U(VI) adsorbed on ferrihydrite was a strong function of the concentration of carbonate 

ion in solution, indicating that uranium removal from seawater in oxic sinks should also decrease 

with increasing [CO3
2-

].  

 

3.4.2 Changes in the uranium river flux due to Himalayan uplift 

 Changes in the uranium river flux – the main input source of U to seawater (Eqn. 3) 

– also likely contributed to variations in seawater [U] over the Cenozoic. Rivers carry uranium 

derived predominantly from the weathering of carbonates and uraniferous black shales, (Palmer 
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and Edmond, 1993), and the Ganges and Brahmaputra rivers draining the Himalayas are 

particularly enriched in uranium relative to other large rivers. However, seasonally averaged 

studies suggest that these rivers only make up ~10% of the modern global uranium river flux 

(Sarin et al., 1990; Palmer and Edmond, 1993; Chabaux et al., 2001; Dunk et al., 2002; Andersen 

et al. 2016). Therefore, although Himalayan uplift may have contributed to the rise in seawater 

[U] between the Early Cenozoic and present, it is unlikely that it can account for the majority of 

the increase we observe.   

 

3.4.3 Changes in low-temperature hydrothermal alteration 

Changes in hydrothermal alteration through time may also be able to drive the 

changes in seawater [U] we infer from our coral record. Uranium is quantitatively stripped from 

hydrothermal fluids during high-temperature hydrothermal alteration at the ridge axis (Michard 

et al. 1983; Michard and Albarede, 1985). However, due to the relatively small water flux 

associated with high-temperature hydrothermal alteration (2.6 ± 0.5 × 10
12

 m
3
/yr as compared 

with the river flux: 4-5 × 10
13

 m
3
/yr), this sink of uranium is minor (Elderfield and Schultz, 

1996). In contrast, low-temperature hydrothermal alteration, for which the water flux is 

estimated to range from 4.8 – 21.0 × 10
12

 m
3
/yr, constitutes a major sink of uranium from 

seawater (Table 1; Fig. 6; Barnes and Cochran, 1990; Klinkhammer and Palmer, 1991; Dunk et 

al., 2002; James et al., 2003; Wheat et al., 2003; Mills and Dunk, 2010). The alteration products 

in which U is incorporated are likely palagonites, smectites, and Fe-oxides (MacDougall, 1977; 

Mills and Dunk, 2010; Noordmann et al., 2015).  
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Recent studies have highlighted the potential importance of variations in low-

temperature ridge-flank hydrothermal alteration for the seawater budgets of elements like Mg, 

Sr, Ca, and Li. For example, it has been suggested that changes in ocean bottom water 

temperatures over the Cenozoic due to global cooling could explain observed variations in 

Cenozoic seawater Mg/Ca and δ
26

Mg (Higgins and Schrag, 2015). Indeed, the observation that 

[Mg] and [U] are correlated in low-T hydrothermal fluids (Wheat et al., 2003; Noordmann et al. 

2015) suggests that similar kinetics may govern the removal of both elements.  

A steady-state calculation allows us to investigate the magnitude of change in the 

low-temperature hydrothermal alteration sink required to drive a change in seawater [U] between 

40 Ma and today (Fig. 4c). We assume modern seawater uranium fluxes given in Fig. 6. The 

budget described in Fig. 6 generally follows from Dunk et al. (2002), but has been updated in 

accordance with more recent constraints on the low-T hydrothermal and anoxic sinks (Wheat et 

al., 2003; Mills and Dunk, 2010; Montoya-Pino et al., 2010; Brennecka et al., 2011; Noordmann 

et al. 2015). The hydrothermal flux is ~21% of total U removal – well within the range of 15-

70% estimated by Barnes and Cochran (1990), Wheat et al. (2003), Morford and Emerson 

(1999), Mills and Dunk (2010) and James et al. (2003). We also assume that the riverine U input 

remains constant through time, and that all seawater sinks are first-order with respect to the 

seawater [U]: 

Fsink  = ksink × [U]seawater,  (Eqn. 9), 

where Fsink is the flux of U into the seawater sink (e.g., FLow-T Hydrothermal, FCoastal Retention, FAnoxic, 

and FSuboxic in Eqn. 4), ksink is the removal rate constant associated with each sink. The steady 
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state uranium budget can be written as below, following from Eqns. 3, 4, and 9 and assuming 

constant seawater volume: 

FLow-T Hydrothermal = FRiver – (kanoxic × [U]seawater + ksuboxic × [U]seawater + kcarbonate × [U]seawater+ kCoastal 

and Fe-Mn × [U]seawater),  (Eqn. 10) 

The values used for our rate constants (ksink) are based on estimates of modern fluxes shown in 

Fig. 6. These ksink terms are assumed to remain constant with time for these calculations. 

Following the equation above, a doubling of seawater [U] between 40 Ma and today, requires a 

~65% decrease in the low-temperature hydrothermal uranium sink, assuming rate constants for 

the other seawater uranium sinks remain unchanged.  

The magnitude of change in the hydrothermal flux we calculate is broadly consistent 

with the factor of 2 change in low temperature hydrothermal Mg flux modeled by Higgins and 

Schrag (2015) between the early Cenozoic and today to explain observed variations in seawater 

Mg/Ca and δ
26

Mg. These calculations allow for a possibility that changes in the hydrothermal 

flux play a major role in driving the inferred variations in seawater [U] although our predictions 

here and in Sections 4.4 & 4.5 below will be sensitive to the rate constants (k values) chosen for 

our calculations. Section 4.5 also discusses additional constraints from U isotopes. We also note 

that it is unclear whether temperature or redox is the main factor in determining the uptake of U 

from seawater during low temperature hydrothermal alteration (Dunk et al., 2002; James et al., 

2003; Mills and Dunk, 2010). Recently, based on δ
238/235

U isotope analyses of basalt altered at 

low temperatures and hydrothermal fluids, Noordmann et al. (2015) and Andersen et al. (2015) 

suggested that some hydrothermal U removal likely occurs via oxic weathering (where 

temperature may determine reaction kinetics) and some occurs through reduction of U(VI) to 
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U(IV) by reducing hydrothermal fluids. Additional studies of the controls on the hydrothermal U 

sink may better help determine the importance of this flux in changing seawater [U] over the 

Cenozoic.  

 

3.4.4 A dependence of seawater [U] on ocean O2 

Finally, we explore the possibility that a decrease in the uranium flux to suboxic and 

anoxic sediments can explain our record. Like low-temperature hydrothermal alteration, suboxic 

and anoxic sediments are important sinks for seawater U (Fig. 6 and Table 1). Here we define 

suboxic sediments as having no oxygen or H2S (e.g., the Peru margin), while anoxic sediments 

are defined as having H2S present and no oxygen (e.g., the Black Sea) (Berner, 1981; Crusius et 

al. 1996). The U concentration of suboxic and anoxic sediments has been linked to a variety of 

factors including: (1) the magnitude of the organic matter flux and organic carbon burial 

(McManus et al., 2005; McManus et al., 2006; Morford et al., 2009), (2) uranium adsorbed to 

organic material in the surface ocean that escapes remineralization at depth (Zheng et al., 2002), 

and (3) microbially-mediated reduction of U(VI) to U(IV) with subsequent precipitation of solid 

uranium phases (Lovley et al., 1991). To first order, however, the dominant control on U 

removal in suboxic and anoxic sediments is likely the oxygen concentration of ocean bottom 

waters (Anderson, 1987; Barnes and Cochran, 1990; Morford and Emerson, 1999; Weyer et al., 

2008). 

Changes in the fluxes of U to anoxic and suboxic sediments, resulting (for example) 

from changes in ocean oxygenation or productivity, may drive changes in seawater [U]. 

Analogous to Eqn. 10 above, we can solve for the magnitude of change in the suboxic and 
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anoxic fluxes required to drive a factor of 2 increase in seawater [U] between 40 Ma and today. 

For simplicity, we link the suboxic and anoxic fluxes (i.e., increasing the suboxic sink by 10%, 

also increases the anoxic sink by 10%): 

Fanox + Fsubox  = FRiver – (kLow-T Hydrothermal × [U]seawater + kcarbonate × [U]seawater+ kCoastal and Fe-Mn × 

[U]seawater) (Eqn. 11) 

Assuming that the rate constants associated with other uranium sinks stay constant, this 

calculation suggests that the suboxic and anoxic fluxes of U must have decreased by ~40% 

between 40 Ma and today in order to account for the changes in seawater [U] we observe.  

 

3.4.5 Constraints from seawater δ
238/235

U  

Any explanation for the rise in U/Ca ratios over the Cenozoic must also be consistent 

with records of seawater δ
238/235

U over this time period. Two existing records of Cenozoic 

seawater δ
238/235

U show that the isotopic composition of seawater has remained constant to 

within error of the method (~± 0.09 ‰), consistent with the coral data presented here (Goto et al. 

2014; Wang et al. 2016a). To explore whether a decline in the suboxic and anoxic sinks or the 

low temperature hydrothermal flux is consistent with the existing records of seawater δ
238/235

U, 

Eqns. 3 and 4 can be amended to include U isotopes and solved at steady-state (d[δ
238/235

USW ]/dt 

= 0) to produce the steady state uranium isotope mass balance for seawater: 

 (δ
238/235

URiver) = fLow-T Hydrothermal × (δ
238/235

USW + ∆
238

Low-T Hydrothermal) + fanoxic× (δ
238/235

USW + 

∆
238

anoxic) + fsuboxic× (δ
238/235

USW + ∆
238

suboxic) + fcarbonate×(δ
238/235

USW + ∆
238

carbonate) + fCoastal and Fe-

Mn×(δ
238/235

USW + ∆
238

Coastal and Fe-Mn)    (Eqn. 13), 
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where ∆
238 

sink = δ
238

Usink - δ
238

Useawater, and fsink is the fraction of the total uranium output 

associated with each sink term. It is important to note that this steady state model is applicable 

only on timescales >10
6
 yrs. Although there exist minor disagreements in the isotopic 

compositions associated with uranium sink and source terms for recently published U isotope 

budgets, there is clear consensus that (1) the U isotope system can be used to track the extent of 

anoxic and suboxic conditions and (2) an expansion of anoxia should result in both a decrease of 

seawater [U] and δ
238

U (e.g. Brennecka et al. 2011; Tissot and Dauphas, 2015; Andersen et al. 

2016; Clarkson et al. 2018). Here, we choose the U isotope budget given in Tissot and Dauphas 

(2015) (see Fig. 6 caption for values), which would predict a modern seawater δ
238/235

U of -0.40 

‰ for our modern budget, similar to measured modern seawater compositions (Noordmann et al. 

2015; Tissot and Dauphas, 2015). Using Eqn. 13 we predict a ~0.04 ‰ increase in δ
238/235

USW 

between 40 Ma and today assuming the low-temperature hydrothermal flux was 65% higher at 

40 Ma. A ~0.07 ‰ increase in δ
238/235

USW between 40 Ma and today is predicted assuming that 

the suboxic and anoxic uranium fluxes were ~40% higher at 40 Ma. However, we note that our 

approach of assuming that suboxic/anoxic sinks expanded together is conservative, given 

evidence that anoxic areas, which are characterized by largest effective fractionation during U 

burial, will expand at the expense of suboxic areas during a shift to a more reducing marine 

redox landscape (Wang et al., 2016b). We also note that our prediction is sensitive to the choice 

of the mean fractionation associated with the anoxic uranium sink, and that recent studies have 

suggested values ranging from +0.4 to 0.85‰ (Weyer et al. 2008; Noordmann et al. 2015; Basu 

et al. 2014; Tissot and Dauphas, 2015; Stylo et al. 2015; Andersen et al. 2016).  
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 Considering the existing uncertainties associated with the Fe-Mn crust records and 

the possibility of open-system exchange with seawater (± 0.09 ‰), it is unclear whether the low-

T hydrothermal scenario described in Section 3.4.3 or the changing suboxic/anoxic sink scenario 

(Section 3.4.4) can be ruled out based on the predicted ~0.04 ‰ and ~0.07 ‰ increase, 

respectively (see Fig. 3b; Goto et al. 2014; Wang et al. 2016a). Additional high-fidelity and high-

precision records of Cenozoic seawater δ
238/235

USW may provide additional constraints on the 

relative importance of mechanisms considered here. 

 

4. Conclusions 

Uranium concentrations in seawater are tightly linked with the cycling of carbon and 

oxygen – two globally important elements. In this paper, we present a new reconstruction of 

seawater U/Ca from fossil corals that span the last 160 million years. Measurements of 
4
He, and 

U isotopes from the fossil corals agree with a previously published suite of diagenetic tests on 

the same sample suite indicating that these scleractinian corals preserve primary geochemical 

records of ancient seawater and coral calcification (Gothmann et al. 2015; 2016; 2017). U/Ca 

ratios measured in this suite of coral samples show a factor of 4-5 increase between the early 

Cenozoic and today. We interpret this increase as reflecting both an increase in seawater [U] as 

well as a decline in seawater [Ca].  

We find that the observed increase in seawater [U] between the early Cenozoic and 

present is consistent with a carbonate ion control over U removal rates, as originally suggested 

by Broecker (1971). Fossil coral U/Ca data are also compatible with the hypothesis that rates of 

low-temperature hydrothermal alteration have decreased by a factor of 2 between the early 
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Cenozoic and today, as modeled by Higgins and Schrag (2015). Finally, our coral data are in 

agreement with previous reconstructions of Cenozoic seawater U isotopes from Goto et al. 

(2014) and Wang et al. (2016a), suggesting that changes in suboxic and anoxic seafloor area may 

play a role in driving seawater uranium variations over the Cenozoic. Overall, our results suggest 

that a diverse range of factors including uranium complexation chemistry, ocean oxygenation, 

and hydrothermal processes could be responsible for driving variations in Cenozoic seawater 

uranium concentration and isotopic compositions. While our data can place limits on the 

importance of these mechanisms, it is not currently possible to rule out any of the 

abovementioned controls. We also note that these controls may be important to consider when 

evaluating other reconstructions of uranium concentrations and isotopes.  
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Table 1 Summary of sources and sinks of seawater U. 

    Flux (Mmol/yr) Reference 

Sources of uranium to seawater: 

 riverine 42.0 ± 14.5 Dunk et al. (2002) 

  36 Sarin et al. (1990) 

  45 ± 15 Palmer and Edmond (1993) 

 submarine groundwater 9.3 ± 8.7 Dunk et al. (2002) 

 aeolian 1.8 ± 1.1 Dunk et al. (2002) 

TOTAL  53.1 ± 16.9 Dunk et al. (2002) 

Sinks for uranium from seawater: 

 suboxic sediments 15.3 ± 10.6 Dunk et al. (2002) 

  28 Klinkhammer and Palmer (1991) 

  12 Barnes and Cochran (1990) 

 coastal zone sediments 11.2 ± 5.6 Dunk et al. (2002) 

 basalt alterationa 5.7 ± 3.3 Dunk et al. (2002) 

  16 ± 4 Palmer and Edmond (1989)1 

  7.4 Wheat et al. (2003)2 

  11.2 ± 17.8 Mills and Dunk (2010) 

  12.5 ± 2.5 James et al. (2003) 

  19 ± 7 Morford and Emerson (1999)3 

 anoxic sediments 11.6 ± 6.0 Dunk et al. (2002) 
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 carbonate sediments 13.3 ± 5.6 Dunk et al. (2002)4 

  3.4 Cochran (1982)5 

 metalliferous sediment 1.0 ± 0.8 Dunk et al. (2002) 

TOTAL   58.1 ± 14.9 Dunk et al. (2002) 
1assuming high-T hydrothermal water fluxes calculated from the seawater 87Sr/86Sr budget and quantitative 
consumption of U during high-T basalt alteration 
2assuming a river U flux of 32 Mmol/yr 
3compiled from estimates made by Chen et al. (1986) and Hart and Staudigel (1982) 
4using the shallow water carbonate budget of Milliman (1993) 
5also used for Barnes and Cochran (1990) and Morford and Emerson (1999) U budgets 
a the basalt alteration fluxes here include total estimates considering both low-T and high-T alteration of basalt, but 
whereas low-T basalt alteration is associated with an isotopic fractionation, high-T basalt alteration is quantitative 
with no isotopic fractionation (see Tissot and Dauphas, 2015 for a recent discussion).   
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Table 2 Summary of U/Ca results, He/U dating experiments, and alpha ejection correction calculations. Alpha ejection 

correction calculations are after Bender (1973). Samples for which the correction was not applied were massive (see 

supplementary Fig. S1), and so the magnitude of He loss from alpha ejection is assumed to be insignificant. Expected ages of 

the samples are from Gothmann et al. (2015) from stratigraphic constraints or measurements of 
87

Sr/
86

Sr ratios. The column 

labeled ‘zoox/azoox’ notes best estimates for whether fossil coral samples are zooxanthellate (symbiotic) or azooxanthellate 

(asymbiotic). Fossil specimens for which modern analogues can be either symbiotic or asymbiotic are marked ‘nk’. Estimates 

come from consideration of species identifications (for more information see supplementary Table S1) and examinations of 

skeletal structure and morphology.  

 

ID 
Expected 

Age 
(Ma) 

Expected 
Age 

Uncertainty 

(Ma) 

87Sr/86Sr (Gothmann et 
al. 2015) 

U/Ca 
(μmol/mol) 

2σ 
s.d. 

4He            
(ncc/g 

CaCO3) 

2σ 
s.d. 

Un-
corrected 
He Age 

(Myr) 

2σ 
r.s.d. 
(%) 

Fa Ib 
Corrected  
He Age 
(Myr) 

2σ 
s.d.c 

zoox/  
azoox 

not 

known 

Notes 

RSCL890 0 0 - 1.43 0.08 - - - - - - -    
RSCL894 0 0 - 1.16 0.07 - - - - - - -    

RSCL899 0 0 - 1.03 0.06 - - - - - - -    

RSCL901 0 0 - 1.19 0.07 - - - - - - -    

RSCL909 0 0 - 0.98 0.06 - - - - - - -    

Pl3 0.1 0.05 - 1.14 - 105 7 0.38 9 0.25 0.1 0.49 0.04 zoox porous 

Pl2 1.4 0.05 0.709113 0.86 0.03 289 11 1.2 7 - - 1.20 0.08 azoox massive 

Pl8 2.2 0.09 0.709078 1.08 0.11 541 8 1.85 6 0.15 0.01 2.17 0.13 azoox porous 

Pl7 2.3 0.06 0.709076 1.42 0.1 669 8 1.72 6 0.25 0.01 2.29 0.14 zoox porous 

Pli3 2.3 0.08 0.709075 1.04 0.03 764 10 2.58 6.5 0.2 0.1 3.15 0.20 azoox porous 

Pli1 3.5 1 - 0.62 0 932 12 5.38 6 - - 5.38 0.32 azoox massive 

Pli2 3.8 0.35 0.709055 1 - 951 12 3.06 6 0.2 0.1 3.73 0.22 nk porous 

Mi6 5.4 0.07 0.709023 0.66 0 871 11 4.7 6 0.2 0.01 5.86 0.35 zoox porous 

Mi11 9.3 2 - 1.15 0.22 1606 12 5.32 6 0.1 0.01 5.90 0.35 zoox porous 

Mi13 9.4 0.23 0.708908 0.58 - 1512 10 7.97 6 0.2 0.01 9.94 0.60 zoox porous 

Mi7 14 0.59 0.708802 0.8 0 2637 227 13.2 10 0.02 0.01 13.47 1.35 azoox some pore 
space Mi8 14 9 - 0.96 - 5916 4425 22.3 78 0.12 0.01 25.31 19.74 zoox silicate residue 

Mi2 17.8 0.08 0.708602 0.48 0.01 1958 73 14.2 7 0.2 0.01 17.71 1.24 zoox porous 

Mi1 18 0.14 0.708601 0.33 0.04 1696 12 17.2 6 - - 17.20 1.03 zoox massive 

Mi3 18.2 0.13 0.708577 0.6 0.06 3005 965 17.4 32 0.08 0.01 18.90 6.05 zoox some pore 
space/some 

silicate residue 
Ol3 31.8 0.51 0.70791 0.34 - 2753 11 24.8 6 0.02 0.01 25.30 1.52 nk some pore 

space Ol4 32.4 0.13 0.707895 0.27 0.06 2015 11 24.5 6 0.02 0.01 24.99 1.50 zoox some pore 

space 
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Ol6 30 0.13 - 0.29 0.04 2498 11 28.3 6 0.02 0.01 28.87 1.73 zoox some pore 
space Ol5 32.6 0.17 0.707889 0.22 0.06 2062 121 31 8 0.02 0.1 31.57 2.53 zoox some pore 
space E6 35 0.48 0.707889 0.81 0.03 5131 303 20.2 9 0.3 0.01 28.73 2.59 zoox porous 

E8 37 0.63 0.707748 0.24 - 3012 11 38 6 - - 38.00 2.28 azoox massive/some 
silicate residue Ol2 37.7 0.83 0.707742 0.25 - 2556 11 28.4 6 0.02 0.01 28.97 1.74 azoox some pore 

space E1 39.2 0.5 0.707718 0.38 0.04 3758 611 33.3 17 0.1 0.01 36.96 6.28 azoox half porous/ 
massive E7 48.9 10 0.707715 0.13 - 1262 9 30.2 6 - - 30.20 1.81 zoox massive, 35% 
calcite in 
powder 

E3 41 9.03 0.707744 0.37 0.02 3022 287 28 11 0.08 0.01 30.41 3.34 azoox some pore 
space E5 39.9 10.13 0.707767 0.26 0.05 3614 56 45.6 7 0.1 0.01 50.61 3.54 zoox porous 

E4 46.7 6.68 0.707735 0.3 0.02 3497 12 40.2 6 0.02 0.01 41.01 2.46 azoox some pore 
space Pa1 60 4 - 0.49 0 11019 392 74.1 7 - - 74.10 5.19 azoox massive/some 

silicate residue Pa3 60.1 1.68 0.707805 0.45 0.01 8216 261 62.3 6 0.02 0.01 63.56 3.81 azoox some pore 
space K2 86.7 0.05 0.707403 0.14 - 2919 35 54.5 6 - - 54.50 3.27 zoox massive, 15% 

calcite in 
powder 

J1 160.3 0.08 0.706844 0.44 0.1 16467 206 137.3 6 0.12 0.01 155.81 9.35 zoox porous 

J4 161.5 0.38 0.706861 0.56 - 20753 17 127.1 6 0.15 0.01 149.27 8.96 zoox porous 
a F is based on coral skeleton thickness and is assigned an uncertainty of ± 20% 
b I is based on the number of intersections between different coral skeleton components 
c 2σ s.d. for corrected He ages are calculated by propagating uncertainty from replicate He analyses, U concentrations (6% based on repeat analyses of coral standard) and from the 
uncertainty associated with the alpha-loss correction  

 

 



  

 

 51 

Table 3. Summary of criteria for flagging/excluding samples from U/Ca record based on He/U 

ages and U isotopes. Cells marked with an ‘x’ indicate that a sample meets the criterion 

described in the column header. Samples not analyzed for He/U or U isotopes are marked ‘n.a.’.  

 

ID 
Age 
(Ma) 

U/Ca 
(µmol/
mol) 

He/U Age 
underestimates 
expected age 

beyond uncertainty 

{
234U/238U} is > 

0.03 offset 
from secular 
equilibrium *  

δ238/235U is > 
0.10 (permil) 

offset from modern 
coral average ** 

Presenc
e of 

calcite 
in bulk 

powder 

Assessment  
(e = excluded, 
f = flagged) 

 

RSCL890 0 1.43 n.a. 

    RSCL894 0 1.16 n.a. 

    RSCL899 0 1.03 n.a. 

    RSCL901 0 1.19 n.a. 

    RSCL909 0 0.98 n.a. 

    Pl3 0.1 1.14 

 
n.a. n.a. 

  Pl2 1.4 0.86 x 

   

f 
Pl8 2.2 1.08 

 
x 

  
f 

Pl7 2.3 1.42 

 
x 

  
f 

Pli3 2.3 1.04 

     Pli1 3.5 0.62 

 

n.a. n.a. 

  Pli2 3.8 1.00 

 
x x 

 
f 

Mi6 5.4 0.66 

     Mi11 9.3 1.15 x x x 
 

f 

Mi13 9.4 0.58 

  
x 

 
f 

Mi7 14 0.80 

 
n.a. n.a. 

  Mi8 14 0.96 

 
n.a. n.a. 

  Mi2 17.8 0.48 

  
x 

 
f 

Mi1 18 0.33 

 
x 

  
f 

Mi3 18.2 0.60 

     Ol3 31.8 0.34 x n.a. n.a. 
 

f 

Ol4 32.4 0.27 x 
   

f 

Ol6 30 0.29 

 
n.a. n.a. 

  Ol5 32.6 0.22 

 
n.a. n.a. 

  E6 35 0.81 x x x 

 
f 

E8 37 0.24 

     Ol2 37.7 0.25 x n.a. n.a. 
 

f 

E1 39.2 0.38 

 
n.a. n.a. 

  E7 48.9 0.13 x n.a. n.a. x e 

E3 41 0.37 

 
n.a. n.a. 

  E5 39.9 0.26 

 
x 

  
f 

E4 46.7 0.30 

     Pa1 60 0.49 

 
n.a. n.a. 

  Pa3 60.1 0.45 

 
n.a. n.a. 

  K2 86.7 0.14 x n.a. n.a. x e 

J1 160.3 0.44 

 
n.a. n.a. 

  J4 161.5 0.56 x n.a. n.a.   f 

* Offset criterion for {234U/238U} is based on the external precision of the Nod-A-1 basalt standard (± 0.03 2σ s.d.) 
** Offset criterion for δ238/235U is based on the external precision of the Nod-A-1 standard (± 0.1 2σ s.d.) 
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Figure 1. Corrected He/U ages vs. independently constrained age (Myr). Independent ages are 

from radiogenic Sr isotope measurements or from biostratigraphic constraints on the age of the 

geologic formation from which fossil coral samples were collected (Table 2; Gothmann et al., 

2015). Grey squares correspond to samples that are excluded from our U/Ca record due to the 

presence of calcite in drilled powders. Y-axis error bars correspond to propagated uncertainty 

from replicate errors in 
4
He and U/Ca analyses, and uncertainty due to the F-value correction. X-

axis error bars correspond to uncertainties in the stratigraphic age. 

 

 

 

Figure 2. (a)  Comparison of calculated He/U ages and 
87

Sr/
86

Sr ratios measured on the same 

sample set as reported in Gothmann et al. (2015). Calculated He/U ages are corrected for He-loss 

as described in Section 3.1. Error bars shown in red correspond to the 2σ s.d. uncertainties on 

corrected He/U ages (see Table 2).  (b) Enlarged version of (a) from 20 to 60 Ma.  

 

 

 

Figure 3. Summary of fossil coral uranium isotope results. (a) {
234

U/
238

U} in fossil corals vs. 

sample age. Colors correspond to fossil coral [U]. Circled samples are fossils flagged based on 

{
234

U/
238

U} that are offset beyond analytical uncertainty from secular equilibrium. Error bars 

correspond to 2σ s.d. for Nod-A-1. (b) δ
238/235

U in fossil corals vs. sample age. Colors as in (a). 

Circled samples correspond to those flagged based on δ
238/235

U ratios that deviate from the 

modern coral average beyond uncertainty. Error bar for corals correspond to the long-term 

reproducibility of the standard, Nod-A-1 (± 0.1 ‰ 2σ s.d.). Ferromanganese crust records from 

Wang et al. (2016a) and Goto et al. (2014) are also plotted and are offset by + 0.26 ‰ for direct 

comparison with modern coral and modern seawater. Long term external reproducibility of 

standards for Wang et al. (2016a) data was ± 0.09 ‰ and ± 0.11 ‰ for data from Goto et al. 

(2014). 

 

 

 

Figure 4. (a) Measured U/Ca of fossil corals vs. geologic age. Coral U/Ca increases by a factor 

of 4-5 since ~30 Ma. Error bars correspond to 2σ s.d. (b) Same as in (a), but removing samples 

with anomalous characteristics (see text). (c) Estimates of seawater [U] calculated by assuming a 

constant U/Ca distribution coefficient for corals of 0.87 (Broecker, 1971; Meece and Benninger, 

1993; Min et al. 1995; Shen and Dunbar, 1995) as well as that seawater [Ca] decreased linearly 

from 26 mmol/kg to 10.6 mmol/kg between 100 Ma and today (Lowenstein et al., 2003; Horita 

et al. 2002; Timofeeff et al. 2006; Sarmiento and Gruber, 2006). We choose 100 Ma as the start 

of the seawater [Ca] decline because there are no estimates for seawater [Ca] from fluid 

inclusions between 100 Ma and ~35 Ma (Zimmerman, 2000; Horita et al., 2002; Lowenstein et 

al., 2003; Timofeeff et al., 2006; Brennan et al., 2013). It is also assumed that [Ca] = 23 mM at 

160 million years ago for our Jurassic samples, based on fluid inclusion estimates from 

Timofeeff et al. (2006). We note that this reconstruction of seawater [U] depends on the quality 

of reconstructions of seawater [Ca]. Black circles correspond to zooxanthellate samples, white 
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circles correspond to azooxanthellate samples, grey circles correspond to samples for which 

symbiont status is unknown (as given in Table 2). Red squares correspond to samples that have 

been excluded or flagged due to the possibility of alteration of original U geochemistry as 

indicated by uranium isotopes and He/U ages (see Table 3).   

 

 

 

Figure 5. (a) Comparison plot showing linear relationship between U/Cacoral and 1/[Ca]
2

sw as 

suggested by Broecker (1971). Seawater [Ca] is estimated assuming a linear decrease in seawater 

[Ca] from 26 mmol/kg to 10.6 mmol/kg between 100 Ma and today as supported by brine 

inclusion data displayed in (b) (Lowenstein et al., 2003; Horita et al. 2002; Timofeeff et al. 2006; 

Sarmiento and Gruber, 2006). We also assume that seawater [Ca] = 23 mmol/kg at 160 Ma for 

our Jurassic fossil coral samples. Samples flagged based on He/U or U isotope data are shown in 

grey, samples excluded based on the presence of calcite are shown in red.  The red line 

represents the linear fit to the data and the blue dashed lines are the 95% confidence intervals. 

 

 

 

Figure 6. Schematic of the modern seawater uranium mass balance used for the steady-state 

calculations in Sections 3.4.3 and 3.4.4, adapted from Barnes and Cochran (1990), Klinkhammer 

and Palmer (1991), and Dunk et al. (2002) in accordance with updated constraints on the low-T 

hydrothermal and anoxic sinks (Wheat et al., 2003; Mills and Dunk, 2010; Montoya-Pino et al., 

2010; Brennecka et al., 2011; Noordmann et al. 2015). δ
238

U compositions relative to CRM112a 

and isotope effects associated with depicted sink terms (∆
238 

sink = δ
238

Usink - δ
238

Useawater) are as 

follows: δ
238

Uriver = -0.24 ‰, ∆
238

anoxic = +0.60 ‰, ∆
238

suboxic = +0.10 ‰, ∆
238

low-T hydrothermal = 

+0.23 ‰, ∆
238

Coastal Retention and Fe-Mn= -0.24 ‰, ∆
238

Carb = 0.20 ‰ (Montoya-Pino et al., 2010; 

Weyer et al., 2008; Noordmann et al. 2015; Tissot and Dauphas, 2015). Solving the budget 

depicted in this figure yields a value for δ
238

UModernSW = -0.396 ‰, consistent with values 

reported in Tissot and Dauphas (2015). 
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