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Living systems are fundamentally irreversible, breaking detailed balance and establishing an ar-
row of time. But how does the evident arrow of time for a whole system arise from the interactions
among its multiple elements? We show that the local evidence for the arrow of time, which is the
entropy production for thermodynamic systems, can be decomposed. First, it can be split into two
components: an independent term reflecting the dynamics of individual elements and an interaction
term driven by the dependencies among elements. Adapting tools from non–equilibrium physics,
we further decompose the interaction term into contributions from pairs of elements, triplets, and
higher–order terms. We illustrate our methods on models of cellular sensing and logical computa-
tions, as well as on patterns of neural activity in the retina as it responds to visual inputs. We find
that neural activity can define the arrow of time even when the visual inputs do not, and that the
dominant contribution to this breaking of detailed balance comes from interactions among pairs of
neurons.

I. INTRODUCTION

Living systems consume energy in order to maintain
order and function. Being away from equilibrium, we
expect that their microscopic dynamics violate detailed
balance. Macroscopically, their behaviors define an arrow
of time. Despite recent progress in non–equilibrium sta-
tistical physics [1–3], there remain basic questions about
how irreversibility at one scale emerges from collective
dynamics at the scale below. To what extent does the ir-
reversibility of a system arise from interactions between
elements, rather than the independent dynamics of the el-
ements themselves? Can simple dynamics involving pairs
or triplets of elements build upon one another to generate
large–scale irreversibility, thereby defining a macroscopic
arrow of time, or do complex biological systems depend
on higher–order combinatorial interactions?

To answer these questions, we propose a framework
for decomposing the local evidence for the arrow of time
in systems with many degrees of freedom. We demon-
strate that the local irreversibility can be divided into
two non–negative components: one that reflects the in-
dependent irreversibilities of the individual elements, and
another that reflects the irreversibility due to interactions
between elements. We then show that the interaction
term can be further decomposed into contributions from
groups of elements of different sizes, from pairs of ele-
ments to triplets to complex higher–order terms. In this
way, one can determine not only whether the arrow of
time arises from the dependencies between elements, but
also the specific types of dynamics from which it emerges
[4]. This decomposition is similar in spirit to the idea
of connected correlations in the decomposition of the en-
tropy itself [5].

We apply our methods to investigate the arrow of time
in neural activity. Our visual perception is built out of
the patterns of electrical activity of cells in the retina,

and evidence for the arrow of time must be found in
these patterns. Recent experiments that record the ac-
tivity of many retinal neurons simultaneously [6, 7] make
it possible for us to estimate all the relevant quantities
directly, without introducing any model assumptions, in
groups of up to five cells. We find that roughly two–
thirds of these groups exhibit significant irreversibility,
even when the movies shown to the retina are completely
reversible. Thus, collective neural activity can define an
arrow of time even when the visual inputs do not. More-
over, across distinct stimulus ensembles, we consistently
find that the local irreversibility is dominated by the dy-
namics of neuron pairs. Together, these results demon-
strate that neuronal populations can define an arrow of
time that (i) emerges primarily from pairwise dynamics
and (ii) does not merely reflect the irreversibility of the
stimulus.

The paper is organized as follows. In Sec. II, we define
the local irreversibility and multipartite dynamics. In
Sec. III, we show analytically that the local irreversibil-
ity of a multipartite system can be split into two non–
negative terms, the first stemming from the independent
elements and the second arising from the interactions be-
tween elements. In Sec. IV, we compare these indepen-
dent and interaction irreversibilities in a simple model
sensing system. In Sec. V, we show that the irreversibil-
ity due to interactions can be further decomposed into
a series of contributions from pairs of elements, triplets,
and higher–order terms. In Sec. VI, we illustrate this
decomposition using a minimal model of logical compu-
tations. In Sec. VII, we apply the above methods to in-
vestigate the irreversibility of neuronal dynamics in the
vertebrate retina. Finally, in Sec. VIII, we provide con-
clusions and outlook, highlighting directions for future
work.
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FIG. 1. Irreversibility and multipartite dynamics. (a–b) A simple three–state system, with states x represented as circles and
joint transition probabilities P (x → x′) as arrows. (a) In a reversible system, there are no net fluxes of transitions between
states, the dynamics obey detailed balance, and there is no evidence for the arrow of time. (b) Irreversible systems exhibit net
fluxes between states, thereby breaking detailed balance and establishing an arrow of time. (c) A multipartite system composed
of two binary spins. Only one spin is allowed to change state at a time, thus disallowing the transitions indicated by red arrows.

II. LOCAL IRREVERSIBILITY AND
MULTIPARTITE DYNAMICS

When a system is reversible, its dynamics obey de-
tailed balance, and there are no net fluxes between states
[Fig. 1(a)]. By contrast, for an irreversible system,
fluxes from one state to another break detailed balance
[Fig. 1(b)]. Critically, such irreversible dynamics estab-
lish an arrow of time: Just by observing the evolution of
the system, one can distinguish whether time is flowing
forward or backward.

To quantify irreversibility, consider a system with joint
transition probabilities

P (x→ x′) ≡ Prob[xt = x, xt+1 = x′], (1)

where xt is the state of the system at time t. In words,
this is the probability of observing the state x followed
by the state x′, and should not be confused with the
conditional transition probabilities Prob[xt+1 = x′ |xt =
x]. The evidence that these dynamics carry about the
arrow of time is quantified by the relative entropy, or
Kullback–Leibler divergence, between the forward– and
reverse–time transition probabilities [8],

İ =
∑
x,x′

P (x→ x′) log

[
P (x→ x′)

P (x′ → x)

]
, (2)

where if we choose base two for the logarithms then the
evidence is measured in bits. If a system obeys detailed
balance, such that P (x → x′) = P (x′ → x) for all pairs
of states x and x′, then this local irreversibility vanishes
[Fig. 1(a)]. Conversely, any violation of detailed balance,
such that P (x → x′) 6= P (x′ → x), leads to an increase
in the local irreversibility [Fig. 1(b)].

For Markov systems, the transition probabilities
P (x→ x′) completely define the dynamics, and so İ cap-
tures all available information about the arrow of time.
Notably, if the states x and x′ include all of the micro-
scopic degrees of freedom in a system, then, under rea-
sonable assumptions, Eq. (2) defines the physical rate

at which the system produces entropy [9, 10]. In gen-
eral, if we don’t observe all the relevant degrees of free-
dom then the dynamics of the observable states x will
be non–Markovian, but İ still has a precise meaning: it
represents the local evidence for the arrow of time.

We are interested in systems where the overall state
x consists of states {xi} for many interacting elements,
i = 1, 2, . . . , N . Given sufficient temporal resolution, no
two elements will change state at exactly the same time.
In this limit, the dynamics are defined by the joint prob-
abilities P (xi → x′i, x−i) of one element i transitioning
from xi to x′i and the rest of the system remaining in
the same state, denoted x−i [Fig. 1(c)]. Such dynamics,
which are referred to as multipartite, exhibit a number of
useful properties [11, 12]. Chief among these properties
is the fact that the local irreversibility simplifies to a sum
over the individual elements:

İ =
∑
x,x′

P (x→ x′) log

[
P (x→ x′)

P (x′ → x)

]
(3)

=
∑
x

N∑
i=1

∑
x′i

P (xi → x′i, x−i) log

[
P (xi → x′i, x−i)

P (x′i → xi, x−i)

]
(4)

=

N∑
i=1

∑
x−i

∑
xi,x′i

P (xi → x′i, x−i) log

[
P (xi → x′i, x−i)

P (x′i → xi, x−i)

]
(5)

=

N∑
i=1

İi, (6)

where

İi =
∑
x−i

∑
xi,x′i

P (xi → x′i, x−i) log

[
P (xi → x′i, x−i)

P (x′i → xi, x−i)

]
(7)

is the local irreversibility associated with element i.
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III. INDEPENDENT AND INTERACTION
IRREVERSIBILITY

We are now prepared to investigate the impact of inter-
actions between elements on the irreversibility of a sys-
tem. To begin, consider a hypothetical system in which
the elements do not interact. In this case, the transitions
of each element i are completely defined by the marginal
transition probabilities

P (xi → x′i) =
∑
x−i

P (xi → x′i, x−i), (8)

and thus the independent irreversibility of element i is
given by

İ ind
i =

∑
xi,x′i

P (xi → x′i) log

[
P (xi → x′i)

P (x′i → xi)

]
. (9)

How does this independent irreversibility compare to the
true irreversibility in Eq. (7)? To answer this question,

we consider the difference İi−İ ind
i , which reflects the local

irreversibility of element i due to interactions with the
rest of the system. Notably, we find that this difference—
which we refer to as the interaction irreversibility İ int

i of
element i—is itself an average of KL divergences,

İ int
i = İi − İ ind

i =
∑
x−i

∑
xi,x′i

P (xi → x′i, x−i)

(
log

[
P (xi → x′i, x−i)

P (x′i → xi, x−i)

]
− log

[
P (xi → x′i)

P (x′i → xi)

])
(10)

=
∑
x−i

∑
xi,x′i

P (xi → x′i, x−i) log

[
P (x−i |xi → x′i)

P (x−i |x′i → xi)

]
(11)

=
∑
xi,x′i

P (xi → x′i)DKL [P (x−i |xi → x′i) ||P (x−i |x′i → xi)] , (12)

where P (x−i |xi → x′i) = P (xi → x′i, x−i)/P (xi → x′i) is
the conditional probability of the state x−i of the rest of
the system given a transition xi → x′i in element i.

Equation (12) immediately tells us that İ int
i ≥ 0,

thereby establishing that the presence of interactions
can only increase the local irreversibility of a system.
Moreover, the interaction irreversibility İ int

i of element
i admits an insightful information–theoretic interpreta-
tion: it is the amount of information that one gains
about the state x−i of the rest of the system by ob-
serving the forward–time dynamics of element i rather
than the reverse–time dynamics [8]. Thus, if i’s forward–
and reverse–time dynamics contain the same information
about the rest of the system, then interactions with ele-
ment i do not contribute to the arrow of time (İ int

i = 0),
and all of i’s local irreversibility arises from indepen-
dent dynamics (İi = İ ind

i ). Importantly, we note that
Eqs. (10–12) require multipartite dynamics; if multiple
elements can change state at once, then the interaction
irreversibility İ int is ill–defined (see Appendix A).

Together, Eqs. (9–12) establish our first result: that
the local irreversibility of a system can be split into two
non–negative components,

İ = İ ind + İ int, (13)

where İ ind =
∑N

i=1 İ
ind
i is the independent irreversibility

of the system (reflecting the local irreversibilities of the

individual elements) and İ int =
∑N

i=1 İ
int
i is the interac-

tion irreversibility (reflecting the local irreversibility due
to the dependencies between elements).

IV. DECOMPOSING IRREVERSIBILITY IN A
SENSING SYSTEM

To illustrate the decomposition in Eq. (13), we examine
a sensing system, wherein a sensing variable y attempts
to copy an environmental variable x [Fig. 2(a)]. Such
sensing networks have been a topic of significant focus in
non–equilibrium statistical mechanics [3, 11, 13–15], re-
vealing the thermodynamic costs of simple computations
in living systems [3, 13, 15–18].

Here, we consider an environmental variable x with
three states and dynamics defined by

x′

P (x′ |x) =


1
2 (1− px) px

1
2 (1− px)

1
2 (1− px) 1

2 (1− px) px

px
1
2 (1− px) 1

2 (1− px)

 x,

(14)
where px is the probability of x increasing from one state
to the next [Fig. 2(a), left]. Meanwhile, the dynamics of
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FIG. 2. Independent and interaction irreversibility in a sensing system. (a) Sensing system with an environmental variable x
(left) and a sensing variable y (right), each with three states. At each point in time, one of the two variables is updated at
random. With probability px, the environmental variable x rotates clockwise, and with probability py, the sensing variable y
copies x. (b) Fluxes between states of the sensing system (for px, py > 1/3) induced by the environmental variable (blue) or

the sensing variable (red). (c–d) Irreversibility İ (c), independent irreversibility İ ind (d), and interaction irreversibility İ int (e)

as functions of px and py. While İ grows with both px and py, İ ind only increases with px, and İ int mostly increases with py,
thereby distinguishing the two sources of irreversibility in the system.

the sensing variable y are given by

y′

P (y′ |x) =

 py
1
2 (1− py) 1

2 (1− py)
1
2 (1− py) py

1
2 (1− py)

1
2 (1− py) 1

2 (1− py) py

 x,

(15)
where py is the probability that y copies x [Fig. (2(a),
right]. Randomly picking one variable to update at a
time, one can solve for the joint transition probabilities
of the combined system P (x, y → x′, y′); for details see
Appendix B. Notably, since the dynamics are Markovian,
İ reflects the full (not just local) irreversibility of the
system.

If px = py = 1/3, then both variables behave randomly,
and the system obeys detailed balance. By contrast, if
px or py > 1/3, then the tendencies for x to increase
and y to copy x give rise to fluxes between the states
of the system [Fig. 2(b)], thereby breaking detailed bal-

ance. Indeed, the irreversibility İ increases with both px

and py [Fig. 2(c)]. The independent irreversibility İ ind,
however, only increases with px, capturing the quicken-
ing dynamics of x [Fig. 2(d)]. Meanwhile, the interaction

irreversibility İ int primarily increases with py, captur-
ing the strengthening dependence of y on x [Fig. 2(e)].
We therefore find that the independent irreversibility is
generated by the individual motion of the environmental
variable, while the interaction irreversibility arises pre-
dominantly from the dependence of the sensing variable
on the environment. In this way, the decomposition in
Eq. (13) reveals the distinct ways that the environmental
and sensing variables generate irreversibility.

V. IRREVERSIBILITY DUE TO kth–ORDER
DYNAMICS

Can we tell whether the arrow of time emerges from the
dynamics of two or three elements at a time, or whether
we require higher–order information about the system
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as a whole? Answering this question requires further
decomposing the local irreversibility into contributions
from pairs of elements, triplets, and so on. For now,
consider the marginal dynamics of pairs of elements i
and j; namely, the marginal transition probabilities

P (xi → x′i, xj) =
∑
x−{i,j}

P (xi → x′i, x−i) (16)

P (xj → x′j, xi) =
∑
x−{i,j}

P (xj → x′j, x−j). (17)

Imagine a hypothetical system that matches these
marginal dynamics for all pairs i and j, but otherwise
contains minimal information about the arrow of time, so
that the dynamics are maximally reversible. This min-
imal irreversibility, which we denote İ(2), sets a lower
bound on the true local irreversibility İ, capturing all
of the local irreversibility in pairs of elements and noth-
ing more. In this way, by casting our decomposition as
an optimization problem, we are able to directly trans-
late knowledge about a system into a lower bound on
its irreversibility. From a practical perspective, the lo-
cal irreversibility İ is convex (see Appendix C), and so
there exist efficient algorithms for computing global min-
ima. In fact, the equivalent problem of minimizing en-
tropy production has garnered significant attention in
non–equilibrium physics [12, 16, 19, 20], dating back to
the foundational work of Onsager and Prigogine [21, 22].

In general, one can compute the minimum irreversibil-
ity İ(k) consistent with the dynamics of k elements at a
time. Since these kth–order dynamics contain all of the
information about smaller groups of size 1, 2, . . . , k − 1,
the minimum irreversibilities İ(k) form a hierarchy of
lower bounds that increase toward the true local irre-
versiblity İ:

0 ≤ İ(1) ≤ İ(2) ≤ . . . ≤ İ(N−1) ≤ İ(N) = İ , (18)

where N is the size of the system. There are several
things to note about these inequalities. First, for thermo-
dynamic systems, the zeroth–order bound (İ ≥ 0) is the
second law of thermodynamics, which follows from the
fact that İ is a KL divergence without any knowledge of
the system dynamics. Second, as one might suspect, the
first–order irreversibility İ(1)—that is, the minimum irre-
versibility consistent with individual dynamics—is equiv-
alent to the independent irreversibility İ ind (see Ap-
pendix D). Finally, since the N th–order dynamics contain
a full description of the transition probabilities P (xi →
x′i, x−i), we have İ(N) = İ.

Inspecting the hierarchy in Eq. (18), we see that the lo-
cal irreversibility due to kth–order dynamics alone can be

captured captured by the difference İ
(k)
int = İ(k)−İ(k−1) ≥

0, which we refer to as the interaction irreversibility of
order k. Indeed, combining these contributions from

İ
(1)
int = İ(1) = İ ind to İ

(N)
int , we arrive at a full decom-

position of the local irreversibility:

İ = İ
(1)
int︸ ︷︷ ︸
İ ind

+ İ
(2)
int + İ

(3)
int + . . .+ İ

(N)
int︸ ︷︷ ︸

İ int

, (19)

which is our main contribution. We note that this decom-
position is in many ways similar to the decomposition of
the entropy itself into connected components [5].

VI. DECOMPOSING IRREVERSIBILITY OF
LOGICAL FUNCTIONS

To illustrate how irreversibility arises from dynamics of
different orders, we apply the decomposition in Eq. (19)
to a class of noisy logical functions. Specifically, we con-
sider binary variables x and y that change state at each
time step with probability pflip, and third binary variable
z that is the output of a logical function with a proba-
bility of error perror [Fig. 3(a); see Appendix E for a full
description]. As for the sensing system in Fig. 2, because

the dynamics are Markovian the local irreversibility İ
represents the full irreversibility of the system.

We note that binary variables in steady state, such
as those considered here, cannot break detailed balance
on their own (Appendix F). Thus, for binary steady–
state systems, the independent irreversibility vanishes
(İ ind = 0), such that the arrow of time arises entirely

from the interactions between the elements, İ = İ int =

İ
(2)
int + . . . + İ

(N)
int . Specifically for the logical functions

[Fig. 3(a)], there are only two contributions to the irre-

versibility: that due to pairwise dynamics İ
(2)
int and that

due to the full triplet dynamics İ
(3)
int .

To begin, consider a simple function where z copies ei-
ther x or y while ignoring the other input [Fig. 3(b–c)];
these are binary simplifications of the sensing system in
Fig. 2. As perror increases—that is, as the accuracy of
the function decreases—we find that the irreversibility İ
decreases [Fig. 3(d)]. Indeed, as perror approaches 1/2,
the output z completely decouples from the inputs x and
y, and the system becomes reversible (İ = 0). Addition-
ally, the arrow of time vanishes if the inputs x and y are
static (pflip = 0) and grows as the inputs become more
dynamic [that is, as pflip increases; Fig. 3(d)]. Visualizing
the fluxes between states of the system, we see that the
tendency for z to copy x (equivalently, y) only induces
fluxes in the x–z (or y–z) plane [Fig. 3(b–c)]. Accord-
ingly, for all values of pflip and perror, the irreversibility

arises entirely from pairwise dynamics (İ = İ
(2)
int ), while

triplet dynamics do not contribute to the irreversibility

[İ
(3)
int = 0; Fig. 3(d)].
For comparison, consider the AND and OR functions

[Fig. 4(a–b)]. Just as for the copy functions (Fig. 3),
the irreversibilities of AND and OR (which we note are
identical) increase both with the accuracy of the system
(as perror decreases) and with the speed of dynamics [as
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forms a noisy logical function on the inputs x and y. At
each point in time, one of the variables is updated at random.
With probability pflip, the inputs x and y change value, and
with probability perror, the output z fails to perform the spec-
ified function (see Appendix E). (b–c) Fluxes between states
of the system when z either copies x (b) or copies y (c). (d)

Irreversibilities İ (full), İ
(2)
int (pairwise interaction), and İ

(3)
int

(triplet interaction) versus perror for different values of pflip.
For both of the copy functions, irreversibility arises entirely

from pairwise dynamics (İ = İ
(2)
int ), while triplet dynamics do

not contribute (İ
(3)
int = 0).

pflip increases; Fig. 4(c)]. However, in contrast to the
copy functions, the full dynamics of AND and OR can-
not be deduced from pairs of variables alone. Thus, the
irreversibility arises from a combination of both pairwise
and triplet dynamics [Fig. 4(c)]. Finally, for the XOR
function, the behavior of the system only becomes appar-
ent when all three variables are observed simultaneously
[Fig. 4(d)]. As such, the irreversibility of XOR arises en-

tirely from triplet dynamics (İ = İ
(3)
int ), while the pairwise

dynamics are completely reversible [İ
(2)
int = 0; Fig. 4(e)].

This is consistent with the status of XOR as the proto-
type of combinatorial interactions.

The results of this section are summarized in Fig. 4(f–

g), where we plot the minimum irreversibilities İ(k)

[Fig. 4(f)] and interaction irreversibilities İ
(k)
int [Fig. 4(g)]

of the different logical functions, normalized by the full
irreversibilities İ. Since the systems all consist of bi-
nary steady–state dynamics, the first–order irreversibil-

ities İ(1) = İ
(1)
int vanish, and therefore the independent

dynamics do not define an arrow of time (İ ind = 0). For
the copy functions [Fig. 3(b–c)], irreversibility is driven
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and interaction irreversibilities İ
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entirely by second–order dynamics; for the AND and OR
functions [Fig. 4(a–b)], the arrow of time arises from a
combination of second– and third–order dynamics; and
for the XOR function [Fig. 4(d)], irreversibility is driven
entirely by third–order dynamics [see Fig. 4(g)]. In this
way, the decomposition in Eq. (19) can be used to un-
cover the order of the dynamics that generate irreversibil-
ity in interacting systems.

VII. DECOMPOSING IRREVERSIBILITY IN
NEURONAL POPULATIONS

Using the framework developed above, we are ulti-
mately interested in understanding how irreversibility
emerges in biological systems. Here, we study electrical
activity in groups of neurons at the output of the retina.
These ganglion cells provide all the data that the brain
has about the visual world, and hence their state provides
the ingredients out of which visual perceptions are syn-
thesized, including our perception of the arrow of time.
Importantly, information about visual stimuli is encoded
not just in the firing of individual neurons, but also in the
web of dependencies between neurons [7, 23, 24]. It re-
mains unknown, however, whether groups of neurons ex-
hibit fluxes between collective states—thereby breaking
detailed balance—and if so, whether such irreversibility
arises from pairs of neurons or from complicated higher–
order dynamics.

Here we analyze experiments on the salamander retina
[Fig. 5(a)], where it is possible to record form many neu-
rons simultaneously as they respond to complex visual
stimuli [6]. These experiments explored three very dif-
ferent kinds of visual inputs: natural movies [Fig. 5(b)],
a single horizontal bar whose vertical motion is equiva-
lent to a Brownian particle on a spring [Fig. 5(c)], and
the Brownian bar with precise repetitions of the same
trajectory. Although this was not the goal of the origi-
nal experiments, we note that the natural movies violate
time–reversal invariance, being easily recognized when
played forward vs. backward, while the Brownian bar is
an equilibrium system and obeys detailed balance. Ap-
pendix G gives a more detailed description of the exper-
imental setup and procedures from Ref [6].

A. Broken detailed balance in neuronal dynamics

The problems of detecting and quantifying irreversibil-
ity in data have garnered significant attention in the sta-
tistical mechanics of living systems [3, 20, 25–28]. To de-
tect irreversibility, one must simply search for violations
of detailed balance; namely, fluxes between the states of
a system [3, 25, 26]. To quantify the irreversibility of

a system, however, one must estimate or bound İ from
time–series measurements [20, 26–28]. Here, in addition

to estimating the local irreversibility İ, we further wish
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FIG. 5. Broken detailed balance in a group of neurons. (a)
Dots mark the times of action potentials (“spikes”) from 53
neurons in the salamander retina responding to a visual stim-
ulus (see Appendix G for experimental details). (b–c) The
same 53 neurons are exposed to three different stimuli: a nat-
ural movie of fish swimming (b), a horizontal bar whose move-
ment is defined by a Brownian particle on a spring (c), and
the same Brownian bar in panel (c) but with one trajectory
repeated multiple times. (d) To record multipartite transi-
tions [see Fig. 1(c)], we slide a window of width ∆t = 20 ms
along the time series. A neuron transitions to active when a
spike enters the front of the window (left), or inactive when a
spike exits the back of the window (center). Self–transitions
can occur when a cell spikes twice within the same window
(right). (e–h) A random group of three neurons responding
to a natural movie. (e) Probabilities P (x→ x′), where black
entries indicate transitions that are disallowed under multi-
partite dynamics. (f) Changes in state probabilities ∆P (x)
are small relative to their standard deviations σ∆P (x), in-
dicating that the system is in steady state. (g–h) Fluxes
P (x → x′) − P (x′ → x) illustrated as a matrix (g) and as
a directed network (h). The presence of fluxes demonstrates
that the neurons break detailed balance, defining an arrow of
time.
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to decompose İ into contributions from dynamics of var-
ious orders [as in Eq. (19)]. In order to do so—that is,
in order to compute the minimum irreversibilities I(k)

consistent with kth–order dynamics—we must begin by
estimating the transition probabilities P (xi → x′i, x−i)
themselves.

We consider a neuron i active (xi = 1) if it generates
an action potential (“spike”) at least once within a time
window of width ∆t = 20 ms, or inactive (xi = 0) if it is
silent. In this way, the collective state of N neurons is a
binary vector x = {x1, x2, . . . , xN}. As we slide the win-
dow along the time series, it is almost always the case
that only one cell i changes state at a time, either by
having a spike enter the front of the window [Fig. 5(d),
left window] or exit the back of the window [Fig. 5(d),
center window]. Each time this occurs, we record a new
transition between states x → x′. For completeness, we
remark that self–transitions can occur when a cell spikes
twice within the same window [Fig. 5(d), right window];
however, we note that the all–silent state {0, . . . , 0} can-
not have self–transitions, since no spike enters or exits the
sliding window. In the rare instances when two spikes en-
ter or exit the window at exactly the same time (within
the experimental resolution of 0.1 ms), we break ties by
adding small random noise to the spike times, thus yield-
ing multipartite dynamics wherein only one cell changes
state at a time.

For example, in Fig. 5(e) we illustrate the probabil-
ities of transitions between the states of N = 3 neu-
rons responding to a natural movie [Fig. 5(b)]. Notably,
the changes in state probabilities ∆P (x) =

∑
x′ P (x′ →

x) − P (x → x′) are small relative to errors [Fig. 5(f)],
indicating that the group of neurons is in a stochastic
steady state. As discussed above (and in Appendix F),
binary steady–state variables cannot break detailed bal-
ance on their own. Thus, even though neurons violate
detailed balance at the subcellular scale, at the coarse-
grained level of binary activity the individual neurons in
Fig. 5(e–f) do not define a local arrow of time. How-
ever, when examined as a group, we find that the three
cells exhibit fluxes between collective states [Fig. 5(g–h)],
thereby breaking detailed balance. In combination, these
results establish that the group of neurons operates at a
non–equilibrium steady state.

B. Local irreversibility depends on stimulus

We are now prepared to estimate the collective irre-
versibility of groups of neurons. We note that neurons—
indeed, biological systems generally—can have long–
range temporal dependencies. Thus, in contrast to the
Markov systems examined in previous sections (Figs. 2–

4), here İ reflects the local (rather than total) irreversibil-
ity of the system. As with other information–theoretic
quantities, estimating the local irreversibility from data is
challenging, and prone to systematic errors due to finite
data. As described in Appendix H, we find that these can
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FIG. 6. Stimulus–dependence of local irreversibility. (a) Dis-

tributions of local irreversibilities İ for 5–cell groups respond-
ing to a natural movie (blue), a Brownian bar (red), and a
repeated Brownian bar (green). (b) The same as panel (a),
but normalized to bits per second to account for variations in
spike rates across stimuli. In panels (a–b), out of 100 random
5–cell groups, we only include those with significant local ir-
reversibility (see Appendix H). (c–d) Local irreversibility (c)
and after normalizing to bits per second (d) for different stim-
uli as functions of the number of cells in a group. Data points
are averaged over 100 random groups.

be controlled using the strategy of Ref. [23] if we restrict
our attention to groups of no more than N = 5 cells.

After correcting for finite–data effects, out of 100 ran-
dom 5–cell groups, across the different stimuli we find
that 60–68% exhibit significant local irreversibility İ,
thereby defining an arrow of time. Moreover, for all cell
groups and all stimuli, we find that the dynamics are
in steady state (see Appendix J), indicating that indi-
vidual cells do not break detailed balance, and there-
fore that any local arrow of time arises from the collec-
tive dynamics of multiple neurons. Surprisingly, despite
the fact that the Brownian bar is completely reversible,
neuronal dynamics are more irreversible when respond-
ing to this stimulus than the natural movie [Fig. 6(a)].
Moreover, the local irreversibility is even larger when
the same Brownian trajectory is repeated multiple times
[Fig. 6(a)], suggesting that a repeated input can induce
a stronger arrow of time in the neuronal responses. We
confirm that these differences in local irreversibility hold
even after accounting for variations in the overall rate of
spiking across the stimulus ensembles [Fig. 6(b)]. Addi-
tionally, the same ordering of stimuli holds for all group
sizes from N = 2 to N = 5 cells [Fig. 6(c–d)]. These
results demonstrate that the arrow of time in neuronal
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(k)
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orders k for 5–cell groups responding to a natural movie. (b–c) Minimum irreversibilities İ(k) (b) and interaction irreversibilities

İ
(k)
int (c), normalized by the true local irreversibilities İ, as functions of the order k averaged over 5–cell groups. (d) The fraction

of pairwise irreversibility İ
(2)
int /İ increases significantly with the local irreversibility İ for 5–cell groups (Spearman coefficient

r = 0.31, p < 10−3). In all panels, out of 100 random groups, we only include those with significant local irreversibility for each
stimulus.

activity does not simply reflect the irreversibility of the
stimulus. Instead, neuronal dynamics can define an ar-
row of time even when the stimulus does not.

C. Local irreversibility arises from low–order
dynamics

To implement the decomposition of local irreversibil-
ity from Eq. (19), we need numerical methods to con-

struct the probability distributions that minimize İ while
matching the observed kth–order dynamics. We provide
one such method for binary systems in Appendix I.

To recall, for binary steady–state systems, the inde-
pendent irreversibility İ ind vanishes, and so the local ir-
reversibility arises entirely from the collective dynamics
of two or more variables (see Appendix F). For groups
of N = 5 cells responding to the natural movie, we find
that pairwise dynamics account for much more of the lo-
cal irreversibility than higher–order dynamics [Fig.7(a)].
In fact, across all stimuli, pairwise dynamics generate
66–74% of the local irreversibility [Fig. 7(b)], more than
3rd–, 4th–, and 5th–order dynamics combined [Fig. 7(c)].
Moreover, the fraction of the irreversibility captured by
pairwise dynamics increases significantly with the lo-
cal irreversibility itself [Fig. 7(d)], demonstrating that
groups of neurons that operate further from detailed bal-
ance do so in an even more pairwise fashion. Perhaps
most notably, despite the fact that the magnitude of the
local irreversibility varies significantly from one stimulus
to another (Fig. 6), we find that the proportions of irre-
versibility captured by different types of dynamics remain
consistent across stimuli [Fig. 7(b–c)].

In combination, the results of this section indicate that
the arrow of time in retinal neurons (i) varies depending

on the specific stimulus (Fig. 6), yet (ii) does not simply
reflect the irreversibility of the stimulus, and (iii) con-
sistently arises from the same combination of low–order
dynamics, driven primarily by pairs of neurons (Fig. 7).

VIII. CONCLUSIONS

Irreversible dynamics support a wide range of biolog-
ical functions, yet it remains unclear how macroscopic
irreversibility arises from the microscopic dynamics of in-
dividual components. In this study, we propose a frame-
work to uncover how irreversibility emerges in complex
interacting systems. To do so, we develop analytic and
numerical techniques for decomposing the information–
theoretic evidence for the arrow of time into contribu-
tions from individual elements, pairs, and higher–order
dynamics. We illustrate our methods on the examples
of irreversible dynamics in models for sensing systems
(Fig. 2) and logical functions (Figs. 3 and 4). Moving to
real data, we find that the irreversibility of retinal neu-
rons varies from one stimulus to another, but consistently
arises from pairwise dynamics (Figs. 5–7).

These results suggest several new directions. For ex-
ample, given that the irreversibility of retinal neurons
does not simply reflect that of the stimulus, it is nat-
ural to wonder which stimulus properties are, in fact,
responsible for inducing irreversibility in groups of cells.
Additionally, in the process of decomposing the local ir-
reversibility, one must compute a hierarchy of minimally
irreversible models consistent with observed kth–order
dynamics. Just as maximum entropy models have been
successful in describing distributions over states at sin-
gle moments in time [24, 29–31], might these minimum
irreversibility models provide insights into the dynam-
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ical flow of living systems from one state to another?
More generally, we remark that the proposed framework
is non–invasive, applying to any system with time–series
data. Thus, the methods can be used to examine irre-
versible dynamics in a wide range of other biological sys-
tems, from molecular and cellular networks [3, 13, 15, 32–
34], to large–scale recordings in the brain [26, 35], to en-
tire populations of animals and humans [29, 31, 36].
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Appendix A: Multipartite dynamics required to
decompose irreversibility

In Sec. III, we show that the local irreversibility İ
of a multipartite system can be decomposed into two
non–negative components [Eq. (13)]: the independent ir-

reversibility İ ind and the interaction irreversibility İ int.
Here we show that multipartite dynamics are necessary
for this decomposition. Specifically, we establish that if
multiple elements are allowed to change state at the same
time, then the decomposition in Eq. (13) can break down
and the interaction irreversibility can become ill–defined.

Consider, for example, a system with two identical el-
ements x and y, such that x = y at all moments in time.
Given the joint transition probabilities of one of the vari-
ables P (x → x′), the dynamics of the combined system
are given by

P (x, y → x′, y′) = P (x→ x′)δx,yδx′,y′ . (A1)

For such a system, the irreversibility is given by

İ =
∑

x,x′,y,y′

P (x, y → x′, y′) log
P (x, y → x′, y′)

P (x′, y′ → x, y)
(A2)

=
∑
x,x′

P (x→ x′) log
P (x→ x′)

P (x′ → x)
. (A3)

To compute the independent irreversibility İ ind, we note
that the marginal dynamics of y are identical to that of
x:

P (y → y′) =
∑
x,x′

P (x, y → x′, y′) (A4)

=
∑
x,x′

P (x→ x′)δx,yδx′,y′ (A5)

= P (x→ x′). (A6)

Thus, the independent irreversibility is given by

İ ind = İ ind
x + İ ind

y (A7)

=
∑
x,x′

P (x→ x′) log
P (x→ x′)

P (x′ → x)
(A8)

+
∑
y,y′

P (y → y′) log
P (y → y′)

P (y′ → y)
(A9)

= 2
∑
x,x′

P (x→ x′) log
P (x→ x′)

P (x′ → x)
(A10)

= 2İ . (A11)

Since İ int = İ−İ ind = −İ, we find that the interaction ir-
reversibility is negative, thus violating the decomposition
of the local irreversibility into non–negative terms.

Appendix B: Solving the sensing system

Consider a sensing system composed of an environ-
mental variable x and a sensing variable y, each with
three states. The environmental variable x increases with
probability px, and the sensing variable y copies x with
probability py, yielding the dynamics in Eqs. (14–15).
Randomly choosing one variable to update at each point
in time, the dynamics of the combined system are defined
by the conditional transition probabilities

P (x′, y′ |x, y) =
1

2

(
P (x′ |x)δy,y′ + P (y′ |x)δx,x′

)
. (B1)

Using the stationary condition π(x, y) =∑
x′,y′ P (x, y |x′, y′)π(x′, y′), one can solve for the
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stationary distribution:

π(x, y) ∝



2 + 7py + px(1 + 3py + 3px)
5− 2py + px(4− 6py + 3px)
6− 5py + px(1 + 3py + 3px)
6− 5py + px(1 + 3py + 3px)
2 + 7py + px(1 + 3py + 3px)
5− 2py + px(4− 6py + 3px)
5− 2py + px(4− 6py + 3px)
6− 5py + px(1 + 3py + 3px)
2 + 7py + px(1 + 3py + 3px)



(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)

. (B2)

Combining Eqs. (B1) and (B2), we arrive at the
joint transition probabilities P (x, y → x′, y′) =
P (x′, y′ |x, y)π(x, y), which are used to perform the cal-
culations in Sec. IV.

Appendix C: Convexity of local irreversibility

In order to compute İ(k), one must minimize the local
irreversibility İ subject to constraints on the kth-order
dynamics of the system. Here, we show that the local ir-
reversibility is convex with respect to the transition prob-
abilities P (x → x′), and thus can be minimized using
efficient techniques.

The gradient of the local irreversibility [Eq. (2)] is given
by

∂İ

∂P (x→ x′)
= log

P (x→ x′)

P (x′ → x)
− P (x′ → x)

P (x→ x′)
+ 1, (C1)

where for simplicity log(·) is natural logarithm. Since
Eq. (C1) only depends on P (x→ x′) and P (x′ → x), we

see that the Hessian of İ takes the block diagonal form

H =


. . . 0 0

0 H(x, x′) 0

0 0
. . .

 , (C2)

where

H(x, x′) =

 ∂2İ
∂P (x→x′)2

∂2İ
∂P (x→x′)∂P (x′→x)

∂2İ
∂P (x→x′)∂P (x′→x)

∂2İ
∂P (x′→x)2

 (C3)

=

 P (x→x′)+P (x′→x)
P (x→x′)2 −P (x→x′)+P (x′→x)

P (x→x′)P (x′→x)

−P (x→x′)+P (x′→x)
P (x→x′)P (x′→x)

P (x→x′)+P (x′→x)
P (x′→x)2


(C4)

is the 2×2 Hessian for the pair of states
(x, x′). The eigenvalues of H(x, x′) are λ1 =
(P (x→x′)+P (x′→x))(P (x→x′)2+P (x′→x)2)

P (x→x′)2P (x′→x)2 and λ2 = 0.

Since λ1, λ2 ≥ 0, and since the eigenvalues of H are
simply the eigenvalues of the different blocks H(x, x′)
combined, we have established that H is positive
semidefinite, and therefore that the local irreversibility
İ is convex.

Appendix D: Equivalence between independent and
first–order irreversibilities

Here we establish that the independent irreversibility
İ ind is equivalent to the first–order minimum irreversibil-
ity İ(1). To do so, consider a hypothetical system Q(xi →
x′i, x−i) that is consistent with the observed first–order
dynamics P (xi → x′i) =

∑
x−i

P (xi → x′i, x−i). Since

İ ind(Q) = İ ind(P ), we have

İ(Q) = İ ind(Q) + İ int(Q) (D1)

= İ ind(P ) + İ int(Q) (D2)

≥ İ ind(P ), (D3)

where the inequality follows from that fact that İ int(Q) ≥
0. Thus, the independent irreversibility İ ind(P ) is a lower

bound on the local irreversibility İ(Q) of any hypothet-
ical system Q consistent with the observed first–order
dynamics. Since the first–order irreversibility İ(1) is just
the minimum of İ(Q) among all such systems Q, we have

found that İ(1) ≥ İ ind.
In order to establish that İ(1) = İ ind, all that remains

is to identify a hypothetical system Q that achieves the
lower bound in Eqs. (D1–D3). Specifically, we seek a
system Q that is consistent with the observed first–order
dynamics, yet has interaction irreversibility İ int(Q) = 0.
Consider, for example, a system Q in which the dynamics
of each element i are independent from the rest of the sys-
tem, such that Q(xi → x′i, x−i) = Q(xi → x′i) = P (xi →
x′i) for all x−i. Using Eqs. (10–12), one can verify that
such a system has zero interaction irreversibility, thereby
saturating the lower bound in Eqs. (D1–D3). We have

therefore shown that İ(1) (the minimum local irreversibil-
ity consistent with first–order dynamics) is equivalent to

the independent irreversibility İ ind.

Appendix E: Noisy logical functions

In Sec. VI, we examine a system of three binary vari-
ables: two inputs x and y that flip with probability pflip,
and an output variable z that performs a logical func-
tion on x and y, but with error rate perror [see Fig. 3(a)].
Specifically, the dynamics of the input variables are de-
fined by the conditional transition probabilities

P (x′ |x) = P (y′ | y) =

(
1− pflip pflip

pflip 1− pflip

)
, (E1)

and the dynamics of the output variable are defined by

P (z′ |x, y) =

{
1− perror, z

′ = f(x, y)
perror, z′ 6= f(x, y)

, (E2)

where f(x, y) is the logical function performed by z. Ran-
domly picking one variable to update at each point in
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time, the conditional transition probabilities for the en-
tire system are given by

P (x′, y′, z′ |x, y, z) =
1

3

(
P (x′ |x)δy,y′δz,z′ (E3)

+ P (y′ | y)δx,x′δz,z′ + P (z′ |x, y)δx,x′δy,y′
)
.

Using Eq. (E3), one can solve for the station-
ary distribution π(x, y, z) and then compute the
joint transition probabilities P (x, y, z → x′, y′, z′) =
P (x′, y′, z′ |x, y, z)π(x, y, z).

Appendix F: Independent irreversibility vanishes for
binary steady–state systems

For binary steady–state systems, such as the logical
functions in Sec. VI and the neurons in Sec. VII, the
independent irreversibility İ ind is zero. To see this, note
that the marginal dynamics of any binary steady–state
variable are defined by the conditional transition proba-
bilities

P (x′i |xi) =

(
1− pi pi

qi 1− qi

)
, (F1)

where 0 ≤ pi, qi ≤ 1 are the probabilities of i switch-
ing between its two states. The marginal steady–state
distribution for i is π(xi) = 1

pi+qi
(qi, pi)

T , and thus the

marginal joint transition probabilities are given by

P (xi → x′i) = P (x′i |xi)π(xi) (F2)

=
1

pi + qi

(
(1− pi)qi piqi

qipi (1− qi)pi

)
. (F3)

Since the above transition probabilities are symmetric,
the marginal dynamics of each element i obey detailed
balance (such that İ ind

i = 0). Thus, we find that the

independent irreversibility of the entire system İ ind =∑N
i=1 İ

ind
i is zero. We emphasize that this only holds for

the local irreversibility; if we consider non–Markov effects
in strings of 3, 4, or more points in time, then binary
steady–state variables can break time-reversal symmetry
and define an arrow of time [43].

Appendix G: Neuronal recordings

The neuronal data examined in Sec. VII were recorded
from larval tiger salamander retina, which were dissected,
perfused with Ringer’s solution, and pressed onto dense
arrays of 252 electrodes with 30–µm spacing, as described
in Ref. [7]. In the experiments, which lasted 4–6 hours,
movies were projected onto the photoreceptor layer of the
retina via an objective lens, and voltages were recorded at
10 kHz. Spikes were sorted conservatively (as described
in Ref. [6]), yielding 53 reliable cells from which groups
were randomly selected for analysis.

The stimuli were presented on a 360×600 display, with
pixels of size 3.81µm on the retina and a frame rate of
60 frames per second. All stimuli were normalized to
the same average light intensity. The natural movie de-
picted a fish swimming in a tank, repeated 102 times.
The moving bar was 11 pixels wide and black on a gray
background, with trajectories displayed 62 times. The
trajectory of the bar’s vertical position was generated by
a stochastic process equivalent to a Brownian particle on
a spring attached to the center of the display. Specifi-
cally, the vertical position xt and velocity vt of the bar
were updated at each time t according to the equations
of motion:

xt+τ = xt + vtτ, (G1)

and

vt+τ = (1− Γτ)vt − ω2xtτ + ξt
√
Dτ, (G2)

where τ = 1/60 s is the time step (which matches the
frame rate of the visual display), ω = 3π s−1 is the nat-
ural frequency, Γ = 20 s−1 parameterizes the damping
(chosen such that the dynamics are slightly overdamped),
and D = 2.7×106 pixel2/s3 is chosen to allow reasonable
range of motion. For the repeated bar stimulus, the same
trajectory was repeated 62 times.

Appendix H: Correcting for finite data

For time–series data, such as the neuronal spiking ex-
amined in Sec. VII, in order to estimate quantities of
interest—such as transition rates, flux rates, and changes
in state probabilities (Fig. 5); local irreversibilities İ

(Fig. 6); and interaction irreversibilities İ
(k)
int (Fig. 7)—

one must correct for finite–data effects [7, 23, 24]. To do
so, for a given stimulus and group of neurons, we begin
with a list of the observed transitions {x(t)→ x(t+ 1)}.
For a given set of data fractions f , we subsample the
transitions (without replacement) in a hierarchical fash-
ion, such that each subsample of transitions is a subset of
the larger subsamples. For the neuronal data in Sec. VII,
we find that data fractions f = {1, 0.9, 0.8, 0.7, 0.6, 0.5}
are sufficient.

For each data fraction f , we estimate the quantity of
interest. For example, for the local irreversibility, we use
the estimate

İ =
∑
x,x′

P̃ (x→ x′) log
P̃ (x→ x′)

P̃ (x′ → x)
, (H1)

where

P̃ (x→ x′) =
N(x→ x′) + 1∑

y,y′ (N(y → y′) + 1)
(H2)

are the maximum likelihood probabilities with one pseu-
docount for each transition, and N(x → x′) is the num-
ber of times that the transition x → x′ was observed in
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FIG. 8. Correcting for finite–data effects on local irreversibil-
ity. (a) Estimated local irreversibility İ (black markers) ver-
sus inverse data fraction for one group of N = 5 neurons re-
sponding to a natural movie. Grey line indicates a linear fit,
and red marker indicates the extrapolation to infinite data.
(b) Estimated local irreversibility (black markers), linear fits
(grey lines), and extrapolation to infinite data (red marker)
after repeating the process in panel (a) 100 times for the same
group of neurons. Data points and error bars reflect averages
and standard deviations over the 100 repetitions.

the data. We include pseudocounts to avoid infinities in
Eq. H1, but we confirm that the näıve estimator with-
out pseudocounts yields the same results. After estimat-
ing the quantity of interest for all fractions f , we then
extrapolate to the infinite–data limit using a linear fit
with respect to the inverse data fraction 1/f [Fig. 8(a)].
Repeating this process 100 times, we arrive at both an
average and standard deviation for the infinite–data es-
timates of the desired quantity [Fig. 8(b)].

To check that the above procedure gives accurate esti-
mates for the local irreversibility İ, we note that ran-
domizing the timing of spikes should destroy the ar-
row of time. Thus, for time–randomized data, the es-
timated local irreversibility should vanish in the infinite–
data limit. Consider the 100 groups of N = 5 neurons
analyzed in Figs. 6 and 7. Among these groups, after
correcting for finite–data effects, we find that 60–68%
exhibit significant local irreversibility İ, depending on
the stimulus [Fig. 9(a)]. By contrast, after randomizing
the spike times, the local irreversibility estimates are cen-
tered around zero, with only 0–2% of groups exhibiting
significant local irreversibility [Fig. 9(b)]. Examining dif-
ferent group sizes, we find that the percentage of groups
with significant local irreversibility increases from ∼10%
for N = 2 cells to ∼100% for N ≥ 8 cells [Fig. 9(c)].
Importantly, after randomizing spike times, groups of
N ≤ 5 cells are almost always locally reversible, as de-
sired [Fig. 9(d)]. However, even for time–randomized
data, we find that some groups of N ≥ 6 cells exhibit
significant local irreversibility [Fig. 9(d)], demonstrating
finite–data effects cannot be adequately accounted for.
We therefore conclude that N = 5 is the largest num-
ber of cells for which we can consistently estimate local
irreversibility İ in our dataset.
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FIG. 9. Estimated local irreversibilities of real and time–
shuffled data. (a–b) Distributions of local irreversibility esti-

mates İ, normalized by standard deviations σİ , for real time
series (a) and after randomizing spike times (b). Distribu-
tions are over the same 100 groups of N = 5 cells analyzed
in Figs. 6 and 7, and the dashed line indicates the threshold
for significance. (c–d) Fraction of cell groups with significant
local irreversibility as a function of group size N for real time
series (c) and after randomizing spike times (d). For each
size, fractions are computed over 100 random groups.

Appendix I: Minimizing local irreversibility

Computing the kth–order minimum irreversibility İ(k)

requires finding a hypothetical system Q(xi → x′i, x−i)
that matches the observed kth–order marginal dynam-
ics, but otherwise has minimum local irreversibility İ(Q).

We remark that the local irreversibility İ is convex (see

Appendix C), and thus computing İ(k) is a constrained
convex minimization problem for which there exist effi-
cient optimization methods. From a practical perspec-
tive, there are only two main hurdles to overcome: (i)
adapting an existing convex minimization technique for
our problem, and (ii) writing down the constraints on the
kth–order dynamics. Here, we address these challenges
for binary systems.

1. Frank–Wolfe algorithm

To minimize the local irreversibility İ given a set
of constraints, we employ the Frank–Wolfe algorithm,
which efficiently converges to a local (and therefore
global) minimum. Specifically, we initialize Q using any
dynamics that match the observed constraints (for exam-
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ple, one can begin with the observed dynamics Q = P ).
We then iterate the following steps:

1. First, we compute the gradient of the local irre-
versibility:

∂İ

∂Q(xi → x′i, x−i)
= log

Q(xi → x′i, x−i)

Q(x′i → xi, x−i)
(I1)

− Q(x′i → xi, x−i)

Q(xi → x′i, x−i)
+ 1,

where log(·) represents the natural logarithm for
simplicity.

2. Second, we solve for the dynamics Q∗ that obey
the desired constraints while minimizing the inner
product with the gradient:

N∑
i=1

∑
x−i

∑
xi,x′i

Q(xi → x′i, x−i)
∂İ

∂Q(xi → x′i, x−i)
. (I2)

We note that this constrained linear minimization
problem is a linear program, and thus can be effi-
ciently solved using standard techniques (e.g., the
linprog function in MATLAB).

3. Finally, we take a step toward Q∗, such that Q ←
Q + αt(Q

∗ −Q), where αt = α0/t is the step size,
which decreases with the number of iterations t.

An implementation of the above algorithm is available at
github.com/ChrisWLynn/Decompose irreversibility.

2. Constraining kth–order dynamics

We seek to constrain the kth–order dynamics of a
binary, multipartite system with joint transition prob-
abilities P (xi → x′i, x−i). For each element i, con-
sider a group of k − 1 of the remaining elements K ⊆
{1, . . . , i − 1, i + 1, . . . , N}. Let xK denote the states of
the elements in K, and x−{i,K} the states of the elements
not in i nor K. The marginal dynamics of i with the el-
ements in K held fixed are then given by

P (xi → x′i, xK) =
∑

x−{i,K}

P (xi → x′i, x−i). (I3)

Constraining the kth–order dynamics amounts to con-
straining the marginal probabilities P (xi → x′i, xK) for
all elements i and all groups of the remaining elements K
of size k − 1. For example, if K is empty, then we arrive
at the independent (first–order) dynamics P (xi → x′i).
If K consists of one element j, then we have the pair-
wise (second–order) dynamics P (xi → x′i, xj) discussed
in Sec. V. We remark, however, that these marginal prob-
abilities are not all independent, and therefore the set of
constraints is overdetermined.

To write down independent constraints that fully de-
fine the kth–order dynamics, it helps to consider an anal-
ogy with Ising systems. Consider a binary system with
state probabilities P (x). It is known that the kth–order
marginal probabilities P (xK) =

∑
x−K

P (x) are com-

pletely defined by the correlations between groups of el-
ements up to size k: 〈xi〉, 〈xixj〉, . . .,

〈∏
i∈K xi

〉
, where

〈·〉 represents an average over P (x) [5]. Moreover, these
correlations are independent, thus forming a basis for the
kth–order probabilities P (xK).

Here, we wish to constrain the kth–order transition
probabilities P (xi → x′i, xK) for all elements i and all
groups of the remaining elements K of size k − 1. For a
given transition xi → x′i, we denote the correlation be-
tween a set of the remaining elements K by〈∏

j∈K
xj

〉
xi→x′i

=
∑
x−i

∏
j∈K

xjP (xi → x′i, x−i). (I4)

If K is empty, then we simply arrive at the independent
transition probabilities:

〈1〉xi→x′i
=
∑
x−i

P (xi → x′i, x−i) = P (xi → x′i). (I5)

By analogy with Ising systems, for each transi-
tion xi → x′i, the kth–order marginal probabilities
P (xi → x′i, xK) can be defined by the correlations
between groups of elements (not including i) from the
empty set up to size k − 1: 〈1〉xi→x′i

, 〈xj〉xi→x′i
, . . .,〈∏

j∈K xj

〉
xi→x′i

. We can then constrain the kth–order

dynamics of the entire system by computing the above
correlations for each of the 2N transitions xi → x′i
(not including self–transitions). We remark that we
do not need to constrain self–transitions x → x be-
cause they do not contribute to the local irreversibility
[Eq. 2]. Code for constraining the kth–order dy-
namics of binary, multipartite systems is available at
github.com/ChrisWLynn/Decompose irreversibility.

Appendix J: Groups of neurons operate at steady
state

In Figure 5, we see that a group of N = 3 neurons oper-
ates at a non–equilibrium steady state. Here, we demon-
strate that steady–state dynamics are not specific just to
this group, but are instead a general feature of all groups
of neurons analyzed in this paper. To determine if a sys-
tem operates at steady state, one must examine whether
its state probabilities are stationary in time. The change
in the probability P (x) of a state x during one time step
is given by ∆P (x) =

∑
x′ P (x′ → x) − P (x → x′). In

steady state this should be zero, but more precisely we
expect that it will be a random number with a variance
set by the errors in sampling the underlying distributions.
In Fig. 10, we plot the distributions of ∆P (x), normal-
ized by the relevant standard deviation σ∆P (x), for the
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FIG. 10. Neurons operate at stochastic steady states. (a–
c) Distributions of changes in state probabilities ∆P (x) =∑

x′ P (x′ → x) − P (x → x′), normalized by the standard
deviation σ∆P (x), for groups of N = 5 cells responding to a
natural movie (a), moving bar stimulus (b), and a repeated
moving bar stimulus (c). Distributions are over the 2N = 32
different states for the 100 random groups analyzed in Figs. 6
and 7.

groups of N = 5 cells analyzed in Figs. 6 and 7. We
note that these quantities are estimated using the same
finite–data correction techniques described in Appendix
H. Across all stimuli, we find that the changes in state
probabilities ∆P (x) for all cell groups are small relative
to errors; that is, for all stimuli, all groups of neurons
appear to operate at steady state.

Appendix K: Data and code availability

The data and code used to perform the analyses in
this paper are openly available at
github.com/ChrisWLynn/Decompose irreversibility.
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