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Highlights

* models challenged to simulate full range of glatx@an chlorophyll concentrations

» two-phytoplankton size class model captures redjio@so- to oligotrophic transition

* adding coastal diatom enables simulation of higbrophyll in coastal upwelling

* high chlorophyll arises from weaker top-down cohé&ed transient trophic decoupling

* new model improves simulated distribution of coblsygoxia

1 Abstract

The measured concentration of chloroplayith the surface ocean spans four orders of
magnitude, from ~0.01 mgTrin the oligotrophic gyres to >10 mghn coastal zones.
Productive regions encompass only a small fraatiche global ocean area yet they contribute
disproportionately to marine resources and biogewital processes, such as fish catch and
coastal hypoxia. These regions and/or the full okeskrange of chlorophyll concentration,
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however, are often poorly represented in globahesystem models (ESMs) used to project
climate change impacts on marine ecosystems. Fartire, recent high resolution (~10 km)
global earth system simulations suggest that tlostfall is not solely due to coarse resolution
(=100 km) of most global ESMs. By integrating a globiogeochemical model that includes
two phytoplankton size classes (typical of many EJMto a regional simulation of the
California Current System (CCS) we test the hypsiththat a combination of higher spatial
resolution and enhanced resolution of phytoplankiea classes and grazer linkages may enable
global ESMs to better capture the full range ofestssd chlorophyll. The CCS is notable for
encompassing both oligotrophic (<0.1 mg)rand productive (>10 mg ) endpoints of the
global chlorophyll distribution. As was the case déobal high-resolution simulations, the
regional high-resolution implementation with twaesiclasses fails to capture the productive
endpoint. The addition of a third phytoplanktonestdass representing a chain-forming coastal
diatom enables such models to capture the fullearighlorophyll concentration along a
nutrient supply gradient, from highly productiveastal upwelling systems to oligotrophic gyres.
Weaker ‘top-down’ control on coastal diatoms resuitstronger trophic decoupling and
increased phytoplankton biomass, following theddtrction of new nutrients to the photic zone.
The enhanced representation of near-shore chlollaplayima allows the model to better
capture coastal hypoxia along the continental s¥felie North American west coast and may

improve the representation of living marine resesrc

Keywords: chlorophyll; coastal upwelling; diatom; coastgpbxia; phytoplankton community

size-structure; California Current

2 Introduction

The distribution of phytoplankton exhibits bothrioate fine-scale structure and large-scale
patterns that shape marine resource distributind$égeochemical cycles across spatial scales
ranging from hundreds of meters to ocean basinsghorst 2007; Lévy et al. 2012; Stukel et al.
2017). The measured distribution of chlorophylbraxy for phytoplankton biomass, in the open
oceans spans four orders of magnitude, ranging &®fow as ~0.01 mg Thin the oligotrophic
gyres to more than 10 mgthin a few highly productive coastal zones. Oligptriz subtropical

gyres account for the majority of ocean surfaca érenghurst et al. 1995). In contrast, regions
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with an annual mean chlorophyll concentration >3mi primarily in coastal zones, account
for only ~1% of the global ocean (SeaWiFS Level-8dded Chlorophyll Data Version 2014),
yet have a disproportionate impact on marine regsuand biogeochemical processes. Fish
catch, for example, is strongly skewed toward higlorophyll coastal regions (Ryther 1969;
Friedland et al. 2012; Stock et al. 2017). Thedmaal pump is also intensified (Eppley and
Peterson 1979; Dunne et al. 2005) and decomposifisimking organic matter depletes oxygen
in zones underlying high productivity. Such regiofien harbor unique biogeochemical
transformations, such as denitrification (Christanet al. 1987; DeVries et al. 2012), or hypoxia
detrimental to demersal fish and benthic invertidsr§Grantham et al. 2004; Chan et al. 2008;
Keller et al. 2015).

The biomass of large phytoplankton (>20 um), intigdnany species of diatoms,
characteristically makes up an important fractibhigh biomass phytoplankton blooms
(Chisholm 1992; Raimbault et al. 1988; Chavez 19%§oien et al. 2004; Goericke 2011).
Moreover, because large phytoplankton dominateégat ¢thlorophyll concentrations, variability
in their biomass explains most of the absolutealmlity in chlorophyll concentration globally
(Claustre 1994; Venrick 2002; Uitz et al. 2010)eTxplanation for this relationship between
chlorophyll concentration and contribution of lageytoplankton cells hinges upon the balance
of phytoplankton growth and losses to predationleaAst two non-mutually exclusive
mechanisms have been proposed to explain thesevabeas. The first mechanism is the size-
dependent ‘sequential invasion’ of phytoplanktoougrs along a resource gradient (cf.
Armstrong 1994; Ward et al. 2012). In the steadyestase, phytoplankton species of
incrementally larger cell size are added sequénthdng a gradient of increasing flux of
limiting resources (i.e., nutrients), supportingtier autotrophic biomass (Chisholm 1992;
Moloney and Field 1989; Irwin et al. 2006; Barbedadiscock 2006). The smallest
phytoplankton cells thrive in low nutrient condit®due to nutrient scavenging advantages
afforded by high surface area to volume ratios, thed lower minimal cellular nutrient
requirement. As the level of the limiting nutrientreases the abundance of the smallest cells
(i.e., picoplankton such @5 ochlorococcus) is constrained by a grazer-imposed threshold (~0.5

mg chlorophyll i), above which the total community biomass is sem@nted by increasing



90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

contributions of sequentially larger phytoplanksapre groups until the next size-group threshold

is reached.

The second mechanism is transient decoupling afopllgnkton biomass accumulation from
grazing (Thingstad 1998; Irigoien et al. 2005; Rgman et al. 2015). This mechanism is often
associated with changes from unfavorable to fauerpbytoplankton growth conditions, such as
spring bloom initiation or the surfacing of upwelléigh nutrient water masses.
Microzooplankton growth rates are generally comipiaréo those of their phytoplankton prey,
which allows them to respond rapidly to increaseghytoplankton growth. The high
microzooplankton turnover rate can quickly re-elssaltop-down control on small
phytoplankton by cropping a significant portion éeaging 60-75%) of the daily phytoplankton
production across a spectrum of ocean and coastanss (Landry and Calbet 2004).
Mesozooplankton, however, grow more slowly and angncases have longer and more
complex life cycles (Hansen et al. 1997), such their larger phytoplankton prey can
temporarily outpace grazer control (Franks 200Lhstand Franks 2010). Because the
phytoplankton species dominating at high biomasgyically large, and often mechanically or
chemically protected (e.qg., dinoflagellates sucKar®nia sp.,Phaeocystis spp. colonies, chain-
forming diatoms such aShaetoceros spp. andrhalassiosira spp.) they are less susceptible to
microzooplankton grazing and most vulnerable tgdagrazers (Irigoien et al. 2004; Slaughter
et al. 2006). This trade-off between lower resow@®petition of larger phytoplankton and
increased grazing resistance against smaller gréwzer often been used in ecological models to
allow bloom formation of large phytoplankton (Krethmar et al. 1993; Ingrid et al. 1996;
Leibold 1996; Terseleer et al. 2014). Chlorophgihcentration in the ocean, therefore, results

from interlinking environmental conditions, planktoommunity size-structure and food webs.

Chlorophyll observations often serve to consttaige-scale biogeochemical models
used to elucidate the dynamics of marine ecosysésmiproductivity across trophic levels, and
project ecosystem changes that might result fravbalenvironmental change. These models,
however, generally fail to capture the entiretypb$erved chlorophyll range and frequency
distribution (Figure 1A) (Hashioka et al. 2013) 064l biogeochemical models are adept at

reproducing the very low chlorophyll observed ie tiligotrophic regions but are often not able
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to match much higher values (3-10 mg chlorophyf) fim intensely productive coastal regions,
or vice versa. This shortcoming is apparent whenparing the range of chlorophyll
concentration from remote sensing observations thigtoutput of a selection of models used in
the fifth Coupled Model Intercomparison Project (IB¥) (Figure 1A). Even regional models
covering areas of broad ecological gradients, sscine California Current System (CCS),
apparently lack the ability to simulate the freguyedistribution and/or the full range of very low
surface chlorophyll concentrations offshore to heglastal chlorophyll concentrations observed
in situ (Figure 1B) (Gruber et al. 2006; Goebel et al. ®@ruber et al. 2011; Chenillat et al.
2013; Guo et al. 2014; Chenillat et al. 2015; Rénetual. 2016).

It has been hypothesized that the lack of very kigbrophyll conditions in most global
earth system simulations arises primarily from ur@presentation of the intense circulation and
mixing processes in coastal regions that ofterufeahe highest chlorophyll values (Stock et al.
2011), even in highly size-structured models (W&trdl. 2012). This is particularly true for
eastern boundary upwelling systems where globaletsagkhibit some of their largest biases.
However, prototype high-resolution earth systemusations, featuring 1/10° horizontal ocean
resolution (Stock et al. 2017), and some eddy v@splegional simulations with ~5-15 km
horizontal resolution (Gruber et al. 2006; Goehealle2010; Gruber et al. 2011; Chenillat et al.
2013; Guo et al. 2014; Chenillat et al. 2015; Réretual. 2016) are also challenged in
representing the full observed chlorophyll dynarraage or its spatial distribution. While
submesoscale dynamics requiring ~1 km resolutian, (Bonts) can also facilitate
phytoplankton blooms and associated export prodadiy injecting nutrients into surface waters
(Omand et al. 2015; Stukel et al. 2017), simulatitmdate suggest that refined spatial resolution
alone may not be sufficient to capture high coast&rophyll.

In this study, our goal is to test whether impbvesolution of the phytoplankton-grazer
interactions can enable models to capture the dynange of chlorophyll concentration across
an ecological gradient from productive to oligofnapecosystems, representative of the global
oceans. The well-studied CCS, which features imgrsoductive and oligotrophic regions in
close proximity, is used as a test region. We Hypsize that simulating the observed range of

chlorophyll requires both high spatial resolutidrcioculation and improved representation of
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the ‘sequential invasion’ and ‘grazer decouplingchanisms described above. A planktonic
ecosystem model with a canonical two size-classgutgnkton structure, the Carbon, Ocean
Biogeochemistry and Lower Trophics (COBALT) modstdck et al. 2014), is amended to
include an additional large coastal diatom groufesd this hypothesis. Briefly, the new coastal
diatom group has a larger individual cell size th@ncurrent large phytoplankton group in the
COBALT model and implicit chain-forming is assuntedurther protect it from grazing by
smaller zooplankton groups. Furthermore, rapidodmagjrowth rates relative to similarly sized
phytoplankton from other taxonomic groups (Edwaetlal. 2012 their Figure 3) minimizes
allometric penalties associated with large sizesgasing the potential for trophic decoupling.
After assessing the ability of our coastal diatatdition to improve the range of chlorophyll

concentration, we explore implications for the dimtion of coastal hypoxia.
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Figure 1. Comparison of marine chlorophyll concentrationga and distribution from remote
166 sensing observations (SeaWiFS) and (A) global CMi®8els and (B) regional CCS models
output. The violin plots show the median (white'staterquartile range (thickened gray line)
168 andthe 2.5 and 97.5 percentiles (black dots) aidednto the kernel density estimation of the
(A) global, annual climatology or (B) central C&GBmmer climatology of chlorophyll
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concentration. Note that only the global IPSL maxdei match the large 2.5 to 97.5 percentile
range (~0.04 - 1.22 mg chlorophyli¥nfrom SeaWiFS data (but not its distribution), wit
models capturing the low end of the range fallihngrsat the high end and vice versa. Only
ROMS 2014 and 2016 captures the 2.5 to 97.5 peleeange (~0.10 - 2.59 mg chlorophyll m
% from regional SeaWiFS data, however more thahdfalata points fall below the observed
range in ROMS 2016 and ROMS 2014 does not simatateentrations >4 mg chlorophyll'n
SeaWiFS data was provided at 1/12° and (A) regdddel® resolution for the global
comparison. Global model data were regridded teed6lution and their latudinal coverage was
limited to that of monthly SeaWiFS data. Seasohalatological chlorophyll data from CMIP5
model runs were retrieved from the climate changb portal at the Earth System Research
Laboratory (Scott et al. 2016), http://www.esrl.aapv/psd/ipcc/ocn/, and used to compute the
annual climatology. Model acronyms and their makbimgeochemical component: IPSL is the
Institut Pierre Simon Laplace model (Dufresne eR@l 3) using the Pelagic Interaction Scheme
for Carbon and Ecosystem Studies (PISCES) (AummhiBopp 2006), CESM is the
Community Earth System Model (Hurrell et al. 20LBydsay et al. 2014) using the
Biogeochemical Elemental Cycling (BEC) model (Moetal. 2001), GFDL-ESM2M is the
Geophysical Fluid Dynamics Laboratory model (Duehal. 2012) using the Tracers of Ocean
Phytoplankton with Allometric Zooplankton code viers2.0 (TOPAZ2) (Dunne et al. 2013),
GFDL-ESMZ2.6 is the high resolution Geophysical &lDiynamics Laboratory model using
COBALT (Stock et al. 2017), MPI is the Max Plandistitute for Meteorology Earth System
Model (Giorgetta et al. 2013) using the Hamburgaocearbon cycle model (HAMOCC) (llyina
et al. 2013). Central CCS chlorophyll concentratiata from regional models ROMS 2013 with
~15 km (Chenillat et al. 2013), ROMS 2014 with ~14 (@&uo et al. 2014) and ROMS 2016
with ~5 km horizontal resolution (Renault et al18), obtained through personal

communication with the authors.



196 3 Methods

3.1 Modd study domain, physical forcing and configuration
198 The full study domain spans the zonal extent ofGR&S, from Vancouver Island (50°N) to
southern Baja California Peninsula (20°N), extegdip to 1200 km offshore parallel to the
200 coast. This study focuses on the central part®fd8S as a quintessential example of the CCS
coastal upwelling system with a narrow continestalf and a sharp offshore to near-shore
202 ecosystem gradient, spanning chlorophyll conceptratfrom ~0.03 to >10 mg fhover an
average summer (upwelling favorable) season. The#aleCCS subdomain extends from Point
204 Conception in the south to Cape Mendocino in th#hnalong the coast to 600 km from the
shore, comprising the coastal, transition and offsioligotrophic zones. The coastal region of
206 the central CCS was operationally defined as thel@omain extending from the shore to 100 km
offshore, approximately corresponding to the 1 migrophyll mi® contour. Our analysis spans
208 the years 1996-2006, overlapping with the yeaiSea-viewing Wide Field-of-view Sensor
(SeaWiFS) chlorophyll data availability. Becausis gtudy aims to improve the representation
210 of the entire concentration range of marine chlogdlpour analysis is centered on the summer
months June, July and August (JJA), halfway ineodbastal upwelling season in the central part
212 of the CCS, when coastal chlorophyll concentraisostill high following upwelling events and
offshore chlorophyll concentration is low due tafaoe nutrient depletion.
214
The CCS domain was simulated using a version oR#gional Ocean Modeling System
216 (ROMS) from Rutgers University (Curchitser et &03; Shchepetkin and McWilliams 2005;
Powell et al. 2006; Hermann et al. 2009) at 1/I%52bkm horizontal resolution. The model uses
218 the default third order upstream scheme for aderaf momentum and the fourth order
centered horizontal advection scheme for all taddixing of momentum and tracers is
220 performed along terrain-following surfaces (n=509 geopotentials on a stretched vertical grid.
The diffusion of momentum and tracers uses a Lianlascheme with a viscosity of 25 it
222 and diffusivity of 5 Mi s*, and a quadratic bottom friction with a drag ciwé$ht of 3- 10°,
Tides were excluded since their inclusion did matdimprovements to the simulation and their
224  exclusion allowed for a substantial increase in potational speed. Solar radiation is applied

with an diurnal cycle, and sea surface salinityeg&tored to the monthly climatology from World
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Ocean Atlas 2013 (WOAL13) (Garcia et al. 2013) with0-day timescale. The light penetration
depth depends on the chlorophyll concentratiomguie formulation of (Manizza et al. 2005).
Air-sea fluxes are computed using Coordinated OdeaiiReference Experiment (CORE) bulk
formulae (Large and Yeager 2004).

Boundary and initial conditions for ocean dynamgs;h as temperature, salinity, and
velocity, are provided by the Simple Ocean DatarAsation (SODA) model output v2p1p6
(Carton and Giese 2008) and atmospheric forcipgasided by the Modern Era Retrospective-
analysis for Research and Applications (MERRA) aph®ric reanalysis product.
Macronutrients and oxygen concentrations are liagd with WOA13 (Garcia et al. 2013),
forcing for dissolved inorganic carbon and alkaling based on Global Ocean Data Analysis
Project (GLODAP) data (Key et al. 2004). Valueshe#f remaining COBALT variables were
initialized from a global retrospective simulati@tock et al. 2014). Iron deposition is based on
dust deposition of Moxim et al., (2011) with iroontent and solubility from Fan et al., (2006).
Iron sources from the sediment are based on Etratl,2004) with an additional coastal source
of similar magnitude to that of the sediment. Ttra@spheric C@concentration is provided by
the monthly mean global G@stimates from NOAA/ESRL
(www.esrl.noaa.gov/gmd/ccgg/trends/), which wenedirly interpolated in time. River and
coastal runoff data originate from the datasetan & al. (2002), which were remapped
conservatively onto the regional domain and addea feReshwater source to the surface layer.
Coastal nutrient input by rivers was driven by pihheduct of nutrient concentration from the
global NEWS climatology (Seitzinger et al. 20053 dhe river and coastal runoff water flux
from Dai et al. (2002).

3.2 Observational datasets

Several observational datasets were used to abseability of the model simulations to
reproduce the temporal, spatial and statisticatidigion of chlorophyll, relative phytoplankton
size class abundance, mesozooplankton biomasseandbattom dissolved oxygen levels. The
model’s sea surface temperature (SST) fidelity whikerved cross-shore SST gradients was
assessed against optimal interpolated SST dataMOAA’s National Centers for
Environmental Information (NOAA 10.v2) (Reynoldsadt 2007),

10
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https://www.ncdc.noaa.gov/oisst. Upwelling was ased against monthly upwelling indices
from 1996-2006 provided by NOAA Pacific FisherigsviEonmental Laboratory (PFEL),
https://www.pfeg.noaa.gov/products/PFEL/modeleddes/upwelling/NA/data_download.html.
The cross-shore depth distributions of chlorophytkate, temperature and potential density
were assessed using summer climatological meang &alCOFI line 67 (from 1997-2013,
starting near Monterey bay at 36.8°N 121.9°W andrekng southwest, perpendicular to the
coast to 34.5°N 127°W; https://www3.mbari.org/b@jédLine67_BCTD.csv). These data were
collected by Francisco Chavez and the Biologicadography Group at Monterey Bay
Aquarium Institute (MBARI).

Surface chlorophyll was estimated from the SeaWdfBote sensing data, using the 2014
processing version. More specifically, we used riyntlimatological composites (level 3)
obtained from the Distributed Active Archive Cena@NASA Goddard Space Flight Center
(SeaWiFS Level-3 Mapped Chlorophyll Data Versioi£20 Remote sensing products are prone
to overestimating chlorophyll concentration in daehareas due to the presence of colored
dissolved organic matter (Schofield et al. 20043tdh-ups between remotely sensed chlorophyll
and in situ chlorophyll concentration measuremantke California Current System, however,
indicate that chlorophyll concentrations up to 43 mi° are not overestimated by remote sensing
products (Kahru et al. 2014). There was in factoa@st negative bias of remotely sensed
chlorophyll at concentrations >1 mgrthus underestimating medium to high in situ

chlorophyll concentrations in the California Cutr&ystem.

The SeaWiFS chlorophyll values were bilinearly iptdated onto the ROMS model
domain grid to allow co-localized comparison betwebservations and model results. Since
90% of water-leaving radiance signal detected byote sensing originates from the first optical
depth, simulated chlorophyll concentrations wereraged over this depth layer. The first optical
depth has been operationally defined as the depéreashort wave radiation had been
attenuated te™ or ~37% of its surface intensity (Gordon and Mc@wi975), and typically
varied between 5 and 15 m in the model simulatiased on modelled short wave light

attenuation.

11



288 Size-partitioned fractional chlorophyll distributiovas estimated from three different
satellite-based algorithms using calibrated refetiops between size class-specific marker
290 pigments and total chlorophyll concentration aceaydo Hirata et al. (2011) and absorption
spectra (Roy et al. 2013). The relative concemnatiof pico- to micro-sized organic carbon
292 particles (POC) were derived from the spectralslopparticulate backscattering coefficients
according to Kostadinov et al. (2009; 2016). TheB&QT model’s diazotroph phytoplankton
294 group was not included in the size-partitioned gsed because of its low contribution to total
primary production, 140.7% in top 100 m of central CCS, and their equaVadfiliation to

296 either pico- or micro-sized functional groups froemote sensing-based algorithms.

298 Monthly mesozooplankton carbon biomass measuremarisretrieved from NOAA'’s
Coastal & Oceanic Plankton Ecology, Production &@twation Database (COPEPQOD)

300 (http://www.st.nmfs.noaa.gov/copepod/2012/biomaaisis.html), a global plankton database
project of the US National Marine Fisheries Sen{ideriarty and O'Brien 2013). Briefly,

302 estimates of mesozooplankton biomass include data fiet tows, with mesh size 200-505 um,
over the top 200 m of the water column, going bacthe 1950’s. These data were converted to

304 acommon biomass unit in their equivalent 333 prehrséze values (ug C), regridded to a
0.25°, and averaged over the top 200 m and sedgonal

306

Near-bottom oxygen measurements along the US Wast continental shelf and slope

308 (2009-2015, 32.06 - 48.44°N, <1250 m depth), asrdeed in Keller et al. (2015), were
provided by NOAA’s Northwest Fisheries Science @efittps://www.nwfsc.noaa.gov/data).

310 To define hypoxia, i.e. dissolved-oxygen deficie use the concentration threshold of 1.43'ml |
! (equivalent to 63.87 umot) commonly used in benthic ecological studies (&edt al. 2015).

312

3.3 Ecosystem model configuration
314 We use the COBALT marine ecosystem model as owlibasmodel control, which was
implemented into the ROMS model. Before descriltirgamendments we have made to the
316 baseline model, we provide an abbreviated desonpif the model elements required to

understand the trade-offs between functional grggpsnent to the experiments herein.

12
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Complete details of the model’'s governing equatermd parameter values be found in Stock et
al. (2014).

COBALT's baseline plankton food web structure (Feg@A) is similar to other planktonic food
web models coupled with ocean simulations at glabdlregional scales, e.g., PISCES (Aumont
and Bopp 2006), CoSINE (Chai et al. 2002), NEMUR®BIGi et al. 2007). COBALT is in
essence a box model and the parameters used éseapthe physiological and trophic size
dependence are informed by allometric constraifttgtoplankton groups fall into two size
classes, a small and a large one, to capture ststsatween food webs with highly efficient
nutrient recycling, dominated by small planktong amore export-prone large phytoplankton-
dominated food webs (Tremblay et al. 1997). Whilke nominal division between small and
large phytoplankton in the baseline model is anvedent spherical diameter (ESD) of ~10 pum,
as with most plankton functional type models, cdestions of particle size inform the model
but the formulation does not strictly follow allotrie scaling rules. The primary competitive
advantage of small phytoplankton over larger phigiokton is more effective nutrient and light
uptake at low ambient nutrient concentrations agiat levels (Munk and Riley 1952; Edwards et
al. 2012; 2015), while the primary advantage afégphytoplankton is that they escape predation
by microzooplankton due to their larger prey-todater size ratio (Hansen et al. 1994; 1997).
These trade-offs allows the baseline model to sstalty capture observed shifts in the relative
prevalence of small versus larger phytoplanktomssxocean biomes (Stock et al. 2014).

Three zooplankton size classes consume the phyidplagroups and smaller zooplankton size
classes. These are parameterized as microzooptarsktall to medium-bodied copepods, and
large copepods and krill, in order of increasirggsilass. Maximum biomass-specific grazing
rates decrease from small to large following Haretead (1997), with common half-saturation
constants calibrated to reproduce observed praydse and turnover rates across ocean biomes
(Stock and Dunne 2010). Zooplankton feeding is rrestlevith a Type Il Holling functional
response for a single prey type with weak biomased prey switching between alternative

prey types as described in Stock et al. (2008)tditgnkton are also subject to aggregation
through a simple density dependent loss term (Deney. 1996) calibrated based on Jackson et

13



348 al. (2001; 1990). The aggregation response, wheiatld to sinking loss is suppressed when
nutrients and light are not strongly limiting (Wit al. 1992b; a).

350

Two aspects of the baseline COBALT formulation raoéable with respect to the

352 sequential invasion and trophic decoupling mecmasigroposed to control chlorophyll
concentrations along a productivity gradient (sgeobuction). First, there are only two size

354 classes that can invade (Figure 2A). When resouszah a minimal level to allow a population
to be sustained relative to metabolic costs snigiigplankton have a competitive advantage.

356 Large phytoplankton invade at higher resource teaald once small phytoplankton are
controlled by microzooplankton. Second, the ongdgrhytoplankton group is subject to top-

358 down control by medium and large zooplankton (small copepods to krill). While these
groups have lower biomass-specific grazing ratas thicrozooplankton (Hansen et al. 1997),

360 they span equivalent spherical diameters from ~0.8&1. This limits the potential for transient
consumer-prey temporal decoupling and thus biomesgmulation, i.e., blooms. Thus, while

362 two size classes were sufficient for capturingfader shifts in recycling versus export-prone
food webs across ocean biomes, this coarse resolotiphytoplankton communities appears to

364 fall short in intensely productive near-shore regio

366 We test the hypothesis that a third phytoplankire slass with a distinct predator-prey
link can address this limitation. Modificationsttee baseline COBALT model for our

368 experiments pertain primarily to the growth parasrieation and predator-prey links in the
amended model. The new, amended 3PS-COBALT modeidas three zooplankton and three

370 phytoplankton size classes (Figure 2B). Small phigiokton () remain those consumed by
microzooplankton. A new ‘medium’ size clas$'jRlesignates the nanophytoplankton group that

372 s readily consumed by small copepods, and a n@8-farge’ size class 19 represents the
microphytoplankton group, parameterized as largfgin-forming phytoplankton such as

374 diatoms, grazed only by large copepods and kri#l§hter et al. 2006; Stukel and Ohman 2013;
Taylor et al. 2015). The model structure and trophlationships (Figure 2B) are similar in the

376 larger groups to the early allometric models of dhay and Field (1991), and allow for both an
additional sequential invasion (i.e., another digtphytoplankton-zooplankton coupling) and the

378 possibility of greater trophic decoupling (i.erda phytoplankton are controlled only by large
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zooplankton). The structure in Figure 2B remaiissnaall plankton models, greatly simplified
relative to the full scope of possible planktorenatctions. However, it reflects an improved, yet
still computationally efficient, depiction of primaplankton food web links in Figure 2A with
the specific objective of improving representatadithe observed chlorophyll range (Figure 1).
We discuss potential impacts of remaining stru¢tiraplifications, and the relationships
between our results and those derived from higégplved size-based or emergent diversity

plankton models in the Discussion.

In the amended 3PS-COBALT model, parameter valiers whosen to represent a more refined
version of the trade-offs present in the baseli@BBLT model, having two phytoplankton size
classes. Parameter values for the new phytoplargdmups are presented in Table 1. The
remaining parameter values for the medium and 3R§Igroups are the same as those for the
large phytoplankton group in Stock et al. (2014alfrsaturation constants for nutrient uptake

(K) increase from small to large phytoplankton sizsses (Edwards et al. 2012), following
allometric principles suggesting that the largefae area to volume ratio of small cells is
conducive to more effective scavenging for nutsantlow nutrient environments (Munk and
Riley 1952; Aksnes and Egge 1991). Iron limitati®modeled with a cell quota model, where
the scaling of the half-saturation constant Fetib @ growth is based on values reported in
Sunda et al. (1995; 1997). Unlike the maximum carbon-specific photosynthesis ¢, d

Y is relatively constant for the three phytoplamksize classes. This choice is motivated by two
observations: a) phytoplankton maximum growth ratsks among cells ~6 um in diameter and
declines for larger and smaller cells (Marafidn.e2@l3), and b) diatoms as a group have higher
maximum growth rates relative to other, similailgesl groups (Banse 1982; Tang 1995; Sarthou
et al. 2005; Edwards et al. 2012). These two factaggest that rather small differenceBdfax

for our model phytoplankton size classe can béfiedt despite the known allometric scaling for
maximum growth rate. The unimodal size dependehogaaimum growth rates is thought to
result from constraints on the rate of nutrientalptat the smallest cell sizes (Raven 1998;
Marafion et al. 2013; Ward et al. 2017) and fromstaints on the distribution of resources
within cells for larger cell sizes (West 1997; Broet al. 2004). Smaller phytoplankton have a
steeper initial slope of the chlorophyll-speciftegposynthesis-light relationship)(due to a
smaller chlorophyll packaging effect (Morel anddud 1981), but a lower maximum
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412

414

416

418

420

422
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426

428

chlorophyll to carbon raticdtf.x) (Geider 1993). Large phytoplankton are subjesttonger
losses via aggregation based on model analysesdikgah et al. (2001; 1990).

We chose parameter values meeting these empiooatraints (Table 1), but also tested
a range of values for the model within a ~140 x 8brlear-shore to offshore subset of the CCS
model domain (see Supp. Figure 6 and Supp. TekEsd experiments emphasized the
importance of parameterizing the 3PS-large phytdfitan group in a manner consistent with
chain-forming diatoms with individual cell sizestween ~20-50 um ESD in order to capture the
prominence of this group in upwelling systems (V&n2009; Taylor et al. 2015). This choice
allows for only modest nutrient uptake and maxinmgnowth rate penalties relative to the
medium phytoplankton (Table 1), while implicit spibearing and chain formation is presumed
to create prey sizes large enough to deter snwleers (Smetacek 1999; Slaughter et al. 2006).

A baseline COBALT B amended 3PS-COBALT
micro- small large copepods micro- small large copepods
zooplankton  copepods and krill zooplankton  copepods and krill

&
=) &

pico- to small large nano- to pico- to small large nano-to micro- and
nanophyto- small micro- nanophyto- small micro- chain-forming
plankton  phytoplankton plankton  phytoplankton phytoplankton

Figure 2. Depiction of the trophic relationships betweea different phytoplankton (P) and
zooplankton (Z) size classes in the (A) baselind&0T and (B) amended 3PS-COBALT

model configuration, which resolves three phytoktan size classes.
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442

444

parameter P = P units ref.

P“max @0°C 1.125 1.250 1.125 “d 1,2,3,4
Knos 0.50 1.50 2.25 mmol th 5,6
K4 0.10 0.30 0.45 mmol th 7,8
Kpoa 1.0x10%  3.0x10° 45102  mmol m® 9
Ksioha na 1.00 1.50 mmol th 10, 11
Kred 1.0x10*  3.x10* 4510  mmol n® 11
KFeton 1.9%10° 2.3%10° 3.5810° mol Fe mof' N 12, 13
a 2.0x10°  1.3x10° 1.210° gCg'chinfumol*y 14,15
Orrex 0.03 0.05 0.07 g chr'gc 14, 15
aggregation 1x10% 3x10% 6x10" d* mol* N kg* 16, 17
ZS ZM ZL
ingestex @0°C  1.42 0.57 0.23 &S| 18, 19
Kingest 1.25¢10°  1.25¢10° 1.25¢10° mol N kg* 18, 19

Table 1. Parameter values of primary physiological traffe-fmr each phytoplankton and
zooplankton size class used in the amended 3PS-CDBfodel. Note that Pparametrization
choices were made to capture the characteristiceah-forming coastal diatoms common in
upwelling and spring bloom conditions. TKgarameters are half-saturation constants for
nutrient limited growth (see Stock et al. (2014) details). Other abbreviations are as given in
the main text, chlorophyll (chl). Literature refaoes (ref.) upon which the parameter values are
based: (1) Bissinger et al. (2008), (2) Banse (Bdr®82), (3) Tang (1995), (4) Marafion et al.
(2013), (5) Eppley et al. (1969), (6) Romeo and&ig1982), (7) Eppley and Renger (1974), (8)
Frost and Franzen (1992), (9) Lomas et al. (2014), Martin-Jézéquel et al. (2000), (11)
Sarthou et al. (2005), (12) Sunda and Huntsman7()1993) Sunda and Huntsman (1995), (14)
Geider (1993), (15) Geider et al. (1997), (16) 3ack(1990), (17) Jackson (2001), (18) Hansen
et al. (1997), (19) Stock and Dunne (2010). Modebhmeter values not listed here are as in
Stock et al. (2014).
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3.4 SKill assessment of model simulations

Several skill metrics are used to quantify modedesbational data fits: Pearson’s
correlation coefficientr( is used as a measure of relative spatial agreethenmean difference
between model and observations (bias) and themean square error (RMSE) are used to
guantify the scale of the difference between thedehand data for any given point; and for
chlorophyll concentration, the median and the 2. @7.5 percentiles is used as an additional
measure of model-data comparison focusing on thgerand distribution of the data (see results
in Supp. Tables 1 and 2). Chlorophyll concentrati@ne loge-transformed prior to skill
assessment and the arithmetic mean of untransfodateds provided one standard deviation.
In order to simplify comparison between observatiand simulations, the figure panels are
arranged in the following sequence: baseline COBAlLddel results, observational data,
amended 3PS-COBALT model results.

4 Results

4.1 Seasonal occurrence of coastal upwelling and phytoplankton blooms

Coastal upwelling intensity typically peaks in gssummer along the central CCS (Figure
3, shaded areas) when cold deeper water surfaeesheecoast. Both models are able to
reproduce this seasonal upwelling cycle, as appratad by the decline in coastal SST relative
the offshore SST with increasing upwelling intepgiigure 3, dashed lines). The larger
amplitude in simulated SST gradient is due to themvoffshore temperature bias in the model
(Supp. Figures 1 and 2). Coastal upwelling triggemgoplankton bloom formation resulting in
chlorophyll accumulation (Figure 3, blue line). Bahodels succeed in simulating a chlorophyll
accumulation as a response to increased upwejleignly the amended 3PS-COBALT model
matches the in situ observations in both amplitantktiming (Figure 3, red line; in situ
chlorophyll concentration vs. baseline COBAL=0.31, p=0.27, mean bias=-2.17 mean
RMSE=2.59 ; in situ chlorophyll concentration VRS COBALT: r=0.61, p<0.05, mean bias=-
0.76 mean RMSE=1.42).
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472  Figure 3. Monthly climatologies of upwelling index, chloreyl concentration in the coastal
area and sea surface temperature difference betveasital and offshore areas in the central
474 CCS. Maximum upwelling index from NOAA PFEL at 36{bblor shading) corresponds to
peak in situ chlorophyll concentration from CalCQiRe 67 (blue line) (0-10 m, 121.84-
476 122.25°W 36.72 °N, 1997-2013) and a larger diffeeeim the sea surface temperature (NOAA
Ol.v2) between coastal and offshore area, charatiteof upwelling season progression (dashed
478 Dblue line). The seasonal coastal upwelling cycknsulated by both model configurations
(green and red lines), yet only the amended 3PSAIOBnodel reproduces the timing and
480 amplitude of the observed seasonal change in ghthgtlbbconcentration (red line). In situ
chlorophyll data collected by Francisco Chavez tedBiological Oceanography Group at
482 MBARI.
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484 4.2 Chlorophyll concentration range and distribution along a productivity gradient
Observed SeaWiFS summer chlorophyll concentratidhe CCS spanned more than three

486 orders of magnitude from ~0.05 mg’rat the offshore boundary of the ROMS model donain
>10 mg n® nearshore (Figure 4A), with a sharp chlorophydidient dropping to <1 mg

488 approximately 100 km from shore (Figure 4A insét)e 2 phytoplankton size class baseline
simulation (Figure 4B) captures the very low offehohlorophyll concentration, but peak

490 chlorophyll in coastal regions reach only ~2 mg, mespite improved spatial resolution
achieved by the ROMS model relative to global satiahs (for detailed statistics on chlorophyll

492 concentration comparisons see Supp. Table 1).i¥lsisnsistent with the magnitude of peak
chlorophyll values found in high-resolution (~10 kgipbal simulations with baseline COBALT

494  (Stock et al. 2017). The limited simulation of higbastal chlorophyll in the baseline model is
further exemplified by the very narrow offshoreenttof the 1 mg chlorophyll thcontour,

496 which only extends ~100 km offshore in the smallgedetween the Gulf of the Farallones and
Monterey Bay in central CCS (Figure 4B inset).

498

The addition of the third phytoplankton size clagssameterized as a chain-forming

500 diatom, allows the amended model to capture thg lwgh chlorophyll concentration over the
core of the coastal upwelling, where chlorophyteentrations >1 mg thextend up the 100 km

502 offshore (Figure 4C inset) (Supp. Table 1). Coneians of chlorophyll for both the remote
sensing observations and the amended model ropgmeked 5 mg Min the central CCS

504 region, peaking at 9 mg chlorophylifin the simulated summer climatology. This is
accomplished while maintaining chlorophyll concatitbn three orders of magnitude below

506 these peak values at the offshore boundary oféhea CCS (Figure 4C), in accordance with
observations (Supp. Table 1). At the northern andrern ends of the domain chlorophyll

508 concentration remains underestimated comparedioteesensing observations (Figure 4D).
This is likely caused by insufficient nutrient irfftom circulation coming in from the north

510 (Supp. Figure 3) and phytoplankton depleting cdastidace nutrients earlier than observed in
the south (data not shown).

512
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baseline
20°N| remote sensing COBALT

50°N

40°N

amended 3PS-COBALT
- remote sensing

amended
20°N| 3PS-COBALT

140°W 130°W 120°W 110°W 140°W 130°W 120°W 110°W
0.05 0.1 0.3 1 3 10 -30-24-18-12-06 00 06 1.2 1.8 2.4 3.0
mg chlorophyll m~ mg chlorophyll m~

Figure 4. Summer climatology of chlorophyll concentratioarh (A) SeaWiFS observations,
(B) 2 phytoplankton size class baseline COBALT nipaed (C) 3 phytoplankton size class
amended 3PS-COBALT model. The difference in chlogdiconcentration between the 3PS-
COBALT model and SeaWiFS observations is showraimepD. The central CCS region,
between Point Conception and Cape Mendocino, igedtin black from the shore to 100 km

offshore (coastal region) and to 600 km offshomaétal to offshore region). CalCOFI line 67 is
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520 represented by the black cross-shore transectliimeinset details the chlorophyll in the coastal
zone and the offshore extent of the 1 mg chlordphyl contour (gray contour line).
522
High chlorophyll concentrations (>5 mgJjmear the coast of Monterey Bay (36.8°N)
524  are typical during summer upwelling season (Figd#esand 5B). Further offshore, surface
chlorophyll concentration decreases sharply anadhi@ophyll maximum recedes deeper into
526 the water column to 90-100 m, nearly following &0 kg n?® isopycnal (Figure 5B). While the
baseline COBALT model reproduces the cross-sharkndein surface chlorophyll
528 concentration, it lacks the ability to reproducgrhcoastal chlorophyll concentrations (<2 mg m
% and a distinct deep chlorophyll maximum furthéslaore (Figure 5A). The amended 3PS
530 model on the other hand, reproduces both high abalsiorophyll concentrations (>3 mgin
and a distinct deep chlorophyll maximum furthessbfire, in agreement with observations,
532 despite a more abrupt decline in surface chlordgwoyicentration in the coastal to offshore
transition zone (~122.5-123.5 °W).
534

amended 3PS-COBALT

baseline COBALT CalCOFI 67

127°W  126°W 125°W 124°W 123°W 122°W 127°W 126°W 125°W 124°W 123°W 122°W 127°W 126°W 125°W 124°W 123°W 122°W

<4 - TN 000 2 WS >

0.0 0.8 1.5 2.2 3.0 0.0 0.8 1.5 2.2 3.0 0.0 0.8 1.5 2.2 3.0
chlorophyll (mg m3) chlorophyll (mg m™3) chlorophyll (mg m™3)

536 Figure5. Cross-shore chlorophyll depth distribution al@&COFI line 67 (black line in Figure
4) for (A) baseline COBALT model, (Bh situ chlorophyll measurements from CalCOFI and

538 (C) amended 3PS-COBALT model. Isopycnals are oikitawhite (potential density, in kg'm
%). In situ chlorophyll and density data collected by Franzi€havez and the Biological

540 Oceanography Group at MBARI.
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554
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558

baseline
COBALT <><>.>

SeaWiFS

observations

amended
3PS-COBALT *
0.05 0.1 0.3 0.5 1 3 5 10 20

mg chlorophyll m™

Figure 6. Comparison of chlorophyll concentration range distiibution from (top) 2
phytoplankton size class, baseline COBALT simulationiddle) SeaWiFS remote sensing
observations and (bottom) 3 phytoplankton sizesglasiended 3PS-COBALT simulation. The
violin plots show median (white star), interquartibnge (black bar) and the 2.5 and 97.5
percentile (black dots) overlaid onto the kernelisiy estimation of the chlorophyli

concentration values of the months June, July, Auguthe central CCS region.

Comparison of the chlorophyll probability distribarts in the central CCS (Figure 6)
confirms that surface chlorophyll in the amendedletdormulation spans a similar range as the
observations. The baseline model, in contrast, t@stienates the high end of observed
chlorophyll concentrations by a factor of ~2.5 ret 7.5 percentile level (Supp. Table 1). These
results support the value of a third phytoplanid@e class, parameterized as a chain-forming
diatom, for capturing both high and low chlorophggions. However, the probability
distributions also reveal either a surplus or atsige of intermediate chlorophyll concentrations
in the baseline or amended model, respectively pewed to remote sensing observations. This

is also apparent in Figures 4 and 5 as either gradual cross-shore decline in chlorophyll

23



560

562

564

566

568

570

572

574

576

578

580

582

584

586

588

concentration for the baseline model or a morettspatial decline from peak chlorophyll
nearshore to reduced values offshore for the antermabelel compared to observations. The poor
spatial representation of the chlorophyll conceamragradient in this coastal-to-offshore
transition zone appears to be a common problenC8 &gional models (Goebel et al. 2010;
Chenillat et al. 2013; Guo et al. 2014; Gruberl€2@06).

Investigation of the origin of this misfit suggesitsit the more abrupt cross-shore transition
may result from physical model biases. Most notatbspite generally good agreement in terms
of spatial distribution of the SST €~1,p<0.001, CCS) (Supp. Figure 1), the ROMS model
simulations exhibit a sharper cross-shore increasater column stratification and warmer,
more stratified overall off-shore conditions thdserved (Supp. Figures 2 and 4). This is
indicative of a more rapid cross-shore transitimmf upwelling to oligotrophic, highly stratified
conditions in the model. Accounting for this bigsgbotting surface chlorophyll concentration as
a function of surface temperature (Supp. Figurgélils a decline of chlorophyll with increasing
temperature that is consistent between the amendeel simulation and observations. In the
baseline model, however, chlorophyll levels of ~@& mi® extend further offshore (Figure 4B
and Figure 5B) because coastal phytoplankton ptamudoes not sufficiently consume surface
nutrients (Supp. Figure 3), thus allowing the realdsurface nutrients to be advected offshore
despite the same overestimated thermal stratibicabespite outstanding issues in the resolution
of the transition zone, significant improvementsha simulation of high coastal chlorophyl
concentration (Figures 4, 5 and 6; Supp. Tableufapsrt further analysis of the impact of
capturing these high chlorophyll regions on thédgeochemical ramifications, such as coastal

hypoxia.

4.3 Theimpact of improved chlorophyll representation on simulated coastal bottom
hypoxia
Strong gradients in near-bottom dissolved oxygerctentrations (DO), ranging from oxic
to severely hypoxic, are observed in CCS shelfsanath bottom depths shallower than 150 m
(DO in ml I': 1.90+0.71, min=0.44, max=5.96, n=688) (Figures 7B anjl &&ly the amended
model successfully reproduces the broad rangeastimattom DO on these shallow shelf areas

(Figures 7C and 8C) (climatological summer meacosfocated DO in mI'}: 1.410.50, min=0,
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606

max=2.65, n=202). The amended model also replithtesbserved trend of decreasing near-
bottom DO with increasing bottom depth along theS&elf areas (from 56 to ~600 m depth),

and the bottom depth (~360 m) where shelf areasargidered chronically hypoxic (i.e., DO

<1.43 ml 1Y) during the months June, July and August (compayeres 7B with 7C). Except for

the trend of decreasing near-bottom DO with indrggbottom depth, the baseline model could

not reproduce levels of hypoxia in shallow she#fea;, nor the depth threshold below which most

CCS bottom waters become chronically hypoxic (ctotayical summer mean of co-located DO
in ml % 2.410.31, min=1.94, max=3.44, n=202, ~500 m) and haiglzeh overall bias

compared to the amended model (compare FiguresidBA with 7C and 8C). An improved

representation of high coastal chlorophyll and ppignkton size structure thus improved

simulated vertical patterns and levels of bottormpdxya.

50°Nr5

40°N

30°N

baseline
COBALT

bias= 0.13
RMSE= 0.29
r=0.70

NOAA NFSC
observations

amended
3PS-COBALT

bias= -0.01
RMSE= 0.27
r= 0.66

125°wW

120°wW

125°W

0.0 0.72

120°wW

1.43
DO (ml 1)

2.15

125°W

Figure 7. Spatial distribution of near-bottom dissolved oegdDO) concentration for bottom

depths shallower than 1250 m. (A) summer climatpkigwulated by the baseline COBALT

model, (B) measured by NOAA Northwest FisherieeBoe Center during trawling surveys

from 2009 to 2015 during the months June, JulyAmgust, and (C) summer climatology
simulated by the amended 3PS-COBALT model. Bathgimebntour lines from 1250 to 3000



608 m depth with 250 m interval are shown to indicie steepness of the continental slope. Note
that simulations and observations of DO are wetlladated ) and that both simulations have a
610 similar accuracy as estimated by RMSE. The ameB&8&ICOBALT model better simulates

hypoxia levels on the shelf as indicated by thedlomean bias.

612
0
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€
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©
500
600
700
baseline NOAA NFSC amended
k COBALT observations , 3PS-COBALT
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614 Figure 8. Near-bottom dissolved oxygen (DO) concentratiorihee California Current System
continental shelf (32.06 - 48.44°N). (A) summentological means from the baseline
616 COBALT model simulation, (B) NOAA Northwest Fishesi Science Center measurements
during the months June, July, and August betwe®9 20d 2015 (n=1765), (C) summer
618 climatological means from the amended 3PS-COBALTOehgimulation. Vertical line at DO =
1.43 ml I' denotes hypoxia threshold.
620
Oxygen consumption in near-bottom waters is fuelgdicrobial respiration of organic
622 matter exported from the photic zone. The bottopoexflux of organic particulate matter in the
coastal region of the central CCS was 0.54 mmolQithin the amended model, i.e., ~2.6 times
624 higher than in the baseline model (Figure 9 ). pasicle export ratio, i.e., the ratio of organic
carbon to primary production flux at 100 m deptbi which the bottom flux derives, varied
626 around ~0.310.11 in the coastal region of the central CCS dusinmmer. This is in the range
of particle export ratios reported for the coastgiion of the CCS, which can be as high as 0.4 to

628 0.5 (Wilkerson et al. 2000; Dunne et al. 2005, sfdrences therein). The more intense organic
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648

particulate export flux to the bottom of coastajioms in the amended model is associated with
high levels of mesozooplankton biomass (the sumexdium and large zooplankton in the
model), consistent with observations (Supp. Fig)ren the coastal zone, where observed
mesozooplankton biomass is highest, a three-faidkase of maximum levels of chlorophyll in
the amended model sustained an ~40% increase ozowsdankton biomass (75th percentile)
compared to the baseline model. The observed stow® gradient of mesozooplankton
biomass, ranges from a median of 2951 mgtimthe coastal zone (n=146) to a median of
1527 mg C 1it offshore (n=256) for the months June, July andustign central CCS. The
amended model was able to reproduce this biomasiegit reasonably well (medians:
coastal=2156 mg C T offshore=1211 mg C #). This trophic connection provided an energy
pathway to the highest trophic level, i.e. fishyadl as a production export pathway in the form

of sinking fecal pellets.

50°N

40°N

30°N

baseline amended amended minus

20en|] COBALT 3PS-COBALT baseiine COBALT
140°W 130°wW 120°W 110°W 140°W 130°wW 120°W 110°W 140°W 130°wW 120°W 110°W
dEET 24444 EéaGEEes R R B ey - >
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mmol m? d*! mmol m? d*!

Figure 9. Summer climatological mean of benthic organic carfhax in (A) the baseline
COBALT model simulation and (B) the amended 3PS-BOBmodel simulation. (C) The

difference in benthic organic carbon flux betweles amended and baseline model simulations.

5 Discussion

Most biogeochemical models are unable to caphe@tean’s full dynamic range
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of chlorophyll concentrations, especially at thghhénd of observations (Figure 1) (Hashioka et
al. 2013). Improved spatial resolution of high t@®e supply areas only partly alleviates this
issue(Gruber et al. 2006; Goebel et al. 2010; Grubad.€2011; Chenillat et al. 2013; Guo et al.
2014; Chenillat et al. 2015; Renault et al. 2016k et al. 2017). Some regional models, such
as the Gruber et al. 2006 — based, 1/24° resolutiotel used by Renault et al. (2016), are able
to simulate coastal high chlorophyll levels usingregle phytoplankton-grazer linkage thanks to
parameter values tuned to simulate the elevateagpyi production during upwelling. Yet, more
than half of simulated chlorophyll levels were lowlean observations in the central CCS (Figure
1B). Other regional models, such as the implememtatf the CoSINE model by Guo et al.

2014, are not able to simulate coastal high chloybpevels (>4 mg ri¥) observed in the central
CCS despite having multiple phytoplankton-grazekdges (Figure 1B). Instead, we
hypothesized that the poor representation of tmahyc range of chlorophyll was due to
improperly resolved phytoplankton-grazer linkaged a particular to lacking model
representation of large diatoms that often domihagk chlorophyll phytoplankton blooms
(Venrick 2002; Irigoien et al. 2004; Taylor et 2012). We tested this hypothesis using an eddy-
resolving (~7 km, 1/15°) ROMS model and adding atpplankton group with physiological
characteristics and trophic links characteristitaofe, chain-forming coastal diatoms. This new
phytoplankton type has relatively high maximum gifowates for its individual cell size and
grazer protection from smaller zooplankton groupmétacek 1999; Sarthou et al. 2005;
Slaughter et al. 2006; Edwards et al. 2012).

The addition of a single key phytoplankton groE(re 2B), rather than many, as has
been implemented in more speciose ecological mddals Follows et al. 2007; Goebel et al.
2010), is a compromise between ecological compteit computational efficiency required of
plankton community models in global Earth Systenmd®le intended for multidecadal
simulations. These amendments to the communitgtsirelin the model resulted in improved
simulation of high chlorophyll blooms in coastaWagdling areas while maintaining the very low
chlorophyll concentrations in offshore oligotrophégions. A critical discussion of our choices
for parameterizing the new chain-forming diatom tppjankton type is warranted here. In the
amended model, we chose to limit strict adhereacedan allometric trends to parameterize the

large phytoplankton group specifically as a chain¥ing diatom. This limited the allometric
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penalties on nutrient uptake affinities and maxingnowth rates relative to moderately-sized
phytoplankton while still reducing top-down contrdhe combination of high maximum growth
rates and moderate affinities for nutrient uptakespecially suited to thriving in high resource
supply environments, such as coastal upwellingesyst and is exemplified by the success of
diatom species with such characteristics in coastaironments (Romeo and Fisher 1982;
Estrada and Blasco 1985; Venrick 2002; Lassitat.2006; Edwards et al. 2012; 2015).

Several studies have attributed the success ofrbfoaming diatoms to their ability to acclimate
to the prevailing environmental conditions throyagtysiological plasticity and/or nutrient
storage capability (Collos et al. 1992; Stolte &Rimelgman 1995; Lomas and Glibert 2000; Collos
et al. 2005). These mechanisms were, however,amsidered herein. A recent modelling study
of a simulated upwelling event (Van Oostende e2@l5) concluded that physiological
acclimation was not a necessary condition to remtesigh chlorophyll bloom formation by two
dominant diatom specid$alassiosira anguste-lineata andChaetoceros debilis. In this

particular study]T. anguste-lineata was not detected by microscopy during the firdags of the
experiment, after which it grew exponentially, vetl. debilis was growing exponentially by the
second day (Fawcett and Ward 2011). This is cardistith the findings of Collos (1982;

1986), and suggests a decoupling of nitrate updakiegrowth by the generally largeranguste-
lineata cells compared to the reduced capacity for nistieage byC. debilis. Both growth
strategies, however, were successful in this pdaicontext and could be approximated by a
single high maximal potential growth rate. Furthera) in the current study, the ability for chain
formation, or other implicit grazing deterring macdism, is assumed to only bear a moderate
cost in terms of light and nutrient acquisition ahitities governed by allometric principles of
individual cells (Pahlow et al. 1997) while haviagreater propensity for density-dependent loss

through aggregation (Jackson 2001; 1990).

Another simplification of current biogeochemical dets that was not considered herein
but could also contribute to chlorophyll misfitstiee simplified representation of zooplankton
lifecycles and behavior. The lag between predanolr prey in current ‘NPZ’ models is linked to
slower intrinsic rates of grazing and subsequenivtyr in larger zooplankton (Hansen et al.

1997). This is unlikely, however, to fully captumergent patterns zooplankton population
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growth resulting from complex copepod, euphaugieatinous zooplankton, and jellyfish
lifecycles (Carlotti et al. 2000). Life cycle efts may be further modified by vertical migration,
which may effectively maintain zooplankton in upliveg regions and partly counter lags
(Batchelder et al. 2002).

Sensitivity experiments showed that adding a tlpingtoplankton group that followed
mean allometric trends (e.g., Edwards et al. 2@bR)d not adequately capture high chlorophyll
regions or the dominance of large phytoplanktorthese regions (Supp. Figure 7 and Supp.
Text). This result highlights the limitations of are allometric trends and helps explain why
even simulations with highly resolved representetiof the size structure of the phytoplankton
community (e.g., Baird and Suthers 2007; Ward et@ll2) still struggle to capture the full
dynamic range of chlorophyll concentration desphii inclusion of more than 50 plankton size
classes. Simulations using a high spatial resalu{itt10°), emergent community ecosystem
model including 2 grazers and 78 phytoplankton igseapplied previously to the CCS yielded
coastal chlorophyll concentrations lower than Sd&$Vobservations, after emerging with 8
dominant phytoplankton species (Goebel et al. 20IB¢se 8 emergent phytoplankton groups,
however, may span a narrower optimal thermal windmmpared to the Eppley (1972)
formulation of exponential increase of growth ratéh temperature in COBALT, where
COBALT effectively represents that continuum of fdplankton types. Dominant
phytoplankton groups often deviate significanthorfr mean allometric trends and these
deviations play important roles in defining ecotadi niches (Tang 1995; Smetacek 1999;
Sarthou et al. 2005; Edwards et al. 2012). Ourésten improved representation of chlorophyill
maxima in upwelling and spring bloom systems maégdaour emphasis on coastal, chain-
forming diatoms. Expanding applications of globalrtk system models will likely require
consideration of similarly unique ecologies. Diraféllates, for example, are often implicated in
harmful algal blooms in eutrophied areas (Andersioal. 2012). While similar in size to coastal
diatoms, they possess a highly distinct ecologyvddrfrom widespread mixotrophy, active
locomotion, and toxin production (Margalef 1978; &ma 1997; Glibert 2016; Ward and
Follows 2016). In other particular instances, sasltoastal systems with higher coastal turbidity

and imbalanced N:P supply ratios, other traits sashlow light tolerance (as proxied by
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chlorophyll:C ratio) or low P tolerance may be walet in modeling coastal blooms (e.g., Baird
et al. 2013; Alvarez-Fernandez and Riegman 2014sduet al. 2016; Kerimoglu et al. 2017).

In addition to capturing the observed dynamic ramfgehlorophyll concentration, the size
structure of simulated phytoplankton communitiesdseto be consistent with the hypothesized
ecological mechanisms controlling the phytoplanktommunity size structure along
productivity and physical disturbance gradientsop more detailed examination of the results,
the largest two phytoplankton classes in the 3P8AId model dominated the phytoplankton
biomass at high chlorophyll concentration, in ademice with observations (Supp. Figure 8)
(Wilkerson et al. 2000; Lassiter et al. 2006; Gdexi2011; Taylor et al. 2012). Similar to those
in situ microscopy and algal pigment-based obsamst remote sensing estimates of
phytoplankton size class abundance typically shewithin community structure from a
dominance of picophytoplankton at low biomass iisludére CCS regions to nano- and
microphytoplankton at higher biomass in the CCStaones (Supp. Figures 10, 11 and 12).
There is a plethora of remote sensing algorithrashhve been developed over the recent years
to estimate the phytoplankton community size stmecand functional types (IOCCG 2014;
Mouw et al. 2017). The comparison of the amendedehesults with three of those remote
sensing approaches covering the spectrum of contynstucture estimates (Kostadinov et al.
2017) is generally consistent with expectationsnftuoth explanatory hypotheses: the sequential
invasion of phytoplankton size classes along awesosupply gradient, and with expectations
from the transient trophic decoupling mechanismsci2pancies remain, however, in the degree
to which large phytoplankton dominate both betwsiemulated and remote sensing-derived
estimates, and among remote sensing estimateg/tafgdéinkton size class abundance (Supp.
Table 2). The Hirata et al. (2011) chlorophyll ablance-based algorithm suggests large
phytoplankton dominance in high chlorophyll regign80-90%) that exceeds both our model,
the particulate backscattering-based estimatestéidosv and Siegel 2009; Kostadinov 2016)
and the absorption-based estimates (Roy et al.)280®f which distribute phytoplankton
biomass more evenly between nano- and micro-sizsdes in coastal regions (Supp. Figures
10, 11 and 12).

31



772

774

776

778

780

782

784

786

788

790

792

794

796

798

800

The discrepancies between remote sensing estirileegs stem from differences in the
operational definition of the different size classthe imperfect reflection of the true size of
phytoplankton classes based on pigment groupiny, e cyanobacteriérichodesmium spp.)
(Vidussi et al. 2001), and the limited calibratioh the algorithm of Hirata et al. (2011) at
chlorophyll concentrations >5 mg mFurthermore, the particle backscattering-basgdrithm
of Kostadinov et al. (2009; 2016) not only includasytoplankton but other similarly sized
particles, such as heterotrophic bacteria, micrplaodton, and detritus. This could be why the
algorithm of Kostadinov et al. (2016) appears toerestimate the biomass fraction of
picophytoplankton compared to that of Hirata e{2011), which is in closer agreement with the
amended model. Moreover, Kostadinov et al. (20b&hawledged that their single conversion
factor for determining the fraction of living phyflankton carbon from total POC may not
reflect the variability of trophic status of planktcommunities across ocean regions.

The realization of high chlorophyll concentrationghis study may in part be due to the
effective number of ‘sequential invasions’ a moch accommodate, which is likely a function
of the range of size classes grazed by a zooplangtoup relative to the range of available
phytoplankton groups. A higher diversity of phytmpkton groups favors invasion of different
niches (Irwin et al. 2006) along environmental geats, but phytoplankton blooms
characterized by the accumulation of biomass mdy oncur through temporal or spatial
decoupling of trophic control (Irigoien et al. 2004 time series centered around an upwelling
event ~75 km off the central California coast denwanss the succession of phytoplankton
groups during the bloom response (Supp. Figurén9his time series example, the dominant
phytoplankton size class contributing to primaryoduction switches from mostly small
phytoplankton to the two largest size classes (Stjpgure 9B). The losses of the dominant
phytoplankton groups, due to grazing and aggregaftmlow their growth patterns during this
transient nutrient supply event (Supp. Figures 8@ @D). These results are consistent with the
‘sequential invasion’ and transient ‘grazer decowpl mechanisms implied by the amended
model structure, even though the relative impoegaot each of these non-mutually exclusive

mechanisms could not be partitioned using the eéxyatal set-up in this study.
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A key biogeochemical consequence of improved rgmtesion of high coastal
chlorophyll concentration is the intensificationaairbon export in coastal regions (Figure 9).
Modeled sinking organic matter particles are coredasf both mesozooplankton-derived fecal
pellets and phytoplankton-derived detritus formgdifgregation. Sinking of these particles
transfers organic matter to depth, strengthensithlegical pump and results in higher pe-ratios
near the coast. This is consistent with globallsgs¢s and theory (Dunne et al. 2005, and
references therein; Mouw et al. 2016), though we tizat evidence for increased sinking
particle flux along increasing productivity gradigm the CCS has been surprisingly equivocal
(Stukel and Ohman 2013). Increased particle sinkingover intensely productive nearshore

regions, however, appears consistent with widespngpoxic conditions (Figures 7 and 8).

Capturing the higher export flux after including tthain-forming diatom allowed improved
simulation of near-bottom oxygen levels on the owrital shelf and shelf slope, especially the
occurrence of hypoxic events on the shelf, thromtgmnsification of the model’s coastal nutrient
trapping (Najjar et al. 1992; Aumont et al. 199R)is productivity and export flux-driven
decline of oxygen on the shelf has been found ttheeesult of a combination of local
respiration of organic matter and circulation pssms (Hales et al. 2006; Siedlecki et al. 2015).
Besides a direct link to the respiration of sinkoerganic matter, the oxygen and nutrient content
of the upwelled waters fueling the productive cablstooms in the first place can have a strong
influence on the occurrence of seasonal shelf hgp@rantham et al. 2004). Higher nutrient
input to the surface shelf waters can result ité@igorimary production and stronger respiration
of the exported organic material, depleting dissdlexygen near the shelf bottom (Wheeler and
Huyer 2003). This effect can be compounded whemtieent rich deeper water masses being
upwelled have an already lowered oxygen contentaltigeir biogeochemical history and origin
(Freeland et al. 2003). These hypoxic episodes $edrave become more frequent since the
year 2000 in the northern CCS (Chan et al. 2008)the hypoxic boundary has been shoaling in
recent decades in the southern CCS (Bograd e®@8)2affecting the survival and the habitat
range of benthic as well as mesopelagic fishesraradtebrates (Stewart et al. 2012; Keller et al.
2015).

33



832

834

836

838

840

842

844

846

848

850

852

854

856

858

860

Improvements in dynamical climate prediction modwelse allowed for predictions of
climate variables (e.g., temperature, dissolvedyeryand carbon dioxide concentration,
productivity) at scales that are relevant to theéarstanding and management of living marine
resources (Tommasi et al. 2017). Forecasts of ttlasate variables from weeks to years have
been useful to the anticipatory management of fiskeesources or aquaculture industries and
their associated supply chains (Stock et al. 2Mills et al. 2013; Stock et al. 2015; Siedlecki et
al. 2016). Along the California Current, uncertgiabout the future frequency of invasion of the
northern CCS by subarctic water masses or adveofitow dissolved oxygen water, timing of
upwelling in the northern CCS and stratificatiorthie southern CCS (Freeland et al. 2003;
Mackas et al. 2006; Rykaczewski and Dunne 2010aB3dwski et al. 2015) hampers prediction
of coastal productivity, community composition atgsolved oxygen levels. This model
provides a framework to test hypotheses aboutdbkegical consequences of such system-level
perturbations (Dussin et al. in prep.), with thalgaf supporting climate prediction and resource

management decisions.

6 Conclusions

Modeling of chlorophyll concentration and subsuefaxygen from productive coastal
upwelling to oligotrophic systems can be greatlpiaved by including a better representation
of ecological succession mechanisms. The full dyoaange of observed chlorophyll
concentration, representative of the global oceas, successfully simulated, specifically by
elevating simulated coastal chlorophyll concentratiThis was accomplished by adding a
functional phytoplankton group representing lai&in-forming coastal diatoms and allowing
for transient trophic decoupling between the ada®doplankton group and the grazer
functional group representing large copepods aitid IKigh relative abundance of large
phytoplankton at high productivity corroborateswsagtial invasion and transient trophic
decoupling as the ecological mechanisms at workindproved simulation of the coastal bloom
magnitude and community composition allowed the ehtal reproduce observed spatial patterns
of near-bottom dissolved oxygen across the wedlarted States’ continental shelf. Accurate

simulation of the phytoplankton-derived export fldsving the consumption of oxygen on the
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shelf bottom is crucial to predict the frequency amagnitude of hypoxic events, which are
detrimental to benthic fauna and demersal fishs Tégional model provides a framework to
investigate the frequency and intensity of thegeoltic events on the shelf and the compounding
effect of high nutrient-low oxygen content upwelledter masses. These model improvements
come at a modest complexity cost making it possibkgpply the amended model’s ecological

structure to global biogeochemical simulationshaf bcean.
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