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Distributed Hybrid Power State Estimation

under PMU Sampling Phase Errors

Jian Du, Shaodan Ma, Yik-Chung Wu and H. Vincent Poor

Abstract

Phasor measurement units (PMUs) have the advantage of providing direct measurements of power

states. However, as the number of PMUs in a power system is limited, the traditional supervisory

control and data acquisition (SCADA) system cannot be replaced by the PMU-based system overnight.

Therefore, hybrid power state estimation taking advantage of both systems is important. As experiments

show that sampling phase errors among PMUs are inevitable in practical deployment, this paper proposes

a distributed power state estimation algorithm under PMU phase errors. The proposed distributed

algorithm only involves local computations and limited information exchange between neighboring

areas, thus alleviating the heavy communication burden compared to the centralized approach. Simulation

results show that the performance of the proposed algorithm is very close to that of centralized optimal

hybrid state estimates without sampling phase error.

Index Terms

PMU, SCADA, state estimation, phase mismatch.

I. INTRODUCTION

Due to the time-varying nature of power generation and consumption, state estimation in the

power grid has always been a fundamental function for real-time monitoring of electric power

networks [1]. The knowledge of the state vector at each bus, i.e., voltage magnitude and phase

angle, enables the energy management system (EMS) to perform various crucial tasks, such as

bad data detection, optimizing power flows, maintaining system stability and reliability [2], etc.

Furthermore, accurate state estimation is also the foundation for the creation and operation of

real-time energy markets [3].

In the past several decades, the supervisory control and data acquisition (SCADA) system,

which consists of hardware for signal input/output, communication networks, control equipment,
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user interface and software [4], has been universally established in the electric power industry,

and installed in virtually all EMSs around the world to manage large and complex power systems.

The large number of remote terminal units (RTUs) gather local bus voltage magnitudes, power

injection and current flow magnitudes, and send them to the master terminal unit to perform

centralized state estimation. As these measurements are nonlinear functions of the power states,

the state estimation programs are formulated as iterative reweighted least-squares solution [5],

[6].

The invention of phasor measurement units (PMUs) [7], [8] has made it possible to measure

power states directly, which is infeasible with SCADA systems. In the ideal case where PMUs

are deployed at every bus, the power state can be simply measured, and this is preferable to

the traditional SCADA system. However, in practice there are only sporadic PMUs deployed in

the power grid due to expensive installation costs. In spite of this, through careful placement of

PMUs [9]–[11], it is still possible to make the power state observable. As PMU measurements

are linear functions of power states in rectangular coordinates, once the observability requirement

has been satisfied, the network state can be obtained by centralized linear least-squares [12].

Despite the advantage of PMUs over SCADA, the traditional SCADA system cannot be

replaced by a PMU-based system overnight, as the SCADA system involves long-term significant

investment, and is currently working smoothly in existing power systems. Consequently, hybrid

state estimation with both SCADA and PMU measurements is appealing. One straightforward

methodology is to simultaneously process both SCADA and PMU raw measurements [13].

However, this simultaneous data processing, which leads to a totally different set of estimation

equations, requires significant changes to existing EMS/SCADA systems [2], [14], and is not

preferable in practice. In fact, incorporating PMU measurements with minimal change to the

SCADA system is an important research problem in the power industry [14].

In addition to the challenge of integrating PMU with SCADA data, there are also other

practical concerns that need to be considered. Firstly, it is usually assumed that PMUs provide

synchronized sampling of voltage and current signals [15] due to the Global Positioning System

(GPS) receiver included in the PMU. However, tests [16] provided by a joint effort between the

U.S. Department of Energy and the North American Electric Reliability Corporation show that

PMUs from multiple vendors can yield up to ±277.8µs sampling phase errors (or ±6◦ phase

error in a 60Hz power system) due to different delays in the instrument transformers used by
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different vendors. Sampling phase mismatch in PMUs will make the state estimation problem

nonlinear, which offsets the original motivation for introducing PMUs. It is important to develop

state estimation algorithms that are robust to sampling phase errors.

Secondly, with fast sampling rates of PMU devices, a centralized approach, which requires

gathering of measurements through propagating a significant computational large amounts of data

from peripheral nodes to a central processing unit, imposes heavy communication burden across

the whole network and imposes a significant computation burden at the control center. Decen-

tralizing the computations across different control areas and fusing information in a hierarchical

structure or aggregation tree has thus been investigated in [17]–[21]. However, these approaches

need to meet the requirement of local observability of all the control areas. Consequently, fully

distributed state estimation scalable with network size is preferred [13], [22], [23].

In view of above problems, this paper proposes a distributed power state estimation algorithm,

which only involves local computations and information exchanges with immediate neighbor-

hoods, and is suitable for implementation in large-scale power grids. In contrast to [13], [22]

and [23], the proposed distributed algorithm integrates the data from both the SCADA system

and PMUs while keeping the existing SCADA system intact, and the observability problem

is bypassed. The challenging problem of sampling phase errors in PMUs is also considered.

Simulation results show that after convergence the proposed algorithm performs very close to

that of the ideal case which assumes perfect synchronization among PMUs, and centralized

information processing.

The rest of this paper is organized as follows. The state estimation problem with hybrid

SCADA and PMU measurements under sampling errors is presented in Section II. In Section III,

a convergence guaranteed distributed state estimation method is derived. Simulation results are

presented in Section IV and this work is concluded in Section V.

Notation: Boldface uppercase and lowercase letters will be used for matrices and vectors,

respectively. E{·} denotes the expectation of its argument and  ,
√
−1. Superscript T denotes

transpose. The symbol IN represents the N×N identity matrix. The probability density function

(pdf) of a random vector x is denoted by p(x), and the conditional pdf of x given v is denoted

by p(x|v). N (x|µ,R) stands for the pdf of a Gaussian random vector x with mean µ and

covariance matrix R. Bldiag{·} denotes the block diagonal concatenation of input arguments.

The symbol ∝ represents a linear scalar relationship between two real-valued functions. The
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cardinality of a set V is denoted by |V| and the difference between two sets V and A is denoted

by V \ A.

II. HYBRID ESTIMATION PROBLEM FORMULATION

The power grid consists of buses and branches, where a bus can represent a generator or a load

substation, and a branch can stand for a transmission or distribution line, or even a transformer.

The knowledge of the bus state (i.e., voltage magnitude and phase angle) at each bus enable

the power management system to perform functions such as contingency analysis, automatic

generation control, load forecasting and optimal power flow, etc.

Conventionally, the power state is estimated from a set of nonlinear functions with mea-

surements from the SCADA system. More specifically, a group of RTUs are deployed by the

power company at selected buses. An RTU at a bus can measure not only injections and voltage

magnitudes at the bus but also active and reactive power flows on the branches linked to this

bus. These measurements are then transmitted to the SCADA control center for state estimation.

However, as injections and power flows are nonlinear functions of power states, an iterative

method with high complexity is often needed. The recently invented PMU has the advantage of

directly measuring the power states of the bus where it is placed and the current in the branches

directly connected to it. Through careful PMU placement [24], it is possible to estimate the

power states of the whole network with measurements from a small number of PMUs. With

measurements from both SCADA and PMUs, it is natural to contemplate obtaining a better state

estimate by combining information from both systems (hybrid estimation). In the following, we

consider a power network with the set of buses denoted by B and the subset of buses with PMU

measurements denoted by P .

A. PMU Measurements with Sampling Errors

For a power grid, the continuous voltage on bus i is denoted as Ai cos(2πfct + φi), with

Ai being the amplitude and φi being the phase angle in radians. Ideally, a PMU provides

measurements in rectangular coordinates: Ai cos(φi) and Ai sin(φi). However, for reasons of

sampling phase error [15], [16] and measurement error, the measured voltage at bus i would be

[16]

xri = Ai cos(θi + φi) + wri,E, (1)

June 23, 2021 DRAFT



5

xi = Ai sin(θi + φi) + wi,E, (2)

where θi is the phase error induced by an unknown and random sampling delay, and wri,E and

wi,E are the Gaussian measurement noises. On the other hand, a PMU also measures the current

between neighboring buses. Let the admittance at the branch {i, j} be gij +  · bij , the shunt

admittance at bus i be Bi, and the transformer turn ratio from bus i to j be ρij = |ρij| exp{ϕij}.

Under sampling phase error, the real and imaginary parts of the measured current at bus i are

given by [5]

yrij =κ1
ijAi cos(θi + φi)− κ2

ijAi sin(θi + φi)

− κ3
ijAj cos(θi + φj) + κ4

ijAj cos(θi + φj) + wri,I ,
(3)

yij =κ2
ijAi cos(θi + φi) + κ1

ijAi sin(θi + φi)

− κ4
ijAj cos(θi + φj)− κ3

ijAj sin(θi + φj) + wi,I ,
(4)

where κ1
ij , |ρij|2gij , κ2

ij , |ρij|2(bij+Bi), κ3
ij , |ρijρji|(cosϕjigij−sinϕji bij), κ4

ij , |ρijρji|(cosϕji bij+

sinϕjigij), and wri,I and wi,I are the corresponding Gaussian measurement errors.

In general, since the phase error θi is small (e.g., the maximum sampling phase error measured

by the North American SynchroPhasor Initiative is 6◦ [16]), the standard approximations sin θi ≈

θi and cos θi ≈ 1 can be applied to (1) and (2), leading to [25]

xri ≈ Er
i − E


iθi + wri,E (5)

xi ≈ E
i + Er

i θi + wi,E, (6)

where Er
i , Ai cos(φi) and E

i , Ai sin(φi) denote the true power state. Applying the same

approximations to (3) and (4) yields

yrij ≈κ1
ijE

r
i − κ2

ijE

i − κ3

ijE
r
j + κ4

ijE

j

+ θi
{
− κ2

ijE
r
i − κ1

ijE

i + κ4

ijE
r
j + κ3

ijE

j

}
+ wri,I ,

(7)

yij ≈κ2
ijE

r
i + κ1

ijE

i − κ4

ijE
r
j − κ3

ijE

j

+ θi
{
κ1
ijE

r
i − κ2

ijE

i − κ3

ijE
r
j + κ4

ijE

j

}
+ wi,I .

(8)

We gather all the PMU measurements related to bus i as zi = [xri , x

i, y

r
ij1
, yij1 , . . . , y

r
ijn , y


ijn

]T

where jk is the index of bus connected to bus i, and arranged in ascending order. Using (5), (6),
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(7) and (8), zi can be expressed in a matrix form as [25]

zi =
∑

j∈M(i)

Hijsj + θi
∑

j∈M(i)

Gijsj +wi, (9)

where si , [Er
i , E


i ]
T ; M(i) is the set of all immediate neighboring buses of bus i and also

includes bus i; Hij and Gij are known matrices containing elements 0, 1, κ1
ij , κ

2
ij , κ

3
ij and κ4

ij;

and the measurement error vector wi is assumed to be Gaussian wi ∼ N (wi|0, σ2
i I), with σ2

i

being the ith PMU’s measurement error variance [26].

Gathering all the local measurements {zi}i∈P and stacking these observations with increasing

order on i as a vector z, the system observation model is

z = Hs+ ΘGs+w, (10)

where s, w and θ contain {si}i∈B, {wi}i∈P and {θi}i∈P respectively, in ascending order

with respect to i; Θ , Bldiag{θiI2|M(i)|, . . . , θjI2|M(j)|} with i, j ∈ P arranged in ascending

order; and H and G are obtained by stacking Hi,j and Gi,j respectively, with padding zeros

in appropriate locations. Since wi is Gaussian, w is also Gaussian with covariance matrix

R = Bldiag{σ2
i I2|M(i)|, . . . , σ

2
jI2|M(j)|}, with i, j ∈ P , and the conditional pdf of (10) given

s and θ is

p(z|s,θ) = N (z|(H + ΘG)s,R). (11)

B. Mixed Measurement from SCADA and PMUs

For the existing SCADA system, the RTUs measure active and reactive power flows in network

branches, bus injections and voltage magnitudes at buses. The measurements of the whole

network by the SCADA system can be described as [2] ζ = g(ξ) +n, where ζ is the vector of

the measurements from RTUs in the SCADA system, ξ , [A1, φ1, A2, φ2, . . . , A|B|, φ|B|]
T , and

n ∼ N (n|0,W ) is the measurement noise from RTUs. Due to the nonlinear function g(·), ξ

can be determined by the iterative reweighted least-squares algorithm [27], and it was shown

in [27] that with proper initialization, such a SCADA-based state estimate ξ̂ converges to the

maximum likelihood (ML) solution with covariance matrix Υ = [∇g(ξ)TW−1∇g(ξ)]−1|ξ=ξ̂,

where ∇g(ξ) is the partial derivative of g with respect to ξ.

While there are many possible ways of integrating measurements from SCADA and PMUs, in

this paper, we adopt the approach that keeps the SCADA system intact, as the SCADA system

June 23, 2021 DRAFT



7

involves long-term investment and is running smoothing in current power networks. In order

to incorporate the polar coordinate state estimate ξ̂ with the PMU measurements in (10), the

work [14] advocates transforming ξ̂ into rectangular coordinates, denoted as ŝSCADA , T (ξ̂).

Due to the invariant property of the ML estimator [28], ŝSCADA is also the ML estimator in

rectangular coordinates. Furthermore, the mean and covariance of ŝSCADA can be approximately

computed using the linearization method or unscented transform [29]. For example, based on

the linearization method, Appendix A shows that the mean and covariance matrix of ŝSCADA are

s and ΓSCADA = ∇T (ξ)Υ∇[T (ξ)]T |ξ=ξ̂, respectively.

When considering hybrid state estimation, the information from SCADA can be viewed as prior

information for the estimation based on PMU measurements. From the definition of minimum

mean square error (MMSE) estimation, the optimal estimate of s is given by ŝ ,
∫
sp(s|z)ds,

where p(s|z) is the posterior distribution. Since s, the unknown vector to be estimated, is

coupled with the nuisance parameter θ, the posterior distribution of s has to be obtained from

p(s|z) =
∫
p(θ, s|z)dθ, and we have

ŝ =

∫ ∫
sp(θ, s|z)dθds.

As p(θ, s|z) = 1
p(z)

p(z|θ, s)p(s)p(θ) where p(s) and p(θ) denote the prior distribution of s and

θ respectively, and p(z) =
∫
p(z,θ, s)dθds =

∫ ∫
p(z|θ, s)p(θ)p(s)dθds is the normalization

constant, we have the MMSE estimator

ŝ =

∫ ∫
sp(θ)p(s)p(z|θ, s)dθds∫ ∫
p(θ)p(s)p(z|θ, s)dθds

. (12)

The distributions p(s) and p(θ) are detailed as follow.

• For p(s), it can be obtained from the distribution of the state estimate from the SCADA

system. While ŝSCADA is asymptotically (large data records) Gaussian with mean s and

covariance ΓSCADA according to the properties of ML estimators, in practice the number of

observations in SCADA state estimation is small and the exact distribution of ŝSCADA under

finite observation is in general not known. In order not to incorporate prior information

that we do not have, the maximum-entropy (ME) principle is adopted. In particular, given

the mean and covariance of ŝSCADA, the maximum-entropy (or least-informative) distribu-

tion is the Gaussian distribution with the corresponding mean and covariance [30], [31],

i.e., p(ŝSCADA) ≈ N (ŝSCADA|s,ΓSCADA). According to the Gaussian function property that

June 23, 2021 DRAFT



8

positions of the mean and variable can be exchanged without changing the value of the

Gaussian pdf, we have

p(s) ≈ N (s|ŝSCADA,ΓSCADA). (13)

• For p(θ), we adopt the truncated Gaussian model:

p(θi) = T N (θi|θi, θ̄i, ṽi, C̃i)

, [U(θi − θi)− U(θi − θ̄i)]
N (θi|ṽi, C̃i)

erf( θ̄i−ṽi
C̃

1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)
,

(14)

where θi and θ̄i are lower and upper bounds of the truncated Gaussian distribution, re-

spectively; U(x) is the unit step function, whose value is zero for negative x and one

for non-negative x; ṽi and C̃i are the mean and covariance of the original, non-truncated

Gaussian distribution; and erf(x) , 1√
2π

∫ x
0

exp{−y2

2
}dy. Moreover, the first order moment

of (14) is

$̃i =E{θi}

=ṽi − C̃1/2
i

N (θ̄i|ṽi, C̃i)−N (θi|ṽi, C̃i)
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)

,Ξ1[θi, θ̄i, ṽi, C̃i]

(15)

and the second order moment is

τ̃i =E{θ2
i }

=ṽ2
i − 2ṽiC̃

1/2
i

N (θ̄i|ṽi, C̃i)−N (θi|ṽi, C̃i)
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)

+ C̃i

{
1−

(θ̄i − ṽi)N (θ̄i|ṽi, C̃i)− (θi − ṽi)N (θi|ṽi, C̃i)
C̃

1/2
i

[
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)
] }

,Ξ2[θi, θ̄i, ṽi, C̃i].

(16)

In general, the parameters of p(θi) can be obtained through pre-deployment measurements.

For example, the truncated range [θi, θ̄i] is founded to be [−6π/180, 6π/180] according to

the test results [16]. ṽi and C̃i can also be obtained from a histogram generated during

PMU testing [32]. On the other extreme, (14) also incorporates the case when we have no

statistical information about the unknown phase error: setting [θi, θ̄i] = [−π, π], ṽi = 0, and
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C̃i =∞, giving an uniform distributed θi in one sampling period of the PMU. Further, as

θi are independent for different i, we have

p(θ) =
∏
i∈P

p(θi). (17)

Remark 1: Generally speaking, the phase errors in different PMUs may not be independent

depending on the synchronization mechanism. However, tests [16, p. 35] provided by the joint

effort between the U.S. Department of Energy and the North American Electric Reliability

Corporation show that the phase errors of PMU measurements is mostly due to the individual

instrument used to obtain the signal from the power system. Hence it is reasonable to make the

assumption that the phase errors in different PMUs are independent.

Remark 2: Under the assumption that all the phase errors {θi}i∈P are zero, (12) reduces to

ŝ =

∫
s

p(s)p(z|s)∫
p(s)p(z|s)ds

ds. (18)

Since both p(s) and p(z|s) are Gaussian, according to the property that the product of Gaus-

sian pdfs is also a Gaussian pdf [33], we have that p(s)p(z|s) is Gaussian. Moreover, since∫
p(s)p(z|s)ds is independent of s, the computation of ŝ in (18) is equivalent to maximizing

p(s)p(z|s) with respective to s, which is expressed as

ŝ = max
s
p(s)p(z|s)

= max
s

{
−||ŝSCADA − s||2ΓSCADA

− ||z − (H + ΘG)s||2R
}
.

(19)

Interestingly, (19) coincides with the weighted least-squares (WLS) solution in [14].

III. STATE ESTIMATION UNDER SAMPLING PHASE ERROR

Given all the prior distributions and the likelihood function, (12) can be written as ŝ =∫ ∫
sp(θ, s|z)dθds, where p(θ, s|z) ∝ p(θ)p(s)p(z|θ, s). The integration is complicated as

θi is coupled with {sj}j∈M(i), and its expression is not analytically tractable. Furthermore, the

dimensionality of the state space of the integrand (of the order of number of buses in a power

grid, which is typically more than a thousand) prohibits direct numerical integration. In this case,

approximate schemes need to be resorted to. One example is the Markov Chain Monte Carlo

(MCMC) method, which approximates the distributions and integration operations using a large

number of random samples [34]. However, sampling methods can be computationally demanding,
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often limiting their use to small-scale problems. Even if it can be successfully applied, the solu-

tion is centralized, meaning that the network still suffers from heavy communication overhead.

In this section, we present another approximate method whose distributed implementation can

be easily obtained.

A. Variational Inference Framework

The goal of variational inference (VI) is to find a tractable variational distribution q(θ, s) that

closely approximates the true posterior distribution p(θ, s|z) ∝ p(θ)p(s)p(z|θ, s). The criterion

for finding the approximating q(θ, s) is to minimize the Kullback-Leibler (KL) divergence

between q(θ, s) and p(θ, s|z) [35]:

KL [q(θ, s)||p(θ, s|z)] , −Eq(θ,s)
{

ln
p(θ, s|z)

q(θ, s)

}
. (20)

If there is no constraint on q(θ, s), then the KL divergence vanishes when q(θ, s) = p(θ, s|z).

However, in this case, we still face the intractable integration in (12). In the VI framework, a

common practice is to apply the mean-field approximation q(θ, s) = q(θ)q(s). Under this mean-

field approximation, the optimal q(θ) and q(s) that minimize the KL divergence in (20) are given

by [35]

q(θ) ∝ exp
{
Eq(s) {ln p(θ)p(s)p(z|θ, s)}

}
(21)

q(s) ∝ exp
{
Eq(θ) {ln p(θ)p(s)p(z|θ, s)}

}
. (22)

Next, we will evaluate the expressions for q(θ) and q(s) in (21) and (22), respectively.

• Computation of q(θ):

Assume q(s) is known and µ , Eq(s){s} and P , Eq(s){(s−µ)(s−µ)T} exist. Furthermore,

let µi = [µ]2i−1:2i be the local mean state vector of the ith bus; and Pi,j = [P ]2i−1:2i,2j−1:2j be

the local covariance of state vectors between the ith and jth buses.

By substituting the prior distributions p(s) from (13), p(θ) from (14) and the likelihood

function from (11) into (21), the variational distribution q(θ) is shown in Appendix B to be

q(θ) ∝
∏
i∈P

T N (θi|θi, θ̄i, vi, Ci), (23)
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with

Ci =
C̃i

σ−2
i Tr{Ai,2}C̃i + 1

, (24)

vi = Ci
[
ṽi/C̃i + σ−2

i Tr
{
zi
∑

j∈M(i)

(Gijµj)
T −Ai,1

}]
, (25)

where Ai,1 =
∑

j∈M(i)Hij

(
Pj,j +µjµ

T
j

)
GT
ij +

∑
j,k∈M(i),j 6=kHij

(
Pj,k +µjµ

T
k

)
GT
ik and Ai,2 =∑

j∈M(i)Gij

(
Pj,j + µjµ

T
j

)
GT
ij +

∑
j,k∈M(i),j 6=kGij

(
Pj,k + µjµ

T
k

)
GT
ik. Furthermore, the first

and second order moments of q(θ) in (23) can be easily shown to be $ = [$i . . . $j]
T and

T = $$T + diag{τi − $2
i . . . τj − $2

j} respectively, with i, j ∈ B and $i and τi computed

according to (15) and (16) as

$i = Ξ1[θi, θ̄i, vi, Ci], (26)

τi = Ξ2[θi, θ̄i, vi, Ci]. (27)

• Computation of q(s):

Assume q(θ) is known and $ , Eq(θ){θ} and T , Eq(θ){θθT} exist. Furthermore, let

$i = [$]i be the local mean of the phase error at the ith bus, and τi = [T]i,i be the local second

order moment. By substituting the prior distribution p(θ) from (17), and the likelihood function

from (11) into (22), and performing integration over θ as shown in Appendix B, we obtain

q(s) ∝ N
(
s|µ,P

)
(28)

with the mean µ and covariance P given by

µ =Γ−1
SCADAŝSCADA + Υ(H + ΩG)T

[
(H + ΩG)Υ(H + ΩG)T +R

]−1

× [z − (H + ΩG)Γ−1
SCADAŝSCADA],

(29)

P = Υ−Υ(H + ΩG)T
[
(H + ΩG)Υ(H + ΩG)T +R

]−1
(H + ΩG)Υ, (30)

respectively, where Υ = [Γ−1
SCADA + (GT (Λ−Ω2)R−1G)−1]−1.

From the expressions for q(θ) and q(s) in (23) and (28), it should be noticed that these two

functions are coupled. Consequently, they should be updated iteratively. Fortunately, q(θ) and

q(s) keep the same forms as their prior distributions, and therefore, only the parameters of each

function are involved in the iterative updating.

In summary, let the initial variational distribution q(0)(s) equal p(s) in (13), which is Gaussian

with mean µ = ŝSCADA and covariance matrix P = ΓSCADA. We can obtain the updated q(1)(θ)
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following (23). After that, q(1)(s) will be obtained according to (28). The process is repeated

until µ converges or a predefined maximum number of iterations is reached. Once the converged

q(θ) and q(s) are obtained, p(θ, s|z) is replaced by q(θ)q(s) in (12), and it can be readily shown

that ŝ equals E{q(s)} = µ.

B. Distributed Estimation

For a large-scale power grid, to alleviate the communication burden on the network and

computation complexity at the control center, it is advantageous to decompose the state estimation

algorithm into computations that are local to each area of the power system and require only

limited message exchanges among immediate neighbors. From (23)-(25), it is clear that q(θ)

is a product of a number of truncated Gaussian distributions b(θi) , T N (θi|θi, θ̄i, vi, Ci), with

each component involving measurements only from bus i and parameters relating bus i and its

immediate neighboring buses. Thus the estimation of θi can be performed locally at each bus.

However, this is not true for si in (28). To achieve distributed computation for the power

state si, a mean-field approximation is applied to q(s), and we write q(s) =
∏

i∈B b(si). Then,

the variational distribution is in the form
∏

i∈P b(θi)
∏

i∈B b(si). Since the goal is to derive a

distributed algorithm, it is also assumed that each bus has access only to the mean and variance

of its own state from SCADA estimates, i.e., p(s) ≈
∏

i∈B p(si) =
∏

i∈BN (si|γi,Γi), with

γi = [ŝSCADA]2i−1:2i and Γi = [PSCADA]2i−1:2i,2i−1:2i. Then, the optimal variational distributions

b(si) and b(θi) can be obtained through minimizing the following KL divergence:

KL
{∏
i∈P

b(θi)
∏
i∈B

b(si)
∣∣∣∣ p(z|θ, s)

∏
i∈P p(θi)

∏
i∈B p(si)∫ ∫

p(z|θ, s)
∏

i∈B p(si)
∏

i∈P p(θi)d{θi}i∈Pd{si}i∈B

}
∝ −E∏

j∈P b(θj)
∏

j∈B b(sj)

{
ln
p(z|θ, s)

∏
i∈P p(θi)

∏
i∈B p(si)∏

i∈P b(θi)
∏

i∈B b(si)

}
.

(31)

Similarly to (21) and (22), the b(θi) and b(si) that minimize (31) are given by

b(θi) ∝ exp
{
E∏

j∈P\i b(θj)
∏

i∈B p(si)

{
ln p(z|θ, s)

∏
i∈P

p(θi)
∏
i∈B

p(si)
}}

i ∈ P , (32)

b(si) ∝ exp
{
E∏

i∈P b(θi)
∏

j∈B\i b(sj)

{
ln p(z|θ, s)

∏
i∈P

p(θi)
∏
i∈B

p(si)
}}

i ∈ B. (33)

Next, we will evaluate the expressions for b(θi) and b(si) in (32) and (33), respectively.

• Computation of b(θi):
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Assume b(si) is known for all i ∈ B with mean and covariance denoted by µi and Pi,i,

respectively. The b(θi) in (32) can be obtained from q(θ) in (23) by setting Pi,j = 0 if i 6= j,

and we have

b(θi) ∝ T N (θi|θi, θ̄i, vi, Ci) (34)

with

Ci =
C̃i

σ−2
i Tr{Bi,2}C̃i + 1

(35)

vi = Ci
[
ṽi/C̃i + σ−2

i Tr
{
zi
∑

j∈M(i)

(Gijµj)
T −Bi,1

}]
. (36)

withBi,1 =
∑

j∈M(i)Hij

(
Pj,j+µjµ

T
j

)
GT
ij+
∑

j,k∈M(i),j 6=kHijµjµ
T
kG

T
ik andBi,2 =

∑
j∈M(i)Gij

(
Pj,j+

µjµ
T
j

)
GT
ij +

∑
j,k∈M(i),j 6=kGijµjµ

T
kG

T
ik. With Ci and vi in (35) and (36), to facilitate the

computation of b(si) in the next step, the first and second order moments of b(θi) are computed

through (15) and (16) as

$i = Ξ1[θi, θ̄i, vi, Ci], (37)

τi = Ξ2[θi, θ̄i, vi, Ci]. (38)

• Computation of b(si):

Assume b(θi) for all i ∈ P are known with first and second order moments denoted by $i

and τi, respectively. Furthermore, it is assumed that b(sj) for j ∈ B\ i are also known with their

covariance matrices given by Pj,j . Now, rewrite (33) as

b(si) ∝ p(si)
∏

j∈M(i)

exp
{
Eb(θj)

∏
k∈M(j)\i b(sk){ln p(zj|θj, {sk̃}k̃∈M(j))}

}︸ ︷︷ ︸
,mj→i(si)

.
(39)

As shown in Appendix C, mj→i(si) is in Gaussian form

mj→i(si) ∝ N (si|vj→i,Cj→i) (40)

with

Cj→i = σ2
j [H

T
jiHji +$j(G

T
jiHji +HT

jiGji) + τjG
T
jiGji]

−1, (41)

vj→i = σ−2
j Cj→i

{
(Hji +$jGji)

Tzj

−
∑

k∈M(j)\i

[
HT

jiHjk +$j(G
T
jiHjk +HT

jiGjk) + τjG
T
jiGjk

]T
µk

}
.

(42)
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Then, putting p(si) = N (si|γi,Γi) and (40) into (39), we obtain

b(si) ∝ N (si|γi,Γi)N (si|vj→i,Cj→i)

∝ N (si|µi,Pi,i), (43)

with

Pi,i = (Γ−1
i +

∑
j∈M(i)

C−1
j→i)

−1 (44)

µi = Pi,i(Γ
−1
i γi +

∑
j∈M(i)

C−1
j→ivj→i). (45)

Inspection of (41) and (42) reveals that these expressions can be readily computed at bus j

and then Cj→i and vj→i can be sent to its immediate neighbouring bus i for computation of

b(si) according to (43).

• Updating Schedule and Summary:

From the expressions for b(θi) and b(si) in (34) and (43), it should be noticed that these

functions are coupled. Consequently, b(θi) and b(si) should be iteratively updated. Since updating

any b(θi) or b(si) corresponds to minimizing the KL divergence in (31), the iterative algorithm

Algorithm 1 Distributed states estimation
1: Initialization: µi = [ŝSCADA]2i−1:2i and Pi,i = [PSCADA]2i−1:2i;2i−1:2i.

Neighboring buses exchange µi and Pi,i.

Buses with PMUs update $i and τi via (37) and (38).

Every bus i computes Ci→j vi→j Pi,i, µi via (41) (42) (44) (45), and sends these four

entities to bus j, where j ∈M(i).

2: for the lth iteration do

3: Select a group of buses with the same color.

4: Buses with PMUs in the group compute $i and τi via (37) and (38).

5: Every bus in the group updates its Ci→j vi→j Pi,i, µi via (41) (42) (44) (45), and sends

them out to its neighbor j.

6: Bus j computes vj→k via (42) and send to its neighbor k ∈M(j).

7: end for

is guaranteed to converge monotonically to at least a stationary point [35] and there is no
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requirement that b(θi) or b(si) should be updated in any particular order. Besides, the variational

distributions b(θi) and b(si) in (34) and (43) keep the form of truncated Gaussian and Gaussian

distributions during the iterations, thus only their parameters are required to be updated.

However, the successive update scheduling might take too long in large-scale networks.

Fortunately, from (41)-(45), it is found that updating b(si) only involves information within two

hops from bus i. Besides, from (35) and (36), it is observed that updating b(θi) only involves

information from direct neighbours of bus i. Since KL divergence is a convex function with

respect to each of the factors b(si) and b(θi), if buses within two hops from each other do not

update their variational distributions b(·) at the same time, the KL divergence in (31) is guaranteed

to be decreased in each iteration and the distributed algorithm keeps the monotonic convergence

property. This can be achieved by grouping the buses using a distance-2 coloring scheme [36],

which colors all the buses under the principle that buses within a two-hop neighborhood are

assigned different colors and the number of colors used is the least (for the IEEE-300 system,

only 13 different colors are needed). Then, all buses with the same color update at the same time

and buses with different colors are updated in succession. Notice that the complexity order of

the distance-2 coloring scheme is Q(λ|B|) [36], where λ is the maximum number of branches

linked to any bus. Since λ is usually small compared to the network size (e.g., λ = 9 for the

IEEE 118-bus system), the complexity of distance-2 coloring depends only on the network size

and it is independent of the specific topology of the power network.

In summary, all the buses are first colored by the distance-2 coloring scheme, and the iterative

procedure is formally given in Algorithm 1. Notice that although the modelling and formulation

of state estimation under phase error is complicated, the final result and processing are simple.

During each iteration, the first and second order moments of the phase error estimate are

computed via (37) and (38); while the covariance and mean of the state estimate are computed

using (44) and (45). Due to the fact that computing these quantities at one bus depends on

information from neighboring buses, these equations are computed iteratively. After convergence,

the state estimate is given by µi at each bus.

Although the proposed distributed algorithm advocates each bus to perform computations and

message exchanges, but it is also applicable if computations of several buses are executed by a

local control center. Then any two control centers only need to exchange the messages for their

shared power states.
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IV. SIMULATION RESULTS AND DISCUSSIONS

This section provides results on the numerical tests of the developed centralized and distributed

state estimators in Section III. The network parameters gij , bij , Bi, ρij are loaded from the test

cases in MATPOWER4.0 [37]. In each simulation, the value at each load bus is varied by

adding a uniformly distributed random value within ±10% of the value in the test case. Then the

power flow program is run to determine the true states. The RTUs measurements are composed

of active/reactive power injection, active/reactive power flow, and bus voltage magnitude at

each bus, which are also generated from MATPOWER4.0 and perturbed by independent zero-

mean Gaussian measurement errors with standard deviation 1 × 10−2 [26]. For the SCADA

system, the estimates ξ̂ and Υ are obtained through the classical iterative reweighted least-squares

with initialization [Ai, φi]
T = [1, 0]T [5]. In general, the proposed algorithms are applicable

regardless of the number of PMUs and their placements. But for the simulation study, the

placement of PMUs is obtained through the method proposed in [24]. As experiments in [16]

show the maximum phase error is 6◦ in a 60Hz power system, θi is generated uniformly from

[−6π/180, 6π/180] for each Monte-Carlo simulation run. The PMU measurement errors follow

a zero-mean Gaussian distribution with standard deviation σi = 1×10−2 [26]. 1000 Monte-Carlo

simulation runs are averaged for each point in the figures. Furthermore, it is assumed that bad

data from RTUs and PMU measurements has been successfully handled [14], [38, Chap 7].

For comparison, we consider the following three existing methods: 1) Centralized WLS [14]

assuming no sampling phase errors in the PMUs. Without sampling phase error, (10) reduces to

z = Hs+w. For this linear model, WLS can be directly applied to estimate s. This algorithm

serves as a benchmark for the proposed algorithms. 2) Centralized WLS under sampling phase

errors in the PMUs. This will show how much degradation one would have if phase errors are

ignored. 3) The centralized alternating minimization (AM) scheme [25] with p(s) and p(θi)

in (13) and (14) incorporated as prior information. In particular, the posterior distribution is

maximized alternatively with respect to s and θ. While updating one variable vector, all others

should be kept at the last estimation values.

Fig. 1 shows the convergence behavior of the proposed algorithms with average mean square

error (MSE) defined as 1
2|B|
∑

i∈B ||ŝi−si||2. It can be seen that: a) The centralized VI approach

converges very rapidly and after convergence the corresponding MSE are very close to the
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benchmark performance provided by WLS with no sampling phase offset. Centralized AM is also

close to optimal after convergence. b) The proposed distributed algorithm can also approach the

optimal performance after convergence. The seemingly slow convergence is a result of sequential

updating of buses with different colors to guarantee convergence. If one iteration is defined as

one round of updating of all buses, the distributed algorithm would converge only in a few

iterations. On the other hand, the small degradation from the centralized VI solution is due to

the fact that in the distributed algorithm, the covariance of states si and sj in prior distributions

and variational distributions cannot be taken into account. c) If the sampling phase error is

ignored, we can see that the performance of centralized WLS shows significant degradation,

illustrating the importance of simultaneous power state and phase error estimation. Fig. 2 shows

the MSE of the sampling phase error estimation 1
|P|
∑

i∈P ||$∗i −θi||2, where $∗i is the converged

$i in (37). It can be seen from the figure that same conclusions as in Fig. 1 can be drawn.

Fig. 3 shows the relationship between iteration number upon convergence versus the network

size. The seemingly slow convergence of the proposed distributed algorithm is again due to the

sequential updating of buses with different colors. However, more iterations in the proposed dis-

tributed algorithm do not mean a larger computational complexity. In particular, let us consider a

network with |B| buses. In the centralized AM algorithm [25], for each iteration, the computation

for power state estimation is dominated by a 2|B| × 2|B| matrix inverse and the complexity is

O((2|B|)3), while the computation for phase error estimation is dominated by a |B|× |B| matrix

inverse and the complexity is O((|B|)3). Hence, for centralized AM algorithm, in each iteration,

the computational complexity order is O(9|B|3). On the other hand, in the proposed distributed

algorithm, the computational complexity of each iteration at each bus is dominated by matrix

inverses with dimension 2 ((41), (42) (44) and (45)), hence the computational complexity is of

order O(23), and the complexity of the whole network in each iteration is of order O(23× |B|),

which is only linear with respect to number of buses. It is obvious that a significant complexity

saving is obtained compared to the centralized AM algorithm (O(9|B|3)). Thus, although the

proposed distributed algorithm requires more iterations to converge, the total computational

complexity is still much lower than that of its centralized counterpart. Such merit is important

for power networks with high data throughput.

The effect of using different numbers of PMUs in the IEEE 118-bus system is shown in Fig.

4. First, 32 PMUs are placed over the network according to [24] for full topological observation.
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The remaining PMUs, if available, are randomly placed to provide additional measurements. The

MSE of state estimation is plotted versus the number of PMUs. It is clear that increasing the

number of PMUs is beneficial to hybrid state estimation. But the improvement shows diminishing

return as the number of PMUs increases. The curves in this figure allow system designers to

choose a tradeoff between estimation accuracy and the number of PMUs being deployed.

Finally, Fig. 5 shows the MSE versus PMU measurement error variance for the IEEE 118-bus

system. It can be seen that with smaller measurement error variance, the MSE of the proposed

distributed method becomes very close to the optimal performance. However, if we ignore

the sampling phase errors, the estimation MSE shows a constant gap from that of optimal

performance even if the measurement error variance tends to zero. This is because in this case,

the non-zero sampling phase dominates the error in the PMU measurements.

V. CONCLUSIONS

In this paper, a distributed state estimation scheme integrating measurements from a traditional

SCADA system and newly deployed PMUs has been proposed, with the aim that the existing

SCADA system is kept intact. Unknown sampling phase errors among PMUs have been incorpo-

rated in the estimation procedure. The proposed distributed power state estimation algorithm only

involves limited message exchanges between neighboring buses and is guaranteed to converge.

Numerical results have shown that the converged state estimates of the distributed algorithm are

very close to those of the optimal centralized estimates assuming no sampling phase error.

APPENDIX A

Let the nonlinear transformation from polar to rectangular coordinate be denoted by T (·).

Assuming ŝSCADA = T (ξ̂) and performing the first-order Taylor series expansion of T (ξ̂) about

the true state ξ yields

ŝSCADA = T (ξ̂) = T (ξ + ∆ξ) ≈ T (ξ) +∇T (ξ̃)|ξ̃=ξ∆ξ, (46)

where ∆ξ is the estimation error from the SCADA system, and∇T (ξ) is the first order derivative

of T (·), which is a block diagonal matrix with the ith block [∇T (ξ̃)]i,i =

 cos θ̃i −Ei sin θ̃i
sin θ̃i Ei cos θ̃i


for i = 1, . . . ,M . Taking expectation on both sides of (46), we obtain

E{ŝSCADA} ≈ s. (47)
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Furthermore, the covariance is

ΥSCADA ≈ ∇T (ξ̃)Υ∇[T (ξ̃)]T |ξ̃=ξ̂. (48)

APPENDIX B

Derivation of q(θ) in (21)

Since Eq(s) {ln p(θ)} = ln p(θ), we have exp
{
Eq(s) {ln p(θ)}

}
= p(θ). Moreover, as exp

{
Eq(s) {ln p(s)}

}
is a constant, (21) can be simplified as

q(θ) ∝ p(θ) exp
{
Eq(s) {ln p(z|θ, s)}

}
. (49)

Next, we perform the computation of exp
{
Eq(s) {ln p(z|θ, s)}

}
. According to (9) and (10), we

have

exp

{
Eq(s)

{
ln p(z|θ, s)

}}
∝ exp

{
Eq(s)

{∑
i∈P

−σ
−2
i

2
||zi − (

∑
j∈M(i)

Hijsj + θi
∑

j∈M(i)

Gijsj)||2
}}

.
(50)

By expanding the squared norm and dropping the terms irrelevant to θi, (50) is simpified as

exp

{
Eq(s) {ln p(z|θ, s)}

}
∝
∏
i∈P

exp

{
− σ−2

i

2

[
− 2θiTr{zi

∑
j∈M(i)

(Gijµsj)
T −Ai,1}+ θ2

i Tr{Ai,2}
]}

∝
∏
i∈P

N (θi|Tr{zi
∑

j∈M(i)

(Gijµsj)
T −Ai,1}/Tr{Ai,2}, σ2

i /Tr{Ai,2}),

(51)

where the last line comes from completing the square on the term inside the exponential

and Ai,1 =
∑

j∈M(i)Hij

(
Pj,j + µjµ

T
j

)
GT
ij +

∑
j,k∈M(i),j 6=kHij

(
Pj,k + µjµ

T
k

)
GT
ik and Ai,2 =∑

j∈M(i)Gij

(
Pj,j + µjµ

T
j

)
GT
ij +

∑
j,k∈M(i),j 6=kGij

(
Pj,k + µjµ

T
k

)
GT
ik.

Substituting p(θ) from (17) and exp
{
Eq(s) {ln p(z|θ, s)}

}
from (51) into (49), we obtain

q(θ) ∝
∏
i∈P

U(θi − θi)− U(θi − θ̄i)
erf( θ̄i−ṽi

C̃
1/2
i

)− erf( θi−ṽi
C̃

1/2
i

)
N (θi|ṽi, C̃i)

×N (θi|Tr{zi
∑

j∈M(i)

(Gijµsj)
T −Ai,1}/Tr{Ai,2}, σ2

i /Tr{Ai,2})

∝
∏
i∈P

U(θi − θi)− U(θi − θ̄i)
erf( θ̄i−vi

C
1/2
i

)− erf( θi−vi
C

1/2
i

)
N (θi|vi, Ci)

(52)
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with

Ci =
C̃i

σ−2
i Tr{Ai,2}C̃i + 1

, (53)

vi = Ci
[
ṽi/C̃i + σ−2

i Tr
{
zi
∑

j∈M(i)

(Gijµj)
T −Ai,1

}]
. (54)

It is recognized that (52) is in the form of a truncated Gaussian pdf. That is, q(θ) ∝
∏

i∈P T N (θi|θi, θ̄i, vi, Ci).

Derivation of q(s) in (22)

Similar to the arguments for arriving at (49), (22) can be simplified as

q(s) ∝ p(s) exp
{
Eq(θ) {ln p(z|θ, s)}

}
. (55)

For exp
{
Eq(θ) {ln p(z|θ, s)}

}
, it can be computed as

exp
{
Eq(θ) {ln p(z|θ, s)}

}
∝ exp

{
Eq(θ)

{
− 1

2
||z − (H + ΘG)s||2R−1

}}
= exp

{
− 1

2

[
zTR−1z − 2zTR−1(H + Eq(θ){Θ}G)s

+ sTHTR−1Hs+ 2sTHTR−1Eq(θ){Θ}Gs

+ sTGTR−1Eq(θ){Θ2}Gs
]}

= exp

{
− 1

2
[z − (H + ΩG)s]TR−1[z − (H + ΩG)s]− 1

2
sTGT (Λ−Ω2)R−1Gs

}
∝N

(
z|(H + ΩG)s,R

)
×N

(
s|0, (GT (Λ−Ω2)R−1G)−1

)

(56)

where Ω = Eq(θ){Θ} , Bldiag{$iI2|M(i)|, . . . , $jI2|M(j)|} and Λ = Eq(θ){Θ2} , Bldiag{τiI2|M(i)|,

. . . , τjI2|M(j)|}.
By substituting the prior distribution p(s) from (13), and exp

{
Eq(θ) {ln p(z|θ, s)}

}
from (56)

into (55), and after some algebraic manipulations [28, pp. 326], we obtain

q(s) ∝ N
(
s|µ,P

)
(57)

with the covariance and mean given by

µ =Γ−1
SCADAŝSCADA + Υ(H + ΩG)T

[
(H + ΩG)Υ(H + ΩG)T +R

]−1

× [z − (H + ΩG)Γ−1
SCADAŝSCADA],

(58)

P = Υ−Υ(H + ΩG)T
[
(H + ΩG)Υ(H + ΩG)T +R

]−1
(H + ΩG)Υ, (59)

respectively, where Υ = [Γ−1
SCADA + (GT (Λ−Ω2)R−1G)−1]−1.
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APPENDIX C

From (9), it can be obtained that p(zj|θj, {sk̃}k̃∈M(j)) ∝ exp
{
− σ2

j

2
||zj − (

∑
k̃∈M(j)Hjk̃sk̃ +

θj
∑

k̃∈M(j)Gjk̃sk̃)||2
}

. By expanding the squared norm and dropping the terms irrelevant to si,

we have

ln p(zj|θj, {sk̃}k̃∈M(j))

∝−
σ−2
j

2

[
− 2zTj (Hji + θjGji)si

+ 2
∑

k∈M(j)\i

sTk
{

(Hji + θjGji)
T (Hjk + θjGjk)si

}
+ sTi (Hji + θjGji)

T (Hji + θjGji)si

]
.

(60)

Taking expectation with respect to θj and {sk}k∈M(j)\i over the above equation, we have

exp
{
Eb(θj)

∏
k∈M(j)\i b(sk){ln p(zj|θj, {sk̃}k̃∈M(j))}

}
∝ exp

{
−
σ−2
j

2

[
− 2zTj (Hji +$jGji)si

+ 2
∑

k∈M(j)\i

µTk
{
HT

jiHjk +$j(G
T
jiHjk +HT

jiGjk) + τjG
T
jiGjk

}
si

+ sTi {HT
jiHji +$j(G

T
jiHji +HT

jiGji) + τjG
T
jiGji}si

]}
.

(61)

Then, completing the square for the term si in (61) leads to

mj→i(si) ∝ N (si|vj→i,Cj→i), (62)

with

Cj→i = σ2
j

[
HT

jiHji +$j(G
T
jiHji +HT

jiGji) + τjG
T
jiGji

]−1
, (63)

vj→i =σ−2
j Cj→i

{
(Hji +$jGji)

Tzj

−
∑

k∈M(j)\i

[
HT

jiHjk +$j(G
T
jiHjk +HT

jiGjk) + τjG
T
jiGjk

]T
µk

}
.

(64)
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Fig. 1. MSE of the power state versus iteration number for the IEEE 118-bus system.
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Fig. 2. MSE of the phase error versus iteration number for the IEEE 118-bus system.
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Fig. 3. Iteration numbers upon convergence versus the network size.
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Fig. 4. Effect of increasing the number of PMUs on the power state estimate.
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