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Abstract 

The energy functional of a novel electronic structure theory, OP-NSOFT, has as variables the 

natural spin orbitals (NSO) of the trial function and their joint occupation probabilities in the 

search for the ground state energy. When occupancy is restricted to the spin-paired NSOs of 

DOCI, the resulting theory, OP-NSOFT-0, scales as 𝑀3, with 𝑀 the size of the one-electron basis 

set. Accurate results were obtained for small molecules, particularly near dissociation where 

single reference theories like DFT are inaccurate. The homogeneous electron liquid (HEL) could 

serve as a test bed of OP-NSOFT for condensed systems, but OP-NSOFT-0 reduces to the 

Hartree-Fock approximation for the HEL. Cooper pairing is introduced instead, both singlet 

pairing, OP-NOFT-Cs, and fully-polarized triplet pairing, OP-NSOFT-Ct. The former yields ⅓ of 

the diffusion-Monte-Carlo correlation energy, the latter ½ to ⅓ with decreasing electron density 

for 𝑟𝑠 values between 1 and 10. Both yield the discontinuity in the single-particle occupation 

number required by the Luttinger theorem. Two-state joint occupation probabilities illustrate 

the importance of electron-electron small-angle scattering in establishing electron correlation 

in the unpolarized HEL. 

 

 

1. Introduction 

 Much of the long search for useful ab-initio methods for computing the ground-state 

energies of atoms, molecules, and materials has been a struggle to balance accuracy against 

scalability. The computational costs of exact or near-exact methods such as Full Configuration 

Interaction (FCI) and its most accurate approximate forms increase combinatorially with the 

size M of the one-electron basis set. Theories which reduce that scaling must deal with several 

significant issues: the scaling itself; whether parameter-free forms can be found; the 

elimination of self-interaction, and the accuracy of the treatment of correlation. Hartree-Fock 

Theory (HF) scales asymptotically as M3, is parameter- and self-interaction-free, but has no 
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correlation. Density-Functional Theory (DFT)i,ii scales asymptotically as M3 but approximations 

to its functional have inaccuracies that grow as system fragments separate and there is 

difficulty with finding accurate, parameter-free versions that avoid self-interaction. Kohn-Sham 

DFTii cannot capture the strong static correlation in dissociating fragments because it is a single 

reference theory. One-particle reduced density matrix functional theory (1RDMFT)iii can 

describe multi reference states. When the 1RDM is represented in terms of its eigenstates and 

eigenvalues, i.e. the natural orbitals (NO) and their occupation probabilities, the corresponding 

1RDMFTs are called natural orbital functional theories (NOFTs). The primitive functionals of 

1RDMFT that involve only two-index integrals scale as M3. More accurate 1RDMFT functionals 

include 4-index integrals that increase the scaling to M5iv,v. Most 1RDMFT functionals are 

parameter-free, cf. Pernal and Giesbertzvi. In 1RDMFT, there are natural orbital functionals 

(NOFs) that have the self-interaction problemvii but others that do notviii,ix. The latter theories 

have difficulty in accurately representing the one- and two-particle reduced density matrices 

(1RDM and 2RDM) simultaneously. Methods that specifically address that difficulty have been 

based on systematic refining of the necessary conditions for the 2RDMx and have achieved 

accuracy close to that of FCIxi, but with computational cost scaling asymptotically at least as M6. 

 We have recently introduced a class of occupation-probability-based, natural-spin-

orbital functional theories, OP-NSOFTxii. In ref. xii, hereafter called I, it was specialized to time-

reversal-invariant, singlet ground states with no local spin polarization. The theories start out 

from an FCI trial function 𝛹 expanded in Slater determinants (SD) 𝛷𝒎 in which the one-electron 

basis is the M natural spin orbitals (NSO) of the N-electron trial function, 

𝛹 = ∑ 𝐶𝒎

𝒎

𝛷𝒎 ,    (1) 

with the 𝐶𝒎 the expansion coefficients. Note that these differ from the exact NSOs introduced 

by Löwdinxiii, which are derived from the ground state, and would converge to the NSOs of 

Löwdin in an exact theory.   For the 1-electron basis functions actually to be the NSOs of the 

trial function, the expansion coefficients of the Slater determinants must satisfy an 

orthogonality constraint. The energy is then written as a linear functional of the one- and two-

particle RDMs of 𝛹. Using an explicit representation of the 2RDM eliminates self-interaction. 

The theory remains a variational 2RDM theory after imposition of the pair-difference condition 

and the sign approximations of I. The latter allows explicit expression of the energy functional 

in terms of the NSOs and their sole and joint occupation probabilities (OPs) of n NSOs, n-OPs 

with n=1…N and reinterpretation of that variational 2RDM theory as an OP-NSOFT.  Parametric  

2RDM methods have been introduced by Mazziottixiv and Piris, et al.xv, but neither uses the 

higher-order occupation probabilities we have introduced into the energy functional. Finally, 

the non-variational 𝜉-approximation of I replaces the N-OPs by 4-OPs. The OPs are taken as 

variables subject to bounds, sum rules, and the orthogonality constraint. The resulting theory 

scales asymptotically as M5. More explicitly, three fundamental approximations have allowed 



for this reduction from the combinatorial scaling of FCI: first, a variational2 approximation to 

the orthogonality constraint, the pair difference constraint (PDC), that requires the SDs to differ 

by at least two NSOs; second, a variational approximation for the signs of the FCI expansion 

coefficients 𝐶𝒎 of the SDs; and third, a non-variational reduction of the N-OPs in the exact 

correlation-energy functional to 4-OPs, the 𝜉-approximation. When the starting point is double-

occupancy configuration interaction (DOCI) instead of FCI, all NSOs present in the SDs are spin 

paired, and consequently only 1- and 2-OPs enter the OP-NSOFT functional. The computations 

reported in I have shown that the resulting theory, OP-NSOFT-0, closely tracks DOCI along the 

dissociation curves of the various light molecules studied while scaling as M3 instead of 

combinatorially. Close to but below DOCI for N > 4, it shares the latter’s strengths and 

weaknesses for small molecules.  

How accurate might OP-NSOFT be for extended systems, where scaling can become a 

major issue? Model extended systems for which the NSOs can be determined in advance are 

convenient for testing its accuracy. With known NSOs, the scaling of OP-NSOFT reduces from 

M5 to M4 and the scaling of OP-NSOFT-0 from M3 to M2, and the slow convergence of the NSOs 

characteristic of NSO-based theories is avoided. The homogeneous electron liquid (HEL) is a 

particularly interesting test model. Quantitatively accurate groundstate energy values are 

available for the HEL as a function of the Wigner–Seitz radius 𝑟𝑠 from diffusion-Monte-Carlo 

(DMC) computationsxvi, providing the basis for a test of accuracy. The HEL has also been studied 

with 1RDMFTxvii,3. When applied to the HEL, OP-NSOFT-0 reduces to HF because homogeneity 

forces the matrix elements entering the correlation energy functional to vanish. Here we 

introduce instead forms of OP-NSOFT based on the singlet (OP-NSOFT-Cs, section 2) and 

polarized triplet (OP-NSOFT-Ct, section 3) Cooper pairings introduced in the BCS theory of 

superconductivityxviii and in the theory of the superfluidity of He-3xix, respectively. In section 4, 

we report that we find a nonzero discontinuity in 𝑝1(𝑘) at 𝑘𝐹 and a nonzero correlation energy 

for the 3D HEL. Quantitative information on the 2-OPs obtained for the first time illuminates 

the processes that generate the electron correlation energy. We report a transition to the fully 

polarized state at 𝑟𝑠 ≅ 7.5 in section 5. Finally, in section 6 we assess what has been 

accomplished and discuss directions for further work. 

 

2. The OP-NSOFT formalism 

 The OP-NSOFT energy functional derived in I by the imposition of the three scale-

reducing approximations is, in the notation of I, 
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𝐸[𝜓, 𝑝1, 𝑝11, 𝑝111, 𝑝1111]

= ∑ 𝑝1

𝑖

(𝑖)ℎ̂𝑖𝑖

+ ½ ∑ 𝑝11(𝑖𝑗)[𝒥𝑖𝑗 − 𝒦𝑖𝑗]

𝑖≠𝑗

+  ∑ 𝑆(𝑖𝑗)

𝑖<𝑗≠𝑘<𝑙

𝑆(𝑘𝑙)𝑝1100
½ (𝑖𝑗𝑘𝑙)𝑝0011

½ (𝑖𝑗𝑘𝑙)𝜉(𝑖𝑗𝑘𝑙)[𝒦(𝑖𝑗𝑘𝑙)

− 𝒦(𝑖𝑗𝑙𝑘)]                                                                                       (2) 

𝜉(𝑖𝑗𝑘𝑙) =
∑ 𝑝1111

½ (𝑖𝑗𝑚𝑛)𝑝1111
½ (𝑘𝑙𝑚𝑛)𝑚<𝑛≠𝑖𝑗𝑘𝑙

[∑ 𝑝1111(𝑖𝑗𝑚𝑛)𝑚<𝑛≠𝑖𝑗𝑘𝑙 ∑ 𝑝1111(𝑘𝑙𝑚𝑛)𝑚<𝑛≠𝑖𝑗𝑘𝑙 ]
½                 (3) 

The indices 𝑖, 𝑗 ⋯ = 1 ⋯ 𝑀 specify the NSOs 𝜓𝑖 , 𝜓𝑗 ⋯. The quantities 𝑝1, 𝑝11, 𝑝1111, 𝑝1100 , 𝑝0011 

are occupation probabilities (OPs), the probabilities that the members of the set of NSOs 

specified by the indices serving as the arguments of those quantities are either simultaneously 

present in or absent from the SDs within the trial function. A subscript 1 indicates that the 

corresponding NSO is present; a subscript 0 indicates absence. An n-OP is the probability of 

occupation of n NSOs and has n subscripts and n arguments. The 2-OP 𝑝11(𝑖𝑗) is the probability 

that 𝜓𝑖  and 𝜓𝑗 are simultaneously present in the trial function, and the 4-OP 𝑝1100(𝑖𝑗𝑘𝑙) is the 

probability that 𝜓𝑖  and 𝜓𝑗 are present while 𝜓𝑘 and 𝜓𝑙   are absent. These 4-OPs of mixed 

occupancy are linear combinations of fully-occupied 4-, 3-, and 2-OPs, 

𝑝1100 (𝑖𝑗𝑘𝑙) = 𝑝1111(𝑖𝑗𝑘𝑙) − 𝑝111(𝑖𝑗𝑘) − 𝑝111(𝑖𝑗𝑙) + 𝑝11(𝑖𝑗) ,    (4𝑎) 

𝑝0011 (𝑖𝑗𝑘𝑙) = 𝑝1111(𝑖𝑗𝑘𝑙) − 𝑝111(𝑘𝑙𝑖) − 𝑝111(𝑘𝑙𝑗) + 𝑝11(𝑘𝑙) .    (4𝑏) 

The PDC forces all index pairs in the 4-OPs in (1) and (2), e.g. 𝑖𝑗 and 𝑘𝑙, to have no common 

index. To derive Eqs. (4a,b) we introduce the idempotent variable 𝜈𝑖,𝒎, which specifies the 

occupation of 𝜓𝑖  in 𝛷𝒎: 𝜈𝑖,𝒎 = 1 if 𝜓𝑖  is present in 𝛷𝒎 and 𝜈𝑖,𝒎 = 0 if absent. Thus the fully 

occupied n-OP 𝑝1⋯1(𝑖1 ⋯ 𝑖𝑛) can be expressed as  

𝑝1⋯1(𝑖1 ⋯ 𝑖𝑛) = ∑|𝐶𝒎|2

𝒎

𝜈𝑖1,𝒎 ⋯ 𝜈𝑖𝑛,𝒎      

Similarly, the mixed occupancy 4-OPs 𝑝1100(𝑖𝑗𝑘𝑙) and 𝑝0011(𝑖𝑗𝑘𝑙) can be expressed as 

𝑝1100(𝑖𝑗𝑘𝑙) = ∑|𝐶𝒎|2

𝒎

𝜈𝑖,𝒎𝜈𝑗,𝒎(1 − 𝜈𝑘,𝒎)(1 − 𝜈𝑙,𝒎) ,     

𝑝0011(𝑖𝑗𝑘𝑙) = ∑|𝐶𝒎|2

𝒎

(1 − 𝜈𝑖,𝒎)(1 − 𝜈𝑗,𝒎)𝜈𝑘,𝒎𝜈𝑙,𝒎 .     

Expanding the parentheses in this definition of the mixed 4-OPs and using this definition of the 

pure n-OPs yields (4a,b).  

The NSOs enter the functional (2) implicitly through their presence in the various matrix 

elements. The first term on the rhs of (2) is the single-particle energy functional. In it, ℎ̂ is the 

single-particle Hamiltonian, and ℎ𝑖𝑖 = (𝜓𝑖, ℎ̂𝜓𝑖) is its diagonal matrix element. The second term 



on the rhs is the sum of the Hartree and exchange energy functionals. 𝒥𝑖𝑗 = (𝜓𝑖𝜓𝑗 , �̂�𝜓𝑖𝜓𝑗) 

and 𝒦𝑖𝑗 = (𝜓𝑖𝜓𝑗 , �̂�𝜓𝑗𝜓𝑖) are the Coulomb and exchange integrals, respectively, with �̂� the 

Coulomb interaction. The third term is the correlation energy functional. In it, 𝒦𝑖𝑗𝑘𝑙  

=(𝜓𝑖𝜓𝑗 , �̂�𝜓𝑘𝜓𝑙) is the direct matrix element of �̂� that scatters a pair of electrons from the 

states 𝑘𝑙 to the states 𝑖𝑗, and 𝒦𝑖𝑗𝑙𝑘 = (𝜓𝑖𝜓𝑗 , �̂�𝜓𝑙𝜓𝑘) is the corresponding exchange matrix 

element.  

The signs of the SD coefficients are reduced to 𝑆(𝑖𝑗) and 𝑆(𝑘𝑙) in (2) by the variational 

sign approximation. They are set prior to the search for the infimum of the functional. The rule 

for setting the signs stated in Section S1 of the supplementary information to I holds when the 

matrix element 𝒦(𝑖𝑗𝑘𝑙) − 𝒦(𝑖𝑗𝑙𝑘) is positive, as will be the case for the HEL once the above 

pairing approximations referred to in the introduction are imposed. The sign rule was obtained 

by setting the coefficient signs to their values in the lowest order of an NSO version of Brillouin-

Wigner perturbation theory, a variational approximation that may not be accurate for systems 

more complex than the HEL and the small molecules of I. Nevertheless, we have established 

that for some systems the phase dilemma that stems from the necessity of carrying out 

minimization over the large number of possible combinations of coefficient signsxx can be 

avoided. 

𝜉(𝑖𝑗𝑘𝑙), (3), is the 𝜉-approximation. It is a nonvariational replacement of the exact N-

OPs that enter the FCI correlation energy functional by 4-OPs like the 𝑝1111(𝑖𝑗𝑚𝑛) in (3). As 

discussed in I, 𝜉 has the same bounds, 

0 ≤ 𝜉(𝑖𝑗𝑘𝑙) ≤ 1,    (5) 

as the exact quantity it approximates. The OP-NSOFT approximation to the ground-state is 

obtained by searching for the infimal value of the energy functional (2) in the space of the 

variables 𝜓, 𝑝1, 𝑝11, 𝑝111, 𝑝1111 subject to a set of necessary conditions.xxi  

 

3. Cooper pairing for the HEL: Singlet pairing in OP-NSOFT-Cs 

3.1 The OP-NSOFT-Cs functional, spins explicit 

 The HEL NSOs are plane waves 𝜙𝒌(𝒓) with wave number 𝒌 times spinors 𝜒𝑠(𝜎) with 

spin–state 𝑠 so that the index 𝑖 becomes 𝒌𝑠. Just as OP-NSOFT-0 evolved from DOCI, OP-

NSOFT-Cs evolves from a different restricted version of CI, CsCI, in which when the NSO 𝒌 ↑ is 

present in an SD, so is the NSO −𝒌 ↓. Each SD is formed of time-reversed pairs, singlet Cooper 

pairs. Note that the N-projected BCS wave function is a specific CsCI wave function for which all 

n-OPs are products of n 1-OPs. The N-electron CsCI functions are not N-projections of the BCS 

wave function in general, and their n-OPs are not restricted to products of 1-OPs. The resulting 

OP-NSOFT, OP-NSOFT-Cs is thus more general and more accurate than earlier attempts to use 

the BCS wave function to approximate the 2RDM for molecular systemsxxii and for extended 

systems.xxiii These approximations based on the BCS wave function were abandoned because 



they overcorrelate, especially at dissociation where fixed particle number is essential. The N-

projected BCS wave function eliminates that difficulty and has been used to create the so called 

Antisymmetrized Products of identical Geminals (APG) formalism.xxiv As implied above, pairs are 

uncorrelated in APG, and it is consequently less accurate than OP-NSOFT-Cs. 

  CsCI clearly satisfies the PDC. The PDC and the Cooper pairing require that the index 

pairs 𝑖𝑗 and 𝑘𝑙 in the correlation energy functional become 𝒌 ↑, −𝒌 ↓ and 𝒌′ ↑, −𝒌′ ↓, 

respectively. The self-interaction of the uniform background, the Hartree term, and the 

electron-uniform background interaction all cancel, leaving only the kinetic energy 𝜖(𝑘) in the 

single-particle functional and only the exchange energy in the Hartree/exchange functional. The 

energy functional (2), (3) becomes 

𝐸[𝑝1, 𝑝11, 𝑝111, 𝑝1111]

= ∑ 𝑝1

𝒌𝑠

(𝒌𝑠)𝜖(𝑘)

− ½ ∑ 𝑝11(𝒌𝑠𝒌′𝑠)𝑤(|𝒌−𝒌′|) + ∑ 𝑆(𝒌 ↑, −𝒌 ↓)

𝒌≠𝒌′𝒌≠𝒌′,𝑠

𝑆(𝒌′ ↑, −𝒌′

↓)𝑝1100
½ (𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓)𝑝0011

½ (𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓) 

𝜉(𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓)𝑤(|𝒌−𝒌′|) ,                                                               (6) 

𝜉(𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓)

=
∑ 𝑝1111

½ (𝒌 ↑, −𝒌 ↓; 𝒍 ↑, −𝒍 ↓)𝑝1111
½ (𝒌′ ↑, −𝒌′ ↓; 𝒍 ↑, −𝒍 ↓)𝒍≠𝒌𝒌′

[∑ 𝑝1111(𝒌 ↑, −𝒌 ↓; 𝒍 ↑, −𝒍 ↓)𝒍≠𝒌𝒌′ ∑ 𝑝1111(𝒌′ ↑, −𝒌′ ↓; 𝒍 ↑, −𝒍 ↓)𝒍≠𝒌𝒌′ ]½
 .                (7) 

The interaction matrix element in (6),  

𝑤(|𝒒|) =
4𝜋𝑒2

𝛺𝑞2
 ,     (8) 

is the Fourier transform of the Coulomb interaction with 𝛺 the quantization volume.  Because it 

is positive, the sign rules are the same as in OP-NSOFT-0 and are given in section S1 of I, 

𝑆(𝒌 ↑, −𝒌 ↓) = +1, 𝑘 ≤ 𝑘𝐹;  𝑆(𝒌 ↑, −𝒌 ↓) = −1, 𝑘 > 𝑘𝐹  .    (9) 

 

3.2 The OP-NSOFT-Cs functional: from 4-OPs to 2-OPs 

 The formal definition of 𝑝1(𝒌𝑠) is 

𝑝1(𝒌𝑠) = ∑|𝐶𝒎|2

𝒎

𝜈𝒌𝑠,𝒎 ,    (10) 

where the occupation designator 𝜈𝒌𝑠,𝒎 has the values 

𝜈𝒌𝑠,𝒎 = 1, 𝒌𝑠 ∈ 𝒎; = 0, 𝒌𝑠 ∉ 𝒎 .    (11) 

Because each SD is comprised of N occupied NSOs, there is a sum rule obeyed by the 𝜈𝒌𝑠,𝒎,  

∑ 𝜈𝒌𝑠,𝒎

𝒌𝑠

= 𝑁, ∀𝒎 .    (12) 

The time-reversed pairing requires that 

𝜈𝒌↑,𝒎 = 𝜈−𝒌↓,𝒎 , ∀𝒎 ,    (13)  



and inversion symmetry requires that 

𝜈−𝒌↓,𝒎 = 𝜈𝒌↓,𝒎 ,    (14) 

so that the 1-OP is spin independent 

𝑝1(𝒌 ↑) = 𝑝1(𝒌 ↓) = 𝑝1(𝒌) .    (15) 

The formal definition of 𝑝11(𝒌𝑠𝒌′𝑠) is 

𝑝11(𝒌𝑠𝒌′𝑠) = ∑|𝐶𝒎|2

𝒎

𝜈𝒌𝑠,𝒎𝜈𝒌′𝑠,𝒎 .    (16) 

It is spin independent according to (13) and (14), 

𝑝11(𝒌 ↑ 𝒌′ ↑) = 𝑝11(𝒌 ↓ 𝒌′ ↓) = 𝑝11(𝒌𝒌′) .    (17) 

The formal definitions of the mixed 4-OPs in (6) are 

𝑝1100(𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓) = ∑|𝐶𝒎|2

𝒎

𝜈𝒌↑,𝒎𝜈−𝒌↓,𝒎(1 − 𝜈𝒌′↑,𝒎)(1 − 𝜈−𝒌′↓,𝒎) ,    (18𝑎) 

𝑝0011(𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓) = ∑|𝐶𝒎|2

𝒎

(1 − 𝜈𝒌↑,𝒎)(1 − 𝜈−𝒌↓,𝒎)𝜈𝒌′↑,𝒎𝜈−𝒌′↓,𝒎 .    (18𝑏) 

As (11) implies that the 𝜈𝒌↑,𝒎 are idempotent, imposing the pairing condition (13) reduces the 

4-OPs of (18a,b) to 2-OPs 

𝑝1100(𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓) = ∑|𝐶𝒎|2

𝒎

𝜈𝒌↑,𝒎(1 − 𝜈𝒌′↑,𝒎) = 𝑝10(𝒌 ↑ 𝒌′ ↑) ,    (19𝑎) 

𝑝0011(𝒌 ↑, −𝒌 ↓; 𝒌′ ↑, −𝒌′ ↓) = ∑|𝐶𝒎|2

𝒎

(1 − 𝜈𝒌↑,𝒎)𝜈𝒌′↑,𝒎 =  𝑝01(𝒌 ↑ 𝒌′ ↑).    (19𝑏) 

Expanding the parentheses in (19a,b) simplifies (4a,b) to 

𝑝10(𝒌 ↑ 𝒌′ ↑) = 𝑝10(𝒌𝒌′) = 𝑝1(𝒌) − 𝑝11(𝒌𝒌′) ,    (20𝑎) 

𝑝01(𝒌 ↑ 𝒌′ ↑) = 𝑝01(𝒌𝒌′) = 𝑝1(𝒌′) − 𝑝11(𝒌𝒌′) ,    (20𝑏) 

(13) reduces the order of 𝜉 as well; (7) becomes 

𝜉(𝒌𝒌′) =
∑ 𝑝11

½ (𝒌𝒍)𝑝11
½ (𝒌′𝒍)𝒍≠𝒌𝒌′

[∑ 𝑝11(𝒌𝒍)𝒍≠𝒌𝒌′ ∑ 𝑝11(𝒌′𝒍)𝒍≠𝒌𝒌′ ]½
 .                (21) 

Similarly, the signs in (6) and (9) depend only on the single variable 𝒌, 

𝑆(𝒌 ↑, −𝒌 ↓) = 𝑆(𝒌) = +1, 𝑘 ≤ 𝑘𝐹;  = −1, 𝑘 > 𝑘𝐹 .    (22) 

The functional becomes 

𝐸[𝑝1, 𝑝11] = 2 ∑ 𝑝1

𝒌

(𝒌)𝜖(𝑘)

− ∑ 𝑝11(𝒌𝒌′)𝑤(|𝒌−𝒌′|)

𝒌≠𝒌′

+  ∑ 𝑆(𝒌)

𝒌≠𝒌′

𝑆(𝒌′)𝑝10
½ (𝒌𝒌′)𝑝01

½ (𝒌𝒌′)𝜉(𝒌𝒌′)𝑤(|𝒌−𝒌′|) ,         (23) 

and is supplemented by (20a,b), (21), and (22). 



 The discontinuity in the signs imposed by (22) at the initiation of the search for the 

infimum of 𝐸[𝑝1, 𝑝11] guarantees the existence of a discontinuity in 𝑝1(𝒌) at 𝑘𝐹 in accordance 

with the Luttinger theorem.xxv  

 

3.3 Bounds and sum rules imposed on 𝒑𝟏and 𝒑𝟏𝟏 

The quantities 𝑝1(𝒌) and 𝑝11(𝒌𝒌′) are subject to constraints, sum rules and bounds, as 

they vary during the search for the infimum value of 𝐸[𝑝1, 𝑝11]. As a probability, 𝑝1(𝒌) must 

have the bounds  

0 ≤ 𝑝1(𝒌) ≤ 1     (24) 

evident from (10). The 1-OP sum rule is  

∑ 𝑝1(𝒌)

𝒌

= ½ ∑ 𝑝1(𝒌𝑠)

𝒌𝑠

= ½𝑁 .    (25) 

The sum rule on 𝑝11(𝒌, 𝒌′) follows from that on 𝑝11(𝒌𝑠𝒌′𝑠′), 

∑ 𝑝11(𝒌𝑠𝒌′𝑠′)

𝒌′𝑠′≠𝒌𝑠

= ∑|𝐶𝒎|2

𝒎

𝜈𝒌𝑠,𝒎 ∑ 𝜈𝒌′𝑠′,𝒎

𝒌′𝑠′≠𝒌𝑠

= (𝑁 − 1)𝑝1(𝒌𝑠) ,    (26) 

that is, 

2 ∑ 𝑝11(𝒌𝒌′)

𝒌′≠𝒌

= (𝑁 − 2)𝑝1(𝒌) .    (27) 

(27) can be used to simplify the sums in the denominator of 𝜉(𝒌𝒌′) in (21), 

∑ 𝑝11(𝒌𝒍)

𝒍≠𝒌𝒌′

= ½(𝑁 − 2)𝑝1(𝒌) −  𝑝11(𝒌𝒌′),    (28𝑎) 

∑ 𝑝11(𝒌′𝒍)

𝒍≠𝒌𝒌′

= ½(𝑁 − 2)𝑝1(𝒌′) −  𝑝11(𝒌𝒌′).    (28𝑏) 

The derivation of the bounds on 𝑝11(𝒌𝒌′) is more complex and will not be given here. 

We refer instead to I and references therein. Those bounds are 

𝑠𝑢𝑝{𝑝1(𝒌) + 𝑝1(𝒌′) − 1,0} ≤ 𝑝11(𝒌𝒌′) ≤ 𝑖𝑛𝑓{𝑝1(𝒌), 𝑝1(𝒌′)} ,    (29) 

𝑠𝑢𝑝{𝑝1(𝒌) + 𝑝1(𝒌′) + 𝑝1(𝒌′′) − 1,0} ≤ 𝑝11(𝒌𝒌′) + 𝑝11(𝒌′𝒌′′) + 𝑝11(𝒌𝒌′′) .   (30) 

Eq. (29) is a (2,2) condition and (30) a (2,3) condition.xxi  

 

3.4 Large N 

In the thermodynamic limit, 
𝐸

𝑁
→ ℰ; 𝐸, 𝑁 → ∞ ,    (31𝑎) 

𝑁

𝛺
→ 𝑛; 𝑁, 𝛺 → ∞ ,     (31𝑏) 

the sums can be transformed to integrals 

∑(∙)

𝒌

→
𝛺

(2𝜋)3
∫ 𝑑3𝒌 (∙) .    (32) 



It is convenient to scale the wave vector to the Fermi wave number 

�̅� =
𝒌

𝑘𝐹
  .   (33) 

The energy functional becomes 

ℰ[𝑝1, 𝑝11] =
3

4𝜋
∫ 𝑑3�̅� 𝑝1(�̅�)

�̅�2

2
𝑘𝐹

2 −
9𝑛

16𝜋
∬ 𝑑3�̅�𝑑3�̅�′𝑝11(�̅��̅�′)

1

𝑘𝐹
2|�̅� − �̅�′|

2

+
9𝑛

16𝜋
∬ 𝑑3�̅�𝑑3�̅�′𝑆(�̅�)𝑆(�̅�′)𝑝10

½ (�̅��̅�′)𝑝01
½ (�̅��̅�′)𝜉(�̅��̅�′)

1

𝑘𝐹
2|�̅� − �̅�′|

2    (34) 

𝜉(�̅��̅�′) =
∫ 𝑑3�̅�𝑝11

½ (�̅��̅�)𝑝11
½ (�̅�′�̅�)

[∫ 𝑑3�̅�𝑝11(�̅��̅�) ∫ 𝑑3�̅�𝑝11(�̅�′�̅�)]
½      (35) 

The sum rules become 

3

4𝜋
∫ 𝑑3�̅� 𝑝1(�̅�) = 1 ,    (36) 

3

4𝜋
∫ 𝑑3�̅�′ 𝑝11(�̅��̅�′) = 𝑝1(�̅�) .    (37) 

 

3.5 Isotropy 

 The isotropy of the HEL implies that quantities that depend on a single wave vector �̅� 

are functions only of its magnitude �̅� and that functions that depend on two wave vectors �̅�, �̅�′ 

are functions only of their magnitudes �̅�, �̅�′ and the cosine 𝜇�̅��̅�′ of the angle 𝜃�̅��̅�′ between 

them. The energy functional simplifies to 

  

ℰ[𝑝1, 𝑝11]

=
3

2
𝑘𝐹

2 ∫ 𝑑�̅�𝑝1(�̅�)�̅�4
∞

0

−
9𝜋𝑛

2𝑘𝐹
2 ∬ 𝑑�̅�𝑑�̅�′ ∫ 𝑑𝜇�̅��̅�′𝑝11(�̅��̅�′𝜇�̅��̅�′)

1

−1

∞

0

�̅�2𝑘 ′̅2

�̅�2 + 𝑘 ′̅2
− 2�̅��̅�′𝜇�̅��̅�′

+
9𝜋𝑛

2𝑘𝐹
2 ∬ 𝑑�̅�𝑑�̅�′𝑆(�̅�)𝑆(�̅�′)𝑝10

½ (�̅��̅�′𝜇�̅��̅�′)𝑝01
½ (�̅��̅�′𝜇�̅��̅�′)𝜉(�̅��̅�′𝜇�̅��̅�′)

∞

0

�̅�2𝑘 ′̅2

�̅�2 + 𝑘 ′̅2
− 2�̅��̅�′𝜇�̅��̅�′

, 

(38) 

𝑝10(�̅��̅�′𝜇�̅��̅�′) = 𝑝1(�̅�) − 𝑝11(�̅��̅�′𝜇�̅��̅�′) ,    (39𝑎) 

𝑝01(�̅��̅�′𝜇�̅��̅�′) = 𝑝1(�̅�′) − 𝑝11(�̅��̅�′𝜇�̅��̅�′) .    (39𝑏) 

𝜉(�̅��̅�′), (35), is more complex as it involves 3 vectors, �̅�, �̅�′, and �̅�. We take �̅� as the polar axis 

and measure the azimuthal angle 𝜙𝒍 of �̅� from the �̅�, �̅�′-plane so that  

𝜇𝒌′𝒍 = 𝑐𝑜𝑠𝜃𝒌′𝒍 = 𝜇𝒌𝒌′𝜇𝒌𝒍 + 𝑠𝑖𝑛𝜃𝒌𝒌′𝑠𝑖𝑛𝜃𝒌𝒍𝑐𝑜𝑠𝜙𝒍 .    (40) 

Insert the sum rule (37) into the denominator of (35) to obtain 

𝜉(�̅��̅�′𝜇�̅��̅�′) =
3 ∫ 𝑑𝑙 ̅∞

0
𝑙2̅ ∫ 𝑑𝜇�̅��̅�

1

−1
∫ 𝑑𝜑𝑙 ̅

2𝜋

0
𝑝11

½ (�̅�𝑙�̅��̅��̅�)𝑝11
½ (�̅�′𝑙�̅��̅�′�̅�)

2𝑝1(�̅�)
½

𝑝1(𝑘′̅)
½

     (41) 



with (40) understood.  

The sum rules become 

∫ 𝑑
∞

0

�̅�𝑝1(�̅�)�̅�2 = ⅓ ,     (42) 

∫ 𝑑
∞

0

�̅�′ ∫ 𝑑
1

−1

𝜇�̅��̅�′𝑝11(�̅��̅�′𝜇�̅��̅�′)𝑘 ′̅2
= ⅔ .    (43) 

The bounds become 

0 ≤ 𝑝1(𝑘) ≤ 1 ,    (44) 

𝑠𝑢𝑝{𝑝1(𝑘) + 𝑝1(𝑘′) − 1,0} ≤ 𝑝11(𝑘𝑘′𝜇𝒌𝒌′) ≤ 𝑖𝑛𝑓{𝑝1(𝑘), 𝑝1(𝑘′)} ,    (45) 

𝑠𝑢𝑝{𝑝1(𝑘) + 𝑝1(𝑘′) + 𝑝1(𝑘′′) − 1,0}

≤ 𝑝11(𝑘𝑘′𝜇𝒌𝒌′) + 𝑝11(𝑘′𝑘′′𝜇𝒌′𝒌′′) + 𝑝11(𝑘𝑘′′𝜇𝒌𝒌′′) .   (46) 

Equations (38)-(46) are the working formulae of OP-NSOFT-Cs for the HEL. 

 

4. Cooper pairing for the HEL: Fully polarized triplet pairing; OP-NSOFT-Ct 

 In the fully polarized HEL only the NSOs 𝒌 ↑ are occupied. In the triplet-pairing 

approximation of OP-NSOFT-Ct, only the paired NSOs 𝒌 ↑ and −𝒌 ↑ appear in the SDs. Having 

given the development of OP-NSOFT-Cs in detail, there is no need for such detail for OP-NSOFT-

Ct, for which the energy functional is  

𝐸[𝑝1, 𝑝11] = ∑ 𝑝1

𝒌

(𝒌)𝜖(𝑘)

− ½ ∑ 𝑝11(𝒌𝒌′)𝑤(|𝒌−𝒌′|)

𝒌≠𝒌′

+  ∑ 𝑆(𝒌)

𝒌≠𝒌′(ℎ𝑎𝑙𝑓 𝑠𝑝𝑎𝑐𝑒)

𝑆(𝒌′)𝑝10
½ (𝒌, 𝒌′)𝑝01

½ (𝒌, 𝒌′)𝜉(𝒌, 𝒌′)[𝑤(|𝒌−𝒌′|)

− 𝑤(|𝒌+𝒌′|)] ,                                                                                      (47) 

 

𝜉(𝒌, 𝒌′) =
∑ 𝑝11

½ (𝒌, 𝒍)𝑝11
½ (𝒌′, 𝒍)𝒍≠𝒌𝒌′(𝒉𝒂𝒍𝒇 𝒔𝒑𝒂𝒄𝒆)

[∑ 𝑝11(𝒌, 𝒍)𝒍≠𝒌𝒌′(𝒉𝒂𝒍𝒇 𝒔𝒑𝒂𝒄𝒆) ∑ 𝑝11(𝒌′, 𝒍)𝒍≠𝒌𝒌′(𝒉𝒂𝒍𝒇 𝒔𝒑𝒂𝒄𝒆) ]
½  .                (48) 

As before, in the cases of spin and singlet Cooper pairing, the 4-OPs reduce to 2-OPs. In the 

correlation energy functional, the pair 𝑖𝑗 becomes 𝒌 ↑, −𝒌 ↑, and the sum on 𝒌 is only over the 

half space as the pair 𝒌 ↑, −𝒌 ↑ is identical to the pair −𝒌 ↑, 𝒌 ↑. The spin index has been 

dropped as all spins are up. The sign rules are the same as for spin and singlet Cooper pairing, 

Eq. (9). 

The reduction of the wave-vector dependences of the OPs imposed by isotropy is similar 

to that for singlet pairing, cf. Eqs. (38)-(46), with the following exceptions: Recall that 𝑝11(𝒌𝒌′) 

is 



𝑝11(𝒌𝒌′) = ∑|𝐶𝒎|2

𝒎

𝜈𝒌,𝒎𝜈𝒌′,𝒎     (49) 

and that 

𝜈𝒌′,𝒎 = 𝜈−𝒌′,𝒎     (50) 

because of the triplet Cooper pairing. Together they imply that 

𝑝11(𝒌𝒌′) = 𝑝11(𝒌, −𝒌′) ,   (51) 

i. e. that  

𝑝11(𝑘𝑘′𝜇𝒌𝒌′) = 𝑝11(𝑘𝑘′, −𝜇𝒌𝒌′) ,    (52) 

an even function of 𝜇𝒌𝒌′. 𝑝10(𝒌𝒌′) and 𝑝01(𝒌𝒌′) enter (47) in sums over the half spaces of 𝒌 

and 𝒌′, but we shall extend the sums to the full spaces. (20a,b) also hold for triplet pairing, and, 

with (51) and (52), imply that 𝑝10(𝑘𝑘′𝜇𝒌𝒌′) and 𝑝01(𝑘𝑘′𝜇𝒌𝒌′) are even functions of 𝜇𝒌𝒌′. The 

same holds for 𝜉(𝒌, 𝒌′) = 𝜉(𝑘, 𝑘′, 𝜇𝒌𝒌′) . On the other hand, the matrix element [𝑤(|𝒌−𝒌′|) −

𝑤(|𝒌+𝒌′|)] is positive in the positive half spaces, i.e. for positive 𝜇𝒌𝒌′, but it is an odd function 

of 𝒌′ and therefore of 𝜇𝒌𝒌′  in the full 𝒌′ space. To extend the sums to the full spaces, it is 

necessary to make the matrix element an even function of 𝒌′ by taking its magnitude. The 

result is  

𝐸[𝑝1, 𝑝11] = ∑ 𝑝1

𝒌

(𝑘)𝜖(𝑘)

− ½ ∑ 𝑝11(𝑘𝑘′𝜇𝒌𝒌′)𝑤(|𝒌−𝒌′|)

𝒌≠𝒌′

+ ¼ ∑ 𝑆(𝑘)

𝒌≠𝒌′

𝑆(𝑘′)𝑝10
½ (𝑘𝑘′𝜇𝑘′)𝑝01

½ (𝑘𝑘′𝜇𝒌𝒌′)𝜉(𝑘𝑘′𝜇𝒌𝒌′)|𝑤(|𝒌−𝒌′|)

− 𝑤(|𝒌+𝒌′|)|                                                                                       (53) 

 

𝜉(𝒌, 𝒌′) =
∑ 𝑝11

½ (𝑘𝑙𝜇𝒌𝒍)𝑝11
½ (𝑘′𝑙𝜇𝒌′𝒍)𝒍≠𝒌𝒌′

[∑ 𝑝11(𝑘𝑙𝜇𝒌𝒍)𝒍≠𝒌𝒌′ ∑ 𝑝11(𝑘′𝑙𝜇𝒌′𝒍)𝒍≠𝒌𝒌′ ]½
                (54) 

As above, we take the polar axis parallel to 𝒌 and measure azimuthal angles 𝜙 in the plane 

perpendicular to the plane defined by 𝒌 and 𝒌′ so that 𝜙𝒌′ = 0 and (40) holds.  

The sum rules are slightly modified from those of OP-NOFT-Cs: 

∑ 𝑝1(𝑘)

𝒌

= 𝑁 ,    (55) 

∑ 𝑝11(𝑘𝑘′𝜇𝒌𝒌′)

𝒌′≠𝒌

= (𝑁 − 1)𝑝1(𝑘) .    (56) 

The bounds are unchanged from those of OP-NOFT-Cs, Eqs. (44)-(46). 

 Converting the sums to integrals and scaling the wave vectors by 𝑘𝐹 results in the 

energy functional 



ℰ[𝑝1, 𝑝11] =
3

4
𝑘𝐹

2 ∫ 𝑑�̅�𝑝1(�̅�)�̅�4
∞

0

−
9𝜋𝑛

4𝑘𝐹
2 ∬ 𝑑�̅�𝑑�̅�′ ∫ 𝑑𝜇�̅��̅�′𝑝11(�̅��̅�′𝜇�̅��̅�′)

1

−1

∞

0

�̅�2𝑘 ′̅2

�̅�2 + 𝑘 ′̅2
− 2�̅��̅�′𝜇�̅��̅�′

+
9𝜋𝑛

2𝑘𝐹
2 ∬ 𝑑�̅�𝑑�̅�′ ∫ 𝑑𝜇�̅��̅�′

1

−1

𝑆(�̅�)𝑆(�̅�′)𝑝10
½ (�̅��̅�′𝜇�̅��̅�′)𝑝01

½ (�̅��̅�′𝜇�̅��̅�′)𝜉(�̅��̅�′𝜇�̅��̅�′)

∞

0

 

⨉
�̅�2𝑘 ′̅2

(�̅�2 + 𝑘 ′̅2
)

2

− 4�̅�2𝑘 ′̅2
𝜇�̅��̅�′

2

 ,    (57) 

 

𝜉(�̅��̅�′𝜇�̅��̅�′) =
3 ∫ 𝑑𝑙 ̅∞

0
𝑙2̅ ∫ 𝑑𝜇�̅��̅�

1

−1
∫ 𝑑𝜑𝑙 ̅

2𝜋

0
𝑝11

½ (�̅�𝑙�̅��̅��̅�)𝑝11
½ (�̅�′𝑙�̅��̅�′�̅�)

4𝑝1(�̅�)
½

𝑝1(𝑘′̅)
½

 .    (58) 

The sum rules become 

∫ 𝑑
∞

0

�̅�𝑝1(�̅�)�̅�2 = ⅔ ,     (59) 

∫ 𝑑
∞

0

�̅�′ ∫ 𝑑
1

−1

𝜇�̅��̅�′𝑝11(�̅��̅�′𝜇�̅��̅�′)𝑘 ′̅2
=

4

3
𝑝1(�̅�) ,    (60) 

completing the specification of the fully polarized OP-NSOFT-Ct. 

 

5. Results 

 Computations were carried out by the method described in I.  We represent 𝑝1(�̅�) using 

a non-uniform radial k-mesh of 20 points which are more closely spaced in the vicinity of 𝑘𝐹. 

The OPs 𝑝11(�̅��̅�′𝜇�̅��̅�′) are represented using the same radial mesh for �̅� and �̅�′ and an angular 

grid of 10 points for 𝜇�̅��̅�′. Similarly, the integrations in 𝜉(�̅��̅�′𝜇�̅��̅�′) we carried out over the same 

radial mesh for �̅�, �̅�′, and 𝑙  ̅ ; the same angular mesh for 𝜇�̅��̅�′, 𝜇�̅��̅�, and 𝜇�̅�′�̅�; and same angular 

mesh of 10 points for 𝜑𝑙 ̅. All integrations involving 𝑝1 or 𝑝11 are carried out using a numerical 

quadrature scheme where the kernels k2, 1/k2, etc., are integrated analytically in each volume 

element. In this way precise integrals are obtained in spite of the rather coarse representation 

of 𝑝1 and 𝑝11. 

 The total energy per particle of the unpolarized (paramagnetic, PM) HEL, obtained from 

OP-NSOFT-Cs, and of the total energy per particle of the fully polarized (ferromagnetic, FM) 

HEL, obtained from OP-NSOFT-Ct, are reported in Fig. 1 for 𝑟𝑠 ≤ 10. We also report in the same 

figure the results of diffusion Monte Carlo (DMC) simulations for the same systems.xvi The DMC 

energies are very accurate and should be taken as a benchmark of our calculations. It is 

apparent from the figure that the OP-NSOFT-C curves lie above the corresponding DMC curves 

even though the 𝜉-approximation is not variational in the strict sense. They reproduce the 



variation of the energy with 𝑟𝑠 in a qualitatively correct way, indicating that the error of OP-

NSOFT-C in each of the two systems is weakly dependent on 𝑟𝑠. In particular, the PM curve has a 

minimum at 𝑟𝑠 ≅ 4 while the FM curve has a minimum at 𝑟𝑠 ≅ 5, similar to the corresponding 

DMC results. However, the error of the OP-NSOFT-C energies, as measured by the distance 

from the corresponding DMC energies, is larger for the PM HEL than for the FM HEL, reflecting 

the more important relative role of electron correlations in the former. As a consequence, the 

transition from PM to FM HEL occurs at 𝑟𝑠 ≅ 7.5, an improvement over HF theory, which gives 

the transition at 𝑟𝑠 ≅ 5.5xxvi but still very far from the DMC result, which places the transition at 

𝑟𝑠 ≅ 75.xxvii The DMC estimate corrects an earlier variational Monte Carlo estimate that placed 

the transition at 𝑟𝑠 ≅ 26. xxviii The difficulty in locating accurately the transition reflects the very 

small energy difference between the unpolarized and the fully polarized HEL at small densities 

(𝑟𝑠 > 20).xxvii  

 

 
Figure 1. Total energy per particle vs 𝑟𝑠, 𝑟𝑠 = (1,10) for the unpolarized OP-NSOFT-Cs and 

polarized OP-NSOFT-Ct compared with the unpolarized and polarized DMC values of ref. xvi. 

 

 The correlation energy, i.e. the difference between the total energy and the HF energy, 

is reported in Fig. 2 in the 𝑟𝑠 interval shown in Fig. 1. Comparing with the DMC data we see that 



OP-NSOFT-Cs yields approximately one third of the PM DMC value throughout, while OP-

NSOFT-Ct yields approximately from one half to one third of the FM DMC value with increasing 

𝑟𝑠. As expected, the polarized correlation energy is significantly smaller because the correlation 

energy functional, which drives the correlation energy, has a smaller scattering matrix element 

and phase space and the exchange energy is larger in OP-NSOFT-Ct than in OP-NSOFT-Cs. 

 

 
Figure 2. Correlation energy per particle vs 𝑟𝑠, 𝑟𝑠 = (1,10) for the unpolarized OP-NSOFT-Cs and 

polarized OP-NSOFT-Ct compared with the unpolarized and polarized DMC values of ref. xvi. 

 

 The various contributions to the OP-NSOFT-Cs,t energy functionals are displayed in Fig. 3 

and Fig. 4. The PM HEL is illustrated in Fig. 3 in the interval 1 ≤ 𝑟𝑠 ≤ 50. The off-diagonal 

energy contribution is the correlation energy functional of the OP-NSOFT-Cs formalism: it 

should not be confused with the correlation energy defined as the difference of the total OP-

NSOFT-Cs energy and its HF counterpart. At large 𝑟𝑠 the exchange energy within OP-NSOFT-Cs 

converges to the HF energy, implying that, at these 𝑟𝑠 values, the correlation energy is the sum 

of the off-diagonal and kinetic contributions. At large 𝑟𝑠 the kinetic contribution decays to zero 

and the off-diagonal contribution converges to the correlation energy. The FM HEL is illustrated 



in Fig.4 in the interval 1 ≤ 𝑟𝑠 ≤ 10. The off-diagonal contribution of the OP-NSOFT-Ct formalism 

is small. It and the correlation energy are nearly equal, implying that the correlation energy 

functional is too small to drive much change in the kinetic and exchange energies from their HF 

values. 

 

 
Figure 3. Contributions to the total energy per particle vs 𝑟𝑠, 𝑟𝑠 = (1,50) for OP-NSOFT-Cs. The 

off-diagonal energy is the value of 𝐸𝐶, the correlation energy functional, whereas the 

correlation energy is the difference between the total energy and the Hartree-Fock energy, 

which includes changes to the kinetic and exchange energies as well. 
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Figure 4. Contributions to the total energy per particle vs 𝑟𝑠, 𝑟𝑠 = (1,10) for OP-NSOFT-Ct. 

 

 To gain insight into electron correlation it is useful to analyze how the OPs change with 

𝑟𝑠.  The occupation probability 𝑝1(𝑘) is shown in Fig.5 for the PM HEL for two density values, 

𝑟𝑠 = 1 and 𝑟𝑠 = 10, respectively. DMC dataxvi for this quantity are available and are reported in 

the same figure. We notice that all the data display a discontinuous jump at the Fermi 

wavenumber 𝑘𝐹 in accordance with the Luttinger theorem. In Fig.5 the agreement of OP-

NSOFT-Cs and DMC is quantitative for 𝑟𝑠 = 1, where substantial correlation energy is obtained 

with little distortion of the free-particle or HF occupation probability. The agreement is only 

qualitative for 𝑟𝑠 = 10, but reflects the trend of a reduced discontinuity with increasing 𝑟𝑠, cf 

Figure 10 below. The occupation probability 𝑝1(𝑘) of the FM HEL is shown in Fig.6 at the same 

two densities as Fig.5. Only the OP-NSOFT-Ct results are reported in this figure, as the 

corresponding DMC data are not available. The occupation probability 𝑝1(𝑘) differs negligibly 

from its free-electron or HF value at 𝑟𝑠 = 1 and relatively little at 𝑟𝑠 = 10 because the off-

diagonal energy (correlation energy functional 𝐸𝐶) is smaller for the FM HEL, as shown in Fig.4. 
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Figure 5. Occupation probability 𝑝1(𝑘) vs 𝑘 𝑘𝐹⁄  for OP-NOFT-Cs at 𝑟𝑠 = 1 and 10 compared 

with the unpolarized DMC results. The dashed curves are the fitting functions that Ortiz and 

Ballonexvi  fitted to their raw data. The maximum above 𝑘𝐹 for 𝑟𝑠 = 10 might be an artifact. 
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Figure 6.  Occupation probability 𝑝1(𝑘) vs 𝑘 𝑘𝐹⁄  for OP-NSOFT-Ct at 𝑟𝑠 = 1 and 10. There are no 

polarized DMC results available for comparison. 

 

 In the absence of correlation, 𝑝11(𝒌, 𝒌′) factorizes into 𝑝1(𝑘)𝑝1(𝑘′), which satisfies the 

sum rule (27) and bounds (29) and (30) for the PM and the corresponding conditions for the FM 

case. Inserting the factorized form into the expression (21) for 𝜉(𝒌𝒌′) yields unity for the PM 

case and the same for the equivalent of (21) in the PM case. Inserting this and the factorized 

form into the correlation energy functional 𝐸𝐶  yields the positive definite form  

𝐸𝐶 = ∑ {𝑆(𝑘)[𝑝1(𝑘)(1 − 𝑝1(𝑘))]
½

}

𝒌≠𝒌′

𝑤(|𝒌 − 𝒌′|) {𝑆(𝑘′)[𝑝1(𝑘′)(1 − 𝑝1(𝑘′))]
½

} .    (60) 

for the PM and similarly for the FM case. Minimizing the energy functional yields the HF state. 

Thus deviation from factorization of 𝑝11 is a sensitive measure of the extent of correlation. 𝑝11 

enters into 𝐸𝐶  via (20a,b). To reduce the contribution of a positive term to 𝐸𝐶, 𝑝11 should tend 

towards its upper bound. Conversely, to increase the magnitude of the contribution of a 

negative term, it should tend towards its lower bound. Thus deeper insight into electron 

correlation can be drawn from the angular dependence of the 2-OP 𝑝11(𝑘, 𝑘′, 𝑐𝑜𝑠𝜃) by its 

comparison there with its upper and lower bounds and the value of its factorized form. It is 

shown in Figs. 7, 8, and 9 for OP-NSOFT-Cs at 𝑟𝑠 = 10.  In Fig. 7, 𝑘 equals 𝑘′ and is greater than 

𝑘𝐹. From (29), the lower bound of 𝑝11 is 0, and the upper bound is 𝑝1 = 0.167 shown in red. At 

small angles 𝑝11 hugs its upper bound and undergoes a rapid transition towards its lower bound 
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starting at 𝜃 ≅ 1.0 rad. Because both 𝑘 and 𝑘′ are greater than 𝑘𝐹, the sign of the contribution 

to 𝐸𝐶  is positive according to (9), so that according to (38) and (39a,b) the larger the value of 

𝑝11, the smaller the repulsive contribution to 𝐸𝐶  and the larger the attractive contribution of 

the exchange energy to the total energy. This tendency is particularly important at smaller 

angles, the matrix element diverging at 𝜃 = 0. However, if 𝑝11 were maximal at all 𝜃, the sum 

rule (43) would be violated, so a compensating transition towards the minimal value occurs at 

larger 𝜃, where the matrix element is weaker. This illustrates how the correlation hole that 

screens the tail of the Coulomb interaction is built up. The uncorrelated value of 𝑝11, 𝑝1
2,  much 

less than the upper bound reached below the transition, is shown in blue to illustrate the 

magnitude of the correlation driven by the small angle scattering. 

 

 
Figure 7. 𝑝11(𝑘, 𝑘′, 𝑐𝑜𝑠𝜃) vs 𝜃 for OP-NSOFT-Cs at 𝑟𝑠 = 10, 𝑘 = 𝑘′ = 1.09, and 𝜃 = (0, 160°). 

The upper bound is shown in red, the uncorrelated value in blue, and the lower bound is 0. 

 

 In Fig. 8, 𝑘 again equals 𝑘′ but is less than than 𝑘𝐹. The behavior of 𝑝11 is similar to that 

in Fig. 7 for the same reasons. From (29), the lower bound of 𝑝11 is 2𝑝1 − 1 = 0.676, and the 

upper bound is 𝑝1 = 0.838, both shown in red. 𝑝11 hugs its upper bound to larger angles than 

in Fig. 7 and undergoes a more rapid transition starting at 𝜃 ≅ 1.3 rad and reaching its lower 

bound by ≅ 2.25 rad. As in Fig. 7, the transition occurs because the sign of the contribution to 

the correlation energy functional is positive, 𝑘 and 𝑘′ both being smaller than 𝑘𝐹, while the 
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exchange energy is negative. The transition occurs at larger angles and is much sharper than in 

Fig. 7, because the value of 𝑝1 is so much larger, as inspection of the correlation energy 

functional shows. 

 

 
Figure 8. 𝑝11(𝑘, 𝑘′, 𝑐𝑜𝑠𝜃) vs 𝜃 for OP-NSOFT-Cs at 𝑟𝑠 = 10, 𝑘 = 𝑘′ = 0.92, and 𝜃 = (0, 160°). 

The upper and lower bounds are shown in red and the uncorrelated value in blue. 

 

Fig. 9 shows 𝑝11 with 𝑘 < 𝑘𝐹  and 𝑘′ > 𝑘𝐹 so that the sign of the contribution to the 

correlation energy functional is negative. Maximizing its magnitude requires minimizing 𝑝11, the 

opposite of the cases in Figs. 7 and 8, whereas the magnitude of the exchange energy increases 

with 𝑝11, a conflict. So, 𝑝11 hugs its lower bound 𝑝1(𝑘) + 𝑝1(𝑘′) − 1 = 0.005 until 𝜃 ≅ 0.4 rad, 

a smaller angle, as shown in blue, but never reaches its upper bound 𝑝1(𝑘′) = 0.167, which is 

off scale. Its maximum value ≅ 0.08 remains well below the uncorrelated value, 𝑝1(𝑘)𝑝1(𝑘′) =

0.140, illustrating again how small-angle scattering drives correlation through the negative 

contributions to the correlation energy functional.  

 

0 0.5 1 1.5 2 2.5 3
theta

0.65

0.7

0.75

0.8

0.85

0.9

p
11

(k1 = 0.92; k2 = 0.92; theta)
r
s
 = 10.

p
1
(k=0.92) = 0.838

[p
1
(k=0.92)]

2
 = 0.702

2 p
1
(k=0.92) - 1. = 0.676



 
Figure 9. 𝑝11(𝑘, 𝑘′, 𝑐𝑜𝑠𝜃) vs 𝜃 for OP-NSOFT-Cs at 𝑟𝑠 = 10, 𝑘 = 0.92, 𝑘′ = 1.09, and 𝜃 =

(0, 160°). The lower bound is shown in blue, the uncorrelated value in red, and the upper 

bound is off scale. 

 

 

Fig. 10 compares the 𝑟𝑠-dependence of the discontinuity 𝑍 in 𝑝1(𝑘) at 𝑘𝐹 obtained from 

OP-NSOFT-Cs with that obtained from DMC. Both curves trend downward smoothly with 𝑟𝑠, the 

OP-NSOFT-Cs curve more rapidly than the DMC curve, illustrating the over correlation of states 

near 𝑘𝐹 in OP-NSOFT-Cs.  
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Figure 10. Discontinuity 𝑍 in 𝑝1(𝑘) at 𝑘𝐹 for OP-NSOFT-Cs, 𝑟𝑠 = (1,50) compared with DMC 

values, 𝑟𝑠 = (1,50). 

 

6. A possible improvement 

 OP-NSOFT-Cs,t thus describes the 1-OP 𝑝1(𝑘) acceptably and reveals interesting 

information about electron correlation through 𝑝11(𝒌, 𝒌′). The values of the correlation energy, 

ranging from ⅓ to ½ of the correct value, need significant improvement. There are four 

potential sources of that discrepancy: the PDC; the sign approximation; the pairing 

approximation; and the ξ-approximation. It is not possible to eliminate the PDC. That would 

require returning to the full orthogonality constraint of I, which is combinatorial. We presently 

see no way to improve the sign approximation. However, significant improvement could be 

expected from the full OP-NSOFT, which would include pairs of non-zero total momentum, 

increasing the phase space contributing to the correlation energy functional. Improvement of 

the ξ-approximation would occur in the full OP-NSOFT for the same reason.  
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