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Abstract

We construct spherical vector bases that are bandlimited and spatially concentrated, or alternatively, spacelimited
and spectrally concentrated, suitable for the analysis and representation of real-valued vector fields on the surface of
the unit sphere, as arises in the natural and biomedical sciences, and engineering. Building on the original approach of
Slepian, Landau, and Pollak we concentrate the energy of our function basis into arbitrarily shaped regions of interest
on the sphere and within a certain bandlimit in the vector spherical-harmonic domain. As with the concentration prob-
lem for scalar functions on the sphere, which has been treated in detail elsewhere, the vector basis can be constructed
by solving a finite-dimensional algebraic eigenvalue problem. The eigenvalue problem decouples into separate prob-
lems for the radial, and tangential components. For regions with advanced symmetry such as latitudinal polar caps, the
spectral concentration kernel matrix is very easily calculated and block-diagonal, which lends itself to efficient diago-
nalization. The number of spatiospectrally well-concentrated vector fields is well estimated by a Shannon number that
only depends on the area of the target region and the maximal spherical harmonic degree or bandwidth. The Slepian
spherical vector basis is doubly orthogonal, both over the entire sphere and over the geographic target regions. Like its
scalar counterparts it should be a powerful tool in the inversion, approximation and extension of bandlimited fields on
the sphere: vector fields such as gravity and magnetism in the earth and planetary sciences, or electromagnetic fields
in optics, antenna theory and medical imaging.

Key words: bandlimited function, concentration problem, eigenvalue problem, spectral analysis, vector spherical
harmonics

1. Introduction

Since it is impossible to simultaneously bandlimit and spacelimit a function to a chosen region of in-
terest, we need to resort to functions that are bandlimited but optimally concentrated, with respect to their
spatial energy, inside a target region. Slepian, Landau, and Pollak presented the solution for the problem of
optimally concentrating a signal in time and frequency in their seminal papers [1,2,3,4]. Their construction
leads to a family of orthogonal tapers or data windows that have been widely applied as windows to regular-
ize the quadratic inverse problem of power spectral estimation from time-series observations of finite extent.
The “Slepian functions”, as we shall be calling them, are furthermore of great utility as a basis for function
representation, approximation, interpolation and extension, and to solve stochastic linear inverse problems
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Fig. 1. Sketch illustrating the geometry of the vector spherical concentration problem. Lower right shows an axisymmetric polar cap of colatitudinal radius Θ as
treated in Section 4. The area of the region of concentration, R = R1 ∪R2 ∪ . . ., is denoted by A in the text.

in a wide range of disciplines. Several authors have studied the time-scale and time-frequency concentra-
tion for more general settings (see [5,6,7] and references therein for a review). More specifically, spherical
scalar Slepian functions, spatially concentrated while bandlimited or spectrally concentrated while space-
limited, have been applied in physical, computational, and biomedical fields such as geodesy [8,9,10,11]
and gravimetry [12,13,14,15,16], geomagnetism [17,18] and geodynamics [19], planetary [20,21,22,23] and
biomedical science [24,25], cosmology [26,27], and computer science [28,29], while continuing to be of
interest in information and communication theory [30], signal processing [31,32], and mathematics [33,34].

To date only a few attempts have been made to bring the advantages of spherical Slepian functions into
the realm of spherical vector fields. The first successful construction of spatially concentrated bandlimited
tangential spherical vector fields was reported for applications in magnetoencephalography [24,25,35]. In
geodesy, Eshagh [36] has developed methods to explicitly evaluate the product integrals arising in the con-
centration problem whose solutions are the vectorial Slepian functions. In this paper we present a complete
extension of Slepian’s spatiospectral concentration problem to vector fields on the sphere, and give sug-
gestions and examples as to their usage for problems of a geomagnetic nature (e.g. [37,38]). The family
of optimally concentrated spherical vectorial multitapers that we will construct in the following should be
useful in many scientific applications. In particular in geomagnetism, one of the objectives of the SWARM

mission [39] is to model the lithospheric magnetic field with maximal resolution and accuracy, even in the
presence of contaminating signals from secondary sources. In addition, and more generally, lithospheric-
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field data analysis will have to successfully merge information from the global to the regional scale. In the
past decade or so, a variety of global-to-regional modeling techniques have come of age including harmonic
splines [40,41,42], stitching together local models [43,44,45,46,47], and wavelets [48,49,50]. Due to their
optimal combination of spatial locality and spectral bandlimitation the multitapers constructed in this paper
should be well suited to combine global and local data while respecting the bandlimitation.

2. Preliminaries

Figure 1 shows the geometry of the unit sphere Ω = {r̂ : ‖r̂‖ = 1} and its tangential vectors. The
colatitude of spherical points r̂ is denoted by 0 ≤ θ ≤ π and the longitude by 0 ≤ φ < 2π; we denote the
unit vector pointing outwards in the radial direction by r̂, and the unit vectors in the tangential directions
towards the south pole and towards the east will be denoted by θ̂ and φ̂, respectively. The symbol R will be
used to denote a region of the unit sphere Ω, of area A =

∫
R dΩ, within which the bandlimited vector field

shall be concentrated. The region can be a combination of disjoint subregions, R = R1 ∪R2 ∪ · · · , and the
boundaries of the Ri can be irregularly shaped, as depicted. We will denote the region complementary to R
by Ω \R.

2.1. Real Scalar Spherical Harmonics

Restricting our attention to real-valued vector fields, we use real vector spherical harmonics, which are
constructed from their scalar counterparts. Each scalar spherical harmonic Ylm has a degree 0 ≤ l and, for
each degree, an order −l ≤ m ≤ l. Our spherical harmonics are unit-normalized in the sense [51]

Ylm(θ, φ) =


√

2Xl|m|(θ) cosmφ if − l ≤ m < 0,

Xl0(θ) if m = 0,√
2Xlm(θ) sinmφ if 0 < m ≤ l,

(1)

Xlm(θ) = (−1)m
(

2l + 1

4π

)1/2 [
(l −m)!

(l +m)!

]1/2

Plm(cos θ), (2)

Plm(µ) =
1

2ll!
(1− µ2)m/2

(
d

dµ

)l+m
(µ2 − 1)l. (3)

The asymptotic wavenumber [52] associated with a harmonic degree l is
√
l(l + 1). The function Plm(µ)

in (3) is called the associated Legendre function of integer degree l and order m. The spherical harmonics
Ylm(r̂) are eigenfunctions of the Laplace-Beltrami operator, ∇2

1Ylm = −l(l + 1)Ylm, where ∇2
1 = ∂2

θ +
cot θ ∂θ + (sin θ)−2∂2

φ. We choose the constants in (1)–(3) to guarantee orthonormality:

∫
Ω
YlmYl′m′ dΩ = δll′δmm′ . (4)
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The product of two normalized Legendre functions [51,53] is the linear combination

Xlm(θ)Xl′m′(θ) = (−1)m+m′
l+l′∑

n=|l−l′|

√
(2n+ 1)(2l + 1)(2l′ + 1)

4π

×

 l n l′

0 0 0


 l n l′

m −m−m′ m′

Xnm+m′(θ). (5)

The index arrays in (5) are Wigner 3-j symbols [53,54]. We will use the following two recursion rela-
tions [36,55] for the derivatives of the Xlm(θ) and their divisions by sin θ. Define

X ′lm =
dXlm

dθ
. (6)

Then, from the work by Ilk [55] follows that, for 0 ≤ l and 0 ≤ m ≤ l,

X ′lm = a−lmXl m−1 + a+
lmXl m+1, (7)

where

a±lm = ±

√
(l ∓m)(l ±m+ 1)

2
. (8)

and, for 0 ≤ l and 1 ≤ m ≤ l,

(sin θ)−1mXlm = b−lmXl−1m−1 + b+
lmXl−1m+1, (9)

where

b±lm = −
√

2l + 1

2l − 1

√
(l ∓m)(l ∓m− 1)

2
. (10)

In both (8) and (10), for l < 0 or m < 0, we have Xlm = 0.

Finally, as shown by Paul [56], integrals of the type

Ilm(Θ) =
∫ Θ

0
Xlm(θ) sin θ dθ (11)

can be exactly evaluated recursively. When l ≥ 2 and 0 ≤ m < l, we have

Ilm(Θ) =
l − 2

l + 1

√√√√(2l + 1)[(l − 1)2 −m2]

(2l − 3)(l2 −m2)
Il−2m(Θ)

+
1

l + 1

√
4l2 − 1

l2 −m2
sin2ΘXl−1m(Θ), (12)

and, for l ≥ 2 and m = l, the formula

Ill(Θ) =
1

l + 1

√
2l + 1

4l2 − 4l

[
l
√

2l − 1Il−2 l−2(Θ)− (sin Θ)2Xl−1 l−2(Θ)
]
. (13)
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The recursions (12)–(13) are to be started from

X00(Θ) =
1

2
√
π
, I00(Θ) =

1

2
√
π

(1− cos Θ), (14)

X10(Θ) =
1

2

√
3

π
cos Θ, I10(Θ) =

1

4

√
3

π
(sin Θ)2, (15)

X11(Θ) = −1

2

√
3

2π
sin Θ, I11(Θ) = −1

4

√
3

2π
(Θ− sin 2Θ), (16)

hence enabling the exact evaluation of all integrals Ilm(Θ) for l ≥ 0 and 0 ≤ m ≤ l.

2.2. Real Valued Vector Spherical Harmonics

The canonical three-dimensional gradient operator ∇ = x̂∂x + ŷ∂y + ẑ∂z can be expressed as [51]

∇ = r̂∂r + r−1∇1, where ∇1 = θ̂∂θ + φ̂(sin θ)−1∂φ. (17)

For any differentiable function H(r̂) on the unit sphere, the vector field r̂H(r̂) is purely radial, the vector
fields ∇1H(r̂) and r̂ ×∇1H(r̂) are purely tangential, and all three are mutually orthogonal. We can thus
construct vector spherical harmonics from gradients of scalar spherical harmonics by defining, for l > 0
and −m ≤ l ≤ m,

Plm = r̂Ylm, (18)

Blm =
∇1Ylm√
l(l + 1)

=
[θ̂∂θ + φ̂(sin θ)−1∂φ]Ylm√

l(l + 1)
, (19)

Clm =
−r̂×∇1Ylm√

l(l + 1)
=

[θ̂ (sin θ)−1∂φ − φ̂∂θ]Ylm√
l(l + 1)

, (20)

together with the purely radial P00 = (4π)−1/2 r̂ and the vanishing B00 = C00 = 0. The orthonormality of
r̂, θ̂, and φ̂ immediately leads to

Plm ·Bl′m′ = Plm ·Cl′m′ = 0, (21)

and they are furthermore orthonormal in the sense

∫
Ω
Plm ·Pl′m′ dΩ =

∫
Ω
Blm ·Bl′m′ dΩ =

∫
Ω
Clm ·Cl′m′ dΩ = δll′δmm′ , (22)∫

Ω
Plm ·Bl′m′ dΩ =

∫
Ω
Plm ·Cl′m′ dΩ =

∫
Ω
Blm ·Cl′m′ dΩ = 0. (23)

The vector spherical-harmonic addition theorem [57] comprises the identities
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l∑
m=−l

Plm(r̂) ·Plm(r̂) =

(
2l + 1

4π

)
(24)

=
l∑

m=−l
Blm(r̂) ·Blm(r̂) =

l∑
m=−l

Clm(r̂) ·Clm(r̂). (25)

2.3. Real-Valued Vector Fields on the Unit Sphere

The expansion of a real-valued square-integrable vector field u on the unit sphere Ω can be written as

u =
∞∑
lm

UlmPlm + VlmBlm +WlmClm, (26)

where the expansion coefficients are obtained via

Ulm =
∫

Ω
Plm · u dΩ, Vlm =

∫
Ω
Blm · u dΩ, and Wlm =

∫
Ω
Clm · u dΩ, (27)

using the shorthand notation
∑L
lm :=

∑L
l=0

∑l
m=−l when Plm or Ulm are involved and

∑L
lm :=

∑L
l=1

∑l
m=−l,

for Blm, Clm, Vlm or Wlm. A sans serif u will be used to denote the ordered column vector of vector
spherical-harmonic coefficients, namely u = (. . . , Ulm, . . . , Vlm, . . . ,Wlm, . . .)

T. We will denote the norms
of a spatial-domain vector field u(r̂) and its spectral-domain equivalent u by

‖u‖2
Ω =

∫
Ω
u · u dΩ, ‖u‖2

∞ =
∞∑
lm

U2
lm + V 2

lm +W 2
lm. (28)

Hence Parseval’s relation can be written in the form ‖u‖2
Ω = ‖u‖2

∞. Any square-integrable vector field
u on the sphere can be decomposed into a radial component, ur, and a tangential component, ut, thus
u = ur + ut, whereby

ur =
∞∑
lm

UlmPlm and ut =
∞∑
lm

VlmBlm +WlmClm. (29)

We use δ(r̂, r̂′) for the vector Dirac delta function on the sphere. Accordingly,∫
Ω
δ(r̂, r̂′) · u(r̂) dΩ = u(r̂′). (30)

The vector spherical-harmonic representation of δ(r̂, r̂′) is the dyad

δ(r̂, r̂′) =
∞∑
lm

Plm(r̂)Plm(r̂′) + Blm(r̂)Blm(r̂′) + Clm(r̂)Clm(r̂′). (31)

2.4. Bandlimited and Spacelimited Vector Fields

We consider two subspaces of the space of all square-integrable vector fields on the unit sphere Ω. Given
g = (. . . , Ulm, . . . , Vlm, . . . ,Wlm, . . .)

T, we define the space of all bandlimited vector fields SL = {g :

6
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Ulm = Vlm = Wlm = 0 for L < l ≤ ∞ and −l ≤ m ≤ l}, with no power beyond the bandwidth L, whose
elements are the functions

g = gr + gt =
L∑
lm

UlmPlm + VlmBlm +WlmClm, (32)

where now

Ulm =
∫

Ω
Plm · g dΩ, Vlm =

∫
Ω
Blm · g dΩ, and Wlm =

∫
Ω
Clm · g dΩ. (33)

Similarly, we define SR = {h : h = 0 in Ω \ R} to be the space of all spacelimited vector fields h(r̂) that
are equal to zero outside a nonempty region R ⊂ Ω. By definition, the space SR is infinite-dimensional but
dimSL = 3(L + 1)2 − 2, because the coefficient vector g has

∑L
l=0(2l + 1) = (L + 1)2 entries for the

Ulm and
∑L
l=1(2l + 1) = (L + 1)2 − 1 entries for the Vlm and Wlm, respectively. We define the spatial and

spectral measures analogously to (28)

‖g‖2
R =

∫
R
g · g dΩ, ‖g‖2

L =
L∑
lm

U2
lm + V 2

lm +W 2
lm. (34)

3. Concentration within an Arbitrarily Shaped Region

No vector field can be strictly bandlimited and strictly spacelimited, i.e., no u(r̂) can simultaneously
be contained in both spaces SR and SL. Our goal is to determine bandlimited vector fields g(r̂) ∈ SL with
optimal energy-concentration within a spatial regionR, and those spacelimited vector fields h(r̂) ∈ SR with
an optimally concentrated spectrum within an interval 0 ≤ l ≤ L. Similar to the scalar time-frequency [58],
multidimensional Cartesian [5,59] and spherical [6] cases, these two spatiospectral concentration problems
are closely related.

3.1. Spatial Concentration of a Bandlimited Vector Field

We maximize the spatial concentration of a bandlimited vector field g(r̂) ∈ SL within R via the ratio

λ =
‖g‖2

R

‖g‖2
Ω

=

∫
R
g · g dΩ∫

Ω
g · g dΩ

= maximum. (35)

The variational problem (35) is analogous to that encountered in one and two scalar dimensions. As there,
the ratio 0 < λ < 1 is a measure of the spatial concentration.

7
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3.1.1. Purely Radial Vector Fields

As a first step, we focus on solving(35) for purely radial fields, that is, bandlimited vector fields in the
decomposition (29),

gr =
L∑
lm

UlmPlm. (36)

To simplify the notation we drop the superscript on the coefficient vector, such that g = (. . . , Ulm, . . .)
T in

this Section. Inserting the representation (36) into (35) and switching the order of summation and integra-
tion, we can express λ as

λ =

L∑
lm

Ulm
L∑
l′m′

Plm,l′m′Ul′m′

L∑
lm

U2
lm

. (37)

Here we have used orthonormality (22) and the quantities

Plm,l′m′ =
∫
R
Plm ·Pl′m′ dΩ =

∫
R
YlmYl′m′ dΩ. (38)

We can reformulate (35) as a matrix variational problem [60]:

λ =
gTPg

gTg
= maximum (39)

using the (L+ 1)2 × (L+ 1)2 matrix

P =


P00,00 · · · P00,LL

...
...

PLL,00 · · · PLL,LL

 , (40)

The stationary solutions of the Rayleigh quotient λ in (39) are solutions of the (L+1)2× (L+1)2 algebraic
eigenvalue problem

Pg = λg. (41)
Therefore the spatial concentration problem of purely radial bandlimited vector fields is completely equiv-
alent to the scalar spherical concentration problem [6].

3.1.2. General Vector Fields

For bandlimited vector fields that are of the kind (32) described by the complete coefficient vector g =
(. . . , Ulm, . . . , Vlm, . . . ,Wlm, . . .)

T, operations analogous to those carried out in Section 3.1.1. transform (35)
into a matrix variational problem in the space of [3(L+ 1)2 − 2]-tuples:

λ =
gTKg

gTg
= maximum. (42)
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Since the inner products of Plm with Blm and Clm are always zero because of (21),

K =


P 0 0

0 B D

0 DT C

 =

P 0

0 Q

 , (43)

where the [(L+ 1)2 − 1]× [(L+ 1)2 − 1]-dimensional matrices

B =


B10,10 · · · B10,LL

...
...

BLL,10 · · · BLL,LL

 , (44)

C =


C10,10 · · · C10,LL

...
...

CLL,10 · · · CLL,LL

 , (45)

D =


D10,10 · · · D10,LL

...
...

DLL,10 · · · DLL,LL

 , (46)

have matrix entries defined by

Blm,l′m′ =
∫
R
Blm ·Bl′m′ dΩ, (47)

Clm,l′m′ =
∫
R
Clm ·Cl′m′ dΩ, (48)

Dlm,l′m′ =
∫
R
Blm ·Cl′m′ dΩ, (49)

and

Q =

 B D

DT C

 =

 B D

−D B

 . (50)

The last identity follows from (19)–(20) and (47)–(49). The solutions to the concentration problem of gen-
eral bandlimited vector fields to arbitrary domains solve the [3(L+ 1)2− 2]× [3(L+ 1)2− 2]-dimensional
algebraic eigenvalue problem

Kg = λg. (51)
The matrix (43) is real, symmetric (KT = K), and it is positive definite (gTKg > 0 for all g 6= 0),
hence the 3(L + 1)2 − 2 eigenvalues λ and associated eigenvectors g are always real. The eigenval-
ues λ1, λ2, . . . , λ3(L+1)2−2 and eigenvectors g1, g2, . . . , g3(L+1)2−2 can be ordered so that they are sorted
1 > λ1 ≥ λ2 ≥ · · · ≥ λ3(L+1)2−2 > 0. Every spectral-domain eigenvector gα is associated with a band-
limited spatial eigenfield gα(r̂) defined by (32). If R is a true subset of Ω, then the largest eigenvalue, λ1,

9
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will be strictly smaller than one since no bandlimited function can be non-zero only within a region R that
is smaller than Ω. Due to the positive definiteness of the matrix K for a non-empty region R, the smallest
eigenvalue, λ3(L+1)2−2, is larger than zero.

The eigenvectors g1, g2, . . . , g3(L+1)2−2 are orthogonal. We orthonormalize as

gTα gβ = δαβ, gTαKgβ = λαδαβ. (52)

The associated eigenfields g1(r̂),g2(r̂), . . . ,g3(L+1)2−2(r̂) are a basis for SL that is orthogonal over the
region R and orthonormal over the whole sphere Ω:∫

Ω
gα · gβ dΩ = δαβ,

∫
R
gα · gβ dΩ = λαδαβ. (53)

The relations (53) for the spatial-domain are equivalent to their matrix counterparts (52). The eigenfield
g1(r̂) with the largest eigenvalue λ1 is the element in the space SL of bandlimited vector fields with most
of its spatial energy within region R; the eigenfield g2(r̂) is the next best-concentrated element in SL that is
orthogonal to g1(r̂) over both Ω and R; and so on.

When put into index notation, the eigenvalue equations (51) are

L∑
l′m′

Plm,l′m′Ul′m′ = λUlm, (54)

L∑
l′m′

Blm,l′m′Vl′m′ +Dlm,l′m′Wl′m′ = λVlm, (55)

L∑
l′m′

DT
lm,l′m′Vl′m′ + Clm,l′m′Wl′m′ = λWlm. (56)

By tensor-multiplying the expression (54) with Plm(r̂), (55) with Blm(r̂), and (56) with Clm(r̂), and sum-
ming in each equation over all 0 ≤ l ≤ L and −l ≤ m ≤ l, we obtain the following system of spatial-
domain equations

∫
R

[
L∑
lm

Plm(r̂)Plm(r̂′)

]
· gr(r̂′) dΩ′ = λgr(r̂), (57)

∫
R

[
L∑
lm

Blm(r̂)Blm(r̂′)

]
· gt(r̂′) dΩ′ = λ

L∑
lm

VlmBlm(r̂), (58)

∫
R

[
L∑
lm

Clm(r̂)Clm(r̂′)

]
· gt(r̂′) dΩ′ = λ

L∑
lm

WlmClm(r̂). (59)

By adding equations (57)–(59), we obtain the spatial-domain eigenvalue problem∫
R
K(r̂, r̂′) · g(r̂′) dΩ = λg(r̂), r̂ ∈ Ω, (60)

10
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a homogeneous Fredholm integral equation [61] with a finite-rank, symmetric, separable, bandlimited vec-
tor Dirac delta function kernel,

K(r̂, r̂′) =
L∑
lm

Plm(r̂)Plm(r̂′) + Blm(r̂)Blm(r̂′) + Clm(r̂)Clm(r̂′), (61)

a reproducing kernel [5,7] in the space SL. By inserting the representations (32) and (61) into (60), we
obtain again the matrix equation (51). Therefore the spectral-domain eigenvalue problem for g and the
spatial-domain eigenvalue problem for a bandlimited g(r̂) ∈ SL are completely equivalent.

In summary, it is possible to construct an orthogonal family of bandlimited eigenfields that is optimally
concentrated within a region R on the unit sphere Ω by solving either the Fredholm integral equation (60)
for the associated spatial-domain eigenfields g1,g2, . . . ,g3(L+1)2−2 or the matrix eigenvalue problem (51)
for spectral-domain eigenvectors g1, g2, . . . , g3(L+1)2−2. Both methods determine the optimally concentrated
eigenfields over the complete domain Ω, i.e., both in the region R, within which they are concentrated, and
in the complementary region Ω \R, into which they show inevitable leakage.

3.2. Spectral Concentration of a Spacelimited Vector Field

Instead of energy-concentrating a bandlimited vector field g(r̂) ∈ SL, within a spatial region R, we
may choose to construct a spacelimited vector field h(r̂) ∈ SR that is concentrated within the spectral
interval 0 ≤ l ≤ L <∞. Such a spacelimited vector function will be defined by

h =
∞∑
lm

U ′lmPlm + V ′lmBlm +W ′
lmClm, (62)

with the expansion coefficients given by the spatially limited integrals

U ′lm =
∫
R
Plm · h dΩ, V ′lm =

∫
R
Blm · h dΩ, and W ′

lm =
∫
R
Clm · h dΩ. (63)

The quadratic concentration measure analogous to (35) is now the ratio

λ =
‖h‖2

L

‖h‖2
∞

=

L∑
lm

U ′2lm + V ′2lm +W ′2
lm

∞∑
lm

U ′2lm + V ′2lm +W ′2
lm

= maximum. (64)

The variational problem (64) can once again be rewritten as a Rayleigh quotient

λ =

∫
R

∫
R
h(r̂) ·K(r̂, r̂′) · h(r̂′) dΩ dΩ′∫

R
h(r̂) · h(r̂) dΩ

= maximum (65)

11
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by inserting the vector spherical-harmonic expansion coefficients (63) into (64), switching the order of sum-
mation and integration, and by making use of the reproducing property (30) of the delta function (31) and
the definition (61) of the kernel K(r̂, r̂′). Stationary solutions of (64) solve the Fredholm integral equation

∫
R
K(r̂, r̂′) · h(r̂′) dΩ′ = λh(r̂), r̂ ∈ R. (66)

This equation for h(r̂) ∈ SR is identical to (60) for g(r̂) ∈ SL, the difference being that (60) is applicable
on the entire sphere Ω, while the domain of (66) is limited to the region R, within which h(r̂) 6= 0. We
constructed the spectral norm ratio maximizing eigenfields h(r̂) for (64) such that they are identical to the
eigenfields g(r̂) that maximize the spatial norm ratio (35) within the region R. We normalize such that

h(r̂) =

g(r̂) if r̂ ∈ R,
0 otherwise.

(67)

Every bandlimited eigenfield gα ∈ SL leads to a spacelimited hα ∈ SR by the restriction (67). The eigen-
values λα associated with the corresponding gα measure the fractional spatial energy 1 − λα that leaked
to the region Ω \ R. These eigenvalues are identical to the fractional spectral energy that leaked into the
degrees L < l ≤ ∞ by truncating gα in the construction of hα (67). Equivalently, we could have started
with the variational problem (64) instead of (35) to obtain the integral equation (60) and then extend the
domain (66) to the whole sphere Ω.

The constructed spacelimited eigenfields h1(r̂),h2(r̂), . . . ,h3(L+1)2−2 from (67) are orthogonal over both
the whole sphere Ω and the region R:

∫
Ω
hα · hβ dΩ =

∫
R
hα · hβ dΩ = λαδαβ. (68)

We can express the coefficients of h = (. . . , U ′lm, . . . , V
′
lm, . . . ,W

′
lm, . . .)

T, where 0 ≤ l ≤ ∞ by the
coefficients g = (. . . , Ulm, . . . , Vlm, . . . ,Wlm, . . .)

T, with 0 ≤ l ≤ L using the relation h = Kg, which
leads to U ′lm = λUlm, V ′lm = λVlm and W ′

lm = λWlm, when 0 ≤ l ≤ L due to (54)–(56). The solutions to
equation (66) form an infinite-dimensional space. The complement to the 3(L + 1)2 − 2 eigenfields with
nonzero eigenvalues λ1, λ2, . . . , λ3(L+1)2−2 is the space spanned by all eigenfields of (66) with associated
eigenvalue λ = 0. Fields h(r̂) vanishing in Ω \ R without power in the spectral interval 0 ≤ l ≤ L are
members of this null space.

12
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3.3. Significant and Insignificant Eigenvalues

The eigenvalues of the matrix K defined in (43) can be summed up as follows

N =
3(L+1)2−2∑

α=1

λα = trK =
L∑
lm

(Plm,lm +Blm,lm + Clm,lm) (69)

=
∫
R

[
L∑
lm

Plm(r̂) ·Plm(r̂) + Blm(r̂) ·Blm(r̂) + Clm(r̂) ·Clm(r̂)

]
dΩ (70)

=
[
3(L+ 1)2 − 2

] A
4π
. (71)

In the fourth equality we substituted the diagonal matrix elements Plm,lm, Blm,lm and Clm,lm from (38),
(47)–(48), and in the last equality we used the addition theorems (24)–(25).

The valueN in (69) is the vector spherical analogue of the Shannon number in the scalar Slepian concen-
tration problems [5]. Well conctentrated eigenfields gα(r̂) for the region R will have eigenvalues λα near
unity, whereas poorly concentrated eigenfields will have eigenvalues λα close to zero. Due to the character-
istic step-shaped spectrum of eigenvalues
λ1, λ2, . . . , λ3(L+1)2−2, the total number of significant (λα ≈ 1) eigenvalues can be well approximated by
the rounded sum (69), as in the one-dimensional and two-dimensional scalar spherical problems. Since N
is a good estimate for the number of significant eigenvalues, then, roughly speaking, the vector spherical
Shannon number (69) describes the dimension of the space of vector fields u(r̂) that are approximately
limited in both the spectral domain to vector spherical-harmonic degrees 0 ≤ l ≤ L, and in the spatial
domain to an arbitrarily shaped region R of area A [62,63].

Instead of constructing a bandlimited field g(r̂) ∈ SL that is optimally energy-concentrated within a
spatial region R, we could have sought to construct one that is optimally excluded from R, i.e., one that is
optimally concentrated within Ω \ R and therefore sought to minimize rather than maximize the Rayleigh
quotient (35). What we have constructed are the stationary solutions g(r̂) ∈ SL of (35). Therefore we
have actually solved the concentration and exclusion problems simultaneously. The optimally excluded
eigenfields are identical to the optimally concentrated eigenfields but with reversed ordering. Because λα is
the fractional power of gα within R, its fractional power within Ω \ R is 1− λα . If the region R of area A
covers only a small fraction of the sphere A � 4π, the number of well-excluded eigenfields will be much
larger than the number of well concentrated eigenfields.

We can express the kernel K(r̂, r̂′) in the integral eigenvalue equation (60) in terms of the spatial-domain
eigenfields g1,g2, . . . ,g3(L+1)2−2 in the form

K(r̂, r̂′) =
3(L+1)2−2∑

α=1

gα(r̂)gα(r̂′). (72)

Equation (72) is equivalent to the original representation (61), because both the Plm,Blm,Clm, 0 ≤ l ≤ L,
−l ≤ m ≤ l, and the gα, α = 1, 2, . . . , 3(L + 1)2 − 2, are [3(L + 1)2 − 2]-dimensional orthonormal
bases for SL, and the transformation matrix that consists of the eigenvectors is orthogonal. The transformed
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representation (72) is a vector spherical version of Mercer’s theorem [61,64,65]. Upon setting r̂′ = r̂ in (72)
and applying the trace [51], we deduce that the sum of the squares of the 3(L + 1)2 − 2 bandlimited
eigenfields gα(r̂) is a constant that is independent of position r̂ on the sphere Ω,

3(L+1)2−2∑
α=1

gα(r̂) · gα(r̂) =
3(L+ 1)2 − 2

4π
=
N

A
. (73)

If the eigenvalues of the first N eigenfields g1(r̂),g2(r̂), . . . ,gN(r̂) are near unity, and the remaining eigen-
values gN+1(r̂),gN+2(r̂), . . . ,g3(L+1)2−2(r̂) are near zero, then we expect the eigenvalue-weighted sum of
squares to be

3(L+1)2−2∑
α=1

λα gα(r̂) · gα(r̂) ≈
N∑
α=1

λα gα(r̂) · gα(r̂) ≈

N/A if r̂ ∈ R,
0 otherwise.

(74)

The terms with N + 1 ≤ α ≤ 3(L + 1)2 − 2 should be comparatively small. It is hence immaterial
whether we include them in the sum (74) or not. The combination of the first N orthogonal eigenfields
gα, α = 1, 2, . . . , N , with eigenvalues λα ≈ 1, provide an essentially uniform coverage of the region R.
This characterizes the spatiospectral concentration problem. The spatiospectrally concentrated basis reduces
the number of degrees of freedom from dimSL = 3(L+ 1)2 − 2 to N = [3(L+ 1)2 − 2]A/(4π).

3.4. Pairs of Spatially Concentrated Tangential Vector Fields

It is possible to construct, from one spatially concentrated, bandlimited tangential vector field another
orthogonal, equally concentrated and equally bandlimited vector field, by simply rotating its vectorial di-
rections at each point on the sphere by 90◦ while retaining the absolute values. Such pairs of tangential
Slepian fields already appear in the purely tangential eigenvalue problem, which, due to the block-diagonal
shape of K in (43), can be solved independently from the radial problem (41). As can be seen from (18)–(20)
and (44)–(49), the following holds for any region R and bandlimit L:

C = B and DT = −D, (75)

and thus the purely tangential concentration problem is

Qg =

 B D

−D B

 g = λg. (76)

If g = (g1, g2)T is an eigenvector of (76) with eigenvalue λ, then g = (−g2, g1)T is also an eigenvector with
the same associated eigenvalue λ. The Slepian field constructed from (−g2, g1)T has the same pointwise
absolute value as the Slepian field constructed from (g1, g2)T, and they are pointwise orthogonal.
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4. Concentration within an axisymmetric polar cap

In this Section we concentrate on the special but important case where R is a symmetric polar cap with
colatitudinal radius Θ that is centered on the north pole, as is shown in Figure 1. Because rotations on the
sphere commute with the operators (18)–(20) defining the vector spherical harmonics [57], the optimally
concentrated eigenfields of the polar cap R = {θ : 0 ≤ θ ≤ Θ} can be rotated to anywhere on the unit
sphere using the same transformations that apply in the rotation of scalar functions [66,67,68].

4.1. Decomposition of the Spectral-Domain Eigenvalue Problem

In the axisymmetric case the matrix elements (38) and (47)–(49) reduce to

Plm,l′m′ = 2πδmm′
∫ Θ

0
XlmXl′m sin θ dθ, (77)

Blm,l′m′ =
2πδmm′

∫ Θ

0

[
X ′lmX

′
l′m +m2(sin θ)−2XlmXl′m

]
sin θ dθ√

l(l + 1)l′(l′ + 1)
, (78)

Dlm,l′m′ =−
2πδ−mm′mXlm(Θ)Xl′m(Θ)√

l(l + 1)l′(l′ + 1)
, (79)

while, as we know from (75) also, Clm,l′m′ = Blm,l′m′ and we remember (6).

The Kronecker deltas δmm′ and δ−mm′ admit rearranging the (L+ 1)2 × (L+ 1)2 radial-component ma-
trix P and the [2(L+ 1)2 − 2] × [2(L + 1)2 − 2] tangential-component matrix Q such that they are block-
diagonal: P = diag(P0,P1,P−1, . . . ,PL,P−L) and Q = diag(Q0,Q1,Q−1, . . . ,QL,Q−L).

Instead of solving the full eigenvalue equation (51), we can thus elect to solve a series of smaller spectral-
domain algebraic eigenvalue problems, one for each order,

Pmg = λgm and Qmg = λgm. (80)

The matrices Pm and Qm are of the form

Pm =


Pm
mm · · · Pm

mL

...
...

Pm
Lm · · · Pm

LL

 , Qm =

Bm Dm

DT
m Bm

 , (81)
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with

Bm =


Bm
mm · · · Bm

mL

...
...

Bm
Lm · · · Bm

LL

 , Dm =


Dm
mm · · · Dm

mL

...
...

Dm
Lm · · · Dm

LL

 , (82)

where, for any particular harmonic order 0 ≤ m ≤ L and degree m ≤ l ≤ L, we denote Pm
ll′ = Plm,l′m,

and, likewise, for max(m, 1) ≤ l ≤ L, we denote Bm
ll′ = Blm,l′m, and Dm

ll′ = Dlm,l′−m. We then also have

P−m = Pm, B−m = Bm, D−m = −Dm, D0 = 0, (83)

and that Pm,Bm,Dm, and consequently, Qm, are symmetric.

The calculations of the matrix elements Dm
ll′ are straightforward since they merely consist in evaluating

the Xlm at Θ. The calculations of the product integrals Pm
ll′ and Bm

ll′ can be simplified to integrations over
individual terms Xlm. For example, for the elements Pm

ll′ we can directly apply (5) to reduce them to

Pm
ll′ =

√
π(2l + 1)(2l′ + 1)

l+l′∑
n=|l−l′|

√
2n+ 1

 l n l′

0 0 0


 l n l′

m −2m m


×
∫ Θ

0
Xn 2m(θ) sin θ dθ, (84)

and those can be handled recursively via equation (11). Here, as before, we set Xlm = 0 for m > l.
Since this solution to (41) is identical to that of the scalar spherical concentration problem for the polar
cap, alternate expressions and special cases can be found elsewhere [6,69]. For the Bm

ll′ at positive orders
m ≥ 0, as first noted by Eshagh [36], we first need to transform the derivative products X ′lmX

′
l′m, and

m2(sin θ)−2XlmXl′m, into products of Xlm using the lemmas (7)–(10), to

∫ Θ

0
X ′lmX

′
l′m sin θ dθ = (85)

a−lma
−
l′m

∫ Θ

0
Xl m−1Xl′m−1 sin θ dθ + a+

lma
−
l′m

∫ Θ

0
Xl m+1Xl′m−1 sin θ dθ

+ a−lma
+
l′m

∫ Θ

0
Xl m−1Xl′m+1 sin θ dθ + a+

lma
+
l′m

∫ Θ

0
Xl m+1Xl′m+1 sin θ dθ,

∫ Θ

0
m2(sin θ)−2XlmXl′m sin θ dθ = (86)

b−lmb
−
l′m

∫ Θ

0
Xl−1m−1Xl′−1m−1 sin θ dθ + b+

lmb
−
l′m

∫ Θ

0
Xl−1m+1Xl′−1m−1 sin θ dθ

+ b−lmb
+
l′m

∫ Θ

0
Xl−1m−1Xl′−1m+1 sin θ dθ + b+

lmb
+
l′m

∫ Θ

0
Xl−1m+1Xl′−1m+1 sin θ dθ,

where a±lm and b±lm are defined in (8) and (10). The right hand sides of (85) and (86) can be expanded
using (5) and then the recursion (11) can be applied.
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Fig. 2. Reordered eigenvalue spectra (λα versus rank α) for the tangential vector Slepian functions for axisymmetric polar caps of colatitudinal radii
Θ = 10◦, 20◦, 30◦, 40◦ and a common bandwidth L = 18. The total number of eigenvalues is 2(L + 1)2 − 2 = 720; only λ1 through λ120 are shown.
Different symbols are used to plot the orders −11 ≤ m ≤ 11. Each symbol stands for two eigenvalues, that is, the ±m doublets for m > 0 and the doublets
stemming from the block-diagonal shape of Q0 for m = 0. Vertical gridlines and top labels specify the rounded Shannon numbers Nt = 5, 22, 48, and 84.

We order the L−m+1 distinct eigenvalues of Pm and the 2(L−max(m, 1) + 1) distinct eigenvalues of
Qm obtained by solving each of the eigenvalue problems (80) so that 1 ≥ λ1 ≥ λ2 ≥ · · · > 0. Additionally
we orthonormalize the associated eigenvectors g1, g2, . . . as in (52) so that

gTα gβ = δαβ, gTαPgβ = λαδαβ or gTαQgβ = λαδαβ, (87)

depending on whether gα and gβ are the eigenvectors of Pm or of Qm.

4.2. Eigenvalue Spectrum and Eigenfields

For the fixed-order radial eigenvalue problem (80) we can calculate the number of significant eigenvalues,
or partial Shannon number, using any of the two formulas

N r
m =

L−m+1∑
α=1

λα =
L∑
l=m

Pm
ll . (88)
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Fig. 3. Absolute values of the tangential bandlimited eigenfields |g(θ, φ)| that are optimally concentrated within a circular cap of colatitudinal radius Θ = 40◦.
Dashed circles denote the cap boundary. The bandwidth is L = 18, and the rounded Shannon number for the tangential space Nt = 84. Subscripts on the
eigenvalues λα specify the fixed-order rank. Only absolute values for m ≥ 0 are shown because the absolute values for ±m are identical. The eigenvalues
have been resorted into a mixed-order ranking, with the best-concentrated eigenfields plotted on the top left and a decreasing concentration ratio to the right and
downwards. Regions in which the absolute value is less than one hundredth of the maximum value on the sphere are left white.

For the fixed-order tangential eigenvalue problem (80) we obtain the number of significant eigenvalues from

N t
m =

2(L−max(m,1)+1)∑
α=1

λα = 2
L∑

l=max(m,1)

Bm
ll . (89)
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Fig. 4. Bandlimited tangential Slepian functions g(θ, φ), of spherical-harmonic orders m = ±1, optimally concentrated within a polar cap of radius Θ = 40◦.
The bandwidth is L = 18. Color is absolute value (red the maximum) and circles with strokes indicate the direction of the eigenfield on the tangential plane.
Regions in which the absolute value is less than one hundredth of the maximum absolute value on the sphere are left white.

Once we have found the L + 1 sequences of fixed-order radial and tangential eigenvalues, we can resort
them into an overall mixed-order ranking. The Shannon number of radial eigenvalues is then given by
N r = N r

0 + 2
∑L
m=1N

r
m, while that of the tangential eigenvalues is N t = N t

0 + 2
∑L
m=1 Nm. The factor

of two accounts for the ±m degeneracy; the total number of significantly concentrated vector fields is
N = N r +N t.

Figure 2, shows the reordered, mixed-m eigenvalue spectra for four different polar caps, with colatitudinal
radii Θ = 10◦, 20◦, 30◦, 40◦ in the case of the tangential concentration problem. The spherical-harmonic
bandlimit is L = 18. Each symbol stands for two eigenvalues, arising from the plus-minus-degeneracy
for m > 0 and from the block-diagonal shape for m = 0. The spectra have a characteristic step shape
[62,70,71], showing significant (λ ≈ 1) and insignificant (λ ≈ 0) eigenvalues separated by a transition
band. In all four cases the reasonably well concentrated eigensolutions (λ ≥ 0.5) and the more poorly
concentrated ones (λ < 0.5) are separated by the rounded Shannon number.

Figure 3 shows a polar plot of the absolute values of the first 32 tangential eigenfields |g(r̂)| constructed
from the eigenvectors of Q. The reconstructed fields for positive and negative orders ±m have the same
absolute values. We therefore only plot the absolute values for m ≥ 0. The eigenfields are concentrated
within a cap of radius Θ = 40◦. The maximal vector spherical-harmonic degree is L = 18 and the Shannon
number of the tangential problem N t = 84. The eigenvalue ranking is mixed-order and the concentration
factors 1 < λ ≤ 0.937 and orders m of each absolute field are indicated. Red denotes the maximum value
while all absolute values smaller than 1% of the maximum value are white.

In Figure 4 we illustrate the best-concentrated tangential Slepian fields for order |m| = 1, corresponding
to the overall best-concentrated absolute field of Figure 3. The left panel shows the vector field for m = 1,
thus the reconstruction using the best-concentrated eigenvector of Q1. The right panel shows the vector field
for m = −1, thus the reconstruction using the best-concentrated eigenvector of Q−1. As in Figure 3, the
radius of the polar cap is Θ = 40◦ and the bandwidth L = 18. Both vector fields have a singularity at the
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Fig. 5. Eigenvalue spectra for the tangential fields for Greenland, Australia, North America, Africa, and Eurasia. From upper left to lower right, four bandwidths,
L = 6, 12, 18, 24, are considered. The horizontal axis in each panel is truncated; the total number of eigenvalues 2(L+ 1)2− 2 = 96, 336, 720, 1248, appears
to the right of the arrow. Vertical gridlines and the five leftmost ordinate labels specify the rounded Shannon numbers Nt.

north pole θ = 0. This is due to the fact that all the Blm and Clm for m = 1 have a singularity at the north
pole stemming from the derivatives of the Xlm (7) which are not equal to zero at θ = 0. The dashed circles
denote the cap boundary. The color scales with the absolute value of the vector field, ranging from white for
values below 1% of the maximum to red for the maximum value. The directions of the field are indicated
by accordingly oriented strokes at the positions marked by the open circles.

5. Continental Concentration

In the following example we consider the spatiospectral concentration in seven of Earth’s continental
regions. Together with their rounded tangential-component Shannon numbers,N t = [2(L+1)2−2]A/(4π),
the regions are listed in Table 1 for different bandwidths. The (tangential) spherical Slepian fields that we
will be showing should be well suited to the localized analysis of global vector-valued satellite-magnetic
data such as measured to study the magnetization of the terrestrial lithosphere (e.g. [39,72,73,74]), or more
generally, planetary magnetic fields [17,75,76,77].
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Table 1
Fractional areas, tangential Shannon numbers, and bandwidths for the vectorial concentration problem to continental areas.

Fractional area Tangential Shannon number N t

Continental region A/(4π) in % L = 6 L = 12 L = 18 L = 24

Greenland 0.43 0 1 3 5

Australia 1.51 1 5 11 19

Antarctica 2.72 3 9 20 34

South America 3.45 3 12 25 43

North America 4.03 4 14 29 50

Africa 5.81 6 20 42 73

Eurasia 9.97 10 33 72 124

5.1. Bandlimited Fields

Figure 5 shows the eigenvalue spectra of the tangential Slepian fields for the five regions Greenland,
Australia, North America, Africa, and Eurasia, and four spherical-harmonic bandlimits, L = 6, 12, 18, 24,
which correspond to 2(L + 1)2 − 2 = 96, 336, 720, 1248 eigenfields each. The smallest wavelength for
a bandwidth limit L is 2π/

√
L(L+ 1) ≈ 2π/(L + 1/2) multiplied by Earth’s radius [52]. The cutoff

wavelengths for L = 6, 12, 18, and 24 are 6200, 3200, 2200, and 1600 km, respectively. Only Eurasia,
the largest region, has enough area to contain at least one nearly perfectly concentrated eigenfield for the
smallest bandwidth, L = 6, and Greenland, the smallest of the considered regions, is too small to contain
even for the largest bandwidth, L = 24, a single eigenfield with a concentration factor λ near unity. Again,
as was the case for a polar cap (Figure 2), the well-concentrated eigenfunctions with eigenvalues λ ≥ 0.5 are
separated from the poorly concentrated ones with eigenvalues λ < 0.5 by the rounded Shannon numbersN t.
The eigenvalues occur in pairs as described in Sections 3.4. and 4.2.

Figures 6–7 are map views of the twelve best-concentrated tangential eigenfields g1(r̂),g2(r̂), . . . ,g12(r̂)
for the continents Africa and Antarctica, at L = 18. In either case, pairs of eigenfields have identical ab-
solute values and the same associated eigenvalues but show vectorial directions that are pointwise perpen-
dicular, see Section 3.4. All eigenfields for Antarctica have a singularity or are zero at the south pole. This
comes from the fact that all tangential vector spherical harmonics (19)–(20) either have a singularity or are
zero at the south pole. Both figures show that the first 12 tangential eigenfields are well concentrated, which
is also reflected by the tangential Shannon numbers, N t = 42 for Africa and N t = 20 for Antarctica. In
both cases, the absolute values of the first two eigenfields are roughly circular domes centered in the middle
of each continent. Subsequent orthogonal eigenfields g3,g4, . . . exhibit lobes in previously uncovered re-
gions. In Figure 6, West Africa begins to be reasonably well covered by g5 and g6, while Southern Africa is
uncovered until g7 and g8. Later, increasingly more oscillatory eigenfields cover smaller geographical fea-
tures. For Antarctica, the third and fourth eigenfields g3 and g4 begin to resolve the South America-facing
(western) and the Australia-facing (eastern) part of Antarctica, while the fifth and the sixth eigenfields g5
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Fig. 6. Twelve tangential Slepian functions g1,g2, . . . ,g12, bandlimited to L = 18, optimally concentrated within Africa. The concentration factors
λ1, λ2, . . . , λ12 are indicated. The rounded tangential Shannon number Nt = 42. Order of concentration is left to right, top to bottom. Color scheme and
symbols are as in Figure 4.

and g6 resolve the Africa-facing (northern) region and the region around the Transantarctic Mountains.
Subsequent eigenfields show more nodal lines and resolve smaller geographical features.

Figure 8 shows the eigenvalue-weighted sum of absolute squares
∑
α λα|gα(r̂)|2 of the L = 18 bandlim-

ited eigenfields of Earth’s seven landmasses. The eigenfields g1(r̂),g2(r̂), . . . ,g3(L+1)2−2(r̂) can be found
by diagonalizing the [3(L + 1)2 − 2] × [3(L + 1)2 − 2] matrix (43) formed by summing the matrices
KEurasia + KAfrica + . . . of each of the regions. The fractional area covered by all seven regions combined
is A/(4π) = 27.92%, and the corresponding rounded Shannon number N = 302; the figure shows the
partial sums of the first N/4, N/2 and N terms, and the full sum of all 3(L + 1)2 − 2 = 1081 terms. It is
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Fig. 7. BandlimitedL = 18 tangential eigenfields g1,g2, . . . ,g12 that are optimally concentrated within Antarctica. The concentration factors λ1, λ2, . . . , λ12
are indicated. The rounded tangential Shannon number is Nt = 20; Format is identical to that in Figure 6.

apparent that the first N eigenfunctions uniformly cover the target region; by adding the remaining, poorly
concentrated, 3(L + 1)2 − 2 − N = 779 terms, we only marginally improve the coverage. Because of its
small size, Greenland does not appear until the 1 → N/2 partial sum. Even after the 1 → N partial sum,
Greenland’s coverage is not perfect, as expected from its small Shannon number (N = 5 for L = 18).
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Fig. 8. Cumulative eigenvalue-weighted energy of the first N/4, N/2, N and all 3(L + 1)2 − 2 eigenfields that are optimally concentrated within the en-
semble of Eurasia, Africa, North America, South America, Antarctica, Australia, and Greenland. The bandwidth is L = 18; the cumulative fractional area is
A/(4π) = 27.92%; the rounded Shannon number N = 302. The darkest blue on the color bar corresponds to the expected value (74) of the sum, as shown.
Regions where the value is smaller than one hundredth of the N/A are left white.

5.2. Spacelimited Fields

As described in Section 3.2., the spatially limited, spectrally concentrated vector fields h(r̂) for a regionR
and bandlimit L can be calculated by either spacelimiting the spatially concentrated bandlimited fields for
the same regionR and the same bandlimit L, as expressed by (67), or by multiplying the coefficient vector g
of the spatially concentrated bandlimited field with a rectangular kernel matrix K of infinite bandwidth in
the first dimension.

Figures 9 and 10 show such a construction for the combined six regions of Eurasia, Africa, North and
South America, Australia and Greenland and a bandlimit of L = 20. Due to the block-diagonal shape of ma-
trix K in (43), the radial and tangential optimization problems are decoupled and were solved independently.
The upper left panel of Figure 9 shows the 80th best radial Slepian function g(r̂), which by the measure (39)
has 75.8% of its energy within the target region. Blue stands for inwards and red for outwards-pointing vec-
tors. Areas with intensity of less than one percent of the maximum value are left white. The lower left panel
of this figure shows the spherical-harmonic coefficients g of this radial Slepian field. Shades of blue denote
negative coefficient values and red positive values. Due to the bandlimitation, all coefficients with degree
higher than L = 20 are zero. The upper right panel of Figure 9 shows the spatially truncated radial Slepian
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Fig. 9. The 80th best spatially concentrated bandlimited radial eigenfield (g80, left panels) and the 80th best spectrally concentrated spacelimited eigenfield
(h80, right panels) for a spatial domain which is the ensemble of Eurasia, Africa, North America, South America, Australia and Greenland, and a bandwidth
L = 20. The upper panels show the intensity and direction of the fields in the radial direction (blue inwards, red outwards). Regions where the absolute value is
smaller than one hundredth of the maximum absolute value on the sphere are left white. The lower panels show the expansion coefficients for the radial vector
harmonics Plm of the fields shown in the panels above (blue negative, red positive).

field h(r̂) and the lower right panel its spherical-harmonic coefficients h. The coefficients Ulm are only
shown up to l = 40 but are nonzero to l = ∞ since h(r̂) is perfectly spacelimited. The ratio (64), of the
energy in the coefficients below l = 20 to the total energy, is once again 75.8%, illustrating the equivalence
between the spatial and spectral concentration problems.

Figure 10 illustrates the same procedure applied to tangential fields. The upper left panel shows the 160th
best spatially concentrated bandlimited tangential field, with maximal spherical-harmonic degree L = 20.
The middle left panel and the bottom left panel show the vector spherical-harmonic coefficients Vlm and
Wlm, respectively. Again, the vector spherical-harmonic coefficients at degrees above the bandlimit L = 20
are zero. The right panels show the spacelimited and spectrally concentrated tangential vector Slepian field
constructed from the bandlimited spatially concentrated vector Slepian field shown on the left, both in their
spatial (uppermost panel) and spectral (middle and lower panels) renditions.

5.3. Constructive Approximation

Finally, in order to demonstrate the spatial focusing capabilities of the bandlimited, spatially concentrated
vector Slepian fields for an actual data example, we reconstruct a global tangential vector field, u, by
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Fig. 10. The 160th best spatially concentrated bandlimited tangential eigenfield (g160, left panels) and the 160th best spectrally concentrated spacelimited
eigenfield (h160, right panels) for a spatial domain which is the ensemble of Eurasia, Africa, North America, South America, Australia and Greenland, and
a bandwidth L = 20. Uppermost panels show the intensity and direction of the fields. Regions where the absolute value is smaller than one hundredth of
the maximum absolute value on the sphere are left white. Middle and lower panels show the expansion coefficients for the tangential vector harmonics Blm
and Clm, respectively, of the fields shown in the uppermost panels (blue negative, red positive).

approximating it with fields vJ that use an increasing number, J , of tangential vector Slepian functions:

vJ =
J∑
α=1

uαgα, (90)

The coefficients uα are obtained by forming the inner product of the input field u with the α best-concentrated
vector Slepian functions gα. We define the relative error εJ over the domain, and the leakage bJ to its com-
plement, by

εJ =

√√√√‖u− vJ‖2
R

‖u‖2
R

and bJ =

√√√√‖vJ‖2
Ω\R

‖u‖2
Ω\R

, (91)

which we will use to assess the performance of the reconstruction. For bandlimited tangential fields u the
measure ‖u‖2

R can be calculated using the matrix Q from (50) and the vector of expansion coefficients
u = (. . . , Ulm, . . . , Vlm, . . . ,Wlm, . . .)

T by evaluating the expression ‖u‖2
R = uTQu. The error decreases
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Fig. 11. A tangential geophysical vector field (left) and its reconstruction (right) using vectorial Slepian functions designed to maximize their spatial concentration
over Africa. The bandlimit for both the original field and the Slepian basis is L = 72. There are 10,656 vectorial basis functions in the original field, and the
same number of Slepian functions from which to choose for the reconstruction. The Shannon numberNt = 620. The bottom panel shows a reconstruction using
the 924 = 1.5Nt best-concentrated Slepian functions for Africa. The error and bias over Africa, as defined in (91), are 0.4% and 14%, respectively.

with increasing number of Slepian functions J . The bias increases with J . Our goal is to obtain a small
reconstruction error within the region R while simultaneously keeping the outside leakage bias small.

Figure 11 shows the outcome of such an experiment conducted on the terrestrial crustal-field model
NGDC-720 V3 [78]. We multiply the spherical-harmonic coefficients with the corresponding Blm vector
harmonics up to bandlimit L = 72. The left panel of Figure 11 shows the tangential vector field that results:
this is used as our input. The right panel shows the reconstruction using the 1.5N = 924 best-concentrated
tangential vector-Slepian fields for Africa and the same bandlimit L = 72. While we chose 1.5N here for
convenience, in real-world applications the optimal choice for the Slepian truncation would depend on the
behavior of the signal-to-noise ratio of the data [9,79,80]. The relative error and bias of the reconstruction
over Africa, as defined by (91), are 0.4% and 14%, respectively.

Figure 12 shows the evolution of error and bias for reconstructions using different numbers of Slepian-
field terms in the expansion (90). The more Slepian fields are being used, the smaller the error over Africa,
but the larger the leakage into the complimentary region outside of Africa. The relative reconstruction error
over Africa drops quickly and reaches numerical noise level after J = 1800 Slepian function terms.
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Fig. 12. Reconstruction error and bias over Africa as defined in (91), versus the number of vector Slepian functions used to describe the global vector field as
shown in Figure 11, quoted as a multiple of the Shannon number for this problem, Nt = 620.

6. Conclusion

It is possible to construct for the unit sphere a regionally optimally concentrated orthogonal family
of bandlimited vector spherical-harmonic fields by solving either a Fredholm integral eigenvalue prob-
lem in the spatial domain, or, equivalently in the spectral domain solving a symmetric finite-dimensional
matrix eigenvalue problem. The eigenvalues 0 < λ < 1 are measures of the spatial concentrations of
their corresponding bandlimited vector fields g(r̂) and spectral concentration of the spacelimited eigen-
fields h(r̂), constructed from the g(r̂) by setting the values to zero outside of the target region. The full
vectorial problem decomposes into independent radial and tangential parts. The radial problem is equiva-
lent to the scalar spherical spatiospectral optimization problem [6]. The number of well-concentrated ra-
dial eigenfields is N r = (L + 1)2A/(4π) and the number of well-concentrated tangential eigenfields is
N t = [2(L+ 1)2− 2]A/(4π). Here L denotes the bandwidth and A the area of the target region. The Shan-
non numbers N r and N t can be interpreted as the dimensions of the spaces of radial vector fields gr(r̂), or
tangential vector fields gt(r̂) respectively, that can be simultaneously concentrated within a subregion R of
the sphere and within a spectral interval 0 ≤ l ≤ L. In the special case of a circular polar cap, the kernel
matrices can be computed analytically and decomposed into smaller eigenvalue problems.

Vectorial Slepian functions on the sphere are an emerging tool for the analysis and representation of
essentially space- and bandlimited vector-valued functions on the surface of the unit sphere. In this con-
tribution we have described their construction, shown various examples, and suggested their use in the
constructive approximation of vectorial signals on the sphere, as may arise, for instance, in the fields of
geophysics, planetary science, medical imaging and optics, where prior work has previously considered
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a number of special cases of the vectorial concentration on the sphere [25,81] that we have treated more
completely here.

The ability of scalar Slepian functions on the sphere to perform localized bandlimited analysis has led
to observations made from global data that remain obscured when applying global spherical harmonic
analysis. For example, changes in local gravity after the 2004 Sumatra earthquake were detected [14,18]
and shown to be invisible via a global spherical harmonic analysis of the same data. Similarly, in analyzing
global gravity data, the potential of scalar Slepian functions to detect local ice mass changes over Greenland
was clearly demonstrated [16]. Judging from the equivalence in properties between the vectorial Slepian
functions and the scalar Slepian functions in multiple Cartesian and spherical dimensions, it is likely that
the impact of vectorial spherical Slepian functions on multidimensional vectorial signal processing will be
as profound as the classical prolate spheroidal wave functions have been, and continue to be, in the study
of time series, and this in a wide variety of scientific and engineering fields.
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