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Highlights 

• models challenged to simulate full range of global ocean chlorophyll concentrations 18 

• two-phytoplankton size class model captures regional meso- to oligotrophic transition 

• adding coastal diatom enables simulation of high chlorophyll in coastal upwelling 20 

• high chlorophyll arises from weaker top-down control and transient trophic decoupling 

• new model improves simulated distribution of coastal hypoxia 22 

 

1 Abstract 24 

The measured concentration of chlorophyll a in the surface ocean spans four orders of 

magnitude, from ~0.01 mg m-3 in the oligotrophic gyres to >10 mg m-3 in coastal zones. 26 

Productive regions encompass only a small fraction of the global ocean area yet they contribute 

disproportionately to marine resources and biogeochemical processes, such as fish catch and 28 

coastal hypoxia. These regions and/or the full observed range of chlorophyll concentration, 
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however, are often poorly represented in global earth system models (ESMs) used to project 30 

climate change impacts on marine ecosystems. Furthermore, recent high resolution (~10 km) 

global earth system simulations suggest that this shortfall is not solely due to coarse resolution 32 

(~100 km) of most global ESMs. By integrating a global biogeochemical model that includes 

two phytoplankton size classes (typical of many ESMs) into a regional simulation of the 34 

California Current System (CCS) we test the hypothesis that a combination of higher spatial 

resolution and enhanced resolution of phytoplankton size classes and grazer linkages may enable 36 

global ESMs to better capture the full range of observed chlorophyll. The CCS is notable for 

encompassing both oligotrophic (<0.1 mg m-3) and productive (>10 mg m-3) endpoints of the 38 

global chlorophyll distribution. As was the case for global high-resolution simulations, the 

regional high-resolution implementation with two size classes fails to capture the productive 40 

endpoint. The addition of a third phytoplankton size class representing a chain-forming coastal 

diatom enables such models to capture the full range of chlorophyll concentration along a 42 

nutrient supply gradient, from highly productive coastal upwelling systems to oligotrophic gyres. 

Weaker ‘top-down’ control on coastal diatoms results in stronger trophic decoupling and 44 

increased phytoplankton biomass, following the introduction of new nutrients to the photic zone. 

The enhanced representation of near-shore chlorophyll maxima allows the model to better 46 

capture coastal hypoxia along the continental shelf of the North American west coast and may 

improve the representation of living marine resources. 48 

 

Keywords: chlorophyll; coastal upwelling; diatom; coastal hypoxia; phytoplankton community 50 

size-structure; California Current 

2 Introduction 52 

The distribution of phytoplankton exhibits both intricate fine-scale structure and large-scale 

patterns that shape marine resource distributions and biogeochemical cycles across spatial scales 54 

ranging from hundreds of meters to ocean basins (Longhurst 2007; Lévy et al. 2012; Stukel et al. 

2017). The measured distribution of chlorophyll, a proxy for phytoplankton biomass, in the open 56 

oceans spans four orders of magnitude, ranging from as low as ~0.01 mg m-3 in the oligotrophic 

gyres to more than 10 mg m-3 in a few highly productive coastal zones. Oligotrophic subtropical 58 

gyres account for the majority of ocean surface area (Longhurst et al. 1995). In contrast, regions 
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with an annual mean chlorophyll concentration >3 mg m-3, primarily in coastal zones, account 60 

for only ~1% of the global ocean (SeaWiFS Level-3 Mapped Chlorophyll Data Version 2014), 

yet have a disproportionate impact on marine resources and biogeochemical processes.  Fish 62 

catch, for example, is strongly skewed toward high chlorophyll coastal regions (Ryther 1969; 

Friedland et al. 2012; Stock et al. 2017). The biological pump is also intensified (Eppley and 64 

Peterson 1979; Dunne et al. 2005) and decomposition of sinking organic matter depletes oxygen 

in zones underlying high productivity. Such regions often harbor unique biogeochemical 66 

transformations, such as denitrification (Christensen et al. 1987; DeVries et al. 2012), or hypoxia 

detrimental to demersal fish and benthic invertebrates (Grantham et al. 2004; Chan et al. 2008; 68 

Keller et al. 2015). 

 70 

The biomass of large phytoplankton (>20 µm), including many species of diatoms, 

characteristically makes up an important fraction of high biomass phytoplankton blooms 72 

(Chisholm 1992; Raimbault et al. 1988; Chavez 1989; Irigoien et al. 2004; Goericke 2011). 

Moreover, because large phytoplankton dominate at high chlorophyll concentrations, variability 74 

in their biomass explains most of the absolute variability in chlorophyll concentration globally 

(Claustre 1994; Venrick 2002; Uitz et al. 2010). The explanation for this relationship between 76 

chlorophyll concentration and contribution of large phytoplankton cells hinges upon the balance 

of phytoplankton growth and losses to predation. At least two non-mutually exclusive 78 

mechanisms have been proposed to explain these observations. The first mechanism is the size-

dependent ‘sequential invasion’ of phytoplankton groups along a resource gradient (cf. 80 

Armstrong 1994; Ward et al. 2012). In the steady state case, phytoplankton species of 

incrementally larger cell size are added sequentially along a gradient of increasing flux of 82 

limiting resources (i.e., nutrients), supporting higher autotrophic biomass (Chisholm 1992; 

Moloney and Field 1989; Irwin et al. 2006; Barber and Hiscock 2006). The smallest 84 

phytoplankton cells thrive in low nutrient conditions due to nutrient scavenging advantages 

afforded by high surface area to volume ratios, and their lower minimal cellular nutrient 86 

requirement. As the level of the limiting nutrient increases the abundance of the smallest cells 

(i.e., picoplankton such as Prochlorococcus) is constrained by a grazer-imposed threshold (~0.5 88 

mg chlorophyll m-3), above which the total community biomass is supplemented by increasing 



 4

contributions of sequentially larger phytoplankton size groups until the next size-group threshold 90 

is reached.  

 92 

The second mechanism is transient decoupling of phytoplankton biomass accumulation from 

grazing (Thingstad 1998; Irigoien et al. 2005; Romagnan et al. 2015). This mechanism is often 94 

associated with changes from unfavorable to favorable phytoplankton growth conditions, such as 

spring bloom initiation or the surfacing of upwelled, high nutrient water masses. 96 

Microzooplankton growth rates are generally comparable to those of their phytoplankton prey, 

which allows them to respond rapidly to increases in phytoplankton growth. The high 98 

microzooplankton turnover rate can quickly re-establish top-down control on small 

phytoplankton by cropping a significant portion (averaging 60-75%) of the daily phytoplankton 100 

production across a spectrum of ocean and coastal systems (Landry and Calbet 2004). 

Mesozooplankton, however, grow more slowly and in many cases have longer and more 102 

complex life cycles (Hansen et al. 1997), such that their larger phytoplankton prey can 

temporarily outpace grazer control (Franks 2001; Fuchs and Franks 2010). Because the 104 

phytoplankton species dominating at high biomass are typically large, and often mechanically or 

chemically protected (e.g., dinoflagellates such as Karenia sp., Phaeocystis spp. colonies, chain-106 

forming diatoms such as Chaetoceros spp. and Thalassiosira spp.) they are less susceptible to 

microzooplankton grazing and most vulnerable to larger grazers (Irigoien et al. 2004; Slaughter 108 

et al. 2006). This trade-off between lower resource competition of larger phytoplankton and 

increased grazing resistance against smaller grazers has often been used in ecological models to 110 

allow bloom formation of large phytoplankton (Kretzschmar et al. 1993; Ingrid et al. 1996; 

Leibold 1996; Terseleer et al. 2014). Chlorophyll concentration in the ocean, therefore, results 112 

from interlinking environmental conditions, plankton community size-structure and food webs. 

 114 

 Chlorophyll observations often serve to constrain large-scale biogeochemical models 

used to elucidate the dynamics of marine ecosystems and productivity across trophic levels, and 116 

project ecosystem changes that might result from global environmental change. These models, 

however, generally fail to capture the entirety of observed chlorophyll range and frequency 118 

distribution (Figure 1A) (Hashioka et al. 2013). Global biogeochemical models are adept at 

reproducing the very low chlorophyll observed in the oligotrophic regions but are often not able 120 
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to match much higher values (3-10 mg chlorophyll m-3) in intensely productive coastal regions, 

or vice versa. This shortcoming is apparent when comparing the range of chlorophyll 122 

concentration from remote sensing observations with the output of a selection of models used in 

the fifth Coupled Model Intercomparison Project (CMIP5) (Figure 1A). Even regional models 124 

covering areas of broad ecological gradients, such as the California Current System (CCS), 

apparently lack the ability to simulate the frequency distribution and/or the full range of very low 126 

surface chlorophyll concentrations offshore to high coastal chlorophyll concentrations observed 

in situ (Figure 1B) (Gruber et al. 2006; Goebel et al. 2010; Gruber et al. 2011; Chenillat et al. 128 

2013; Guo et al. 2014; Chenillat et al. 2015; Renault et al. 2016).  

 130 

It has been hypothesized that the lack of very high chlorophyll conditions in most global 

earth system simulations arises primarily from under-representation of the intense circulation and 132 

mixing processes in coastal regions that often feature the highest chlorophyll values (Stock et al. 

2011), even in highly size-structured models (Ward et al. 2012). This is particularly true for 134 

eastern boundary upwelling systems where global models exhibit some of their largest biases. 

However, prototype high-resolution earth system simulations, featuring 1/10° horizontal ocean 136 

resolution (Stock et al. 2017), and some eddy resolving regional simulations with ~5-15 km 

horizontal resolution (Gruber et al. 2006; Goebel et al. 2010; Gruber et al. 2011; Chenillat et al. 138 

2013; Guo et al. 2014; Chenillat et al. 2015; Renault et al. 2016) are also challenged in 

representing the full observed chlorophyll dynamical range or its spatial distribution. While 140 

submesoscale dynamics requiring ~1 km resolution (e.g., fronts) can also facilitate 

phytoplankton blooms and associated export production by injecting nutrients into surface waters 142 

(Omand et al. 2015; Stukel et al. 2017), simulations to date suggest that refined spatial resolution 

alone may not be sufficient to capture high coastal chlorophyll. 144 

 

 In this study, our goal is to test whether improved resolution of the phytoplankton-grazer 146 

interactions can enable models to capture the dynamic range of chlorophyll concentration across 

an ecological gradient from productive to oligotrophic ecosystems, representative of the global 148 

oceans. The well-studied CCS, which features intensely productive and oligotrophic regions in 

close proximity, is used as a test region. We hypothesize that simulating the observed range of 150 

chlorophyll requires both high spatial resolution of circulation and improved representation of 
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the  ‘sequential invasion’ and ‘grazer decoupling’ mechanisms described above. A planktonic 152 

ecosystem model with a canonical two size-class phytoplankton structure, the Carbon, Ocean 

Biogeochemistry and Lower Trophics (COBALT) model (Stock et al. 2014), is amended to 154 

include an additional large coastal diatom group to test this hypothesis. Briefly, the new coastal 

diatom group has a larger individual cell size than the current large phytoplankton group in the 156 

COBALT model and implicit chain-forming is assumed to further protect it from grazing by 

smaller zooplankton groups. Furthermore, rapid diatom growth rates relative to similarly sized 158 

phytoplankton from other taxonomic groups (Edwards et al. 2012 their Figure 3) minimizes 

allometric penalties associated with large size, increasing the potential for trophic decoupling. 160 

After assessing the ability of our coastal diatom addition to improve the range of chlorophyll 

concentration, we explore implications for the simulation of coastal hypoxia. 162 
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 164 

Figure 1. Comparison of marine chlorophyll concentration range and distribution from remote 

sensing observations (SeaWiFS) and (A) global CMIP5 models and (B) regional CCS models 166 

output. The violin plots show the median (white star), interquartile range (thickened gray line) 

and the 2.5 and 97.5 percentiles (black dots) overlaid onto the kernel density estimation of the 168 

(A) global, annual climatology or (B) central CCS, summer climatology of chlorophyll 
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concentration. Note that only the global IPSL model can match the large 2.5 to 97.5 percentile 170 

range (~0.04 - 1.22 mg chlorophyll m-3) from SeaWiFS data (but not its distribution), with 

models capturing the low end of the range falling short at the high end and vice versa. Only 172 

ROMS 2014 and 2016 captures the 2.5 to 97.5 percentile range (~0.10 - 2.59 mg chlorophyll m-

3) from regional SeaWiFS data, however more than half of data points fall below the observed 174 

range in ROMS 2016 and ROMS 2014 does not simulate concentrations >4 mg chlorophyll m-3. 

SeaWiFS data was provided at 1/12° and (A) regridded to 1° resolution for the global 176 

comparison. Global model data were regridded to 1° resolution and their latudinal coverage was 

limited to that of monthly SeaWiFS data. Seasonal climatological chlorophyll data from CMIP5 178 

model runs were retrieved from the climate change web portal at the Earth System Research 

Laboratory (Scott et al. 2016), http://www.esrl.noaa.gov/psd/ipcc/ocn/, and used to compute the 180 

annual climatology. Model acronyms and their marine biogeochemical component: IPSL is the 

Institut Pierre Simon Laplace model (Dufresne et al. 2013) using the Pelagic Interaction Scheme 182 

for Carbon and Ecosystem Studies (PISCES) (Aumont and Bopp 2006), CESM is the 

Community Earth System Model (Hurrell et al. 2013; Lindsay et al. 2014) using the 184 

Biogeochemical Elemental Cycling (BEC) model (Moore et al. 2001), GFDL-ESM2M is the 

Geophysical Fluid Dynamics Laboratory model (Dunne et al. 2012) using the Tracers of Ocean 186 

Phytoplankton with Allometric Zooplankton code version 2.0 (TOPAZ2) (Dunne et al. 2013), 

GFDL-ESM2.6 is the high resolution Geophysical Fluid Dynamics Laboratory model using 188 

COBALT (Stock et al. 2017), MPI is the Max Planck Institute for Meteorology Earth System 

Model (Giorgetta et al. 2013) using the Hamburg ocean carbon cycle model (HAMOCC) (Ilyina 190 

et al. 2013). Central CCS chlorophyll concentration data from regional models ROMS 2013 with 

~15 km (Chenillat et al. 2013), ROMS 2014 with ~14 km (Guo et al. 2014) and ROMS 2016 192 

with ~5 km horizontal resolution (Renault et al. 2016), obtained through personal 

communication with the authors. 194 

 



 9

3 Methods 196 

3.1 Model study domain, physical forcing and configuration 

The full study domain spans the zonal extent of the CCS, from Vancouver Island (50°N) to 198 

southern Baja California Peninsula (20°N), extending up to 1200 km offshore parallel to the 

coast. This study focuses on the central part of the CCS as a quintessential example of the CCS 200 

coastal upwelling system with a narrow continental shelf and a sharp offshore to near-shore 

ecosystem gradient, spanning chlorophyll concentrations from ~0.03 to >10 mg m-3 over an 202 

average summer (upwelling favorable) season. The central CCS subdomain extends from Point 

Conception in the south to Cape Mendocino in the north along the coast to 600 km from the 204 

shore, comprising the coastal, transition and offshore oligotrophic zones. The coastal region of 

the central CCS was operationally defined as the subdomain extending from the shore to 100 km 206 

offshore, approximately corresponding to the 1 mg chlorophyll m-3 contour.  Our analysis spans 

the years 1996-2006, overlapping with the years of Sea-viewing Wide Field-of-view Sensor 208 

(SeaWiFS) chlorophyll data availability. Because this study aims to improve the representation 

of the entire concentration range of marine chlorophyll, our analysis is centered on the summer 210 

months June, July and August (JJA), halfway into the coastal upwelling season in the central part 

of the CCS, when coastal chlorophyll concentration is still high following upwelling events and 212 

offshore chlorophyll concentration is low due to surface nutrient depletion. 

 214 

The CCS domain was simulated using a version of the Regional Ocean Modeling System 

(ROMS) from Rutgers University (Curchitser et al. 2005; Shchepetkin and McWilliams 2005; 216 

Powell et al. 2006; Hermann et al. 2009) at 1/15° or ~7 km horizontal resolution. The model uses 

the default third order upstream scheme for advection of momentum and the fourth order 218 

centered horizontal advection scheme for all tracers. Mixing of momentum and tracers is 

performed along terrain-following surfaces (n=50) and geopotentials on a stretched vertical grid. 220 

The diffusion of momentum and tracers uses a Laplacian scheme with a viscosity of 25 m2 s-1 

and diffusivity of 5 m2 s-1, and a quadratic bottom friction with a drag coefficient of 3 . 10-3. 222 

Tides were excluded since their inclusion did not bring improvements to the simulation and their 

exclusion allowed for a substantial increase in computational speed. Solar radiation is applied 224 

with an diurnal cycle, and sea surface salinity is restored to the monthly climatology from World 
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Ocean Atlas 2013 (WOA13) (Garcia et al. 2013) with a 90-day timescale. The light penetration 226 

depth depends on the chlorophyll concentration, using the formulation of (Manizza et al. 2005). 

Air-sea fluxes are computed using Coordinated Ocean-ice Reference Experiment (CORE) bulk 228 

formulae (Large and Yeager 2004). 

 230 

Boundary and initial conditions for ocean dynamics, such as temperature, salinity, and 

velocity, are provided by the Simple Ocean Data Assimilation (SODA) model output v2p1p6 232 

(Carton and Giese 2008) and atmospheric forcing is provided by the Modern Era Retrospective-

analysis for Research and Applications (MERRA) atmospheric reanalysis product. 234 

Macronutrients and oxygen concentrations are initialized with WOA13 (Garcia et al. 2013), 

forcing for dissolved inorganic carbon and alkalinity is based on Global Ocean Data Analysis 236 

Project (GLODAP) data (Key et al. 2004). Values of the remaining COBALT variables were 

initialized from a global retrospective simulation (Stock et al. 2014). Iron deposition is based on 238 

dust deposition of Moxim et al., (2011) with iron content and solubility from Fan et al., (2006). 

Iron sources from the sediment are based on Elrod et al., (2004) with an additional coastal source 240 

of similar magnitude to that of the sediment. The atmospheric CO2 concentration is provided by 

the monthly mean global CO2 estimates from NOAA/ESRL  242 

(www.esrl.noaa.gov/gmd/ccgg/trends/), which were linearly interpolated in time. River and 

coastal runoff data originate from the dataset in Dai et al. (2002), which were remapped 244 

conservatively onto the regional domain and added as a freshwater source to the surface layer. 

Coastal nutrient input by rivers was driven by the product of nutrient concentration from the 246 

global NEWS climatology (Seitzinger et al. 2005) and the river and coastal runoff water flux 

from Dai et al. (2002). 248 

 

3.2 Observational datasets 250 

Several observational datasets were used to assess the ability of the model simulations to 

reproduce the temporal, spatial and statistical distribution of chlorophyll, relative phytoplankton 252 

size class abundance, mesozooplankton biomass and near-bottom dissolved oxygen levels. The 

model’s sea surface temperature (SST) fidelity with observed cross-shore SST gradients was 254 

assessed against optimal interpolated SST data from NOAA’s National Centers for 

Environmental Information (NOAA IO.v2) (Reynolds et al. 2007), 256 
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https://www.ncdc.noaa.gov/oisst. Upwelling was assessed against monthly upwelling indices 

from 1996-2006 provided by NOAA Pacific Fisheries Environmental Laboratory (PFEL), 258 

https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data_download.html.  

The cross-shore depth distributions of chlorophyll, nitrate, temperature and potential density 260 

were assessed using summer climatological means along CalCOFI line 67 (from 1997-2013, 

starting near Monterey bay at 36.8°N 121.9°W and extending southwest, perpendicular to the 262 

coast to 34.5°N 127°W; https://www3.mbari.org/bog/data/Line67_BCTD.csv). These data were 

collected by Francisco Chavez and the Biological Oceanography Group at Monterey Bay 264 

Aquarium Institute (MBARI). 

 266 

Surface chlorophyll was estimated from the SeaWiFS remote sensing data, using the 2014 

processing version. More specifically, we used monthly climatological composites (level 3) 268 

obtained from the Distributed Active Archive Center at NASA Goddard Space Flight Center 

(SeaWiFS Level-3 Mapped Chlorophyll Data Version 2014). Remote sensing products are prone 270 

to overestimating chlorophyll concentration in coastal areas due to the presence of colored 

dissolved organic matter (Schofield et al. 2004). Match-ups between remotely sensed chlorophyll 272 

and in situ chlorophyll concentration measurements in the California Current System, however, 

indicate that chlorophyll concentrations up to 47 mg m-3 are not overestimated by remote sensing 274 

products (Kahru et al. 2014). There was in fact a modest negative bias of remotely sensed 

chlorophyll at concentrations >1 mg m-3, thus underestimating medium to high in situ 276 

chlorophyll concentrations in the California Current System. 

 278 

The SeaWiFS chlorophyll values were bilinearly interpolated onto the ROMS model 

domain grid to allow co-localized comparison between observations and model results. Since 280 

90% of water-leaving radiance signal detected by remote sensing originates from the first optical 

depth, simulated chlorophyll concentrations were averaged over this depth layer. The first optical 282 

depth has been operationally defined as the depth where short wave radiation had been 

attenuated to e-1 or ~37% of its surface intensity (Gordon and McCluney 1975), and typically 284 

varied between 5 and 15 m in the model simulations based on modelled short wave light 

attenuation. 286 
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Size-partitioned fractional chlorophyll distribution was estimated from three different 288 

satellite-based algorithms using calibrated relationships between size class-specific marker 

pigments and total chlorophyll concentration according to Hirata et al. (2011) and absorption 290 

spectra (Roy et al. 2013). The relative concentrations of pico- to micro-sized organic carbon 

particles (POC) were derived from the spectral slope of particulate backscattering coefficients 292 

according to Kostadinov et al. (2009; 2016). The COBALT model’s diazotroph phytoplankton 

group was not included in the size-partitioned analyses because of its low contribution to total 294 

primary production, 1.4±0.7% in top 100 m of central CCS, and their equivocal affiliation to 

either pico- or micro-sized functional groups from remote sensing-based algorithms. 296 

 

Monthly mesozooplankton carbon biomass measurements were retrieved from NOAA’s 298 

Coastal & Oceanic Plankton Ecology, Production & Observation Database (COPEPOD) 

(http://www.st.nmfs.noaa.gov/copepod/2012/biomass-fields.html), a global plankton database 300 

project of the US National Marine Fisheries Service (Moriarty and O'Brien 2013). Briefly, 

estimates of mesozooplankton biomass include data from net tows, with mesh size 200-505 µm, 302 

over the top 200 m of the water column, going back to the 1950’s. These data were converted to 

a common biomass unit in their equivalent 333 µm mesh size values (µg C l-1), regridded to a 304 

0.25°, and averaged over the top 200 m and seasonally. 

 306 

Near-bottom oxygen measurements along the US West coast continental shelf and slope 

(2009-2015, 32.06 - 48.44°N, <1250 m depth), as described in Keller et al. (2015), were 308 

provided by NOAA’s Northwest Fisheries Science Center (https://www.nwfsc.noaa.gov/data). 

To define hypoxia, i.e. dissolved-oxygen deficit, we use the concentration threshold of 1.43 ml l-310 
1 (equivalent to 63.87 µmol l-1) commonly used in benthic ecological studies (Keller et al. 2015). 

 312 

3.3 Ecosystem model configuration 

We use the COBALT marine ecosystem model as our baseline model control, which was 314 

implemented into the ROMS model. Before describing the amendments we have made to the 

baseline model, we provide an abbreviated description of the model elements required to 316 

understand the trade-offs between functional groups pertinent to the experiments herein. 
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Complete details of the model’s governing equations and parameter values be found in Stock et 318 

al. (2014). 

 320 

COBALT’s baseline plankton food web structure (Figure 2A) is similar to other planktonic food 

web models coupled with ocean simulations at global and regional scales, e.g., PISCES (Aumont 322 

and Bopp 2006), CoSiNE (Chai et al. 2002), NEMURO (Kishi et al. 2007). COBALT is in 

essence a box model and the parameters used to represent the physiological and trophic size 324 

dependence are informed by allometric constraints. Phytoplankton groups fall into two size 

classes, a small and a large one, to capture contrasts between food webs with highly efficient 326 

nutrient recycling, dominated by small plankton, and more export-prone large phytoplankton-

dominated food webs (Tremblay et al. 1997). While the nominal division between small and 328 

large phytoplankton in the baseline model is an equivalent spherical diameter (ESD) of ~10 µm, 

as with most plankton functional type models, considerations of particle size inform the model 330 

but the formulation does not strictly follow allometric scaling rules. The primary competitive 

advantage of small phytoplankton over larger phytoplankton is more effective nutrient and light 332 

uptake at low ambient nutrient concentrations and light levels (Munk and Riley 1952; Edwards et 

al. 2012; 2015), while the primary advantage of large phytoplankton is that they escape predation 334 

by microzooplankton due to their larger prey-to-predator size ratio (Hansen et al. 1994; 1997). 

These trade-offs allows the baseline model to successfully capture observed shifts in the relative 336 

prevalence of small versus larger phytoplankton across ocean biomes (Stock et al. 2014).  

 338 

Three zooplankton size classes consume the phytoplankton groups and smaller zooplankton size 

classes. These are parameterized as microzooplankton, small to medium-bodied copepods, and 340 

large copepods and krill, in order of increasing size class. Maximum biomass-specific grazing 

rates decrease from small to large following Hansen et al. (1997), with common half-saturation 342 

constants calibrated to reproduce observed prey biomass and turnover rates across ocean biomes 

(Stock and Dunne 2010). Zooplankton feeding is modeled with a Type II Holling functional 344 

response for a single prey type with weak biomass-based prey switching between alternative 

prey types as described in Stock et al. (2008). Phytoplankton are also subject to aggregation 346 

through a simple density dependent loss term (Doney et al. 1996) calibrated based on Jackson et 
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al. (2001; 1990). The aggregation response, which leads to sinking loss is suppressed when 348 

nutrients and light are not strongly limiting (Waite et al. 1992b; a). 

 350 

Two aspects of the baseline COBALT formulation are notable with respect to the 

sequential invasion and trophic decoupling mechanisms proposed to control chlorophyll 352 

concentrations along a productivity gradient (see Introduction).  First, there are only two size 

classes that can invade (Figure 2A). When resources reach a minimal level to allow a population 354 

to be sustained relative to metabolic costs small phytoplankton have a competitive advantage. 

Large phytoplankton invade at higher resource levels and once small phytoplankton are 356 

controlled by microzooplankton. Second, the one large phytoplankton group is subject to top-

down control by medium and large zooplankton (i.e., small copepods to krill). While these 358 

groups have lower biomass-specific grazing rates than microzooplankton (Hansen et al. 1997), 

they span equivalent spherical diameters from ~0.2-20 mm.  This limits the potential for transient 360 

consumer-prey temporal decoupling and thus biomass accumulation, i.e., blooms. Thus, while 

two size classes were sufficient for capturing first-order shifts in recycling versus export-prone 362 

food webs across ocean biomes, this coarse resolution of phytoplankton communities appears to 

fall short in intensely productive near-shore regions. 364 

  

We test the hypothesis that a third phytoplankton size class with a distinct predator-prey 366 

link can address this limitation. Modifications to the baseline COBALT model for our 

experiments pertain primarily to the growth parameterization and predator-prey links in the 368 

amended model. The new, amended 3PS-COBALT model includes three zooplankton and three 

phytoplankton size classes (Figure 2B). Small phytoplankton (PS) remain those consumed by 370 

microzooplankton. A new ‘medium’ size class (PM) designates the nanophytoplankton group that 

is readily consumed by small copepods, and a new ‘3PS-large’ size class (P3L) represents the 372 

microphytoplankton group, parameterized as larger, chain-forming phytoplankton such as 

diatoms, grazed only by large copepods and krill (Slaughter et al. 2006; Stukel and Ohman 2013; 374 

Taylor et al. 2015). The model structure and trophic relationships (Figure 2B) are similar in the 

larger groups to the early allometric models of Moloney and Field (1991), and allow for both an 376 

additional sequential invasion (i.e., another distinct phytoplankton-zooplankton coupling) and the 

possibility of greater trophic decoupling (i.e., large phytoplankton are controlled only by large 378 
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zooplankton). The structure in Figure 2B remains, as in all plankton models, greatly simplified 

relative to the full scope of possible plankton interactions. However, it reflects an improved, yet 380 

still computationally efficient, depiction of primary plankton food web links in Figure 2A with 

the specific objective of improving representation of the observed chlorophyll range (Figure 1). 382 

We discuss potential impacts of remaining structural simplifications, and the relationships 

between our results and those derived from highly resolved size-based or emergent diversity 384 

plankton models in the Discussion. 

 386 

In the amended 3PS-COBALT model, parameter values were chosen to represent a more refined 

version of the trade-offs present in the baseline COBALT model, having two phytoplankton size 388 

classes. Parameter values for the new phytoplankton groups are presented in Table 1. The 

remaining parameter values for the medium and 3PS-large groups are the same as those for the 390 

large phytoplankton group in Stock et al. (2014). Half-saturation constants for nutrient uptake 

(K) increase from small to large phytoplankton size classes (Edwards et al. 2012), following 392 

allometric principles suggesting that the larger surface area to volume ratio of small cells is 

conducive to more effective scavenging for nutrients in low nutrient environments (Munk and 394 

Riley 1952; Aksnes and Egge 1991). Iron limitation is modeled with a cell quota model, where 

the scaling of the half-saturation constant Fe:N ratio to growth is based on values reported in 396 

Sunda et al. (1995; 1997). Unlike K, the maximum carbon-specific photosynthesis rate (PCmax, d
-

1) is relatively constant for the three phytoplankton size classes. This choice is motivated by two 398 

observations: a) phytoplankton maximum growth rates peaks among cells ~6 µm in diameter and 

declines for larger and smaller cells (Marañón et al. 2013), and b) diatoms as a group have higher 400 

maximum growth rates relative to other, similarly sized groups (Banse 1982; Tang 1995; Sarthou 

et al. 2005; Edwards et al. 2012). These two factors suggest that rather small differences in PCmax 402 

for our model phytoplankton size classe can be justified, despite the known allometric scaling for 

maximum growth rate. The unimodal size dependence of maximum growth rates is thought to 404 

result from constraints on the rate of nutrient uptake at the smallest cell sizes (Raven 1998; 

Marañón et al. 2013; Ward et al. 2017) and from constraints on the distribution of resources 406 

within cells for larger cell sizes (West 1997; Brown et al. 2004). Smaller phytoplankton have a 

steeper initial slope of the chlorophyll-specific photosynthesis-light relationship (α) due to a 408 

smaller chlorophyll packaging effect (Morel and Bricaud 1981), but a lower maximum 
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chlorophyll to carbon ratio (θmax) (Geider 1993). Large phytoplankton are subject to stronger 410 

losses via aggregation based on model analyses by Jackson et al. (2001; 1990). 

 412 

We chose parameter values meeting these empirical constraints (Table 1), but also tested 

a range of values for the model within a ~140 x 35 km near-shore to offshore subset of the CCS 414 

model domain (see Supp. Figure 6 and Supp. Text). These experiments emphasized the 

importance of parameterizing the 3PS-large phytoplankton group in a manner consistent with 416 

chain-forming diatoms with individual cell sizes between ~20-50 µm ESD in order to capture the 

prominence of this group in upwelling systems (Venrick 2009; Taylor et al. 2015). This choice 418 

allows for only modest nutrient uptake and maximum growth rate penalties relative to the 

medium phytoplankton (Table 1), while implicit spine-bearing and chain formation is presumed 420 

to create prey sizes large enough to deter smaller grazers (Smetacek 1999; Slaughter et al. 2006). 

 422 

 

 424 

Figure 2. Depiction of the trophic relationships between the different phytoplankton (P) and 

zooplankton (Z) size classes in the (A) baseline COBALT and (B) amended 3PS-COBALT 426 

model configuration, which resolves three phytoplankton size classes. 

 428 
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parameter PS PM PL units ref. 

PC
max @0°C 1.125 1.250 1.125 d-1 1, 2, 3, 4 

KNO3 0.50 1.50 2.25 mmol m-3 5, 6 

KNH4 0.10 0.30 0.45 mmol m-3 7, 8 

KPO4 1.0×10-2 3.0×10-2 4.5×10-2 mmol m-3 9 

KSiOH4 na 1.00 1.50 mmol m-3 10, 11 

KFed 1.0×10-4 3.0×10-4 4.5×10-4 mmol m-3 11 

KFetoN 1.99×10-5 2.39×10-5 3.58×10-5 mol Fe mol-1 N 12, 13 

α 2.0×10-5 1.3×10-5 1.2×10-5 g C g-1 chl m2 µmol-1 γ 14, 15 

θmax  0.03 0.05 0.07 g chl g-1 C 14, 15 

aggregation 1×10+5 3×10+5 6×10+5 d-1 mol-1 N kg-1 16, 17 

 ZS ZM ZL   

ingestmax @0°C 1.42 0.57 0.23 d-1 18, 19 

Kingest 1.25×10-6 1.25×10-6 1.25×10-6 mol N kg-1 18, 19 

 430 

Table 1. Parameter values of primary physiological trade-offs for each phytoplankton and 

zooplankton size class used in the amended 3PS-COBALT model. Note that PL parametrization 432 

choices were made to capture the characteristics of chain-forming coastal diatoms common in 

upwelling and spring bloom conditions. The K parameters are half-saturation constants for 434 

nutrient limited growth (see Stock et al. (2014) for details). Other abbreviations are as given in 

the main text, chlorophyll (chl). Literature references (ref.) upon which the parameter values are 436 

based: (1) Bissinger et al. (2008), (2) Banse (Banse 1982), (3) Tang (1995), (4) Marañon et al. 

(2013), (5) Eppley et al. (1969), (6) Romeo and Fisher (1982), (7) Eppley and Renger (1974), (8) 438 

Frost and Franzen (1992), (9) Lomas et al. (2014), (10) Martin-Jézéquel et al. (2000), (11) 

Sarthou et al. (2005), (12) Sunda and Huntsman (1997), (13) Sunda and Huntsman (1995), (14) 440 

Geider (1993), (15) Geider et al. (1997), (16) Jackson (1990), (17) Jackson (2001), (18) Hansen 

et al. (1997), (19) Stock and Dunne (2010). Model parameter values not listed here are as in 442 

Stock et al. (2014). 

 444 
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3.4 Skill assessment of model simulations 

Several skill metrics are used to quantify model-observational data fits: Pearson’s 446 

correlation coefficient (r) is used as a measure of relative spatial agreement; the mean difference 

between model and observations (bias) and the root mean square error (RMSE) are used to 448 

quantify the scale of the difference between the model and data for any given point; and for 

chlorophyll concentration, the median and the 2.5 and 97.5 percentiles is used as an additional 450 

measure of model-data comparison focusing on the range and distribution of the data (see results 

in Supp. Tables 1 and 2). Chlorophyll concentration were log10-transformed prior to skill 452 

assessment and the arithmetic mean of untransformed data is provided ± one standard deviation. 

In order to simplify comparison between observations and simulations, the figure panels are 454 

arranged in the following sequence: baseline COBALT model results, observational data, 

amended 3PS-COBALT model results. 456 

4 Results 

4.1 Seasonal occurrence of coastal upwelling and phytoplankton blooms 458 

Coastal upwelling intensity typically peaks in early summer along the central CCS (Figure 

3, shaded areas) when cold deeper water surfaces near the coast. Both models are able to 460 

reproduce this seasonal upwelling cycle, as approximated by the decline in coastal SST relative 

the offshore SST with increasing upwelling intensity (Figure 3, dashed lines). The larger 462 

amplitude in simulated SST gradient is due to the warm offshore temperature bias in the model 

(Supp. Figures 1 and 2). Coastal upwelling triggers phytoplankton bloom formation resulting in 464 

chlorophyll accumulation (Figure 3, blue line). Both models succeed in simulating a chlorophyll 

accumulation as a response to increased upwelling, yet only the amended 3PS-COBALT model 466 

matches the in situ observations in both amplitude and timing (Figure 3, red line; in situ 

chlorophyll concentration vs. baseline COBALT : r=0.31, p=0.27, mean bias=-2.17 mean 468 

RMSE=2.59 ; in situ chlorophyll concentration vs. 3PS-COBALT:  r=0.61, p<0.05, mean bias=-

0.76 mean RMSE=1.42). 470 
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Figure 3. Monthly climatologies of upwelling index, chlorophyll concentration in the coastal 472 

area and sea surface temperature difference between coastal and offshore areas in the central 

CCS. Maximum upwelling index from NOAA PFEL at 36°N (color shading) corresponds to 474 

peak in situ chlorophyll concentration from CalCOFI line 67 (blue line) (0-10 m, 121.84-

122.25°W 36.72 °N, 1997-2013) and a larger difference in the sea surface temperature (NOAA 476 

OI.v2) between coastal and offshore area, characteristic of upwelling season progression (dashed 

blue line). The seasonal coastal upwelling cycle is simulated by both model configurations 478 

(green and red lines), yet only the amended 3PS-COBALT model reproduces the timing and 

amplitude of the observed seasonal change in chlorophyll concentration (red line). In situ 480 

chlorophyll data collected by Francisco Chavez and the Biological Oceanography Group at 

MBARI. 482 
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4.2 Chlorophyll concentration range and distribution along a productivity gradient 484 

Observed SeaWiFS summer chlorophyll concentration in the CCS spanned more than three 

orders of magnitude from ~0.05 mg m-3 at the offshore boundary of the ROMS model domain to 486 

>10 mg m-3 nearshore (Figure 4A), with a sharp chlorophyll gradient dropping to <1 mg m-3 

approximately 100 km from shore (Figure 4A inset). The 2 phytoplankton size class baseline 488 

simulation (Figure 4B) captures the very low offshore chlorophyll concentration, but peak 

chlorophyll in coastal regions reach only ~2 mg m-3, despite improved spatial resolution 490 

achieved by the ROMS model relative to global simulations (for detailed statistics on chlorophyll 

concentration comparisons see Supp. Table 1). This is consistent with the magnitude of peak 492 

chlorophyll values found in high-resolution (~10 km) global simulations with baseline COBALT 

(Stock et al. 2017). The limited simulation of high coastal chlorophyll in the baseline model is 494 

further exemplified by the very narrow offshore extent of the 1 mg chlorophyll m-3 contour, 

which only extends ~100 km offshore in the small region between the Gulf of the Farallones and 496 

Monterey Bay in central CCS (Figure 4B inset).  

 498 

The addition of the third phytoplankton size class, parameterized as a chain-forming 

diatom, allows the amended model to capture the very high chlorophyll concentration over the 500 

core of the coastal upwelling, where chlorophyll concentrations >1 mg m-3 extend up the 100 km 

offshore (Figure 4C inset) (Supp. Table 1). Concentrations of chlorophyll for both the remote 502 

sensing observations and the amended model routinely exceed 5 mg m-3 in the central CCS 

region, peaking at 9 mg chlorophyll m-3 in the simulated summer climatology. This is 504 

accomplished while maintaining chlorophyll concentration three orders of magnitude below 

these peak values at the offshore boundary of the central CCS (Figure 4C), in accordance with 506 

observations (Supp. Table 1). At the northern and southern ends of the domain chlorophyll 

concentration remains underestimated compared to remote sensing observations (Figure 4D). 508 

This is likely caused by insufficient nutrient input from circulation coming in from the north 

(Supp. Figure 3) and phytoplankton depleting coastal surface nutrients earlier than observed in 510 

the south (data not shown). 

 512 
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Figure 4. Summer climatology of chlorophyll concentration from (A) SeaWiFS observations, 514 

(B) 2 phytoplankton size class baseline COBALT model, and (C) 3 phytoplankton size class 

amended 3PS-COBALT model. The difference in chlorophyll concentration between the 3PS-516 

COBALT model and SeaWiFS observations is shown in panel D. The central CCS region, 

between Point Conception and Cape Mendocino, is outlined in black from the shore to 100 km 518 

offshore (coastal region) and to 600 km offshore (coastal to offshore region). CalCOFI line 67 is 
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represented by the black cross-shore transect line. The inset details the chlorophyll in the coastal 520 

zone and the offshore extent of the 1 mg chlorophyll m-3 contour (gray contour line). 

 522 

 High chlorophyll concentrations (>5 mg m-3) near the coast of Monterey Bay (36.8°N) 

are typical during summer upwelling season (Figures 4A and 5B). Further offshore, surface 524 

chlorophyll concentration decreases sharply and the chlorophyll maximum recedes deeper into 

the water column to 90-100 m, nearly following the 25.0 kg m-3 isopycnal (Figure 5B). While the 526 

baseline COBALT model reproduces the cross-shore decline in surface chlorophyll 

concentration, it lacks the ability to reproduce high coastal chlorophyll concentrations (<2 mg m-528 
3) and a distinct deep chlorophyll maximum further offshore (Figure 5A). The amended 3PS 

model on the other hand, reproduces both high coastal chlorophyll concentrations (>3 mg m-3) 530 

and a distinct deep chlorophyll maximum further offshore, in agreement with observations, 

despite a more abrupt decline in surface chlorophyll concentration in the coastal to offshore 532 

transition zone (~122.5-123.5 °W). 

 534 

 

Figure 5. Cross-shore chlorophyll depth distribution along CalCOFI line 67 (black line in Figure 536 

4) for (A) baseline COBALT model, (B) in situ chlorophyll measurements from CalCOFI and 

(C) amended 3PS-COBALT model. Isopycnals are overlaid in white (potential density, in kg m-538 
3). In situ chlorophyll and density data collected by Francisco Chavez and the Biological 

Oceanography Group at MBARI. 540 
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 542 

Figure 6. Comparison of chlorophyll concentration range and distribution from (top) 2 

phytoplankton size class, baseline COBALT simulation, (middle) SeaWiFS remote sensing 544 

observations and (bottom) 3 phytoplankton size class, amended 3PS-COBALT simulation. The 

violin plots show median (white star), interquartile range (black bar) and the 2.5 and 97.5 546 

percentile (black dots) overlaid onto the kernel density estimation of the chlorophyll 

concentration values of the months June, July, August in the central CCS region. 548 

 

Comparison of the chlorophyll probability distributions in the central CCS (Figure 6) 550 

confirms that surface chlorophyll in the amended model formulation spans a similar range as the 

observations. The baseline model, in contrast, underestimates the high end of observed 552 

chlorophyll concentrations by a factor of ~2.5  at the 97.5 percentile level (Supp. Table 1). These 

results support the value of a third phytoplankton size class, parameterized as a chain-forming 554 

diatom, for capturing both high and low chlorophyll regions. However, the probability 

distributions also reveal either a surplus or a shortage of intermediate chlorophyll concentrations 556 

in the baseline or amended model, respectively, compared to remote sensing observations. This 

is also apparent in Figures 4 and 5 as either a too gradual cross-shore decline in chlorophyll 558 
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concentration for the baseline model or a more abrupt spatial decline from peak chlorophyll 

nearshore to reduced values offshore for the amended model compared to observations. The poor 560 

spatial representation of the chlorophyll concentration gradient in this coastal-to-offshore 

transition zone appears to be a common problem in CCS regional models (Goebel et al. 2010; 562 

Chenillat et al. 2013; Guo et al. 2014; Gruber et al. 2006). 

 564 

Investigation of the origin of this misfit suggests that the more abrupt cross-shore transition 

may result from physical model biases. Most notably, despite generally good agreement in terms 566 

of spatial distribution of the SST (r =~1, p<0.001, CCS) (Supp. Figure 1), the ROMS model 

simulations exhibit a sharper cross-shore increase in water column stratification and warmer, 568 

more stratified overall off-shore conditions than observed (Supp. Figures 2 and 4). This is 

indicative of a more rapid cross-shore transition from upwelling to oligotrophic, highly stratified 570 

conditions in the model. Accounting for this bias by plotting surface chlorophyll concentration as 

a function of surface temperature (Supp. Figure 5) yields a decline of chlorophyll with increasing 572 

temperature that is consistent between the amended model simulation and observations. In the 

baseline model, however, chlorophyll levels of ~0.5 mg m-3 extend further offshore (Figure 4B 574 

and Figure 5B) because coastal phytoplankton production does not sufficiently consume surface 

nutrients (Supp. Figure 3), thus allowing the residual surface nutrients to be advected offshore 576 

despite the same overestimated thermal stratification. Despite outstanding issues in the resolution 

of the transition zone, significant improvements in the simulation of high coastal chlorophyll 578 

concentration (Figures 4, 5 and 6; Supp. Table 1) support further analysis of the impact of 

capturing these high chlorophyll regions on their biogeochemical ramifications, such as coastal 580 

hypoxia.  

 582 

4.3 The impact of improved chlorophyll representation on simulated coastal bottom 

hypoxia 584 

Strong gradients in near-bottom dissolved oxygen concentrations (DO), ranging from oxic 

to severely hypoxic, are observed in CCS shelf areas with bottom depths shallower than 150 m 586 

(DO in ml l-1: 1.90 ±0.71, min=0.44, max=5.96, n=688) (Figures 7B and 8B). Only the amended 

model successfully reproduces the broad range of near-bottom DO on these shallow shelf areas 588 

(Figures 7C and 8C) (climatological summer mean of co-located DO in ml l-1: 1.41±0.50, min=0, 



 25

max=2.65, n=202). The amended model also replicates the observed trend of decreasing near-590 

bottom DO with increasing bottom depth along the CCS shelf areas (from 56 to ~600 m depth), 

and the bottom depth (~360 m) where shelf areas are considered chronically hypoxic (i.e., DO 592 

<1.43 ml l-1) during the months June, July and August (compare Figures 7B with 7C). Except for 

the trend of decreasing near-bottom DO with increasing bottom depth, the baseline model could 594 

not reproduce levels of hypoxia in shallow shelf areas, nor the depth threshold below which most 

CCS bottom waters become chronically hypoxic (climatological summer mean of co-located DO 596 

in ml l-1: 2.41±0.31, min=1.94, max=3.44, n=202, ~500 m) and had a higher overall bias 

compared to the amended model (compare Figures 7A and 8A with 7C and 8C). An improved 598 

representation of high coastal chlorophyll and phytoplankton size structure thus improved 

simulated vertical patterns and levels of bottom hypoxia. 600 

 

 602 

Figure 7. Spatial distribution of near-bottom dissolved oxygen (DO) concentration for bottom 

depths shallower than 1250 m. (A) summer climatology simulated by the baseline COBALT 604 

model, (B) measured by NOAA Northwest Fisheries Science Center during trawling surveys 

from 2009 to 2015 during the months June, July and August, and (C) summer climatology 606 

simulated by the amended 3PS-COBALT model. Bathymetric contour lines from 1250 to 3000 
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m depth with 250 m interval are shown to indicate the steepness of the continental slope. Note 608 

that simulations and observations of DO are well correlated (r) and that both simulations have a 

similar accuracy as estimated by RMSE. The amended 3PS-COBALT model better simulates 610 

hypoxia levels on the shelf as indicated by the lower mean bias. 

 612 

 

Figure 8. Near-bottom dissolved oxygen (DO) concentration on the California Current System 614 

continental shelf (32.06 - 48.44°N). (A) summer climatological means from the baseline 

COBALT model simulation, (B) NOAA Northwest Fisheries Science Center measurements 616 

during the months June, July, and August between 2009 and 2015 (n=1765), (C) summer 

climatological means from the amended 3PS-COBALT model simulation. Vertical line at DO = 618 

1.43 ml l-1 denotes hypoxia threshold. 

 620 

Oxygen consumption in near-bottom waters is fueled by microbial respiration of organic 

matter exported from the photic zone. The bottom export flux of organic particulate matter in the 622 

coastal region of the central CCS was 0.54 mmol C m-2 d-1 in the amended model, i.e., ~2.6 times 

higher than in the baseline model (Figure 9 ). The particle export ratio, i.e., the ratio of organic 624 

carbon to primary production flux at 100 m depth, from which the bottom flux derives, varied 

around ~0.31±0.11 in the coastal region of the central CCS during summer. This is in the range 626 

of particle export ratios reported for the coastal region of the CCS, which can be as high as 0.4 to 

0.5 (Wilkerson et al. 2000; Dunne et al. 2005, and references therein). The more intense organic 628 
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particulate export flux to the bottom of coastal regions in the amended model is associated with 

high levels of mesozooplankton biomass (the sum of medium and large zooplankton in the 630 

model), consistent with observations (Supp. Figure 6). In the coastal zone, where observed 

mesozooplankton biomass is highest, a three-fold increase of maximum levels of chlorophyll in 632 

the amended model sustained an ~40% increase of mesozooplankton biomass (75th percentile) 

compared to the baseline model. The observed cross-shore gradient of mesozooplankton 634 

biomass, ranges from a median of 2951 mg C m-2 in the coastal zone (n=146) to a median of 

1527 mg C m-2 offshore (n=256) for the months June, July and August in central CCS. The 636 

amended model was able to reproduce this biomass gradient reasonably well (medians: 

coastal=2156 mg C m-2, offshore=1211 mg C m-2). This trophic connection provided an energy 638 

pathway to the highest trophic level, i.e. fish, as well as a production export pathway in the form 

of sinking fecal pellets. 640 

 

 642 

Figure 9. Summer climatological mean of benthic organic carbon flux in (A) the baseline 

COBALT model simulation and (B) the amended 3PS-COBALT model simulation. (C) The 644 

difference in benthic organic carbon flux between the amended and baseline model simulations. 

 646 

5 Discussion 

 648 

 Most biogeochemical models are unable to capture the ocean’s full dynamic range  



 28

of chlorophyll concentrations, especially at the high end of observations (Figure 1) (Hashioka et 650 

al. 2013). Improved spatial resolution of high resource supply areas only partly alleviates this 

issue (Gruber et al. 2006; Goebel et al. 2010; Gruber et al. 2011; Chenillat et al. 2013; Guo et al. 652 

2014; Chenillat et al. 2015; Renault et al. 2016; Stock et al. 2017). Some regional models, such 

as the Gruber et al. 2006 – based, 1/24° resolution model used by Renault et al. (2016), are able 654 

to simulate coastal high chlorophyll levels using a single phytoplankton-grazer linkage thanks to 

parameter values tuned to simulate the elevated primary production during upwelling. Yet, more 656 

than half of simulated chlorophyll levels were lower than observations in the central CCS (Figure 

1B). Other regional models, such as the implementation of the CoSiNE model by Guo et al. 658 

2014, are not able to simulate coastal high chlorophyll levels (>4 mg m-3) observed in the central 

CCS despite having multiple phytoplankton-grazer linkages (Figure 1B). Instead, we 660 

hypothesized that the poor representation of the dynamic range of chlorophyll was due to 

improperly resolved phytoplankton-grazer linkages and in particular to lacking model 662 

representation of large diatoms that often dominate high chlorophyll phytoplankton blooms 

(Venrick 2002; Irigoien et al. 2004; Taylor et al. 2012). We tested this hypothesis using an eddy-664 

resolving (~7 km, 1/15°) ROMS model and adding a phytoplankton group with physiological 

characteristics and trophic links characteristic of large, chain-forming coastal diatoms. This new 666 

phytoplankton type has relatively high maximum growth rates for its individual cell size and 

grazer protection from smaller zooplankton groups (Smetacek 1999; Sarthou et al. 2005; 668 

Slaughter et al. 2006; Edwards et al. 2012). 

 670 

 The addition of a single key phytoplankton group (Figure 2B), rather than many, as has 

been implemented in more speciose ecological models (e.g., Follows et al. 2007; Goebel et al. 672 

2010), is a compromise between ecological complexity and computational efficiency required of 

plankton community models in global Earth System Models intended for multidecadal 674 

simulations. These amendments to the community structure in the model resulted in improved 

simulation of high chlorophyll blooms in coastal upwelling areas while maintaining the very low 676 

chlorophyll concentrations in offshore oligotrophic regions. A critical discussion of our choices 

for parameterizing the new chain-forming diatom phytoplankton type is warranted here. In the 678 

amended model, we chose to limit strict adherence to mean allometric trends to parameterize the 

large phytoplankton group specifically as a chain-forming diatom. This limited the allometric 680 
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penalties on nutrient uptake affinities and maximum growth rates relative to moderately-sized 

phytoplankton while still reducing top-down control. The combination of high maximum growth 682 

rates and moderate affinities for nutrient uptake is especially suited to thriving in high resource 

supply environments, such as coastal upwelling systems, and is exemplified by the success of 684 

diatom species with such characteristics in coastal environments (Romeo and Fisher 1982; 

Estrada and Blasco 1985; Venrick 2002; Lassiter et al. 2006; Edwards et al. 2012; 2015).  686 

 

Several studies have attributed the success of bloom-forming diatoms to their ability to acclimate 688 

to the prevailing environmental conditions through physiological plasticity and/or nutrient 

storage capability (Collos et al. 1992; Stolte and Riegman 1995; Lomas and Glibert 2000; Collos 690 

et al. 2005). These mechanisms were, however, not considered herein. A recent modelling study 

of a simulated upwelling event (Van Oostende et al. 2015) concluded that physiological 692 

acclimation was not a necessary condition to represent high chlorophyll bloom formation by two 

dominant diatom species Thalassiosira anguste-lineata and Chaetoceros debilis. In this 694 

particular study, T. anguste-lineata was not detected by microscopy during the first 4 days of the 

experiment, after which it grew exponentially, while C. debilis was growing exponentially by the 696 

second day (Fawcett and Ward 2011). This is consistent with the findings of Collos (1982; 

1986), and suggests a decoupling of nitrate uptake and growth by the generally larger T. anguste-698 

lineata cells compared to the reduced capacity for nitrate storage by C. debilis. Both growth 

strategies, however, were successful in this particular context and could be approximated by a 700 

single high maximal potential growth rate. Furthermore, in the current study, the ability for chain 

formation, or other implicit grazing deterring mechanism, is assumed to only bear a moderate 702 

cost in terms of light and nutrient acquisition capabilities governed by allometric principles of 

individual cells (Pahlow et al. 1997) while having a greater propensity for density-dependent loss 704 

through aggregation (Jackson 2001; 1990). 

 706 

Another simplification of current biogeochemical models that was not considered herein 

but could also contribute to chlorophyll misfits is the simplified representation of zooplankton 708 

lifecycles and behavior.  The lag between predator and prey in current ‘NPZ’ models is linked to 

slower intrinsic rates of grazing and subsequent growth in larger zooplankton (Hansen et al. 710 

1997).  This is unlikely, however, to fully capture emergent patterns zooplankton population 
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growth resulting from complex copepod, euphausiid, gelatinous zooplankton, and jellyfish 712 

lifecycles (Carlotti et al. 2000).  Life cycle effects may be further modified by vertical migration, 

which may effectively maintain zooplankton in upwelling regions and partly counter lags 714 

(Batchelder et al. 2002). 

 716 

Sensitivity experiments showed that adding a third phytoplankton group that followed 

mean allometric trends (e.g., Edwards et al. 2012) could not adequately capture high chlorophyll 718 

regions or the dominance of large phytoplankton in these regions (Supp. Figure 7 and Supp. 

Text). This result highlights the limitations of mean allometric trends and helps explain why 720 

even simulations with highly resolved representations of the size structure of the phytoplankton 

community (e.g., Baird and Suthers 2007; Ward et al. 2012) still struggle to capture the full 722 

dynamic range of chlorophyll concentration despite the inclusion of more than 50 plankton size 

classes. Simulations using a high spatial resolution (1/10°), emergent community ecosystem 724 

model including 2 grazers and 78 phytoplankton species applied previously to the CCS yielded 

coastal chlorophyll concentrations lower than SeaWiFS observations, after emerging with 8 726 

dominant phytoplankton species (Goebel et al. 2010). These 8 emergent phytoplankton groups, 

however, may span a narrower optimal thermal window compared to the Eppley (1972) 728 

formulation of exponential increase of growth rate with temperature in COBALT, where 

COBALT effectively represents that continuum of phytoplankton types. Dominant 730 

phytoplankton groups often deviate significantly from mean allometric trends and these 

deviations play important roles in defining ecological niches (Tang 1995; Smetacek 1999; 732 

Sarthou et al. 2005; Edwards et al. 2012). Our interest in improved representation of chlorophyll 

maxima in upwelling and spring bloom systems motivated our emphasis on coastal, chain-734 

forming diatoms. Expanding applications of global earth system models will likely require 

consideration of similarly unique ecologies. Dinoflagellates, for example, are often implicated in 736 

harmful algal blooms in eutrophied areas (Anderson et al. 2012). While similar in size to coastal 

diatoms, they possess a highly distinct ecology derived from widespread mixotrophy, active 738 

locomotion, and toxin production (Margalef 1978; Smayda 1997; Glibert 2016; Ward and 

Follows 2016). In other particular instances, such as coastal systems with higher coastal turbidity 740 

and imbalanced N:P supply ratios, other traits such as low light tolerance (as proxied by 
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chlorophyll:C ratio) or low P tolerance may be relevant in modeling coastal blooms (e.g., Baird 742 

et al. 2013; Alvarez-Fernandez and Riegman 2014; Burson et al. 2016; Kerimoglu et al. 2017). 

 744 

In addition to capturing the observed dynamic range of chlorophyll concentration, the size 

structure of simulated phytoplankton communities needs to be consistent with the hypothesized 746 

ecological mechanisms controlling the phytoplankton community size structure along 

productivity and physical disturbance gradients. Upon a more detailed examination of the results, 748 

the largest two phytoplankton classes in the 3PS-COBALT model dominated the phytoplankton 

biomass at high chlorophyll concentration, in accordance with observations (Supp. Figure 8) 750 

(Wilkerson et al. 2000; Lassiter et al. 2006; Goericke 2011; Taylor et al. 2012). Similar to those 

in situ microscopy and algal pigment-based observations, remote sensing estimates of 752 

phytoplankton size class abundance typically show a shift in community structure from a 

dominance of picophytoplankton at low biomass in offshore CCS regions to nano- and 754 

microphytoplankton at higher biomass in the CCS coastal zones (Supp. Figures 10, 11 and 12). 

There is a plethora of remote sensing algorithms that have been developed over the recent years 756 

to estimate the phytoplankton community size structure and functional types (IOCCG 2014; 

Mouw et al. 2017). The comparison of the amended model results with three of those remote 758 

sensing approaches covering the spectrum of community structure estimates (Kostadinov et al. 

2017) is generally consistent with expectations from both explanatory hypotheses: the sequential 760 

invasion of phytoplankton size classes along a resource supply gradient, and with expectations 

from the transient trophic decoupling mechanisms. Discrepancies remain, however, in the degree 762 

to which large phytoplankton dominate both between simulated and remote sensing-derived 

estimates, and among remote sensing estimates of phytoplankton size class abundance (Supp. 764 

Table 2). The Hirata et al. (2011) chlorophyll abundance-based algorithm suggests large 

phytoplankton dominance in high chlorophyll regions (~80-90%) that exceeds both our model, 766 

the particulate backscattering-based estimates (Kostadinov and Siegel 2009; Kostadinov 2016) 

and the absorption-based estimates (Roy et al. 2013), all of which distribute phytoplankton 768 

biomass more evenly between nano- and micro-sized classes in coastal regions (Supp. Figures 

10, 11 and 12). 770 
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The discrepancies between remote sensing estimates likely stem from differences in the 772 

operational definition of the different size classes, the imperfect reflection of the true size of 

phytoplankton classes based on pigment grouping (e.g., the cyanobacteria Trichodesmium spp.) 774 

(Vidussi et al. 2001), and the limited calibration of the algorithm of Hirata et al. (2011) at 

chlorophyll concentrations >5 mg m-3. Furthermore, the particle backscattering-based algorithm 776 

of Kostadinov et al. (2009; 2016) not only includes phytoplankton but other similarly sized 

particles, such as heterotrophic bacteria, microzooplankton, and detritus. This could be why the 778 

algorithm of Kostadinov et al. (2016) appears to overestimate the biomass fraction of 

picophytoplankton compared to that of Hirata et al. (2011), which is in closer agreement with the 780 

amended model. Moreover, Kostadinov et al. (2016) acknowledged that their single conversion 

factor for determining the fraction of living phytoplankton carbon from total POC may not 782 

reflect the variability of trophic status of plankton communities across ocean regions. 

 784 

 The realization of high chlorophyll concentrations in this study may in part be due to the 

effective number of ‘sequential invasions’ a model can accommodate, which is likely a function 786 

of the range of size classes grazed by a zooplankton group relative to the range of available 

phytoplankton groups. A higher diversity of phytoplankton groups favors invasion of different 788 

niches (Irwin et al. 2006) along environmental gradients, but phytoplankton blooms 

characterized by the accumulation of biomass may only occur through temporal or spatial 790 

decoupling of trophic control (Irigoien et al. 2005). A time series centered around an upwelling 

event ~75 km off the central California coast demonstrates the succession of phytoplankton 792 

groups during the bloom response (Supp. Figure 9). In this time series example, the dominant 

phytoplankton size class contributing to primary production switches from mostly small 794 

phytoplankton to the two largest size classes (Supp. Figure 9B). The losses of the dominant 

phytoplankton groups, due to grazing and aggregation, follow their growth patterns during this 796 

transient nutrient supply event (Supp. Figures 9C and 9D). These results are consistent with the 

‘sequential invasion’ and transient ‘grazer decoupling’ mechanisms implied by the amended 798 

model structure, even though the relative importance of each of these non-mutually exclusive 

mechanisms could not be partitioned using the experimental set-up in this study. 800 

 



 33

A key biogeochemical consequence of improved representation of high coastal 802 

chlorophyll concentration is the intensification of carbon export in coastal regions (Figure 9).  

Modeled sinking organic matter particles are composed of both mesozooplankton-derived fecal 804 

pellets and phytoplankton-derived detritus formed by aggregation. Sinking of these particles 

transfers organic matter to depth, strengthens the biological pump and results in higher pe-ratios 806 

near the coast. This is consistent with global syntheses and theory (Dunne et al. 2005, and 

references therein; Mouw et al. 2016), though we note that evidence for increased sinking 808 

particle flux along increasing productivity gradients in the CCS has been surprisingly equivocal 

(Stukel and Ohman 2013). Increased particle sinking flux over intensely productive nearshore 810 

regions, however, appears consistent with widespread hypoxic conditions (Figures 7 and 8).   

 812 

Capturing the higher export flux after including the chain-forming diatom allowed improved 

simulation of near-bottom oxygen levels on the continental shelf and shelf slope, especially the 814 

occurrence of hypoxic events on the shelf, through intensification of the model’s coastal nutrient 

trapping (Najjar et al. 1992; Aumont et al. 1999). This productivity and export flux-driven 816 

decline of oxygen on the shelf has been found to be the result of a combination of local 

respiration of organic matter and circulation processes (Hales et al. 2006; Siedlecki et al. 2015). 818 

Besides a direct link to the respiration of sinking organic matter, the oxygen and nutrient content 

of the upwelled waters fueling the productive coastal blooms in the first place can have a strong 820 

influence on the occurrence of seasonal shelf hypoxia (Grantham et al. 2004). Higher nutrient 

input to the surface shelf waters can result in higher primary production and stronger respiration 822 

of the exported organic material, depleting dissolved oxygen near the shelf bottom (Wheeler and 

Huyer 2003). This effect can be compounded when the nutrient rich deeper water masses being 824 

upwelled have an already lowered oxygen content due to their biogeochemical history and origin 

(Freeland et al. 2003). These hypoxic episodes seem to have become more frequent since the 826 

year 2000 in the northern CCS (Chan et al. 2008) and the hypoxic boundary has been shoaling in 

recent decades in the southern CCS (Bograd et al. 2008), affecting the survival and the habitat 828 

range of benthic as well as mesopelagic fishes and invertebrates (Stewart et al. 2012; Keller et al. 

2015). 830 
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Improvements in dynamical climate prediction models have allowed for predictions of 832 

climate variables (e.g., temperature, dissolved oxygen and carbon dioxide concentration, 

productivity) at scales that are relevant to the understanding and management of living marine 834 

resources (Tommasi et al. 2017). Forecasts of these climate variables from weeks to years have 

been useful to the anticipatory management of fisheries resources or aquaculture industries and 836 

their associated supply chains (Stock et al. 2011; Mills et al. 2013; Stock et al. 2015; Siedlecki et 

al. 2016). Along the California Current, uncertainty about the future frequency of invasion of the 838 

northern CCS by subarctic water masses or advection of low dissolved oxygen water, timing of 

upwelling in the northern CCS and stratification in the southern CCS (Freeland et al. 2003; 840 

Mackas et al. 2006; Rykaczewski and Dunne 2010; Rykaczewski et al. 2015) hampers prediction 

of coastal productivity, community composition and dissolved oxygen levels. This model 842 

provides a framework to test hypotheses about the ecological consequences of such system-level 

perturbations (Dussin et al. in prep.), with the goal of supporting climate prediction and resource 844 

management decisions.  

 846 

6 Conclusions 

 848 

Modeling of chlorophyll concentration and subsurface oxygen from productive coastal 

upwelling to oligotrophic systems can be greatly improved by including a better representation 850 

of ecological succession mechanisms. The full dynamic range of observed chlorophyll 

concentration, representative of the global ocean, was successfully simulated, specifically by 852 

elevating simulated coastal chlorophyll concentration. This was accomplished by adding a 

functional phytoplankton group representing large, chain-forming coastal diatoms and allowing 854 

for transient trophic decoupling between the added phytoplankton group and the grazer 

functional group representing large copepods and krill. High relative abundance of large 856 

phytoplankton at high productivity corroborates sequential invasion and transient trophic 

decoupling as the ecological mechanisms at work. An improved simulation of the coastal bloom 858 

magnitude and community composition allowed the model to reproduce observed spatial patterns 

of near-bottom dissolved oxygen across the western United States’ continental shelf. Accurate 860 

simulation of the phytoplankton-derived export flux driving the consumption of oxygen on the 
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shelf bottom is crucial to predict the frequency and magnitude of hypoxic events, which are 862 

detrimental to benthic fauna and demersal fish. This regional model provides a framework to 

investigate the frequency and intensity of these hypoxic events on the shelf and the compounding 864 

effect of high nutrient-low oxygen content upwelled water masses. These model improvements 

come at a modest complexity cost making it possible to apply the amended model’s ecological 866 

structure to global biogeochemical simulations of the ocean. 

 868 
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