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Abstract

Deep neural networks (DNNs) have begun to have a pervasive impact on various
applications of machine learning. However, the problem of finding an optimal
DNN architecture for large applications is challenging. Common approaches go
for deeper and larger DNN architectures but may incur substantial redundancy. To
address these problems, we introduce a network growth algorithm that complements
network pruning to learn both weights and compact DNN architectures during
training. We propose a DNN synthesis tool (NeST) that combines both methods
to automate the generation of compact and accurate DNNs. NeST starts with
a randomly initialized sparse network called the seed architecture. It iteratively
tunes the architecture with gradient-based growth and magnitude-based pruning
of neurons and connections. Our experimental results show that NeST yields
accurate, yet very compact DNNs, with a wide range of seed architecture selection.
For the LeNet-300-100 (LeNet-5) architecture, we reduce network parameters by
70.2× (74.3×) and floating-point operations (FLOPs) by 79.4× (43.7×). For the
AlexNet and VGG-16 architectures, we reduce network parameters (FLOPs) by
15.7× (4.6×) and 30.2× (8.6×), respectively. NeST’s grow-and-prune paradigm
delivers significant additional parameter and FLOPs reduction relative to pruning-
only methods.

1 Introduction

Over the last decade, deep neural networks (DNNs) have begun to revolutionize myriad research
domains, such as computer vision, speech recognition, and machine translation [1–3]. Their ability
to distill intelligence from a dataset through multi-level abstraction can even lead to super-human
performance [4]. Thus, DNNs are emerging as a new cornerstone of modern artificial intelligence.

Though critically important, how to efficiently derive an appropriate DNN architecture from large
datasets has remained an open problem. Researchers have traditionally derived the DNN architecture
by sweeping through its architectural parameters and training the corresponding architecture until
the point of diminishing returns in its performance. This suffers from three major problems. First,
the widely used back-propagation (BP) algorithm assumes a fixed DNN architecture and only trains
weights. Thus, training cannot improve the architecture. Second, a trial-and-error methodology can
be inefficient when DNNs get deeper and contain millions of parameters. Third, simply going deeper
and larger may lead to large, accurate, but over-parameterized DNNs. For example, Han et al. [5]
showed that the number of parameters in VGG-16 can be reduced by 13× with no loss of accuracy.

To address these problems, we propose a DNN synthesis tool (NeST) that trains both DNN weights
and architectures. NeST is inspired by the learning mechanism of the human brain, where the number
of synaptic connections increases upon the birth of a baby, peaks after a few months, and decreases
steadily thereafter [6]. NeST starts DNN synthesis from a seed DNN architecture (birth point). It
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allows the DNN to grow connections and neurons based on gradient information (baby brain) so
that the DNN can adapt to the problem at hand. Then, it prunes away insignificant connections
and neurons based on magnitude information (adult brain) to avoid redundancy. A combination of
network growth and pruning algorithms enables NeST to generate accurate and compact DNNs. We
used NeST to synthesize various compact DNNs for the MNIST [7] and ImageNet [8] datasets. NeST
leads to drastic reductions in the number of parameters and floating-point operations (FLOPs) relative
to the DNN baselines, with no accuracy loss.

2 Related Work

An evolutionary algorithm provides a promising solution to DNN architecture selection through
evolution of network architectures. Its search mechanism involves iterations over mutation, recombi-
nation, and most importantly, evaluation and selection of network architectures [9, 10]. Additional
performance enhancement techniques include better encoding methods [11] and algorithmic redesign
for DNNs [12]. All these assist with more efficient search in the wide DNN architecture space.

Reinforcement learning (RL) has emerged as a new powerful tool to solve this problem [13–16].
Zoph et al. [13] use a recurrent neural network controller to iteratively generate groups of candidate
networks, whose performance is then used as a reward for enhancing the controller. Baker et al. [14]
propose a Q-learning based RL approach that enables convolutional architecture search. A recent
work [15] proposes the NASNet architecture that uses RL to search for architectural building blocks
and achieves better performance than human-invented architectures.

The structure adaptation (SA) approach exploits network clues (e.g., distribution of weights) to
incorporate architecture selection into the training process. Existing SA methods can be further
divided into two categories: constructive and destructive. A constructive approach starts with a small
network and iteratively adds connections/neurons [17, 18]. A destructive approach, on the other
hand, starts with a large network and iteratively removes connections/neurons. This can effectively
reduce model redundancy. For example, recent pruning methods, such as network pruning [5, 19–21],
layer-wise surgeon [22], sparsity learning [23–26], and dynamic network surgery [27], can offer
extreme compactness for existing DNNs with no or little accuracy loss.

3 Synthesis Methodology

In this section, we propose NeST that leverages both constructive and destructive SA approaches
through a grow-and-prune paradigm. Unless otherwise stated, we adopt the notations given in Table 1
to represent various variables.

Table 1: Notations and descriptions
Label Description Label Description
L DNN loss function Wl weights between (l − 1)th and lth layer
xln output value of nth neuron in lth layer bl biases in lth layer
ul
m input value of mth neuron in lth layer Rd0×d1×d2 d0 by d1 by d2 matrix with real elements

Figure 1: An illustration of the architecture synthesis flow in NeST.

3.1 Neural Network Synthesis Tool

We illustrate the NeST approach with Fig. 1. Synthesis begins with an initial seed architecture,
typically initialized as a sparse and partially connected DNN. We also ensure that all neurons are
connected in the seed architecture. Then, NeST utilizes two sequential phases to synthesize the
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Figure 2: Major components of the DNN architecture synthe-
sis algorithm in NeST.
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Figure 3: Grown connections
from the input layer to the
first layer of LeNet-300-100.

DNN: (i) gradient-based growth phase, and (ii) magnitude-based pruning phase. In the growth
phase, the gradient information in the architecture space is used to gradually grow new connections,
neurons, and feature maps to achieve the desired accuracy. In the pruning phase, the DNN inherits
the synthesized architecture and weights from the growth phase and iteratively removes redundant
connections and neurons, based on their magnitudes. Finally, NeST comes to rest at a lightweight
DNN model that incurs no accuracy degradation relative to a fully connected model.

3.2 Gradient-based Growth

In this section, we explain our algorithms to grow connections, neurons, and feature maps.

3.2.1 Connection Growth
The connection growth algorithm greedily activates useful, but currently ‘dormant,’ connections. We
incorporate it in the following learning policy:

Policy 1: Add a connection w iff it can quickly reduce the value of loss function L.

The DNN seed contains only a small fraction of active connections to propagate gradients. To locate
the ‘dormant’ connections that can reduce L effectively, we evaluate ∂L/∂w for all the ‘dormant’
connections w (computed either using the whole training set or a large batch). Policy 1 activates
‘dormant’ connections iff they are the most efficient at reducing L. This can also assist with avoiding
local minima and achieving higher accuracy [28]. To illustrate this policy, we plot the connections
grown from the input to the first layer of LeNet-300-100 [7] (for the MNIST dataset) in Fig. 3. The
image center has a much higher grown density than the margins, consistent with the fact that the
MNIST digits are centered.

From a neuroscience perspective, our connection growth algorithm coincides with the Hebbian
theory: “Neurons that fire together wire together [29]." We define the stimulation magnitude of the
mth presynaptic neuron in the (l + 1)th layer and the nth postsynaptic neuron in the lth layer as
∂L/∂ul+1

m and xln, respectively. The connections activated based on Hebbian theory would have a
strong correlation between presynaptic and postsynaptic cells, thus a large value of

∣∣(∂L/∂ul+1
m )xln

∣∣.
This is also the magnitude of the gradient of L with respect to w (w is the weight that connects ul+1

m

and xln):
|∂L/∂w| =

∣∣(∂L/∂ul+1
m )xln

∣∣ (1)

Thus, this is mathematically equivalent to Policy 1.

3.2.2 Neuron Growth
Our neuron growth algorithm consists of two steps: (i) connection establishment and (ii) weight
initialization. The neuron growth policy is as follows:

Policy 2: In the lth layer, add a new neuron as a shared intermediate node between existing neuron
pairs that have high postsynaptic (x) and presynaptic (∂L/∂u) neuron correlations (each pair contains
one neuron from the (l − 1)th layer and the other from the (l + 1)th layer). Initialize weights based
on batch gradients to reduce the value of L.

Algorithm 1 incorporates Policy 2 and illustrates the neuron growth iterations in detail. Before adding
a neuron to the lth layer, we evaluate the bridging gradient between the neurons at the previous
(l − 1)th and subsequent (l + 1)th layers. We connect the top β × 100% (β is the growth ratio)
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Algorithm 1 Neuron growth in the lth layer
Input: α - birth strength, β - growth ratio
Denote: M - number of neurons in the (l + 1)th layer, N - number of neurons in the (l − 1)th layer,
G ∈ RM×N - bridging gradient matrix, avg - extracts mean value of non-zero elements
Add a neuron in the lth layer, initialize wout = ~0 ∈ RM , win = ~0 ∈ RN

for 1 ≤ m ≤M, 1 ≤ n ≤ N do
Gm,n = ∂L

∂ul+1
m
× xl−1

n

end for
thres = (βMN)th largest element in abs(G)
for 1 ≤ m ≤M, 1 ≤ n ≤ N do

if |Gm,n| > thres then
δw =

√
|Gm,n| ×rand{1,−1}

wout
m ← wout

m + δw, win
n ← win

n + δw × sgn(Gm,n)
end if
wout ← wout × αavg(abs(Wl+1))

avg(abs(wout))
, win ← win × α avg(abs(Wl))

avg(abs(win))

end for
Concatenate network weights W with win, wout

correlated neuron pairs through a new neuron in the lth layer. We initialize the weights based on the
bridging gradient to enable gradient descent, thus decreasing the value of L.

We implement a square root rule for weight initialization to imitate a BP update on the bridging
connection wb, which connects xl−1

n and ul+1
m . The BP update leads to a change in ul+1

m :

|∆ul+1
m |b.p. = |xl−1

n × δwb| = η|xl−1
n ×Gm,n| (2)

where η is the learning rate. In Algorithm 1, when we connect the newly added neuron (in the lth
layer) with xl−1

n and ul+1
m , we initialize their weights to the square root of the magnitude of the

bridging gradient:

|δwin
n | = |δwout

m | =
√
|Gm,n| (3)

where δwin
n (δwout

m ) is the initialized value of the weight that connects the newly added neuron with
xl−1
n (ul+1

m ). The weight initialization rule leads to a change in ul+1
m :

|∆ul+1
m | = |f(xl−1

n × δwin
n )× δwout

m | (4)

where f is the neuron activation function. Suppose tanh is the activation function. Then,

f(x) = tanh(x) ≈ x, if x� 1 (5)

Since δwin
n and δwout

m are typically very small, the approximation in Eq. (5) leads to Eq. (6).

|∆ul+1
m | ≈ |xl−1

n × δwin
n × δwout

m | =
1

η
× |∆ul+1

m |b.p. (6)

This is linearly proportional to the effect of a BP update. Thus, our weight initialization mathemati-
cally imitates a BP update. Though we illustrated the algorithm with the tanh activation function, the
weight initialization rule works equally well with other activation functions, such as rectified linear
unit (ReLU) and leaky rectified linear unit (Leaky ReLU).

We use a birth strength factor α to strengthen the connections of a newly grown neuron. This prevents
these connections from becoming too weak to survive the pruning phase. Specifically, after square
root rule based weight initialization, we scale up the newly added weights by

wout ← αwout × avg(abs(Wl+1))

avg(abs(wout))
, win ← αwin × avg(abs(Wl))

avg(abs(win))
(7)

where avg is an operation that extracts the mean value of all non-zero elements. This strengthens
new weights. In practice, we find α > 0.3 to be an appropriate range.
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3.2.3 Growth in the Convolutional Layers
Convolutional layers share the connection growth methodology of Policy 1. However, instead
of neuron growth, we use a unique feature map growth algorithm for convolutional layers. In a
convolutional layer, we convolve input images with kernels to generate feature maps. Thus, to add a
feature map, we need to initialize the corresponding set of kernels. We summarize the feature map
growth policy as follows:

Policy 3: To add a new feature map to the convolutional layers, randomly generate sets of kernels,
and pick the set of kernels that reduces L the most.

In our experiment, we observe that the percentage reduction in L for Policy 3 is approximately twice
as in the case of the naive approach that initializes the new kernels with random values.

3.3 Magnitude-based Pruning

We prune away insignificant connections and neurons based on the magnitude of weights and outputs:

Policy 4: Remove a connection (neuron) iff the magnitude of the weight (neuron output) is smaller
than a pre-defined threshold.

We next explain two variants of Policy 4: pruning of insignificant weights and partial-area convolution.

3.3.1 Pruning of Insignificant Weights
Han et al. [5] show that magnitude-based pruning can successfully cut down the memory and
computational costs. We extend this approach to incorporate the batch normalization technique.
Such a technique can reduce the internal covariate shift by normalizing layer inputs and improve the
training speed and behavior. Thus, it has been widely applied to large DNNs [30]. Consider the lth
batch normalization layer:

ul = [(Wlxl−1 + bl)− E]� V = Wl
∗x + bl

∗ (8)

where E and V are batch normalization terms, and � depicts the Hadamard (element-wise) division
operator. We define effective weights Wl

∗ and effective biases bl
∗ as:

Wl
∗ = Wl � V,bl

∗ = (bl − E)� V (9)

We treat connections with small effective weights as insignificant. Pruning of insignificant weights is
an iterative process. In each iteration, we only prune the most insignificant weights (e.g., top 1%) for
each layer, and then retrain the whole DNN to recover its performance.

3.3.2 Partial-area Convolution
In common convolutional neural networks (CNNs), the convolutional layers typically consume ∼ 5%
of the parameters, but contribute to ∼ 90-95% of the total FLOPs [31]. In a convolutional layer,
kernels shift and convolve with the entire input image. This process incurs redundancy, since not the
whole input image is of interest to a particular kernel. Anwar et al. [32] presented a method to prune
all connections from a not-of-interest input image to a particular kernel. This method reduces FLOPs
but incurs performance degradation [32].

Instead of discarding an entire image, our proposed partial-area convolution algorithm allows kernels
to convolve with the image areas that are of interest. We refer to such an area as area-of-interest. We
prune connections to other image areas. We illustrate this process in Fig. 4. The green area depicts
area-of-interest, whereas the red area depicts parts that are not of interest. Thus, green connections
(solid lines) are kept, whereas red ones (dashed lines) are pruned away.

Partial-area convolution pruning is an iterative process. We present one iteration in Algorithm 2. We
first convolve M input images with M ×N convolution kernels and generate M ×N feature maps,
which are stored in a four-dimensional feature map matrix C. We set the pruning threshold thres to
the (100γ)th percentile of all elements in abs(C), where γ is the pruning ratio, typically 1% in our
experiment. We mark the elements whose values are below this threshold as insignificant, and prune
away their input connections. We retrain the whole DNN after each pruning iteration. In our current
implementation, we utilize a mask Msk to disregard the pruned convolution area.

Partial-area convolution enables additional FLOPs reduction without any performance degradation.
For example, we can reduce FLOPs in LeNet-5 [7] by 2.09× when applied to MNIST. Compared to
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Algorithm 2 Partial-area convolution
Input: I - M input images, K - kernel matrix, Msk - feature map mask, γ - pruning ratio
Output: Msk, F - N feature maps
Denote: C ∈ RM×N×P×Q - Depthwise feature map, ⊗ - Hadamard (element-wise) multiplication
for 1 ≤ m ≤M, 1 ≤ n ≤ N do

Cm,n = convolve(Im, Km,n)
end for
thres = (γMNPQ)th largest element in abs(C)
for 1 ≤ m ≤M, 1 ≤ n ≤ N, 1 ≤ p ≤ P, 1 ≤ q ≤ Q do

if |Cm,n,p,q| < thres then
Mskm,n,p,q = 0

end if
end for
C← C⊗Msk, F← ΣM

m=1Cm

Figure 4: Pruned connections (dashed red
lines) and remaining connections (solid
green lines) in partial-area convolution.

Figure 5: Area-of-interest for five different kernels in
the first layer of LeNet-5.

the conventional CNNs that force a fixed square-shaped area-of-interest on all kernels, we allow each
kernel to self-explore the preferred shape of its area-of-interest. Fig. 5 shows the area-of-interest
found by the layer-1 kernels in LeNet-5 when applied to MNIST. We observe significant overlaps in
the image central area, which most kernels are interested in.

4 Experimental Results

We implement NeST using Tensorflow [33] and PyTorch [34] on Nvidia GTX 1060 and Tesla P100
GPUs. We use NeST to synthesize compact DNNs for the MNIST and ImageNet datasets. We select
DNN seed architectures based on clues (e.g., depth, kernel size, etc.) from the existing LeNets,
AlexNet, and VGG-16 architectures, respectively. NeST exhibits two major advantages:
• Wide seed range: NeST yields high-performance DNNs with a wide range of seed architectures.

Its ability to start from a wide range of seed architectures alleviates reliance on human-defined
architectures, and offers more freedom to DNN designers.

• Drastic redundancy removal: NeST-generated DNNs are very compact. Compared to the DNN
architectures generated with pruning-only methods, DNNs generated through our grow-and-prune
paradigm have much fewer parameters and require much fewer FLOPs.

4.1 LeNets on MNIST

We derive the seed architectures from the original LeNet-300-100 and LeNet-5 networks [7]. LeNet-
300-100 is a multi-layer perceptron with two hidden layers. LeNet-5 is a CNN with two convolutional
layers and three fully connected layers. We use the affine-distorted MNIST dataset [7], on which
LeNet-300-100 (LeNet-5) can achieve an error rate of 1.3% (0.8%). We discuss our results next.

4.1.1 Growth Phase
First, we derive nine (four) seed architectures for LeNet-300-100 (LeNet-5). These seeds contain
fewer neurons and connections per layer than the original LeNets. The number of neurons in each
layer is the product of a ratio r and the corresponding number in the original LeNets (e.g., the seed
architecture for LeNet-300-100 becomes LeNet-120-40 if r = 0.4). We randomly initialize only 10%
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Figure 6: Growth time vs. post-growth DNN size trade-off for various seed architectures for LeNet-
300-100 (left) and LeNet-5 (right) to achieve a 1.3% and 0.8% error rate, respectively.

Figure 7: Compression ratio and final DNN size for different LeNet-300-100 (left) and LeNet-5
(right) seed architectures.

of all possible connections in the seed architecture. Also, we ensure that all neurons in the network
are connected.

We first sweep r for LeNet-300-100 (LeNet-5) from 0.2 (0.5) to 1.0 (1.0) with a step-size of 0.1
(0.17), and then grow the DNN architectures from these seeds. We study the impact of these seeds on
the GPU time for growth and post-growth DNN sizes under the same target accuracy (this accuracy
is typically a reference value for the architecture). We summarize the results for LeNets in Fig. 6. We
have two interesting findings for the growth phase:

1. Smaller seed architectures often lead to smaller post-growth DNN sizes, but at the expense of a
higher growth time. We will later show that smaller seeds and thus smaller post-growth DNN
sizes are better, since they also lead to smaller final DNN sizes.

2. When the post-growth DNN size saturates due to the full exploitation of the synthesis freedom
for a target accuracy, a smaller seed is no longer beneficial, as evident from the flat left ends of
the dashed curves in Fig. 6.

4.1.2 Pruning Phase
Next, we prune the post-growth LeNet DNNs to remove their redundant neurons/connections. We
show the post-pruning DNN sizes and compression ratios for LeNet-300-100 and LeNet-5 for the
different seeds in Fig. 7. We have two major observations for the pruning phase:
1. Larger the pre-pruning DNN, larger is its compression ratio. This is because larger pre-pruning

DNNs have a larger number of weights and thus also higher redundancy.
2. Larger the pre-pruning DNN, larger is its post-pruning DNN. Thus, to synthesize a more com-

pact DNN, one should choose a smaller seed architecture (growth phase finding 1) within an
appropriate range (growth phase finding 2).

4.1.3 Inference model comparison
We compare our results against related results from the literature in Table 2. Our results outperform
other reference models from various design perspectives. Without any loss of accuracy, we are able
to reduce the number of connections and FLOPs of LeNet-300-100 (LeNet-5) by 70.2× (74.3×) and
79.4× (43.7×), respectively, relative to the baseline Caffe model [36]. We include the model details
in the Appendix.

7



Table 2: Different inference models for MNIST
Model Method Error #Param FLOPs
RBF network [7] - 3.60% 794K 1588K
Polynomial classifier [7] - 3.30% 40K 78K
K-nearest neighbors [7] - 3.09% 47M 94M
SVMs (reduced set) [35] - 1.10% 650K 1300K
Caffe model (LeNet-300-100) [36] - 1.60% 266K 532K
LWS (LeNet-300-100) [22] Prune 1.96% 4K 8K
Net pruning (LeNet-300-100) [5] Prune 1.59% 22K 43K
Our LeNet-300-100: compact Grow+Prune 1.58% 3.8K 6.7K
Our LeNet-300-100: accurate Grow+Prune 1.29% 7.8K 14.9K
Caffe model (LeNet-5) [36] - 0.80% 431K 4586K
LWS (LeNet-5) [22] Prune 1.66% 4K 199K
Net pruning (LeNet-5) [5] Prune 0.77% 35K 734K
Our LeNet-5 Grow+Prune 0.77% 5.8K 105K

Table 3: Different AlexNet and VGG-16 based inference models for ImageNet

Model Method ∆Top-1 err. ∆Top-5 err. #Param (M) FLOPs (B)
Baseline AlexNet [37] - 0.0% 0.0% 61 (1.0×) 1.5 (1.0×)
Data-free pruning [38] Prune +1.62% - 39.6 (1.5×) 1.0 (1.5×)
Fastfood-16-AD [39] - +0.12% - 16.4 (3.7×) 1.4 (1.1×)
Memory-bounded [40] - +1.62% - 15.2 (4.0×) -
SVD [41] - +1.24% +0.83% 11.9 (5.1×) -
LWS (AlexNet) [22] Prune +0.33% +0.28% 6.7 (9.1×) 0.5 (3.0×)
Net pruning (AlexNet) [5] Prune -0.01% -0.06% 6.7 (9.1×) 0.5 (3.0×)
Our AlexNet Grow+Prune -0.02% -0.06% 3.9 (15.7×) 0.33 (4.6×)
Baseline VGG-16 [42] - 0.0% 0.0% 138 (1.0×) 30.9 (1.0×)
LWS (VGG-16) [22] Prune +3.61% +1.35% 10.3 (13.3×) 6.5 (4.8×)
Net pruning (VGG-16) [5] Prune +2.93% +1.26% 10.3 (13.3×) 6.5 (4.8×)
Our VGG-16: accurate Grow+Prune -0.35% -0.31% 9.9 (13.9×) 6.3 (4.9×)∗

Our VGG-16: compact Grow+Prune +2.31% +0.98% 4.6 (30.2×) 3.6 (8.6×)∗

∗ Currently without partial-area convolution due to GPU memory limits.

4.2 AlexNet and VGG-16 on ImageNet

Next, we use NeST to synthesize DNNs for the ILSVRC 2012 image classification dataset [8].
We initialize a slim and sparse seed architecture base on the AlexNet [31] and VGG-16 [43]. Our
seed architecture for AlexNet contains only 60, 140, 240, 210, and 160 feature maps in the five
convolutional layers, and 3200, 1600, and 1000 neurons in the fully connected layers. The seed
architecture for VGG-16 uses r = 0.75 for the first 13 convolutional layers, and has 3200, 1600, and
1000 neurons in the fully connected layers. We randomly activate 30% of all the possible connections
for both seed architectures.

Table 3 compares the model synthesized by NeST with various AlexNet and VGG-16 based inference
models. We include the model details in the Appendix. Our baselines are the AlexNet Caffe model
(42.78% top-1 and 19.73% top-5 error rate) [5] and VGG-16 PyTorch model (28.41% top-1 and
9.62% top-5 error rate) [42]. Our grow-and-prune synthesis paradigm outperforms the pruning-only
methods listed in Table 3. This may be explained by the observation that pruning methods potentially
inherit a certain amount of redundancy associated with the original large DNNs. Network growth can
alleviate this phenomenon.

Note that our current mask-based implementation of growth and pruning incurs a temporal memory
overhead during training. If the model becomes deeper, as in the case of ResNet [44] or DenseNet [45],
using masks to grow and prune connections/neurons/feature maps may not be economical due to this
temporal training memory overhead. We plan to address this aspect in our future work.

5 Discussions

Our synthesis methodology incorporates three inspirations from the human brain.
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First, the number of synaptic connections in a human brain varies at different human ages. It rapidly
increases upon the baby’s birth, peaks after a few months, and decreases steadily thereafter. A DNN
experiences a very similar learning process in NeST, as shown in Fig. 8. This curve shares a very
similar pattern to the evolution of the number of synapses in the human brain [46].
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Figure 8: #Connections vs. synthesis iteration for LeNet-300-100.

Second, most learning processes in our brain result from rewiring of synapses between neurons. Our
brain grows and prunes away a large amount (up to 40%) of synaptic connections every day [6].
NeST wakes up new connections, thus effectively rewiring more neurons pairs in the learning process.
Thus, it mimics the ‘learning through rewiring’ mechanism of human brains.

Third, only a small fraction of neurons are active at any given time in human brains. This mechanism
enables the human brain to operate at an ultra-low power (20 Watts). However, fully connected DNNs
contain a substantial amount of insignificant neuron responses per inference. To address this problem,
we include a magnitude-based pruning algorithm in NeST to remove the redundancy, thus achieving
sparsity and compactness. This leads to huge storage and computation reductions.

6 Conclusions
In this paper, we proposed a synthesis tool, NeST, to synthesize compact yet accurate DNNs. NeST
starts from a sparse seed architecture, adaptively adjusts the architecture through gradient-based
growth and magnitude-based pruning, and finally arrives at a compact DNN with high accuracy.
For LeNet-300-100 (LeNet-5) on MNIST, we reduced the number of network parameters by 70.2×
(74.3×) and FLOPs by 79.4× (43.7×). For AlexNet and VGG-16 on ImageNet, we reduced the
network parameters (FLOPs) by 15.7× (4.6×) and 30.2× (8.6×), respectively.
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Appendix

A Experimental details of LeNets

Table 4(a) and Table 4(b) show the smallest DNN models we could synthesize for LeNet-300-100
and LeNet-5, respectively. In these tables, Conv% refers to the percentage of area-of-interest over a
full image for partial-area convolution, and Act% refers to the percentage of non-zero activations (the
average percentage of neurons with non-zero output values per inference).

Table 4: Smallest synthesized LeNets
(a) LeNet-300-100 (error rate 1.29%)

Layer #Weights Act% FLOPs
fc1 7032 46% 14.1K
fc2 718 71% 0.7K
fc3 94 100% 0.1K
Total 7844 N/A 14.9K

(b) LeNet-5 (error rate 0.77%)

Layer #Weights Conv% Act% FLOPs
conv1 74 39% 89% 45.2K
conv2 749 41% 57% 54.4K
fc1 4151 N/A 79% 4.7K
fc2 632 N/A 58% 1.0K
fc3 166 N/A 100% 0.2K
Total 5772 N/A N/A 105K

B Experimental details of AlexNet

Table 5 illustrates the evolution of an AlexNet seed in the grow-and-prune paradigm as well as the
final inference model. The AlexNet seed only contains 8.4M parameters. This number increases
to 28.3M after the growth phase, and then decreases to 3.9M after the pruning phase. This final
AlexNet-based DNN model only requires 325M FLOPs at a top-1 error rate of 42.76%.

Table 5: Synthesized AlexNet (error rate 42.76%)
Layers #Parameters #Parameters #Parameters Conv% Act% FLOPs

Seed Post-Growth Post-Pruning
conv1 7K 21K 17K 92% 87% 97M
conv2 65K 209K 107K 91% 82% 124M
conv3 95K 302K 164K 88% 49% 40M
conv4 141K 495K 253K 86% 48% 36M
conv5 105K 355K 180K 87% 56% 25M
fc1 5.7M 19.9M 1.8M N/A 49% 2.0M
fc2 1.7M 5.3M 0.8M N/A 47% 0.8M
fc3 0.6M 1.7M 0.5M N/A 100% 0.5M
Total 8.4M 28.3M 3.9M N/A N/A 325M

Our models will be released soon.
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C Experimental details of VGG-16

Table 6 illustrates the details of our final compact inference model based on the VGG-16 architecture.
The final model only contains 4.6M parameters, which is 30.2× smaller than the original VGG-16.

Table 6: Synthesized VGG-16 (error rate 30.72%)
Layer #Param FLOPs #Param Act% FLOPs

Original VGG-16 Synthesized VGG-16
conv1_1 2K 0.2B 1K 64% 0.1B
conv1_2 37K 3.7B 10K 76% 0.7B
conv2_1 74K 1.8B 21K 73% 0.4B
conv2_2 148K 3.7B 39K 76% 0.7B
conv3_1 295K 1.8B 79K 53% 0.4B
conv3_2 590K 3.7B 103K 57% 0.3B
conv3_3 590K 3.7B 110K 56% 0.4B
conv4_1 1M 1.8B 205K 37% 0.2B
conv4_2 2M 3.7B 335K 37% 0.2B
conv4_3 2M 3.7B 343K 35% 0.2B
conv5_1 2M 925M 350K 33% 48M
conv5_2 2M 925M 332K 32% 43M
conv5_3 2M 925M 331K 24% 41M
fc1 103M 206M 1.6M 38% 0.8M
fc2 17M 34M 255K 41% 0.2M
fc3 4M 8M 444K 100% 0.4M
Total 138M 30.9B 4.6M N/A 3.6B
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