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Abstract—The next-generation energy network, the so-called
smart grid (SG), promises a tremendous increase in efficiency,
safety and flexibility of managing the electricity grid as compared
to the legacy energy network. This is needed today more than
ever, as the global energy consumption is growing at an unprece-
dented rate, and renewable energy sources have to be seamlessly
integrated into the grid to assure a sustainable human devel-
opment. Smart meters (SMs) are among the crucial enablers of
the SG concept; they supply accurate high-frequency information
about users’ household energy consumption to a utility provider,
which is essential for time of use pricing, rapid fault detection, en-
ergy theft prevention, while also providing consumers with more
flexibility and control over their consumption. However, highly
accurate and granular SM data also poses a threat to consumer
privacy as non-intrusive load monitoring techniques enable a
malicious attacker to infer many details of a user’s private life.
This article focuses on privacy-enhancing energy management
techniques that provide accurate energy consumption informa-
tion to the grid operator, without sacrificing consumer privacy.
In particular, we focus on techniques that shape and modify the
actual user energy consumption by means of physical resources,
such as rechargeable batteries, renewable energy sources or
demand shaping. A rigorous mathematical analysis of privacy
is presented under various physical constraints on the available
physical resources. Finally, open questions and challenges that
need to be addressed to pave the way to the effective protection
of users’ privacy in future SGs are presented.

SMART METERS FOR A SMART GRID

The current energy grid is one of the engineering marvels

of the 20th century. However, it has become inadequate to

satisfy the steadily growing global electricity demand. In fact,

the world energy consumption is predicted to increase 48%
from 2012 to 2040 [1], driven by factors such as the growth

of world’s economy, the rise of the gross domestic product

per person, the increase of world’s population, an increased

penetration of electric vehicles, and a broader mobility rev-

olution [2]. Other issues that need to be addressed are the
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TABLE I
LIST OF FREQUENTLY USED ACRONYMS IN THE PAPER.

DSO Distribution system operator
EMP Energy management policy
EMU Energy management unit
MDP Markov decision process

MI Mutual information
NILM Non-intrusive load monitoring

RB Rechargeable battery
RES Renewable energy source
SG Smart grid
SM Smart meter

SMDM Smart meter data manipulation
SoC State of charge
ToU Time of use
TTP Trusted third party
UDS User demand shaping
UP Utility provider

effective integration of renewable energy sources (RESs) and

storage capabilities into the grid, the improvement of the grid’s

environmental sustainability, and the promotion of plug-in

hybrid electric vehicles. To address these challenges, a new

generation of electricity grid is being engineered, the so-called

smart grid (SG). SGs are intended to substantially improve

energy generation, transmission, distribution, consumption and

security, providing improved reliability and quality of the

electricity supply, quicker detection of energy outages and

theft, better matching of energy supply with demand, and

a better environmental sustainability by enabling an easier

integration of distributed generation and storage capabilities.

The “smartness” of a SG resides in the advanced metering in-

frastructure, which enables two-way communication between

the utility and its customers, and whose pivotal element in the

distribution network is the smart meter (SM), the device that

monitors a user’s electricity consumption in almost real-time.

In contrast to legacy grids, in which billing data is gathered

at the end of a billing period, SMs send electricity consump-

tion measurements automatically and at a much higher reso-

lution. SMs enable two-way communication with the utility

provider (UP), the entity that sells energy to the customers,

transmitting a great amount of detailed information. SMs

collect and send bidirectional readings of active, reactive and

apparent power and energy, i.e., the so-called 4-quadrant me-

tering, that is purchased from the grid, or sold to the grid, if the

user produces energy, for example by means of a photovoltaic

http://arxiv.org/abs/1802.01166v4


TABLE II
TIME RESOLUTIONS OF CURRENTLY USED SMS.

Smart Meter Model Time Resolution

Itron Centron1 1 min

REX22 5 min

Kamstrup Omnipower3 5 min

Enel Open Meter4 15 min

panel. In the latter case, the user is referred to as a “prosumer”,

i.e., a producer and consumer of electricity at the same time,

and can be financially rewarded for the energy sold to the grid.

SMs also keep track of historical consumption data over the

previous days, weeks and months, and provide high-resolution

consumption data analytics to the customers to enable them to

monitor their energy consumption via an in-home display, web

portal or smartphone application, in near real-time. SMs also

send alerts about voltage quality measurements, helping UPs

fulfill their obligations towards customers concerning energy,

power and voltage quality, e.g., in accordance with the Eu-

ropean standard EN 50160. Examples of these measurements

include the root mean square voltage variations, e.g., voltage

dropout, sags and swells, and the total harmonic distortion.

Data used for billing, such as current time of use (ToU) tariff,

balance and debts, credit and prepayment modes, credit alerts

and topping up, is also sent to the UP. SMs can detect if a

tampering takes place, and send relevant data about it, along

with security credentials for enabling the correct functioning

of cryptographic protocols, e.g., hashing, digital signature, and

cyclic redundancy check. Finally, SM firmware information

and updates are also communicated.

The increased data resolution is crucial for enabling SG

functionalities. Table II shows the smallest time resolution

of some SMs currently in use, which is on the order of few

minutes. The European Union recommends a time resolution

of at least 15 minutes to allow the new SG functionalities

[3]. For example, the current SM specifications in the UK

impose that an SM should send integrated energy readings

every 30 minutes to the UP, while the data sent to a user’s in-

home display can have a resolution of up to 10 seconds [4]. It

should be noted that, with the increased adoption of renewable

energy generation by the prosumers, the increased penetration

of electric vehicles and energy storage technologies, and the

diversification of the energy market, it is expected that the SGs

will become more volatile, requiring meter readings at a much

higher rate in the near future.

SMs provide a wide range of benefits to all the parties

in an SG. Thanks to SMs, UPs can gain a better knowl-

edge of their customers’ needs, while reducing the cost of

1https://www.itron.com/na/technology/product-services-catalog/products/0/
7/5/centron

2https://www.elstersolutions.com/en/product-details-na/826/en/REX2
meter

3https://www.kamstrup.com/en-us/products-and-solutions/smart-
grid/electricity-meters

4https://www.enel.com/content/dam/enel-com/pressrelease/porting
pressrelease/1666038-1 PDF-1.pdf

meter readings. SMs allow UPs to determine the electricity

cost dynamically, as well as to produce more accurate bills,

thus reducing customers’ complaints and back-office rebilling.

The implementation of ToU pricing can incentivize demand

response and control customer behavior, while improved de-

mand forecasts and load-shaping techniques can reduce peak

electricity demands. Finally, energy theft can be detected more

easily and quickly.

Distribution system operators (DSOs), i.e., the entities that

operate the grid, benefit from SMs as well, being able to

better monitor and manage the grid. SMs allow DSOs to

reduce operational costs and energy losses, and improve grid

efficiency and system design, as well as distributed system

state estimation and Volt and Var control. Moreover, DSOs

are able to better match distributed resources with the ongoing

electricity demand and the grid’s power delivery capability,

thus reducing the need to build new power plants.

Consumers themselves take advantage of SMs to monitor

their consumption in near real-time, leading to better con-

sumption awareness and energy usage management. Moreover,

consumers receive accurate and timely billing services, with no

more estimated bills, and benefit from ToU pricing, by shifting

non urgent loads to off-peak price periods. Microgeneration

and energy storage devices can be integrated more easily,

and profits from selling the generated excess energy can be

collected automatically. Failing or inefficient home appliances,

unexpected activity or inactivity, and wasted energy are de-

tected faster and more accurately, and switching between UPs

is easier by requesting on-demand readings, which in turn

increases the competition among UPs and reduces costs for

consumers.

For the above reasons, the installation of SMs is proceeding

rapidly, and is attracting massive investments globally. The SM

market is expected to grow from an estimated $12.79 billion

in 2017 to $19.98 billion by 2022, registering a compound

annual growth rate of 9.34% [5]. Moreover, the global SM data

analytics market, which includes demand response analytics

and grid optimization tools, is expected to reach $4.6 billion

by 2022 [6], while the global penetration of SMs is expected

to climb from approximately 30% at the end of 2016 to 53%

by the end of 2025 [7]. These figures show how timely and

crucial the research in this field is, and highlight the need

to quickly resolve potential obstructions that can threaten the

future benefits from this critical technology.

Smart Meter Privacy Risks

The SM’s ability to monitor a user’s electricity consump-

tion in almost real-time entails serious implications about

consumer privacy. In fact, by employing non-intrusive load

monitoring (NILM) techniques, it is possible to identify the

power signatures of specific appliances from the aggregated

household SM measurements. NILM techniques date back to

the work of George Hart in the 80s, who first proposed a

prototype of a NILM device [9]. Since then, NILM techniques

have improved in different directions, e.g., by assuming either

high or low-frequency measurements, by considering known



Fig. 1. An example of a household electricity consumption profile with some
appliances highlighted (data retrieved from the Dataport database [8]).

or learned signatures [10], or even by using off-the-shelf sta-

tistical methods without any a-priori knowledge of household

activities [11]. An example of a typical power consumption

profile along with some detected appliances is illustrated in

Fig. 1. As shown in Fig. 2, the UP, a third party that has

access to SM data, for example, by buying it from the UP,

or a malicious eavesdropper, may gain insights into users’

activities and behaviors, and determine, for example, a user’s

presence at home, her religious beliefs, disabilities, illnesses,

and even the TV channel she is watching [12]–[14]. Apart

from residential users, SM privacy is particularly critical for

businesses, e.g., factories and data centers, as their power

consumption profile may reveal sensitive information about

the state of their businesses to their competitors. SM privacy

has attracted significant public attention, and continues to

be a topic of heated public and political debate, and even

stopped the mandatory SM roll-out plan in the Netherlands

in 2009, after a court decided that the forced installation of

SMs would violate consumers’ right to privacy, and would

be in breach of the European Convention of Human Rights

[15]. Indeed, concerns about consumer privacy threaten the

widespread adoption of SMs and can be a major roadblock

for this multi-billion dollar industry.

It is worth pointing out that the privacy problem in SMs

is different from the SM data security problem [16]. In the

latter there is a sharp distinction between legitimate users

and malicious attackers, whereas in the privacy problem in

the SM context, any legitimate receiver of data can also be

considered malicious. To benefit from the advantages provided

by the SG, users need to share some information about their

electricity consumption with the UP and DSO. However, by

sharing accurate and high-frequency information about their

energy consumption, consumers also expose their private lives

and behaviors to the UP, which is a fully legitimate user and

a potential malicious attacker at the same time. This renders

traditional encryption techniques for data privacy ineffective in

achieving privacy against the UP, and calls for novel privacy

measures and privacy protection techniques.

UP

Third Party

Fig. 2. Some of the questions an attacker may be able to answer by having
access to SM data.

PRIVACY-ENABLING TECHNIQUES FOR SMS

There is a growing literature on privacy-preserving methods

for SMs, which can be classified into two main families. The

first family, which we call the SM data manipulation (SMDM)

approach, consists of techniques that process the SM data

before reporting it to the UP, while the techniques in the

second family, called user demand shaping (UDS), aim at

modifying the user’s actual energy consumption. Considered

within the first family are methods such as data obfuscation,

data aggregation, data anonymization, and down-sampling.

Data obfuscation, i.e., the perturbation of metering data by

adding noise, is a classical privacy protection method, and

has been adapted to SGs in [17] and [18]. In [19], differential

privacy, a well-established concept in the data mining liter-

ature, is applied to SMs where noise is added not only to

the user’s energy consumption, via the RB, but also to the

energy used for charging the RB itself to provide differential

privacy guarantees. Along these lines, the authors in [20]

introduce an information-theoretic framework to study the

trade-off between the privacy obtained by altering the SM

data and the utility of data for various SG functionalities.

Note that, the more noise added to the data, the higher the

privacy, but the less relevant and less useful the data is

for monitoring and controlling the grid. In [20] an additive

distortion measure is considered to model the utility, which

allows the characterization of the optimal privacy-vs-utility

trade-off in an information-theoretic single-letter form. The

data aggregation approach, proposed in [18], [21] and [22],

considers sending the aggregate power measurements for a

group of households so that the UP is prevented from distin-

guishing individual consumption patterns. The aggregation can

be performed with or without the help of a trusted third party

(TTP). The data anonymization approach, on the other hand,

mainly considers utilizing pseudonyms rather than the real

identities of consumers [23], [24]. Another method proposed

in [25], reduces the SMs sampling rate to a level that does not

pose any privacy threat. However, the SMDM family suffers



Fig. 3. Overview of the privacy-enabling approaches for SMs.

from the following shortcomings:

• Adding noise to the SM readings causes a mismatch

between the reported values and the real energy con-

sumption, which prevents DSOs and UPs from accurately

monitoring the grid state, rapidly reacting to outages,

energy theft or other problems, and producing accurate

and timely billing services. These would significantly

limit the benefits of SMs;

• DSOs, UPs, or more generally any eavesdropper can

embed additional sensors right outside a household or a

business (street level measurements are already available

to the DSOs and UPs) to monitor the energy consumption,

without fully relying on SM readings;

• The anonymization and aggregation techniques that in-

clude the presence of a TTP only shift the problem of

trust from one entity (UP) to another (TTP).

These issues are avoided by the approaches in the UDS

family, which directly modify the actual energy consump-

tion profile of the user, called the user load, rather than

modifying the data sent to the UP. In this family, the SM

reports accurately the energy taken from the grid without any

modification; however, this is not the energy that is actually

consumed by the appliances. This is achieved by filtering

the user’s actual electricity consumption via a rechargeable

energy storage device, i.e., a rechargeable battery (RB), or by

exploiting an RES, which can be used to partially hide the

consumer’s energy consumption. Examples of RESs include

solar panels or micro wind farms. Another technique is to

partially shift user’s demand. If we denote the energy received

from the grid as grid load, the idea is to physically differentiate

the grid load from the user load. Note that the effect of

using an RB or an RES can also be considered as adding

noise to the household consumption, but the noise in this case

corresponds to a physical variation in the energy received from

the grid. Moreover, differently from approaches in the SMDM

family, the SM measurements provided by the UDS methods

are exact and there is no issue of data mismatch between the

SM data and the effective user demand from the grid. Thus,

when UDS methods are deployed, the utility of SMs for the

SG is not diminished since the users’ energy consumption

is neither misreported nor distorted. As a result, while the

privacy-vs-utility trade-off is of particular concern for the

SMDM techniques, with the UDS techniques smart grid utility

is never diminished and other trade-offs are considered instead,

TABLE III
SPECIFICATIONS OF SOME CURRENTLY AVAILABLE RESIDENTIAL

BATTERIES.

Household RB Capacity (kWh)
RB Charging

Peak Power (kW)
RB Discharging

Peak Power (kW)

Sunverge SIS-68485 7.7, 11.6, 15.5, 19.4 6.4 6
SonnenBatterie eco6 4− 16 3− 8 3− 8
Tesla Powerwall 27 13.5 5 5

LG RESU 48V8 2.9, 5.9, 8.8 3, 4.2, 5 3, 4.2, 5
Panasonic Battery

System LJ-SK56A9 5.3 2 2

Powervault

G200-LI-2/4/6KWH10 2, 4, 6 0.8, 1.2 0.7, 1.4

Orison Panel11 2.2 1.8 1.8

Simpliphi PHI 3.4-48V12 3.4 1.5 1.5

such as the privacy-vs-cost, or the privacy-vs-wasted energy.

Fig. 3 shows an overview of the privacy-enabling approaches.

The focus of this article is on UDS techniques, which have

been receiving growing attention from the research community

in the recent years. The physical resources these techniques

rely on, such as RBs or RESs at consumer premises, are

already becoming increasingly available, thanks to government

incentives and decreasing cost of solar panels and household

RBs, as well as the RBs for electric vehicles. Moreover,

shaping and filtering users’ actual energy consumption by

means of physical resources renders any data misreporting

or distortion unnecessary, which, thus, do not undermine the

utility of the SG concept itself. We will present a signal

processing perspective on SM privacy by treating the user load

as a stochastic time series, which can be filtered and distorted

by using an RB, an RES and/or demand shaping/scheduling.

The available energy generated by the RES can also be

modeled as a random sequence, whose statistics depend on the

energy source (e.g., solar, wind) and the specifications of the

renewable energy generator. Additionally, the finite-capacity

battery imposes instantaneous limitations on the available

energy. We also note that such physical resources can also

be used for cost minimization purposes by the users, e.g.,

by acquiring and storing energy over low-cost periods, and

utilizing the stored energy in the RB and the energy generated

by an RES over peak-cost periods. Accordingly, we also study

the trade-off between privacy and cost, and the minimization

of the wasted renewable energy. In the following, we describe

and summarize the progress made in recent years towards

quantifying the privacy leakage of SMs in a rigorous manner,

report the most significant results, and highlight a number of

future research directions.

Current Household Batteries, Typical Energy Demands and

Renewable Energy Generation

5http://www.sunverge.com/energy-management/
6https://sonnen-batterie.com/en-us/sonnenbatterie
7https://www.tesla.com/powerwall
8http://www.lgchem.com/global/ess/ess/product-detail-PDEC0001
9http://www.panasonic.com/au/consumer/energy-solutions/residential-

storage-battery-system/lj-sk56a.html
10http://www.powervault.co.uk/technical/technical-specifications/
11http://orison.energy/
12http://simpliphipower.com/product/phi3-4-smart-tech-battery/



TABLE IV
DISTRIBUTION OF AVERAGE HOUSEHOLD POWER CONSUMPTION (RESOLUTION REFERS TO THE MEASUREMENT FREQUENCY). VALUES IN EACH

COLUMN INDICATE THE PERCENTAGE OF TIME THE AVERAGE CONSUMPTION FALLS INTO THE CORRESPONDING INTERVAL.

Source Location Resolution Time Frame # of Houses [0,0.5] kW (0.5,1] kW (1,2] kW (2,3] kW (3, 4] kW (4,+∞) kW

Dataport [8] Texas 60 mins

01/01/2016 - 31/05/2016 512 38 30 20 7 3 2
01/01/2015 - 31/12/2015 703 36 26 20 9 5 4
01/01/2014 - 31/12/2014 720 39 25 20 8 4 4
01/01/2013 - 31/12/2013 419 35 25 21 9 5 5
01/01/2012 - 31/12/2012 182 31 26 24 10 5 5

Intertek [26] UK 2 mins 01/05/2010 - 31/07/2011 251 18 24 47 11 0 0
Dred [27] Netherlands 1 sec 05/07/2015 - 05/12/2015 1 98 1.8 0.4 0 0 0
Uci [28] France 1 min 16/12/2006 - 26/11/2010 1 47 9 28 8 4 2

TABLE V
DISTRIBUTION OF AVERAGE POWER GENERATED BY RESIDENTIAL PHOTOVOLTAIC SYSTEMS. VALUES IN EACH COLUMN INDICATE THE PERCENTAGE OF

TIME THE AVERAGE GENERATION FALLS INTO THE CORRESPONDING INTERVAL.

Source Location Resolution Time Frame # of Houses 0 kW (0, 0.5] kW (0.5,1] kW (1, 2] kW (2,3] kW (3,4] kW (4,+∞) kW

Dataport [8] Texas 60 min 01/01/2012 - 31/05/2016 351 49 17 7 9 7 6 5
Microgen [29] UK 30 min 01/01/2015 - 31/12/2015 100 51.7 36.4 9.8 2 0.1 0 0

TABLE VI
SPECIFICATIONS OF THE SOLAR PANELS STUDIED IN THE MICROGEN [29] DATABASE. VALUES IN EACH COLUMN INDICATE THE PERCENTAGE OF SOLAR

PANELS THAT SATISFY THE CORRESPONDING PROPERTY.

Solar Panel Area (m2) Solar Panel Cell Type Nominal Installed Capacity (kWp)

(0, 15] (15, 20] (20, 25] (25, 30] (30,+∞) Monocrystalline Polycrystalline (0, 2] (2, 3] (3, 4] (4,+∞)
5 35 44 15 1 93 7 4 36 59 1

Table III lists the storage capacity and peak power of some

of the currently available RBs for residential use. As it can

be seen, the capacities are in the range of few kWhs. For

example, the peak power that batteries with 4 kWh capacity

can output sustainably is on the order of 1−2 kW. However, as

the typical electricity consumption is very spiky (see Fig. 1 for

an example), current batteries cannot fully hide the spikes in

the consumption, due to the charging/discharging peak power

constraints. For example, while a 4 kWh battery can hide a

constant consumption of 2 kW over 2 hours, it cannot fully

hide spikes in the user load of more than 2 kW. An example

of this effect can be noticed in the simulation of Fig. 6.

The typical household average power consumption also lies

within the range of few kWs, as shown in Table IV, where the

distribution of the average user power consumption values over

different years obtained from various databases is reported

with various time resolutions. Analyzing the Dataport database

[8] we observe that, independently of the period considered,

the average user energy demand is less than 2 kWh for

80−90% of the time. Current batteries charged at full capacity

would then be able to satisfy the demand continuously only for

a few hours. However, completely covering the consumption

over a few hours may come at the expense of revealing the

energy consumption fully at future time periods. In fact, once

the RB is discharged, it needs to be charged again before

being able to hide the user consumption; hence, the use of the

RB introduces memory into the system, as decisions taken at a

certain time have an impact on the privacy performance at later

times. We should also remark that the residential electricity

consumption is forecast to increase significantly in the coming

years13, emphasizing the need to intelligently exploit limited

capacity storage devices to hide energy consumption behavior.

We also would like to emphasize that the privacy leakage

is caused mostly by these spikes, which are typically more

informative (e.g., oven, microwave, heater) compared to more

regular consumption (e.g., fridge). Moreover, due to electricity

price variations users may prefer charging/discharging the

battery in certain time periods, which limits the available

energy that can be used for privacy. Finally, it is expected

that the increasingly wider adoption of electrical vehicles and

the mass production and adoption of energy-hungry “smart

devices” will inevitably increase the typical household elec-

tricity consumption, limiting further the rechargeable batteries’

capability in fully hiding the user load.

Table V shows the average power generated via a solar

panel, which is the most common residential RES. Locations,

technology, as well as the inclination and size of the solar

panel affect the generated power, as shown in Table VI for

one of the databases considered, where kWp denotes the

kilowatt peak, i.e., the output power achieved by a panel

under full solar radiation. As expected, around 50% of the

time, i.e., at night, no energy is generated at all, while there

are differences in the distribution of the average values for

the two databases considered, due to the different locations.

Comparing these values with those in Table III, we note that

the battery capacities are large enough to store many hours of

average solar energy generated by the solar panels most of the

time.



Fig. 4. System model. Xt, Yt, Et and Bt denote the consumer’s power
demand, i.e., the user load, the SM readings, i.e., the grid load, the power
produced by the RES, and the battery state of charge at time t, respectively.
The dashed line represents the meter readings being reported to the UP.

A SIGNAL-PROCESSING PERSPECTIVE ON SM PRIVACY

The generic discrete-time SM system model is depicted in

Fig. 4. In this model, each time slot is normalized to unit time;

therefore, power and energy values within a time slot are used

interchangeably. Xt ∈ X denotes the total power demanded

by the appliances in the household in time slot t, i.e., the user

load, where X denotes the user load alphabet, i.e., the set of

values that Xt can assume. The sequence {Xt} denotes the

user’s private information, which needs to be protected. Yt ∈ Y
is the power received from the grid in time slot t, i.e., the grid

load, which is measured and reported to the UP by the SM,

while Y denotes the grid load alphabet. We assume that the

user and grid load powers remain constant within a time slot.

This can be considered as a discrete-time linear approximation

to a continuous load profile in practice. This approximation

can be made as accurate as desired by reducing the time slot

duration.

In current systems, where no energy manipulation is em-

ployed, Yt = Xt, ∀t; that is, the actual energy consumption

of the appliances is reported to the UP by the SM. Instead,

we will assume that an RB and an RES are available to the

user to physically distort the energy consumption; so that what

the user receives from the grid, Yt, does not reveal too much

information about the energy used by the appliances, Xt. We

remark here that the time slots in our model correspond to

time instants when the electricity is actually requested by the

user and drawn from the grid, rather than the typically longer

sampling interval used for sending SM measurements to the

UP. In fact, we assume that the SM measures and records the

output power values at each time slot; this is because our aim

is to protect consumers’ privacy not only from the UP, but

13https://www.eea.europa.eu/data-and-maps/indicators/total-electricity-
consumption-outlook-from-iea/total-electricity-consumption-outlook-from-1

also from the DSO or any other attacker that may deploy a

sensor on the consumer’s power line, recording the electricity

consumption in almost real-time. The state of charge (SoC)

of the RB, i.e., the amount of energy stored in the RB, at

time t, is Bt ∈ [0, Bmax], where Bmax denotes the maximum

battery capacity. Xt−Yt denotes the power taken from the RB,

and the battery charging and discharging processes are often

constrained by the so-called charging and discharging power

constraints P̂c and P̂d, respectively, i.e., −P̂c ≤ Xt−Yt ≤ P̂d,

∀t. There is typically a constraint on the average energy

that can be retrieved from an RB as well, imposed by an

average power constraint P̄ , i.e., E
[

1
n

∑n

t=1(Xt − Yt)
]

≤ P̄ .

Losses in the battery charging and discharging processes may

also be taken into account to model a more realistic energy

management system. The renewable energy generated at time

t by the RES is denoted by Et ∈ E , where E = [0, Emax].
RBs and RESs are expensive facilities, and installation and

operation costs can be reduced if they are shared by multiple

users, e.g., users within the same neighborhood or block of

flats. Moreover, sharing these resources allows the centralized

management of the energy system, which also leads to a more

efficient use of the available resources. The renewable energy

can be stored in the RB, or used immediately, so that a user

can:

• increase privacy, by avoiding to report her actual power

consumption to the UP;

• decrease electricity costs, by purchasing and storing

electricity from the grid when it is cheaper, and use it

to satisfy future demand, or even sell it back to the UP

when the price increases;

• increase energy efficiency, by reducing the waste of

generated renewable energy when it is not needed, and

when it is not profitable to sell it to the UP.

The random processes X and E are often modeled as Markov

processes, or as sequences of independent and identically

distributed (i.i.d.) random variables. Although the UP typi-

cally does not know the instantaneous realizations of these

processes, it may well know their statistics. In some cases, the

UP may know the realizations of the renewable energy process

E, for example, if it has access to additional information from

sensors deployed near the household that measure different

parameters, e.g., the solar or the wind power intensity, and

if it knows the specifications of the user’s renewable energy

generator, e.g., model and size of the solar panel.

Given the above definitions, the battery SoC update can be

expressed as

Bt+1 = min
{

Bt + Et − (Xt − Yt), Bmax

}

. (1)

Sometimes, the user load does not need to be satisfied

immediately in its entirety. In fact, the user load can be further

classified into demand that must be met immediately, e.g.,

lighting or cooking, and demand that can be satisfied at a

later time, the so-called elastic demand, e.g., electric vehicle

charging, dishwasher or clothes washer-dryer. For the latter

demand, the user’s only concern is that a certain task needs to



be finished by a certain deadline, e.g., her electric car must be

fully charged by 8 a.m., and it is not of interest at what exact

time the consumption takes place. This flexibility allows the

consumer to employ demand response to increase her privacy

as well as to lower the energy cost.

The electricity unit cost at time t, denoted by Ct, can be

modeled as a random variable, or in accordance with a specific

ToU tariff. The cost incurred by a user to purchase Yt units

of power over a time interval of τt at the price of Ct is thus

given by τtYtCt. When the presence of an RES is considered,

the prosumer may be able to sell part of the energy generated

to the grid to further improve her privacy and to minimize

the energy cost. If this occurs, the net metering approach

is typically considered, i.e., the utilities purchase consumer-

generated electricity at the current retail electricity rate. The

battery wear and tear due to charging and discharging the RB

can also be taken into account and modeled as an additional

cost [30].

The Energy Management Policy (EMP)

The energy management unit (EMU) is the intelligence

of the system, located at the user’s premises, where the

SM privacy-preservation and cost-optimization algorithms are

physically implemented. The EMP, implemented by the EMU,

determines at any time t the amount of energy that should be

drawn from the grid and the RB, given the previous values of

the user load Xt, renewable energy Et, battery SoC Bt, and

grid load Y t−1, i.e.,

ft : X
t × Et × Bt × Yt−1 → Y, ∀t, (2)

where f ∈ F , and F denotes the set of feasible policies, i.e.,

policies that produce grid load values that satisfy the RB and

RES constraints at any time, as well as the battery update

equation in (1). The optimal policy is chosen to minimize the

long-term information leakage about a consumer’s electricity

consumption, possibly along with other criteria, such as the

minimization of electricity cost or wasted energy. The EMP

prevents outages, and typically it is not allowed to draw more

energy from the grid to be wasted simply for the sake of

increased privacy.

The policy ft in (2) corresponds to an online energy

management policy, i.e., a policy in which the action taken

by the EMU at any time slot depends only on the information

available causally right up to that time. Alternatively, in an

offline optimization framework, the policy takes actions based

also on future information about the system state, i.e., user

load and RES energy generation, in a non-causal fashion.

In the SM privacy literature, both offline and online SM

privacy-preserving algorithms have been considered. Online

algorithms are more realistic and relevant for real-world ap-

plications; however, offline algorithms may lead to interesting

intuitions or bounds on the performance. Moreover, non-

causal knowledge of the electricity price process is a realistic

assumption in today’s energy networks; and even the non-

causal knowledge of power consumption may be valid for

certain appliances, such as refrigerators, boilers, heating and

electric vehicles, whose energy consumption can be accurately

predicted over certain finite time frames.

In the following, we will first present an overview of some

heuristic solutions to the SM privacy problem. Next, we will

describe the more rigorous and mathematically involved tech-

niques, which are aimed at finding the relevant fundamental

bounds and trade-offs.

A HEURISTIC PRIVACY MEASURE: VARIATIONS IN THE

GRID LOAD PROFILE

As in many other problems involving privacy, a wide

consensus over the best privacy measure for SMs has not

been reached yet, and a number of privacy measures have

been proposed in the literature, each with its own benefits

and limitations. Although it is clear that privacy is achieved

when the UP cannot infer a user’s behavior on the basis of

SM measurements, it is challenging to define a corresponding

mathematical measure that is independent of the particular

detection technique employed by the attacker.

Grid Load Variance as a Privacy Measure

One can argue that privacy in SMs can be ensured by

opportunely charging and discharging the RB so that the

grid load is always constant. In fact, the differences in

consecutive load measurements, yt − yt−1, are indicative of

the appliances’ switch-on/off events, the so-called features,

and are typically exploited by the existing NILM algorithms.

Ideally, a completely “flat” grid load profile would not reveal

any feature, and would only leak a user’s long term average

power consumption. However, this would require a very large

battery capacity and/or a powerful RES. Alternatively, the level

of privacy can be measured by the “distance” of the grid

load from a completely flat target load profile, based on the

intuition that the smaller the distance, the higher the level of

privacy achieved [31]. Accordingly, privacy can be defined as

the grid load variance around a prefixed target load profile W ,

i.e.,

Vn ,
1

n

n
∑

t=1

E

[

(Yt −W )2
]

, (3)

where the expectation is over Xt and Yt, and W = E[X ]
typically.

Another important concern for consumers is their energy

cost. With the integration of unreliable RESs into the grid, it

is expected that the unit cost of energy from different UPs will

fluctuate in time. RBs for residential use provide flexibility

to the consumers as they can buy and store energy during

low-cost periods to be used during peak-price periods. The

impact of RBs in reducing the cost of energy to the consumers

have been extensively studied in the literature [32]. Note,

however, that the operation of the EMU in order to minimize

the energy cost does not necessarily align with the goal of

minimizing privacy leakage. Therefore, it is essential to jointly

optimize the electricity cost and the user privacy. If the cost of



Fig. 5. Example of the user load, grid load, and constant target load profiles,
where the “distance” Yt − Wt is highlighted. The aim of the algorithms
presented in this section is to minimize the average squared distance.

energy and battery wear and tear are considered, the overall

optimization problem becomes:

min
1

n

n
∑

t=1

E

[

CtYt + 1B(t)CB + α(Yt −W )2
]

, (4)

where 1B(t) = 1 if the battery is charging/discharging at time

t, and 0 otherwise; CB is the battery operating cost due to the

battery wear and tear caused by charging and discharging the

RB; and α strikes the trade-off between privacy and cost. The

expectation in (4) is over the probability distributions of all

the involved random variables, i.e., Xt, Yt, and Ct.

If Wt = E[X ], ∀t, the EMU tries to achieve a flat grid

load profile around the average user energy consumption with

as little deviations as possible. This scenario is illustrated

in Fig. 5, where the straight blue line is the fixed target

consumption profile Wt, and the red line indicates the achieved

grid load profile Yt. For i.i.d. X and C processes, an online

EMP can be obtained using Lyapunov optimization [30]. The

online control algorithm can be formulated as a Lyapunov

function with a perturbed weight and the drift-plus-penalty

framework is adopted, which is typically used for stabilizing

a queuing network, by minimizing the so-called drift, while

minimizing at the same time a penalty function. Here, the

penalty is represented by the optimization target, while the

Lyapunov drift is defined as the difference of the SoC of the

RB at successive time instants. Authors in [30] show that this

approach leads to a mixed-integer nonlinear program, which

they solve by decomposing it into multiple cases, and by

finding a closed-form solution to each of them.

This problem can also be studied in an offline framework,

by assuming the future user demand profile can be accurately

estimated for a certain time horizon, and the energy cost is

known in advance. When privacy and cost of energy are jointly

optimized over a certain time horizon, one can characterize the

points on the Pareto boundary of the convex region formed by

Fig. 6. Examples of user load, grid load, and target load over the course
of a day when a piecewise target profile is considered. The price periods
are highlighted by arrows of different colors. Note that the target assumes a
different constant value for each price period.

Fig. 7. ToU tariff and timing convention used for a piecewise target profile
[33]. t

c
(i) , for i = 1, . . . ,M , are the time instants at which the price of

energy changes, and t
c(0)

= 0.

all the cost and privacy leakage pairs, by solving the following

convex optimization problem [31]:

min
Yt≥0

n
∑

t=1

[

(1− α)YtCt + α(Yt −W )2
]

. (5)

It is shown in [31] that the optimal offline solution has a water-

filling interpretation. However, differently from the classical

water-filling algorithm, which appears as the solution of the

power allocation problem across parallel Gaussian channels

under a total power constraint, here the water level is not

constant, and changes across time because of the instantaneous

power constraints.

A completely flat consumption profile may not be feasible,

or even desirable, for example if the cost varies greatly during

the system operation due to ToU tariffs. Thus, it is reasonable

to assume that a user requests more energy during off-peak

price periods as compared to peak price periods; and hence,

allows a piecewise constant target load [33]. An example of

the application of this strategy is shown in Fig. 6, applied to



0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
Average Cost - C (£/hour)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
A
v
er
a
g
e
L
o
a
d
V
a
ri
a
n
ce

-
P

(k
W

2
) Constant Target (no Selling)

Piecewise Target (no Selling)
Constant Target (Selling)
Piecewise Target (Selling)

Fig. 8. Privacy-vs-cost trade-off when using a Powervault G200-LI-4KWH
battery for the strategies in [31] and [33].

real power consumption data from the UK-Dale dataset [34].

The optimization problem (5) becomes

min
Yt,W (i)

1

N

M
∑

i=1

[ t
c(i)
∑

t=t
c(i−1)

(1−α)YtC
(i)+α(Yt−W (i))2

]

, (6)

where C(i) and W (i) are the cost of the energy purchased

from the UP and the target profile during the i-th price period,

respectively, where 1 ≤ i ≤ M , M is the total number of price

periods during time T , and the i-th price period spans from

time slot tc(i−1) to tc(i) . Fig. 7 depicts the timing convention

considered in this scenario. Energy can be sold to the UP

to further improve the privacy-vs-cost trade-off, as assumed

in [33]. Considering a piecewise target profile improves the

overall privacy-vs-cost trade-off compared to a constant target

profile, as shown in Fig. 8 for a Powervault G200-LI-4KWH

RB when using power consumption data from [34].

A possible extension of the latter work is considering the

multi-user scenario, where, in principle, each user can fix its

own target profile. As long as the target profile does not

depend on the user’s energy consumption profile, the UP

does not receive much information about user’s activities.

On the other hand, the UP can implicitly incentivize users

to choose different target profiles by setting different ToU

prices for different consumers. Since consumers will tend to

buy more energy when it is cheaper, each of the users in the

neighborhood will shift her load to a different time slot, also

balancing the total load on the grid.

Markov Decision Process (MDP) Formulation

In the online optimization framework, where the user load

and the energy generated by the RES can be modeled as

Markov processes (or, as an i.i.d. sequence as a special case),

the SM privacy problem can be cast as an MDP. An MDP

is a discrete-time state-transition system, which is formally

characterized by a state space, an action space, which includes

the possible actions that can be taken by the decision maker

at each state, the transition probabilities from the current state

to the next state, which describe the dynamics of the system,

and the reward (or, inversely, the cost) process, which indicates

the reward received (or, cost incurred) by the decision maker

by taking a particular action in a particular state. The goal

of an MDP is to find the optimal policy that minimizes the

average (or, discounted) cost either by a specified time in the

future, i.e., by considering the so-called finite horizon setting,

or over an indefinite time period, by considering the so-called

infinite horizon setting. To solve the corresponding MDP the

optimal Bellman optimality equations should be formulated

[35], which can be solved to obtain the optimal policy at

each state and time instant. The problem can be solved

numerically for the finite horizon setting, while the value

iteration algorithm can be employed to obtain the optimal

stationary policy in the infinite horizon scenario.

In the SM problem, the state at any time t is typically

represented by a combination of the current battery SoC

Bt, user demand Xt, and renewable energy Et; the action,

performed by the EMU, is represented by the current grid load

and the energy used from the RB and the RES. State transitions

are modelled by the battery update equation, which is typically

assumed to be deterministic, as well as transitions in the user

demand and renewable generation states, which typically do

not depend on user’s actions. The cost function is the privacy

loss that is experienced when moving from one SoC to another

by following a certain action. However, to consider the privacy

as the cost function in an MDP, it is necessary to formulate

the privacy leakage in an additive form across time, so that

the total loss of privacy over multiple time slots is given by

the summation of the privacy leakage at different time slots.

This may be challenging depending on the privacy measure

employed. For example, measuring privacy via the squared

distance of the grid load from a constant target profile has a

straightforward additive formulation, while the same does not

hold when privacy is measured by the mutual information (MI)

between the user and grid load sequences. This is because the

MI takes into account the dependence between the realization

of the user load at time t, Xt, and the current, past and future

realizations of Y , Y1, . . . , Yt, . . ..
When the state and action spaces are continuous, it is

necessary to discretize them to solve the problem numerically.

The accuracy of the numerical solution can be improved

by decreasing the discretization step size, at the expense

of significantly higher computational complexity. When the

dimensions of the state and action spaces render numerical

evaluation of the optimal policy unfeasible, one can resort to

suboptimal solutions that are easier to optimize and compute

numerically, yet may provide near optimal performance or

interesting intuitions. Also, when the information theoretic

privacy measures are used, it may be possible to simplify the

infinite-horizon optimization problem, and write it in a single-

letter form. We will provide further insights into this below.

The SM problem is cast as an MDP in [36], where the loss

of privacy is measured by the fluctuations of the grid load

around a constant target load, and the joint optimization of

privacy and cost is studied. The optimal privacy-preserving



policies are characterized by minimizing the expected total

cost. Denote by ut the action at time t. To solve the MDP the

transition probabilities p(Xt|Xt−1) and p(Bt|Bt−1, ut) need

to be known; however, this is normally not the case, as the

user load and the energy storage usage are typically non-

stationary. Authors in [36] overcome this issue by adopting

the Q-learning algorithm [37], which is an iterative algorithm

used for characterizing the expected cost for each state-action

pair by alternating exploitation and exploration phases. The

corresponding offline optimization policy is also characterized

in [36] to be considered as a benchmark for the online

algorithm. The authors characterize the privacy-cost trade-off

curves, and also evaluate the performance of the proposed

algorithm by means of the empirical mutual information.

Temporal and Spatial Similarities in the Grid Load as a

Privacy Measure

Variations in the grid load profile can be captured by con-

sidering power traces of single appliances and by computing

differences in power consumption both in the time domain, i.e.,

consumption deviation over time of a specific appliance, and

in the “space” domain, i.e., consumption profiles of different

appliances. As these variations are computed over a certain

time horizon, when an online algorithm is considered, future

user electricity consumption is estimated by forecasting the

future electricity prices and running Monte Carlo simulations.

The optimal decision at any time is characterized by con-

sidering both the current inputs and the forecasts through a

rolling online stochastic optimization process. Load shifting,

i.e., the scheduling of the user’s flexible electricity demand

in accordance with privacy as well as cost concerns, can also

be considered. Load shifting is analyzed in [38] and in [39],

where privacy, cost of energy, and battery wear and tear are

jointly optimized, and an online algorithm is formulated. The

objective is to minimize the sum of current and expected

electricity and charging/discharging costs together with the

weighted power profile differences measured through the sim-

ilarity parameters for an entire day. The effectiveness of three

similarity measures are examined in [39] separately, as well as

jointly, where only four typical appliances, an oven, a clothes

dryer, a dishwasher and an electric vehicle, are considered for

the sake of simplicity.

Heuristic Algorithms

While the grid load can be flattened by minimizing the

variation of the grid load around a constant consumption

target, several works in the literature propose heuristic battery

charging and discharging algorithms, which keep the grid

load variations limited. An intuitive approach is to try to

keep the grid load equal to its most recent value by dis-

charging (charging) the RB when the current user load is

larger (smaller) than the previous one. This approach, called

the best-effort (BE) algorithm in [40], tends to eliminate

the higher frequency components of the user load, while

still revealing the lower frequency components. In [40], the

similarity between the two probability distributions of the user

and grid load is quantified via the empirical relative entropy

(i.e., Kullback-Leibler divergence) [41]. In the same work,

the authors also consider cluster classification, whereby data

is clustered according to power levels, and cross-correlation

and regression procedures, according to which the grid load

is shifted in time at the point of maximum cross-correlation

with the user load, and regression methods are then used to

compare the two aligned signals.

A slightly more sophisticated approach is considered in

[42], called the non-intrusive load levelling (NILL) algorithm,

in which more than one grid load target value, namely a

steady state target and low and high recovery state targets are

allowed, and the EMU tries to maintain the grid load at one

of these values across time. If the steady state load cannot be

maintained, the EMU switches to a high (low) recovery state

in case of persistent light (heavy) user demand. When one

of the recovery states is reached, the target load is adapted

accordingly to permit the battery to charge or discharge,

similarly to the empirical strategies outlined in [43]. The value

of the steady state target load can be updated whenever a

recovery state is reached, in order to reduce the occurrences

of recovery states, which is achieved by using an exponential

weighted moving average of the demand. To assess their

proposed approach, the authors in [42] count the number of

features, i.e., the number of times a device is recognized as

being on or off, from the grid load, as compared to the user

load, and they further consider the empirical entropy.

As also pointed out in [44], these heuristic algorithms suffer

from precise load change recovery attacks that can identify

peaks of user demand. We note that the NILL algorithm is

essentially quantizing the input load to three values with the

help of the RB. This idea is generalized in [44] by considering

an arbitrary number of quantization levels. Since quantization

is a “many-to-few mapping”, converting the grid load to a step

function is inherently a non-linear and irreversible process,

which can be used to provide privacy by maximizing the

quantization error under battery limitations. More specifically,

the grid load is forced to be a multiple of a quantity β, i.e.,

yt = htβ, where ht is an integer value, and β is the largest

value that satisfies battery’s maximum capacity and power

constraints. At any time slot, given the user load, the grid

load is chosen between the two adjacent levels to the user load,

namely
⌈

xt

β

⌉

and
⌊

xt

β

⌋

, where
⌈

·
⌉

and
⌊

·
⌋

denote the ceiling

and floor functions, respectively. Three stepping algorithms

are proposed in [44], which have different quantization levels:

1) the lazy stepping algorithm, which tries to maintain the

external load constant for as long as possible; 2) the lazy

charging algorithm, which keeps charging (discharging) the

battery until it is full (empty); and 3) the random charg-

ing algorithm that chooses its actions at random. While the

simulation results show that these algorithms outperform the

BE and NILL algorithms, with the lazy stepping algorithm

typically performing the best, it is hard to make general

claims due to the heuristic nature of these algorithms. In

fact, these approaches do not provide theoretical guarantees

on the level of privacy achieved; thus, they are not able to



make any general claim about the strength of the proposed

privacy-preserving approaches and their absolute performance.

This is an important limitation as consumers would like to

know the level of privacy they can achieve, even if it is in

statistical terms. Also, because such heuristics are often based

on deterministic schemes, they are prone to be easily reverse-

engineered.

THEORETICAL GUARANTEES ON SM PRIVACY

One of the challenges in SM privacy is to provide theo-

retical assurances and fundamental limits on the information

leaked by an SM system, independently of any assumption

on the capability of an attacker, or of the particular NILM

algorithm employed. This is essential in privacy research as

privacy-preserving techniques may perform extremely well

against some NILM algorithms and very poorly against others.

Moreover, the privacy assurances should not be based on the

complexity limitations of a potential attacker, as techniques

that are currently thought not to be feasible, may become avail-

able to attackers in the future, if computational capabilities

improve, or if new methods are developed. Last but not least,

establishing a coherent mathematical framework would allow

us to compare various SM scenarios and the use of different

physical resources, e.g., RBs of various capacities, RESs

of various nature, etc., in a rigorous manner. Accordingly,

signal processing and information-theoretic tools have been

employed in the literature to provide theoretical privacy assur-

ances. We will overview various different statistical measures

for privacy, in particular, the conditional entropy [43], Fisher

information (FI) [45], or type II error probability in detecting

user activity [46].

In this statistical framework, it is commonly assumed that

the statistics of the user load and the RES are stationary

over the period of interest, and are known to the EMU. This

assumption is reasonable especially if the period of stationarity

is sufficiently long for the EMU to observe and learn these

statistics [47]–[49]. On the other hand, an online learning

theoretic framework can also be considered to account for

the convergence time of the learning algorithm. Alternatively,

most of the works in the literature that carry out a theo-

retical analysis also propose suboptimal policies that can be

applied on real power traces, thus allowing the reader to gain

intuition about the practical application and performance of

these theoretically-motivated techniques. We take a worst-case

approach, and assume that the statistics governing the involved

random processes are known also by the attacker. Note that

this can only empower the attacker, and strengthen the stated

privacy guarantees.

The Significance of Single-Letter Expressions

It is expected that a meaningful privacy measure should

consider the leakage of a user’s information over a certain time

period of reasonable length, because of the memory effects

introduced by the RB and the RES. The energy consumption

over a short period of time can be easily covered by satisfying

all the demand from the RB or the RES over this period, but

this may come at the expense of revealing the energy consump-

tion fully at future time periods. Therefore, the information

theoretic analysis typically considers an average information

rate measured over a given finite time period, and often studies

its infinite-horizon asymptotics as well. However, increasing

the time horizon also increases the problem complexity, and

one of the challenges of the information-theoretic analysis is

to obtain a so-called “single-letter” expression for the optimal

solution, which would reduce the problem complexity signif-

icantly, particularly when the involved random variables are

defined over finite alphabets. Unfortunately, to date, closed-

form or single-letter expressions for the information leaked

in an SM system have been characterized only for specific

settings under various simplifications, e.g., considering an i.i.d.

or Markov user load or RES generation.

MI as a Privacy Measure

The entropy of a random variable X , H(X), is a measure

of the uncertainty of its realization. The MI between ran-

dom variables X and Y , I(X ;Y ), measures the amount of

information shared between the two random variables [41].

MI can also be considered as a measure of dependence

between the random variables X and Y , and it is equal to

zero if and only if they are independent. Rewriting the MI

as I(X ;Y ) = H(X) − H(X |Y ), where H(X |Y ) is the

conditional entropy, we can also interpret MI as the average

reduction in the uncertainty of X from the knowledge of Y .

Therefore, we can measure the privacy leakage about the input

load sequence Xn through the SM readings Y n by the MI

between the two sequences, I(Xn;Y n). This will measure the

reduction in the uncertainty of the UP about the real energy

consumption of the appliances, Xn, after receiving the SM

measurements, Y n. For an SM system with only an RB (no

RES) and a given EMP f in (2), running over n time slots,

the average information leakage rate In
f (Bmax, P̂d) is defined

as

In
f (Bmax, P̂d) ,

1

n
I(Xn;Y n) =

1

n

[

H(Xn)−H(Xn|Y n)
]

,

(7)

where 0 ≤ Xt − Yt ≤ P̂d. The parameters Bmax and P̂d

emphasize the dependence of the EMP, and therefore, of the

achievable information leakage rate, on the battery capacity

and the discharging peak power constraint. The optimal EMP

and the corresponding minimum information leakage rate is

obtained by minimizing (7) over all feasible policies f ∈ F
to obtain In(Bmax, P̂d).

Privacy with an RES: Alternatively, one can also consider

the SM system of Fig. 4 with an RES, but no RB. Assume that

the renewable energy that can be used over the operation pe-

riod is constrained by an average and a peak power constraint.

We do not allow selling the generated renewable energy to

the UP, as our goal is to understand the impact of the RES

on providing privacy to the user. The minimum information

leakage rate achieved under these assumptions and for an i.i.d.

user load can be characterized by the so-called privacy-power



function I(P̄ , P̂d), and can be formulated in the following

single-letter form:

I(P̄ , P̂ ) = inf
pY |X∈P

I (X ;Y ) , (8)

where P , {pY |X : y ∈ Y,E[(X − Y )] ≤ P̄ , 0 ≤

X − Y ≤ P̂}. This formulation is presented in [50] for a

discrete user load alphabet, i.e., X can only assume values that

are multiples of a fixed quantum, and in [51], for a continuous

user load alphabet, i.e., X can assume any real value within

the limits specified by the peak power constraints of the

appliances. The optimal EMP that minimizes (8) is stochastic

and memoryless, that is, the optimal grid load at each time slot

is generated randomly via the optimal conditional probability

that minimizes (8) by only considering the current user load.

Another interesting observation is that Eq. (8) is in a similar

form to the well-known rate-distortion function in information

theory, which characterizes the minimum compression rate R
of data, in bits per sample, that is required for the receiver

to reconstruct the source sequence within a specified average

distortion level D [41]. Formally, the rate-distortion function

R(D) for an i.i.d. source X ∈ X with distribution pX , recon-

struction alphabet X̂ , and distortion function d(x̂, x), where

the distortion between sequences Xn and X̂n is given by
1
n

∑n
i=1 d(xi, x̂i), characterizes the minimum rate with which

an average distortion of D is achievable. The compression rate

specifies the size of the codebook 2nR, required to compress

the source sequence of length n, Xn. Shannon showed that

the rate-distortion function can be obtained in the following

single-letter form:

R(D) = min
p
X̂|X :

∑
(x,x̂) pXp

X̂|Xd(x,x̂)≤D
I(X̂;X). (9)

The analogy between (8) and (9) becomes clear considering

the following distortion measure

d(x, y) =

{

x− y, if 0 ≤ x− y ≤ P̂ ,

∞, otherwise,
(10)

and such analogy enables using tools from rate-distortion

theory to evaluate the privacy-power function for an SM

system. However, it is important to highlight that despite the

functional similarity, there are major conceptual differences

between the two problems, namely: i) in the SM privacy

problem Y n is the direct output of the encoder rather than

the reconstruction at the decoder side; ii) unlike the lossy

source encoder, the EMU does not operate over blocks of

user load realizations; instead, it operates symbol by symbol,

acting instantaneously after receiving the appliance load at

each time slot. For discrete user load alphabets, the grid load

alphabet can be constrained to the user load alphabet without

loss of optimality [52], and since MI is a convex function

of the conditional probability pY |X ∈ P , the privacy-power

function can be written as a convex optimization problem

with linear constraints. Algorithms such as the Blahut Arimoto

(BA) algorithm can be used to numerically compute the

optimal conditional distribution [41]. For continuous user load

Fig. 9. A single EMU and RES are shared among N users, each equipped
with an SM. The EMU decides how much energy each user can retrieve from
the RES and from the grid.

distributions, the Shannon lower bound is derived in [52],

which is a computable lower bound to the rate-distortion

function widely used in the literature, and is shown to be tight

for exponential user load distributions.

These results can be generalized to a multi-user scenario

in which N users, each equipped with a single SM, share

the same RES [52]. This scenario is represented in Fig. 9,

where the objective is to minimize the total privacy loss

of N consumers (or, devices) considered jointly, rather than

minimizing the privacy loss for each of them separately. This

requires the EMU to allocate the shared RES among all the

users in the most effective manner. The average information

leakage rate can still be written as in (7), by replacing Xt and

Yt with Xt = [X1,t, . . . , XN,t] and Yt = [Y1,t, . . . , YN,t],
where the boldface characters denote the vectors representing

the N power measurements. The privacy-power function has

the same expression in (8), and, for the case of independent,

but not necessarily identically distributed user loads, the opti-

mization problem (ignoring the peak power constraint) can be

cast as

I(P̄ ) = inf∑
N
i=1 Pi≤P̄

N
∑

i=1

IXi
(Pi), (11)

where IXi
(·) denotes the privacy-power function for the i-th

user having user load distribution pXi
(xi). For continuous and

exponential user loads, the optimal allocation of the energy

generated by an RES can be obtained by the reverse water-

filling algorithm, according to which energy from the RES is

only used to satisfy the users with a low average load, while

users with higher average load need to request energy from

the grid as well.

Privacy with an RB: We can also consider the presence

of only an RB in the system, which is thus charged only via

the grid (no RES is available to the EMU). Including an RB

complicates the problem significantly, and the battery SoC,

Bt, plays an important role when designing a feasible EMP.

This problem can be solved by putting it in the form of

an MDP and by finding a suitable additive formulation for



the privacy cost function [53]. The optimization problem is

formulated as

L∗ , min
f

1

n
I(B1, X

n;Y n), (12)

where f can be any feasible policy, as specified in (2) (without

including the renewable energy process). Eq. (12) has been

cast in an additive formulation in [53] by noting that there

is no loss of optimality in restricting the focus to charging

strategies f ′ that decide on the grid load only based on the

current values of the user load Xt and battery SoC Bt, and on

the past values of the grid load Y t−1, i.e., the general strategy

f in (2) is specified as f ′
t : X × B × Yt−1 → Y, ∀t, because

of the following inequality:

1

n
I(Xn, B1;Y

n) ≥
1

n

n
∑

t=1

I(Xt, Bt;Yt|Y
t−1). (13)

The conditional distributions in (13) grow exponentially

with time because of the term Y t−1, so that the problem

becomes computationally infeasible very quickly. To overcome

this problem, the knowledge of Y t−1 is summarized into

a belief state, defined as p(Xt, Bt|Y
t−1), which can be

computed recursively and interpreted as the belief that the UP

has about (Xt, Bt) at time t, given its past observations, Y t−1.

This way, the optimal Bellman equations can be formulated,

and the optimal policy can be identified numerically (with a

discretization of the belief state).

For an i.i.d. user load, the single-letter characterization of

the minimum information leakage rate is given by [53] as

J∗ , min
θ∈PB

I(B −X ;X), (14)

where θ is the probability distribution over B given the past

output and actions, i.e., θt , p(bt|y
t−1, at−1), and the action

at is defined as the transition probability from the current

belief, user load and battery SoC to the current grid load. This

result is obtained by considering a belief on Wt , Bt −Xt,

rather than (Bt, Xt), and by further restricting to policies of

the type f ′′
t : W × Yt−1 → Y, ∀t. Since (14) is convex

in θ, the optimal θ∗ may be obtained by using the BA

algorithm. The optimal grid load turns out to be i.i.d. and

indistinguishable from the demand, while the optimal policy

is memoryless and the distribution of Yt depends only on Wt.

Such a characterization is provided in [54] for a binary i.i.d.

user load, while the authors extend it to an i.i.d. user load of

generic alphabet size in [53], [55], [56].

Another approach is to model the SoC of the RB as a

trapdoor channel [57]. In a trapdoor channel, a certain number

of red or blue balls are within the channel, and a new ball of

either color is inserted to it as the channel input at each time

step. After the new ball is inserted, one of the balls present

in the channel is randomly selected and removed from the

channel. In a SM setting, the finite-capacity RB can be viewed

as a trapdoor channel, whereby inserting or extracting a ball

from the channel represents charging or discharging the RB,

respectively. An upper bound on the information leakage rate

is characterized in [58] through this model, by minimizing

the information leakage rate over the set of stable output

balls, i.e., the set of feasible output sequences Y n that can be

extracted from the channel given a certain initial state and an

input sequence Xn, and by taking inspiration from codebook

construction strategies in [59]. The information leakage rate

is characterized in [58] as

1

n
I(Xn;Y n) =

1

⌈(Bmax + 1)/Xmax⌉
, (15)

where Xmax is the largest value X can assume. It is also shown

in [58] that the average user energy consumption determines

the level of achievable privacy.

Apart from only maximizing privacy, it is of interest to

also minimize the cost. Differently from privacy, cost of

energy has an immediate additive formulation and can be

easily incorporated into the MDP formulation. Considering the

random price vector Ct = (C1, . . . , Ct), where Ct denotes the

unit cost of energy at time slot t, privacy can be defined in

the long time horizon as

P , lim
t→∞

H(Xt|Y t, Ct)

t
. (16)

This formulation is presented in [43], where the correspond-

ing MDP is formulated, and two suboptimal algorithms are

proposed. The first is a greedy algorithm, which maximizes at

any time the current instantaneous reward, while the second

is a battery centering approach that is aimed at keeping the

battery at a medium level of charge so that the EMU is less

constrained by the battery or the demand in determining the

grid load. In the latter approach, if the grid load depends

not on the current user load or the battery level, but only

on the current electricity price, the system is said to be in

a hidden state, while it is said to be in a revealing state,

otherwise. The latter strategy is analyzed for an i.i.d. user load

by considering the system as a recurrent Markov chain and by

adopting random walk theory.

Privacy with both an RES and an RB: When both

an RES and an RB are present, the information theoretic

privacy analysis becomes more challenging. As an initial

step, we can consider infinite and zero battery capacities,

which represent, respectively, lower and upper bounds on

the privacy leakage achievable for a practical SM system

with a finite-capacity battery [60], [61]. When Bmax = ∞,

the problem can be shown to be equivalent to the average

and peak power-constrained scenario, and, interestingly, the

privacy performance does not deteriorate even if the UP knows

the exact amount of renewable energy generated. This shows

that, keeping the renewable energy generation process private

is more critical when the RB has a limited capacity. Two

different energy management policies are shown to achieve the

lower bound in [61]. In the best-effort policy, at any time slot,

the optimal EMP derived from (11) is employed independently

of the RB SoC if there is sufficient energy in the RB, while

all the energy request is satisfied from the grid otherwise. The

latter one leads to full leakage of user consumption, but it can

be shown that these events are rare enough that the information



Fig. 10. Minimum information leakage rate with respect to the renewable
energy generation rate pe with X = E = Y = {0, 1, 2, 3, 4}. The leakage

for Bmax = ∞ has been found by setting P̂ = 4 [61].

leakage rate does not increase. In the alternative store-and-hide

policy, an initial storage phase is employed, during which all

the energy requests of the user are satisfied from the grid while

all the generated renewable energy is stored in the battery.

In the following hiding phase, the EMU deploys the optimal

policy designed under average and peak power constraints.

On the other extreme, when Bmax = 0, the renewable

energy that can be used at any time slot is limited by the

amount of energy generated within that time slot. As expected,

assuming the knowledge of the renewable energy process at

the UP significantly degrades the privacy performance for this

scenario. Fig. 10 compares the minimum information leakage

rate with respect to the renewable energy generation rate pe
for |X | = |E| = |Y| = 5 when Bmax = {0, 1, 2,∞}. In this

figure, the curves for a finite battery capacity of Bmax = 1
and Bmax = 2 are obtained numerically by considering a

suboptimal EMP [61].

The presence of a finite-capacity battery increases the

problem complexity dramatically due to the memory effects

induced by the finite battery, and single-letter expressions are

still lacking for this scenario. A possible approach to find a

theoretical solution to this problem is by extending the MDP

formulation, as investigated in [62].

Detection Error Probability as a Privacy Measure

So far we have considered approaches that try to hide the

complete user energy demand from the UP. However, rather

than hiding the entire energy consumption profile, in some

cases it may be more meaningful to keep private specific user

activities, such as “is there anybody at home?”, “has the alarm

been activated?” or “are you eating microwaved food?”. In

order to keep the answer to such questions private, the goal of

the EMU is to maximize the attacker’s probability of making

errors when attempting to answer them.

Let the consumer’s behavior that needs to be kept private

belong to a set of M possible activities. Thus, we can treat

the attacker’s decision and the user’s action as an M -ary

hypothesis, i.e., H ∈ H = {h0, h1, . . . hM−1}. When M = 2,

the hypothesis test is said to be binary and, by convention,

the hypothesis h0, called the null hypothesis, represents the

absence of some factor or condition, while the hypothesis

h1, called the alternative hypothesis, is the complementary

condition. For example, answering the question “is somebody

at home?” corresponds to a binary hypothesis test, where h0

is the hypothesis “somebody is not at home” and h1 is the

hypothesis “somebody is at home”. It is reasonable to assume

that the input load will have different statistics under these two

hypotheses; accordingly, we assume that under hypothesis h0

(h1), the energy demand at time slot t is i.i.d. with pX|h0

(pX|h1
). Based on the SM readings, the attacker aims at

determining the best decision rule Ĥ(·), i.e., the optimal map

between the SM readings and the underlying hypothesis. In

other words, the space of all possible SM readings, Yn, is

partitioned into the two disjoint decision regions A0 and A1,

defined as follows:

A0 , {yn|Ĥ(yn) = h0}, (17)

A1 , {yn|Ĥ(yn) = h1}, (18)

which correspond to the subsets of the SM readings for which

the UP decides for one of the two hypotheses. The attacker’s

binary hypothesis test can incur two types of errors:

• Type I error probability: make a decision h1 when h0 is

the true hypothesis (false positive or false alarm), i.e.,

pI = pY n|h1
(A0);

• Type II error probability: make a decision h0 when h1

is the true hypothesis (false negative or miss), i.e., pII =
pY n|h0

(A1).

The Neyman-Pearson test minimizes the type II error proba-

bility for a fixed maximum type I error probability and makes

decisions by thresholding the likelihood ratio
pY n|h0

(yn|h0)

pY n|h1
(yn|h1)

.

Consider the worst case of an all-powerful attacker, which

has the perfect knowledge of the EMP employed, in the

asymptotic regime n → ∞, and denote by pmin
II the minimal

type II probability of error subject to a constraint on the type

I probability of error. Assuming that a memoryless EMP is

employed by the EMU, that is, the grid load at any time

slot t depends only on the input load at the same time slot,

then the attacker runs a Neyman-Pearson detection test on the

grid load. We note that the memoryless EMP assumption is

not without loss of optimality. However, it is justified on the

grounds that, characterizing the more general optimal policy

with memory seems to be significantly more challenging, and

unlikely to lend itself to a single-letter expression. Chernoff-

Stein Lemma [41] links the minimal type II error probability

pmin
II to the Kullback-Leibler (KL) divergence D(·||·) between

the grid load distributions conditioned on the two hypotheses

in the limit of the number of observations going to infinity:

lim
n→∞

−
log pmin

II

n
= D(pY |h0

||pY |h1
), (19)



while the KL divergence between two probability distribution

functions on X , pX and qX , is defined as [41]

D(pX ||qX) ,
∑

x∈X

pX(x) log
pX(x)

qX(x)
. (20)

Not surprisingly, to maximize the privacy the goal of the

EMU is to find the optimal grid load distributions, which,

given the user load X and the true hypothesis H , minimizes

the KL divergence in (19), or equivalently, minimizes the

asymptotic exponential decay rate of pmin
II . However, the EMU

is constrained by the available resources in making the two

input load distributions produce similar grid load distributions.

In particular, we impose a constraint on the average RES it can

use. Thus, the objective is to solve the following minimization

problem:

min
pY |H∈PY |H

D(pY |h0
||pY |h1

), (21)

where PY |H is the set of feasible energy management policies,

i.e., those that satisfy the average RES generation rate P̄ , so

that 1
n
E[
∑n

i=1 Xi − Yi|hj ] ≤ P̄ , j = 0, 1. This setting is

studied in [63], where the asymptotic single-letter expressions

of two privacy-preserving EMPs in the worst case scenario are

considered, i.e., when the probability of type I error is close

to 1. The first policy is a memoryless hypothesis-aware policy

that decides on Yt based only on the current Xt and H , while

the second policy is unaware of the correct hypothesis H but

takes into account all the previous realizations of X and Y .

It is noteworthy that even if the hypothesis-unaware policy

with memory does not have access to the current hypothesis,

it performs at least as well as the memoryless hypothesis-

aware policy. This is because the hypothesis-unaware policy

is able to learn the hypothesis with negligible error probability

after observing the energy demand process for a sufficiently

long period. Additionally, the energy supply alphabet can be

constrained to the energy demand alphabet without loss of

optimality, which greatly simplifies the numerical solution to

the problem.

FI as a Privacy Measure

FI is another statistical measure that can be employed

as a measure of SM privacy [45]. Let some sample data

x be drawn according to a distribution depending on an

underlying parameter θ. Then, FI is a measure of the amount

of information that x contains about θ. In the SM setting, Y n

is the sample data available to the attacker, while Xn is the

parameter underlying the sample data that is to be estimated

by the UP. Let X̂n denote the estimate of the UP. The FI

can be generalized to the multivariate case by the FI matrix,

defined as

FI(xn) =
∫

yn∈Yn

p(yn|xn)

[

∂ log(p(yn|xn))

∂xn

][

∂ log(p(yn|xn))

∂xn

]T

dyn.

(22)

Fig. 11. An example of RB evolution modelled as an FSM, with B =
{0, 1, . . . Bmax} and X = E = Y = {0, 1}. The 4-tuple (x, e, v, y)
represent for every time t the values of the user load, the renewable energy
produced, the energy taken out of the battery by the EMU, and the grid load,
respectively.

Assuming an unbiased estimator at the attacker, i.e., the

difference between the estimator’s expected value and the

true average value of the parameter being estimated is zero,

the variance of the estimation error can be bounded via the

Cramér-Rao bound as follows:

E[||xn − x̂n(yn)||22] ≥ Tr(FI(xn)−1), (23)

where ||xn − x̂n(yn)||22 denotes the squared Euclidean norm,

and Tr(A) denotes the trace of matrix A. To maximize the

privacy it is then necessary to maximize the trace of the inverse

of the FI matrix. In [45], two SM settings with RB are studied,

specifically when the battery charging policy is independent

of the user load, and when it is dependent non-causally on

the entire user load sequence. For both cases single-letter

expressions are obtained for the maximum privacy. Moreover,

the case of biased estimators, wear and tear of the batteries,

and peak power charging and discharging constraints are also

briefly analyzed in [45].

Empirical MI as a Privacy Measure

Approaches aimed at determining theoretical privacy limits

provide important insights and intuitions for the optimal en-

ergy management policy in order to limit the privacy leakage.

However, they are often difficult to optimize or even evaluate

numerically, and the relatively simplified formulation obtained

in various special cases rely on restrictive assumptions, e.g.,

i.i.d. user load, infinite RB capacity, etc. An alternative is

to follow a suboptimal or heuristic EMP. Although such a

policy does not provide theoretical privacy guarantees, one

can evaluate the corresponding privacy leakage numerically

using empirical MI.

One way to compute the empirical MI is by simulating a

discrete time system for a “large enough” time interval and

sampling the resulting Xn and Y n sequences [64]. The MI

between two sequences xn and yn can be approximated as

I(X ;Y ) ≈ −
1

n
log p(yn)−

1

n
log p(xn) +

1

n
log p(xn, yn),

(24)

where p(yn), p(xn) and p(xn, yn) are calculated recursively

through a sum-product computation. When using this method,

the RB is modeled as a finite state machine (FSM), and

the battery SoC evolves in time through a Markov chain

with transition probabilities depending on the specific policy



implemented. An example FSM is illustrated in Fig. 11, where

all the processes are considered to be binary and Bernoulli

distributed, and the parameters are qx = Pr{X = 1},

pe = Pr{E = 1} and pv, the latter being the probability

of using energy from the battery provided there is available

energy. The support space for the parameters is discretized,

and the optimal combination of parameters is found, which

minimizes the empirical MI. This approach is followed in [65],

where only a binary RB is present and for an i.i.d. Bernoulli

distributed user demand, and in [66] where an RES is also

considered. The latter work also analyzes the wasted energy

and characterize the privacy-vs-energy efficiency trade-off for

the binary scenario and equiprobable user load and renewable

energy generation processes. For larger battery capacities

and for an equiprobable user load, they note that there is

a symmetry and complementarity in the optimal transition

probabilities in the FSM model, which simplifies the numerical

analysis. This model is also employed in [60] and [61] by

considering an RES and designing a suboptimal policy, which,

at each time instant, decides among using all of the available

energy, half of it, or no energy at all, according to a probability

chosen to minimize the overall information leakage.

Another technique for approximating MI is to assume X
and Y to be i.i.d. over a time interval, and approximate the MI

via the relative frequency of events (Xt, Yt) during the same

time window. In [67] this approach is enriched by additive

smoothing, i.e., avoiding zero probability estimates by adding

a positive scalar, and it is employed together with a model-

distribution predictive controller, such that, at each time slot t,
the EMU decides its actions for a prediction horizon of length

T , i.e., up to time t+T . Privacy and cost are jointly optimized

by considering non-causal knowledge of the renewable energy

generation process, user load and energy prices, while EMU’s

actions, i.e., the energy that is requested from the grid and

the battery, are forecast over the prediction horizon. The user

and grid load processes are assumed to be i.i.d. within a time

window N ≫ T , which also includes the prediction horizon

T , and finite alphabets X and Y are considered. As N ≫ T ,

first-order Taylor approximation of the logarithm function is

used, and the corresponding mixed integer quadratic program

is formulated, which is of manageable size and can be solved

recursively whenever new SM readings are available. Results

show that considering a relatively small prediction horizon T
prevents the EMU from fully utilizing the RB capacity, as

the user load that is considered by the algorithm is generally

smaller then the RB capacity. Allowing a longer prediction

interval dramatically improves the performance in terms of

both privacy and cost, at the expense of a much higher com-

putational complexity. The work also shows that by increasing

the alphabet sizes of X and Y better privacy performance can

be achieved.

Empirical MI normalized by the empirical entropy of the

user load is considered in [68], where an RB is used to

minimize the energy cost subject to privacy constraints. Here

two cost tariffs are considered, a low-price and a high-

price, and a dynamic programming approach is developed to

maximize the energy stored in the battery at the end of the

low-price period, and minimize it at the end of the high-price

period. At every time slot, the optimal probability distribution

of the grid load is computed, which is forced to be independent

of the user load distribution.

CONCLUDING REMARKS AND FUTURE CHALLENGES

Privacy and “the right to be let alone” are an individual’s

inalienable fundamental rights, which are safeguarded in many

national constitutions worldwide. In Europe, the General Data

Protection Regulation (GDPR) [69], which will be enforced

from 25 May 2018, will set even more stringent requirements

for every technology or device that collects and processes

customer data, including SMs. For these reasons, addressing

the SM privacy problem is crucial for the adoption of the SG

concept. In fact, considering the growing privacy concerns

of the consumers for SMs as well as many other emerging

technologies [70], a critical growth in SM adoption and other

SG technologies will take place only when consumers are

given full control of their privacy, and they feel they have

clear and honest information on how their data is being used.

Only then, consumer resistance can be overcome and their

trust will be assured, thus paving the way to a more fertile

and fair ground for new products and increased innovation in

this domain.

UPs and their partners, including governments, may be too

keen on collecting users’ data indiscriminately, and less incen-

tivized to develop privacy-enhancing technologies. Therefore,

legislators, public commissions, consumer advocacy groups

and researchers have an important role in tackling the SM

privacy problem, and preventing the SM data from being

gathered indiscriminately and sold to third parties without

explicit user consent, or even passed to government intelli-

gence agencies for mass surveillance scopes. GDPR is a good

example of such initiatives. However, given that such a legal

framework is still lacking and not yet fully developed globally,

it becomes imperative to push forward the concept of privacy-

by-design, according to which privacy should be “designed-in”

to new products and services, rather than considered only after

user complaints and regulatory impositions. This is because a

wider range of options are available during the design stage

as compared to modifying the product following a privacy

incident or a user complaint. Achieving privacy-by-design is

the ultimate goal of the techniques analyzed in this paper.

In this article we have focused exclusively on techniques

that adopt physical resources, such as RESs and RBs, to

provide privacy to users. Main motivation and benefits of these

techniques is that they do not undermine the benefits of the

SG concept. Each of the outlined techniques has its unique

advantages and disadvantages, and focuses on a particular

aspect of privacy. However, despite the considerable efforts

put into developing SM privacy-preserving techniques, the

full extent of the privacy problem in SMs is far from being

completely understood, and a unified and coherent vision for

SM privacy (just like in many other domains) is still missing.



In the context of SM privacy, UDS-based methods ma-

nipulate a physical quantity, energy, to ensure privacy for

users. This entails that physical constraints, such as those

related to an RB or an RES, play a crucial role in finding

the optimal privacy-preserving strategy. We expect that the

techniques developed for enhancing SM privacy can prove

useful in other privacy-sensitive settings, in which physical

quantities are involved, such as gas and water meters, or

location privacy.

Research Challenges

Various challenges must be addressed before privacy-by-

design can become a reality in SM systems. Firstly, a generic

privacy measure, or a combination of different measures, must

be determined and adopted in order to formally quantify the

loss of privacy, in the same way a user’s electricity bill is

computed. Such a measure should be device-independent, and

enable the comparison of various privacy-preserving strategies.

It is also necessary to understand the implications of the

various privacy measures on the grid load. From this point

of view, theoretical measures may be preferable due to their

abstract and fundamental nature, i.e., they are independent of

any assumptions on the attacker’s algorithms. However, their

relevance in real-world scenarios must be assessed further, and,

if necessary, valid suboptimal privacy measures or algorithms

should be put forward and standardized as a proxy for more

rigorous privacy assurances.

Another important goal is to give consumers as much

flexibility as possible in setting their desired level of privacy,

trading off privacy with the cost of electricity, or other services.

It is also essential to allow consumers the possibility of setting

different privacy requirements for different devices, as users

may value the information about the usage of a certain device

more sensitive compared to others. This may happen because

certain devices are naturally more correlated to the user’s

activities or presence at home, such as the use of a kettle,

a microwave or an oven, or because a user may decide to hide

the usage of a certain appliance for personal reasons.

In the near future, a wider use of electric vehicles will also

bring additional complications to the SM privacy problem, as

mobility patterns may be inferred by analyzing the charging

and discharging events. This problem can be tackled by load

shifting, which is expected to play an important role in jointly

optimizing electricity cost and privacy. Load shifting, as well

as other privacy-preserving techniques introduced here, will be

more accurate and relevant thanks to the development of reli-

able prediction techniques for future electricity consumption,

e.g., by using machine learning techniques. The proliferation

of various energy-hungry “smart devices” will complicate the

problem further and overburden RBs even more. Finally, the

use of shared physical resources should also be investigated in

more depth, as cities are becoming more and more dense and

users may want to team up to install storage devices or energy

generators that are still rather costly. In cities, solar panels or

mini wind turbines may be installed on the roof of blocks

of flats and RBs may be put in communal areas, and these

resources can be used jointly by all the users in a building.

Such resource sharing models make the privacy problem even

more complicated and challenging, and might call for a game

theoretic formulation of the problem.

Overall, we hope that presenting this overview of the SM

privacy problem and current solutions will further encourage

research and development in this area, so that remaining open

issues will be solved and the SMs’ full potential will be

unleashed.
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