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One sentence summary: 

The Deccan Traps erupted as four major pulses spanning the K-Pg mass extinction. 

 

Abstract: 

Temporal correlation between some continental flood basalt eruptions and mass 20 

extinctions has been proposed to indicate causality, with eruptive volatile release driving 

environmental degradation and extinction. We test this model for the Deccan Traps 
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flood basalt province, which, along with the Chicxulub bolide impact, is implicated in the 

Cretaceous-Paleogene (K-Pg) extinction ca. 66 million years ago. We estimate Deccan 

eruption rates with U-Pb zircon geochronology, and resolve four high-volume eruptive 

periods. Maximum eruption rates are observed before and after the K-Pg extinction, 

with one such pulse initiating tens of thousands of years prior to both the bolide impact 5 

and extinction. These findings support extinction models that incorporate both 

catastrophic events as drivers of environmental deterioration associated with the K-Pg 

extinction and its aftermath. 

 

Main Text: 10 

Continental flood basalt provinces are characterized by eruption of >1 million km3 of 

basalt over <1 million years (1, 2), representing the largest volcanic events on Earth. 

Four of the five most severe Phanerozoic mass extinctions (~541 million years ago (Ma) 

to the present) coincided with emplacement of one of these provinces (3). While the 

temporal link between flood basalts and extinctions is well-established, the mechanisms 15 

by which eruptions drive extinction are poorly understood (4). Two models of 

environmental change from volcanic activity relate to eruptive volatile emissions (1, 4). 

The first is volcanogenic CO2 release, with associated global warming, ocean 

acidification, and carbon cycle disruption. The second is SO2 injection into the 

stratosphere and its conversion to sulfate aerosols, causing global cooling, acid rain and 20 

ecosystem poisoning (5). The predicted timescales of these perturbations contrast 

sharply. The emission of SO2 from a single eruption would produce years of cooling, 
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whereas accumulated greenhouse warming from CO2 can be sustained for many 

thousands to tens of thousands of years (kyr). Testing the effects of this interplay on 

ecosystems thus requires precisely-calibrated volcanic eruption rates that can be 

correlated to high-resolution climate proxy and biostratigraphic data. 

 We applied U-Pb zircon geochronology to construct a precise temporal record of 5 

eruption within the Deccan Traps volcanic province, India (Fig. 1). The province is 

temporally correlated to the K-Pg mass extinction, in which roughly three quarters of life 

on Earth was eradicated, including non-avian dinosaurs (6). Previous attempts to 

constrain eruption rates were limited by poor stratigraphic coverage and/or high 

analytical uncertainties (7-12). We used U-Pb geochronology by isotope dilution–10 

thermal ionization mass spectrometry (ID-TIMS; ref.13), which provides analytical 

uncertainties as low as 40 kyr (±2σ) for individual dated zircons. Our sampling covers 

the nine major Deccan formations in the Western Ghats, where the most voluminous 

(>90% total volume) and complete Deccan exposures are preserved (14-17; Fig. 1). We 

sampled both coarse-grained basalts and sedimentary beds between basalt flows that 15 

infrequently contain zircon-bearing volcanic ash (11; Fig. S1). These beds, locally 

termed “redboles”, range from oxidized volcaniclastic material with visible lithic 

fragments and phenocrysts, to paleosol-type horizons produced by in situ weathering of 

flow tops (18, 19). Of 141 sampled redboles and coarse-grained basalts (Figs. 1 and 

S1-S2), 23 redboles and one basalt sample yielded sufficient zircon (≥5 crystals) to 20 

estimate an eruption age, including four distinct bole horizons and one basalt previously 

presented by Schoene et al. (11). Pristine volcanic crystal morphology indicates minimal 
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transportation/reworking of zircon in a sedimentary environment. Consequently, we 

inferred that this volcaniclastic, zircon-bearing material was incorporated into redboles 

as air fall tuff, consistent with some redboles containing a high-SiO2 (non-basaltic) 

component (19), and that these zircons provide a robust means for dating Deccan 

eruptive stratigraphy. 5 

 To estimate the eruption date and associated uncertainty for each sample, we 

developed an approach using Bayesian statistics to account for the probability 

distribution of zircon dates and their analytical uncertainties (20; Fig. S6). While we 

considered alternative data interpretations (13), they do not affect the conclusions of 

this study. Twenty-one of 24 dated horizons are from five stratigraphic sections along 10 

prominent roads in the Western Ghats, providing complete coverage of the upper four 

Deccan formations (Fig. 1; Fig. S1-S2). The remaining three samples span the lower 

five Deccan formations, where redboles are rare and less likely to contain zircon. 

 When compiled into a composite stratigraphic section (Fig. 1), almost all samples 

follow anticipated “younging-up” temporal order based on the independently-defined 15 

regional stratigraphy (14-17; Fig. S2, S7). The exception is the Katraj Ghat south of 

Pune city, where two samples from what was mapped as upper Poladpur Formation 

(Fm) are ca. 100 kyr younger than samples near the Poladpur-Ambenali contact in other 

sections. To resolve this discrepancy, we placed the Poladpur-Ambenali contact in the 

Katraj Ghat section as ~100 m lower than previously mapped. This simple adjustment 20 

does not violate geochemical or geological observations in the stratigraphy, as the 

Poladpur-Ambenali contact is geochemically transitional in published datasets (14). 
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Furthermore, our placement of the contact is consistent with geochemical studies of the 

nearby Sinhagad Fort section suggesting the Poladpur Fm is relatively thin just south of 

Pune (14). 

 To further refine the composite stratigraphic age model, we employed a Bayesian 

Markov Chain Monte Carlo (MCMC) model in which stratigraphic superposition is 5 

imposed on U-Pb zircon dates (13, 21; Fig. 1). The result is a deposition age estimate 

for each dated horizon, incorporating dates from all beds above and below each sample 

to produce an internally consistent age model (Fig. 1). Accuracy of refined age 

estimates depends solely on sample placement in proper stratigraphic order, and is 

independent of samples’ exact stratigraphic heights. 10 

 To calculate volumetric eruption rates through the Deccan Traps, we adopted the 

volume model of Richards et al. (22), in which units of the Wai subgroup (i.e., the 

Poladpur, Ambenali and Mahabaleshwar Fms) were interpreted as more voluminous 

than is apparent from their proportionate thickness in the Western Ghats. While this 

assertion carries nontrivial uncertainties, we believe it is justified given correlation of 15 

these formations to basalt flows on the province’s periphery, including massive flows 

that traveled ~1000 km to India’s eastern shore (23, 24). While different volume models 

produce changes in the magnitude of calculated eruption rates, the timing of peak 

eruption rates is unaffected by either the volume model or the interpretation approach of 

the zircon data (13; Fig. S8, S9). Additional uncertainty relates to the unconstrained 20 

mass and age of Deccan basalt that is currently submerged and inaccessible off India’s 

western shore. We consider this uncertainty to be intractable as current volume models 
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cannot account for this mass component of the province. Consequently, all eruption 

rates are likely minimum  estimates, although we also cannot assess whether the 

offshore component erupted during the same time intervals as that of the Western 

Ghats. 

 We converted our age model into a probabilistic estimate of volumetric flux of 5 

basaltic lava using outputs from the MCMC algorithm (Fig. 2). Our results showed that 

the Deccan Traps erupted in four high-volume events, lasting ≤100 kyr each, separated 

by periods of relative volcanic quiescence. The first event corresponded to the eruption 

of the lowermost seven formations from ~66.3–66.15 Ma; the second to the Poladpur 

Fm from ~66.1–66.0 Ma; the third to the Ambenali Fm from ~65.9–65.8 Ma; and the 10 

fourth and final to the uppermost Mahabaleshwar Fm, from ~65.6–66.5 Ma. 

 Our Deccan eruption model (Fig. 2) constrains the volcanic tempo with high 

resolution, providing a means to correlate eruption records with biostratigraphic and 

climate proxy data across the K-Pg extinction. Our model places the second pulse of 

Deccan volcanism (Poladpur Fm, 66.1–66.0 Ma) as slightly predating a published U-Pb 15 

zircon date for the K-Pg boundary (KPB), defined as the Ir-anomaly and associated 

fallout from the Chicxulub impact, within the Denver Basin, Colorado (25). For 

consistency, we applied the Bayesian approach to that dataset (25) to estimate a date 

of 66.016±0.050 Ma for the KPB (95% C.I., internal uncertainties only, 13). Comparison 

of our data with recently published 40Ar/39Ar geochronology from the Deccan Traps and 20 

the Chicxulub impact (12, 26) is currently not possible at the necessary level of 

precision given systematic bias between the two dating methods, primarily related to 
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uncertainty in ages of 40Ar/39Ar fluence monitors and the values of the 40K decay 

constant and physical constants (13). Assuming that the Chicxulub impact coincides 

exactly with the main phase of extinction, the MCMC model outputs from our Deccan 

data demonstrate a ~90% probability that the Poladpur Fm. eruption pulse began tens 

of kyr before the K-Pg mass extinction event.  5 

 The K-Pg extinction preserves the only known mass extinction that coincides with 

both a large igneous province and a bolide impact. As such, several hypotheses have 

been forwarded in which the impact triggered or modulated volcanic eruptions. While 

the most recent iteration of this hypothesis concedes initiation of Deccan eruptions 

several hundred kyr before the impact, it proposes impact-induced seismicity increased 10 

eruption rates in the Deccan Traps and at mid-ocean ridges through evacuation of pre-

existing magma chambers in the upper mantle/lower crust (12, 22, 27). It is unlikely that 

our Deccan eruptive history is consistent with this model, given the high probability that 

the Poladpur pulse began before the impact by tens of kyr, followed by an eruption 

hiatus of ≤100 kyr after the impact.  15 

 Estimates for the entire volcanic flux on Earth today are 3-4 km3/yr (28), 

indicating on average a doubling in global volcanic activity for ≤100 kyr during each of 

the four high-volume Deccan eruptive events, but requiring periods of >5-10 times the 

global average. In fact, groups of flows within the Poladpur and Mahabaleshwar Fms, 

each potentially comprising >50,000 km3, lack secular evolution in paleomagnetic poles, 20 

suggesting eruption over decades to centuries (29). Such high eruption rates of >1000 

km3/year are permitted by our U-Pb geochronology, requiring hiatuses of 100s to 1000s 
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of years within our resolved pulses so as not to exceed total volume estimates. In 

addition to being consistent with brief but extreme eruption rates, our data demonstrate 

that the Deccan Traps erupted in pulses with durations of ca. 100 kyr, providing insight 

into tempos of melt production and/or transport in the upper mantle and lower crust (30, 

31).  5 

 Our eruption rate model is a first step towards robustly evaluating environmental 

impacts associated with Deccan volcanism. The most commonly cited contributors to 

environmental change associated with flood basalts are CO2 (warming), SO2 (cooling 

upon conversion to sulfate aerosols), and chemical weathering of fresh basaltic material 

(cooling via CO2 drawdown). For single continental flood basalt flows that erupt over a 10 

few decades, volcanic SO2 has been modeled to drive cooling of 5-10 ˚C for the 

duration of the eruption (5), after which acid rain rapidly removes sulfur compounds 

from the atmosphere. For persistent cooling over many kyr, therefore, hiatuses of only 

several decades between eruptions are required (5).  

 In contrast to SO2, the timescale of CO2 removal from the ocean-atmosphere 15 

system is slow, ~1, ~10, and ~100 kyr, for mixing into the deep ocean, reaction with 

sediments, and removal by silicate weathering, respectively (32, 33). As a result, while 

climate effects during an eruptive event may be dominated by cooling associated with 

elevated sulfate aerosols, on intermediate timescales between eruptive events, 

accumulation of volcanic CO2 emissions can lead to net warming. On timescales of 20 

100s of kyr to >1 Myr, weathering of fresh basalt has been modeled to result in net CO2 
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drawdown and cooling, especially if the basalt is at low latitudes, as were the Deccan 

Traps (34). 

 As an initial attempt to correlate our eruptive history with paleoenvironmental 

data, we use two proxy records across the K-Pg transition (Fig. 2B). Benthic 

foraminifera d18O compositions indicate ~2-4 ˚C of deep ocean warming over ~150 kyr, 5 

beginning at the C30n-C29r magnetic reversal ~66.3 Ma, followed by cooling over ~150 

kyr prior to the KPB (35-37). It has also been argued on the basis of d18O data from 

Elles, Tunisia, that renewed warming began tens of thousands of years before the KPB 

(38; Fig. S11).  

 Initial warming at ~66.3 Ma and a coeval increase in carbonate dissolution have 10 

been interpreted as resulting from volcanogenic CO2 build-up and consequent ocean 

acidification (35), which our geochronology shows occurred during the initial pulse of 

Deccan eruptions. Warming curtailed towards the end of the first pulse, and cooling 

began before and continued through the initiation of the Poladpur Fm eruptions (Fig. 2). 

The extrusion of the voluminous Poladpur Fm may have resulted in short periods of 15 

SO2-driven cooling that could have continued to promote the overall cooling trend, but 

cooling for tens of kyr due to SO2 emissions is difficult to sustain given the predicted 

short residence time of sulfate aerosol (1, 5). Alternatively, an increase in surface area 

of exposed basalt associated with eruption of the Poladpur is possible given current 

Deccan stratigraphic area/volume models (22), resulting in enhanced basalt weathering, 20 

CO2 drawdown, and continued global cooling in the tens of kyr before the extinction. If 

periods of cooling did result from sulfate aerosols during the Poladpur eruptions, the 
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short intervals of temperature decrease could have slowed silicate weathering and 

associated CO2 drawdown, thus permitting CO2 build-up in the atmosphere that would 

be manifest between punctuated eruptions within the Poladpur Fm (39).  

 Testing whether basalt weathering was important leading up to the KPB is aided 

through study of the Os isotope system in marine carbonates because the ocean 5 

residence time of Os is short and basaltic 187Os/188Os is low (0.1; ref. 10) relative to late 

Mesozoic seawater (0.6; ref. 40).  Published Os isotopic data from marine carbonates 

(40) show a dramatic decrease towards mantle values beginning at the onset of Deccan 

volcanism (Fig. 2B). A second downturn in 187Os/188Os, beginning tens of kyr prior to the 

KPB, has been interpreted as a downward redistribution of extraterrestrial Os derived 10 

from the Chicxulub impactor (40, 41). However, this decrease is synchronous with the 

Poladpur eruption pulse, and is thus also consistent with increased weathering of a 

more extensive Deccan basalt pile. 

 Post-extinction and post-Chicxulub benthic foraminifera d18O and carbonate Os 

isotopic records do not covary with the Deccan eruption record. However, the Os record 15 

does not recover to the pre-Deccan 187Os/188Os value either, perhaps indicating that a 

steady state was reached between basalt production and weathering despite continued 

eruptions. Regardless, the starkly different responses of O and Os isotope records 

during the post-extinction recovery requires models that explicitly incorporate the effects 

of continued Deccan eruptions, the Chicxulub impact, and biotic effects on the carbon 20 

cycle in a world with devastated ecosystems.  
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 While the initiation of a massive eruptive pulse shortly before the Chicxulub 

impact and mass extinction supports a Deccan contribution to ecosystem collapse, 

much remains to be discovered as to how flood basalt magmatism contributes to mass 

extinctions. U-Pb geochronology has shown that, similar to the K-Pg extinction, the end-

Permian (~252 Ma) and end-Triassic (~201 Ma) mass extinctions occurred on short 5 

timescales (< tens of kyr), hundreds of kyr after the onsets of the Siberian Traps and 

Central Atlantic Magmatic Province flood basalt provinces, respectively (42-44). The 

eruptions and associated intrusive magmatism are presumed to have driven rapid 

extinction despite this time lag and the absence of bolide impacts. This lag between the 

onset of magmatism and extinction may be a result of highly nonlinear rates of 10 

magmatism as documented here for the Deccan Traps. Continuing to study other flood 

basalt provinces will clarify the importance of eruptive and intrusive tempo in driving 

ecosystem collapse and extinction. Such an understanding of biosphere sensitivity and 

threshold processes to climate change is as relevant today as during these catastrophic 

events in Earth history. 15 
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Figures: 
 

Figure 1: Stratigraphy, sampling transects, and U-Pb age model for the Deccan Traps. (A) Elevation map 
of study location in the Western Ghats, India. Cross section X-X’ shown by black segmented line. 5 

Sampling transects located by colored dots. (B) Geologic cross-section through the field area, with 
sample locations indicated. Different basalt formations in the Deccan Traps color-coded to stratigraphic 

column in C.  Cross-section based on previous work (14-17), modified based our geochronology. (C) 
Volumetric stratigraphic column and magnetic chrons of the major formations of the Deccan Traps (22, 
45), shown as hundreds of thousands of km3. Sample heights plotted (“RB” sample prefix omitted), based 10 

on composite stratigraphic section compiled in Fig. S2. Age model for the Deccan Traps based on our U-
Pb geochronology shown with 95% credible intervals.  Horizontal gray bars indicate eruption ages derived 
from populations of zircon dates from each horizon, and black horizontal bars show dates refined from the 
stratigraphic Bayesian model. Vertical gray-shaded bar shows an age for the Chicxulub impact (25). 
  15 
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Figure 2: Eruption rate model for the Deccan Traps, based on U-Pb geochronology. (A) Results from the 
MCMC algorithm used to generate the age model in Fig. 1, converted to a probabilistic volumetric 
eruption rate for the Deccan Traps shown with contours up to 68% credible intervals. U-Pb date for the 5 

Chicxulub impact same as Fig. 1. Total global volcanic productivity (~3-4 km3/yr) includes mid ocean 
ridges and volcanic arcs (28). (B) Compilation of proxy records from ODP cores and outcrops.  Top 

shows d18O of species-specific benthic foraminifera from ODP 525 (46), ODP 1262 (36), and ODP 1209 
(37). Temperature calculated for benthic foraminifera N. Truempyi in ODP 1262 (36). Osmium isotopic 

records come from bulk carbonate from both ODP cores and outcrop (40, 41). Age models are described 10 

in Supp. Materials (13). 
 


