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Abstract

In this paper, the problem of distributed resource allocation is studied for an Internet of Things

(IoT) system, composed of a heterogeneous group of nodes compromising both machine-type devices

(MTDs) and human-type devices (HTDs). The problem is formulated as a noncooperative game between

the heterogeneous IoT devices that seek to find the optimal time allocation so as to meet their quality-

of-service (QoS) requirements in terms of energy, rate and latency. Since the strategy space of each

device is dependent on the actions of the other devices, the generalized Nash equilibrium (GNE)

solution is first characterized, and the conditions for uniqueness of the GNE are derived. Then, to

explicitly capture the heterogeneity of the devices, in terms of resource constraints and QoS needs,

a novel and more realistic game-theoretic approach, based on the behavioral framework of cognitive

hierarchy (CH) theory, is proposed. This approach is then shown to enable the IoT devices to reach a

CH equilibrium (CHE) concept that takes into account the various levels of rationality corresponding to

the heterogeneous computational capabilities and the information accessible for each one of the MTDs

and HTDs. Simulation results show that the CHE solution maintains stable performance. In particular,

the proposed CHE solution keeps the percentage of devices with satisfied QoS constraints above 96%

for IoT networks containing up to 10,000 devices without considerably degrading the overall system

performance in terms of the total utility. Simulation results also show that the proposed CHE solution

brings a two-fold increase in the total rate of HTDs and deceases the total energy consumed by MTDs

by 78% compared to the equal time policy.
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I. INTRODUCTION

Meeting the stringent quality-of-service (QoS) requirements of a massive number of heteroge-

neous devices is the main challenge facing the successful deployment of the Internet of Things

(IoT) [1]–[4]. In particular, the IoT ecosystem will encompass both human type devices (HTDs)

and machine type devices (MTDs). MTDs are expected to deliver a wide range of applications

ranging from healthcare to smart homes and transportation and, as such, they will exhibit a

heterogeneous mix of quality-of-service (QoS) requirements [4]. In general, the three main

important performance metrics for MTDs are reliability, energy efficiency, and latency. MTDs,

such as those used for environmental monitoring, cannot be easily charged, and, thus they must

minimize their energy consumption. In contrast, MTDs that are used for critical applications

such as alarm systems will be primarily seeking to reliably deliver their packets under stringent

delay constraints. HTDs, such as smartphones, typically require high-speed transmission rates

while not exceeding a certain energy budget. Beyond this heterogeneous nature of the IoT,

its massive scale will significantly increase the competition on the wireless resources. This,

in turn, requires designing very efficient resource allocation schemes tailored to the scale and

heterogeneity of the system. Moreover, in the IoT, a centralized approach to resource allocation

can be prohibitive as it requires solving an optimization problem with a large number of variables

and constraints corresponding to all of the IoT devices. Thus, there is a need to adopt distributed

and self-organizing IoT resource allocation schemes [5]. In addition to being distributed, resource

allocation in the IoT must also explicitly factor in the various IoT devices constraints that stem

from their different QoS needs and computational capabilities in terms of memory and processing

powers.

To address these challenges, there is a need for a joint design of resource allocation and

multiple access for the IoT [6]–[14], [16], [17]. In [17], random access was initially proposed

as a suitable multiple access scheme for a system with massive number of devices such as

the IoT since it does not require coordination and can properly cope with the bursty nature

of the MTDs traffic. However, in a dense IoT system, random access can potentially lead to

increased collisions, and thus, not all devices will be able to meet their QoS requirements [18].

A preliminary version of this work was presented in [1] at the 2016 IEEE International Symposium on Information Theory.
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National Science Foundation under Grants CNS-1460333, CNS-1702808, ECCS-1647198 and OAC-1541105.
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For example, the performance of MTDs that require ultra low latency or HTDs that require high

data rates can can be severely affected by collisions. Thus, there is a need to design a new,

distributed IoT multiple access scheme that can satisfy the requirements of devices with strict

QoS constraints.

A. Related Works

There has been significant recent interest in developing resource allocation mechanisms suit-

able for the IoT such as in [8]–[14], [16], [17]. Centralized scheduling schemes for IoT LTE

networks are proposed in [8]–[11]. In [8], a resource management scheme that dynamically

allocates time resources between MTDs and HTDs based on current traffic conditions and QoS

requirements. The works in [9] and [10] propose schemes that allocate the LTE resources to

MTDs and HTDs based on a bipartite graph. In [11], the authors propose two seperate uplink

scheduling schemes for HTDs and MTDs in an LTE system based on channel conditions and

delay requirements while taking fairness into account. Other works such as in [12] and [13]

adopted game-theoretic approaches for distributed resource allocation problems in the IoT. The

authors in [12] study the problem of throughput maximization of MTDs under random access.

However, in [12], devices are considered of equal capability and similar QoS requirements. The

work in [13] considers a heterogeneous system of MTDs in which nodes can use different routing

and network coding schemes to optimize heterogeneous QoS requirements. An evolutionary game

approach is proposed in [14] for optimizing the transmission strategy in a device-to-device (D2D)

enabled LTE network in which each MTD chooses to act noncooperatively or cooperatively with

other MTDs using the same resources. In [15], the problem of uplink user association of IoT

devices is studied in a dense small cell network using a mean-field game.

However, these works [8]–[14], [16], [17] typically rely on the concept of a Nash equilibrium

to solve the studied resource allocation problems. Such a conventional Nash equilibrium solution

may not be suitable to solve the distributed resource allocation when the optimization is done

at the IoT devices’ end. This is because the Nash equilibrium assumes that players have equal

and similar capabilities, while IoT devices are heterogeneous and have different computational

capabilities. Thus, the rationality of each IoT device is bounded by its computational capabilty.

Also, at the Nash equilibrium, in order to compute its best resource strategy, each device must

know the true actions of other devices in the system, which is not practical for the IoT. Indeed, in

practice, to gather information on all the actions of the opposing devices, a significant amount of
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information exchange (and, thus, delay) is required given the massive number of devices in the

IoT. Moreover, MTDs, such as small sensors, have limited memory and are unable to store the

actions of all other IoT devices. Further, mean-field game solutions such as in In [15] typically

rely on the exchangeability property which presumes that all devices are homogeneous and have

a similar impact on the game. This assumption is generally not appropriate for heterogeneous IoT

environments. These limitations motivate the need for new solution approaches that are tailored

to the unique nature of the IoT, in terms of heterogeneity, scale, and device constraints.

B. Contribution

The main contributions of this paper are summarized as follows:

• We propose a distributed self-organizing resource allocation scheme that enables the IoT

devices to find their optimal allocation of time resources, while explicitly catering for the

individual capability of each device and the limited availability of information. In particular,

we consider the problem of resource allocation in the uplink of an IoT network that

is supporting a heterogeneous mix of IoT devices using a time division multiple access

(TDMA) scheme. In this network, each IoT device is self interested in determining the

optimal time fraction that meets its own strict QoS guarantees in a distributed manner. In

particular, HTDs seek to maximize their data rate while MTDs must deliver their packets

within stringent deadlines. For both HTDs and MTDs, the proposed model accounts for

energy efficiency.

• Due to the dependence of the optimal time fraction of each device on the chosen time

fractions by the remaining devices, we formulate the problem as a noncooperative game1

in which the IoT devices are the players that seek to guarantee their QoS while explicitly

factoring in their heterogeneous requirements and devices’ capabilities. We characterize the

generalized Nash equilibrium (GNE) solution of the proposed game and show the conditions

under which the GNE is unique. Further, we present a learning algorithm that allows the

IoT devices to reach the GNE in a distributed manner. We show that the computational

complexity of the GNE learning algorithm is polynomial in the number of IoT devices. As

such, given the massive scale of the IoT, it may not be feasible for IoT devices with limited

computation capabilities to find the GNE.

1 Here, we note that, within the scope of this work, devices are assumed to be noncooperative, due to the overhead associated

with cooperation in a massive IoT.
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• To address these computational limitations, we propose a novel and more realistic solution

that extends the framework of cognitive hierarchy (CH) theory [19], a branch of behavioral

game theory that assumes that players belong to different discrete levels of rationality,

and that the players have different beliefs about the remaining players depending on their

rationality level. The rationale behind using a CH approach is two-fold: a) The different CH

rationality levels allow us to account for the heterogeneous computational capabilities of

the IoT devices, while the different players’ beliefs are dependent on the resources available

at each IoT devices to obtain and store the information about the remaining players. Thus,

the CH approach is more realistic model than the classical GNE that assumes that all

players are fully rational and of equal capabilities and b) In the proposed CH approach,

each device selects its equilibrium strategy based on its beliefs about the remaining devices,

and, thus, it does not incur massive information exchange to find the CH equilibrium as is

the case of finding the GNE solution. These characteristics make the CH framework suitable

for this problem. To model the IoT resource allocation problem using CH, we extend the

conventional framework to explicitly take into account the awareness of each device of

other devices at the same rationality level. This extension is important in our problem as

multiple devices of the same characteristics and computational capabilities can exist in an

IoT network.

• We show that the computational complexity of the optimization done at each device to find

the cognitive hierarchy equilibrium (CHE) is much smaller than the GNE and is linear in

the number of CH levels.

• Simulation results show that the CHE solution maintains stable performance. In particular,

the proposed CHE solution keeps the percentage of devices with satisfied QoS constraints

above 96% for IoT networks with up to 10,000 devices while not conisderably degrading

the overall system performance, in terms of the total utility. Simulation results also show

that the proposed CHE solution brings a two-fold increase in the total rate of HTDs and

decreases the total energy by MTDs by 78% compared to an equal time policy.

The rest of the paper is organized as follows. Section II presents the system model and the

heterogeneous time allocation (HTA) problem. Section III describes the noncooperative game

formulation of the HTA problem and presents the GNE and the CHE solutions respectively.

Simulation results are presented in Section IV. Finally, conclusions are drawn in Section V.
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II. SYSTEM MODEL

Consider the uplink of an IoT system composed of a heterogeneous mix of machine type de-

vices and human type devices. In this model, we consider MTDs having strict delay requirements

and HTDs having high data rate requirements that are served by a base station (BS) according

to a TDMA scheme. In this scheme, transmissions occur in time periods of T seconds, and

each IoT device transmits during a fraction τi of T . We denote by L the set of L IoT devices

(L = H ∪M) that includes the set H of HTDs and the set M of MTDs. All IoT devices in

L transmit on the same frequency band of bandwidth W . Each device i transmits with a fixed

power Pi. The channel gains, hi, between any device i ∈ L and the BS are assumed to be

independent block Rayleigh fading with variance α2
i . It is assumed that statistical channel state

information (CSI) is available at each device i.e. each device knows the channel statistics but

not the instantaneous channel gain. This assumption is suitable for uplink in IoT as obtaining

statistical CSI requires less communication overhead than full CSI [20]. Additive white Gaussian

noise of variance σ2 is present at each receiver.

Each device i ∈ L must determine the optimal time fraction τ ∗i that meets its quality-of-

service requirements. Due to the heterogeneity of devices, the QoS requirement of each device

will depend on its type. The details of the QoS requirements of HTDs and MTDs are presented

respectively as follows.

A. HTDs QoS Requirements

HTDs, such as smartphones, will seek to maximize their expected transmission rate while not

exceeding an energy budget Ei. The achieved rate is related to the received signal-to-noise ratio

(SNR) through the ergodic capacity formula and is given by:

Ri = Ehi
[
W log

(
1 +
|hi|2Pi
σ2

)]
τi. (1)

The energy spent by HTD i during time fraction τi is:

E[ξi] = PiτiT. (2)

Thus, each HTD i solves the following optimization problem

max
τi

Ehi
[
W log

(
1 +
|hi|2Pi
σ2

)]
τi, (3a)

s.t. Piτi ≤
Ei
T
, τi ≤ 1−

∑
j∈L

τj, 0 ≤ τi ≤ 1, (3b)

where W is the bandwidth.
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B. MTDs QoS Requirements

Each MTD i seeks to deliver a packet of size bi bits within a strict delay constraint. Due

to fading, the packet may not be delivered successfully within a single transmission, and, thus,

the probability pi with which the packet transmitted by device i is successfully decoded at the

BS is defined as the probability that the received SNR is greater than a required threshold γi.

The threshold γi is chosen so that bi bits can be transmitted successfully. Here, using Shannon’s

capacity formula, we have
bi
Tτi

= W log(1 + γi), (4)

where W is the bandwidth. The probability of successful decoding is therefore

pi = Pr
[
|hi|2Pi
σ2

≥ γi

]
= e

− γiσ
2

α2
i
Pi , (5)

where Pi is the transmit power of MTD i. MTD i uses retransmissions in order to reliably deliver

the packet. Hence, the probability distribution of the packet success time Ti of device di follows

a geometric distribution:

Pr[Ti = k] = (1− pi)k−1pi =
(
1− e

− γiσ
2

α2
i
Pi

)k−1
e
− γiσ

2

α2
i
Pi . (6)

where Ti is the number of time slots spent to deliver the packet successfully.

Each packet of MTD i should be delivered with a strict deadline of di seconds. It has been

shown in [21] that the MTDs’ traffic is bursty. Thus, the inter-arrival times of the MTD packets

are assumed to be large. Hence, the queuing delay can be ignored as it tends to be much smaller

than the transmission delay. Indeed, for characterizing latency, in such a scenario, we allow each

MTD to ensure that its time to transmit does not exceed a certain threshold. Since the time to

deliver each packet successfully is random, the probability that the successful transmission time

exceeds a certain number of time slots ti must be very small i.e. Pr[Ti ≥ ti] ≤ ε with

Pr[Ti ≥ ti] = (1− pi)ti =
(
1− e

− γiσ
2

α2
i
Pi

)ti
. (7)

and ti =
di
T

. For MTDs, there is a need to maintain a low energy consumption to extend the

overall lifetime of the devices. Thus, the expected energy consumed by each MTD i will be

E[Ei] = Pi × E[Ti] =
PiτiT

pi
. (8)
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Thus, in order to find its optimal transmission parameters, each MTD i must solve the following

optimization problem

min
τi

PiτiT

pi
, (9a)

s.t. Pr[Ti ≥ ti] ≤ ε, τi ≤ 1−
∑
j 6=i

τj, 0 ≤ τi ≤ 1. (9b)

where the constraint in (9b) is based on the assumption of static allocation of time fractions i.e.

each device i is assigned the fraction τi even after it succeeds in transmitting its packet. Based

on (4), the time fraction τi is a decreasing function of γi. Also, the expression of Pr[Ti ≥ ti] as

a function of τi is complicated and the probability pi is a function of γi. Hence for convenience,

the optimization variable is changed from τi to γi yielding

min
γi

Pibi

W log(1 + γi)e
− γiσ

2

α2
i
Pi

, (10a)

s.t.
(
1− e

− γiσ
2

α2
i
Pi

)ti
≤ ε,

bi
T
≤ W log(1 + γi), (10b)

bi
T ·W log(1 + γi)

≤ 1−
∑
j 6=i

bj
T ·W log(1 + γj)

. (10c)

By rewriting the constraints in (10), the optimization becomes

min
γi

Pibi

W log(1 + γi)e
− γiσ

2

α2
i
Pi

, (11a)

s.t. γi ≤ −
α2
iPi log(1− ti

√
ε)

σ2
, (11b)

γi ≥ e

bi

T ·W (1−
∑
j

bj
T ·W log(1+γj)

)

. (11c)

Given the scale and heterogeneity of the IoT, a centralized approach to find the optimal

transmission probabilities will be challenging to implement in practice. This is due to the

fact that it will require solving an optimization problem with very large number of variables

and constraints. Thus, a centralized solution will always lead to high latency which can be

significantly prohibitive for IoT services that are extremely sensitive to latency. Consequently,

a self-organization approach to resource allocation is essential in the IoT as it allows the IoT

devices to optimize their optimal transmission probabilities in a distributed manner. Based on

optimization problems (3b) and (9b), the optimal time fraction for each device i is clearly
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dependent on the time fractions of the remaining devices, which motivates the use of a game-

theoretic approach [23], as detailed next.

III. HETEROGENEOUS TIME ALLOCATION GAME

We formulate a static continuous noncooperative game defined by (L, (Si)i∈L, (Ui)i∈L) with

the players are being the devices in L. The action ai of each HTD i is to choose the time

fraction τi, and the action of each MTD i is to find the required threshold γi (which corresponds

to finding its time fraction τi according to (4)). Thus, given the constraints in (3b) and (11c),

respectively, the strategy space for each MTD i is Si =
[
e

bi

T ·W (1−
∑
j∈M,j 6=i

bj
T ·W log(1+γj)

)−
∑
j∈Hτj ,∞

]
and for each HTD i is Si = [0,min{ E

TPi
, 1−

∑
j∈H,j 6=i τj −

∑
j∈M

bj
T ·W log(1+γj)

}]. Consequently,

the utility function of each MTD i is

Ui(ai) = −
Pibi

W log(1 + γi)e
− γiσ

2

α2
i
Pi

. (12)

The utility function of each HTD i is

Ui(ai) = Ehi
[
W log(1 +

|hi|2Pi
σ2

)
]
τi. (13)

We can clearly see that the utility of each HTD i in (13) is increasing in τi. The concavity of

the utility each MTD i is proved next.

Lemma 1. The utility of MTD i in (12) is concave in γi.

Proof. By applying the log function to the energy function χi(γi) =
Pibi

W log(1+γi)e
− γiσ

2

α2
i
Pi

we have

logχi(γi) = logPibi − log(W )− log log(1 + γi) +
γiσ

2

α2
iPi

. The term − log log(1 + γi) is convex in

γi since log log(1 + γi) is concave in γi. Also, the term γiσ
2

α2
iPi

is linear in γi. Hence, the function

logχi(γi) is convex in γi. It follows that the energy function χi(γi) is convex in γi as it logconvex

in γi. Then, the utility of MTD i is concave since Ui(γi) = −χi(γi).

Lemma 2. By equating the derivative of Ui(γi) to zero, the utility function of MTD i attains

its maximum at γ′i that satisfies

1

1 + γ′i
=

σ2

α2
iPi

log(1 + γ′i). (14)

In the proposed heterogeneous time allocation (HTA) game, the utility of each device i based

on (12) and (13) is dependent only on its own strategy. However, the strategy space of each
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device i is dependent on the strategy vector a−i of the remaining devices. Hence, to find a

suitable solution for this formulated game, we must study the concept of the generalized Nash

equilibrium (GNE) [22].

A. Generalized Nash Equilibrium Solution

The GNE is a popular solution concept used to solve game-theoretic scenarios in which the

action spaces of the players are mutually dependent, as is the case in the formulated HTA game.

Formally, the GNE for the proposed game can be defined as follows.

Definition 1. The GNE of the heterogeneous time allocation game is the vector of players actions

a∗ such that Ui(a∗i ) ≥ Ui(ai) ∀i ∈ D, ai ∈ Si(a∗−i).

In what follows, we show that the GNE for the HTA game always exists. Subsequently, we

show the conditions under which the GNE is unique and characterize the GNE set in the case

when the GNE is not unique.

Proposition 1. A GNE exists for the heterogeneous time allocation game.

Proof. The proof is in Appendix A.

In order to find the GNE, the best response of each device is derived as follows.

Proposition 2. Given a strategy vector a−i, the best response of HTD i is given by

ai = min
( Ei
TPi

, 1−
∑

j∈H,j 6=i

τj −
∑
j∈M

bj
T ·W log(1 + γj)

)
(15)

Proof. The proof is in Appendix A.

Proposition 3. The best response of each MTD i is

ai =



γi,UB, if γ′i ≥ γi,UB

γ′i, if e

bi

T ·W (1−
∑
j∈M,j 6=i

bj
T ·W log(1+γj)

−
∑
j∈H τj) ≤ γ′i ≤ γi,UB

e

bi

T ·W (1−
∑
j∈M,j 6=i

bj
T ·W log(1+γj)

−
∑
j∈H τj) , otherwise

where γ′i is given by in (14), and γi,UB = −α2
iPi log(1− ti

√
ε)

σ2 is the upper bound on γ as in (11b).

Proof. The proof is in Appendix A.
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Algorithm 1: GNE Learning Algorithm for the Heterogeneous Time Allocation Game
1 The BS chooses an initial feasible vector of time allocations τ0 and broadcasts it to its associated devices

2 Each device initializes the current sum of time fractions as
∑
i∈L τi,0.

3 repeat

4 foreach device i ∈ 1, ..., L do

5 Device i computes its best response.

6 Device i broadcasts its newly computed best response to all devices in L.

7 All devices update their current sum of time fractions.

8 end

9 until convergence to GNE;

Thus, based on the properties of the best response, the GNE of both MTDs and HTDs is

derived next. First, before characterizing the GNE of the proposed HTA game, we define the

following key parameters

• The set M′ =
{
i ∈M s.t. γ′i ≤ γi,UB

}
.

• The set of sets
A = {Aj ⊂ L s.t.

∑
i∈A∩M′

bi
T ·W log(1+γ′i)

+
∑
i∈A∩H

Ei
T ·WPi

+
∑
i∈A\M−M′

bi
T ·W log(1+γi,UB)

≤ 1}.

Then, the GNE of the proposed HTA game can then be derived as follows.

Theorem 1. The GNE of the HTA game is dependent on the following two conditions:

• If
∑

i∈M′
bi

T ·W log(1+γ′i)
+
∑

i∈H
Ei

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
≤ 1, the GNE of hetero-

geneous time allocation game is unique. In this case, the GNE strategy for each MTD i is

a∗∗i = γ′i ∀i ∈ M′ and a∗∗i = −α2
iPi log(1− ti

√
ε)

σ2 ∀i ∈ M −M′. For each HTD i, the GNE

strategy is a∗∗i = Ei
T ·WPi

.

• If
∑

i∈M
bi

T ·W log(1+γ′i)
+
∑

i∈H
E

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
> 1, the GNE is not unique

and the GNE set N is given by N = ∪1≤j≤|A|Nj where

Nj = {a∗ ∈
∏

1≤i≤L Si s.t. a∗i = γ′i ∀i ∈ Aj ∩ M′, a∗i = Ei
T ·WPi

∀i ∈ Aj ∩ H, a∗i =

−α2
iPi log(1− ti

√
ε)

σ2 ∀i ∈ Aj \ M − M′, and
∑

i∈L−Aj a
∗
i = 1 −

∑
i∈Aj∩M′

bi
T ·W log(1+γ′i)

+∑
i∈Aj∩H

Ei
T ·WPi

+
∑

i∈Aj∩(M−M′)
bi

T ·W log(1+γi,UB)
s.t. a∗i < γ′i ∀i ∈ (L − Aj) ∩M′, a∗i <

−α2
iPi log(1− ti

√
ε)

σ2 ∀i ∈ (L −Aj) ∩ (M−M′) and a∗i <
Ei

T ·WPi
∀i ∈ (L −Aj) ∩H}.

Proof. The proof is in Appendix B.

Based on the best response functions in Propositions 2 and 3, it is clear that the game does

not admit any dominant strategies. Thus, to find the GNE of the HTA game, we present a

learning algorithm based on the nonlinear Gauss-Seidel type method in [22]. This algorithm
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allows the IoT devices to find their GNE strategy in a distributed manner based on the best

response dynamics. The algorithm is defined in Algorithm 1, and its complexity is derived next.

Theorem 2. The complexity of Algorithm 1 is O(L2), and this algorithm converges in at most

three iterations.

Proof. The proof is in Appendix B.

Corollary 1. The complexity of the number of computations done at each device, to find the

GNE, is O(L).

Proof. The proof is in Appendix B.

The GNE assumes that players are fully rational which implies that they have enough compu-

tational powers to compute their GNE and can gather precise information on the actions of other

devices. Indeed, to compute the GNE, each IoT device will need to record the actions of all

other IoT devices. This can lead to a massive amount of information exchange in each iteration

among the IoT devices and also requires all IoT devices to have enough memory to store all of

these actions. This may not be realistic in an IoT ecosystem in which devices are heterogeneous

and have different computational capabilities in terms of memory and processing powers. For

instance, IoT devices can range from small sensors and wearable devices that have very limited

computational capabilities to smartphones that have higher computational capabilities. To cater

for such constraints, an alternative approach to IoT resource allocation is proposed next. This

approach extends the powerful framework of cognitive hierarchy theory [19], that can properly

accommodate such heterogeneous device capabilities.

B. Cognitive Hierarchy Framework for IoT Resource Allocation

Cognitive hierarchy theory [19] is a branch of behavioral game theory based on the concept

of bounded rationality. In general, bounded rationality means that each player finds the best

strategy based on the information that is accessible to this player and the player’s computational

or cognitive capacity as well as the time available for decision making. The CH framework

considers a hierarchy of players in which players are distributed into discrete levels of rationality.

Here, players have different beliefs about other players depending on their rationality level. The

beliefs formed by each player at each rationality level is dependent on the information that

the device can obtain and store, which is constrained by the device’s memory capacity and the

resources available at the device to obtain the information (such as energy). A player at level
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k selects its strategy based on the strategies of players belonging to levels lower or equal to k.

Players belonging to the lowest level 0 do not engage in any rational thinking and, instead, they

select their strategy randomly. We note that CH significantly differs from classical hierarchical

games, such as Stackelberg games and their variants [23], in which all players are considered

to have the same rationality. Also, in a Stackelberg game, the hierarchy levels are defined based

solely on the roles of the players, i.e., players are classified as either leaders or followers, rather

than based on capabilities, as is done in CH.

For our problem, devices are restricted by their computational capabilities and resources. A

player at a higher level of rationality can consider more levels when computing its strategy.

Hence, devices must be grouped into multiple levels of intelligence depending on their capabil-

ities. Thus, we propose a CH model that extends the model of [19] and which has the following

characteristics:

1) The number of players at each level k is distributed according to a Poisson distribution f

with rate τ . Since MTDs generally have lower computational capabilities than HTDs, it is

assumed that MTDs belong to lower rationality levels than HTDs. Hence, MTDs belong

to level 0 up to some level l while HTDs belong to rationality levels greater than l. Also,

we assume that devices belonging of the same CH level are of the same type.

2) A player at level k knows the true proportions f(0), f(1),...,f(k − 1) of players which

are at lower rationality levels. Since these proportions do not add up to one, a player at

level k computes the relative frequency gk(h) of players at a level h (0 ≤ h < k) as

gk(h) =
f(h)∑k−1
i=0 f(i)

, and gk(h) = 0 ∀h ≥ k. This assumption is known as the overconfidence

assumption and is a good model for games with human players. However, in our case, the

players are IoT devices, and it is more likely to have devices of the same computational

capabilities. Thus, we relax this assumption so that a device at level k also knows the

proportion of devices at the same level k. This extension to CH is challenging because the

strategy of each device will depend on the strategies taken by devices at the same level

thus requiring new solutions that go beyond the existing literature [12].

3) In a classical CH theory model [19], players at the lowest level 0 are assumed to make

their choices randomly according to a uniform distribution. In the context of IoT, level-

0 devices correspond to MTDs with very limited resources such as sensors. However, a

random choice of γi by a level-0 device i according to a uniform distribution might result

in occupying a large fraction of the time duration, which will considerably degrade the
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performance of the remaining devices. Thus, we consider that each device at level 0 will

choose its action randomly within [τ0,LB, 1] according to a decreasing distribution such as

an exponential distribution with mean µ. The time fraction τ0,LB is the lower bound on

the time fraction of level-0 devices according to (9b).

Note that the Poisson distribution has been shown in [19] to accurately capture situations in

which fewer players will be at a level higher than k, as the rationality level k grows larger.

As a result, in our setting, this assumption holds because there is a limit on the computational

capability of the devices (in terms of memory and processing power). Indeed, devices with higher

computational capability are more expensive, and, hence, are fewer in number. In a typical IoT

ecosystem, the number of HTDs is small as opposed to the numerous sensors pertaining to

different types of IoT applications.

Due to the aforementioned CH characteristics, each player will seek to find its CH strategy

using an iterative process. During this process, each player will perform limited steps of strategic

thinking depending on its rationality level. A device at level k will anticipate the strategies of

devices at levels 0 to k − 1. Given that the strategies of lower level devices will help a level-k

device to take a more informed decision about the IoT network, then, this device performs k

steps of thinking.

In the HTA game, the strategy space of each device i is dependent on the actions of the

remaining devices. Further, in CH, each device has its own beliefs gk about the rationality (and

actions) of the remaining devices depending on its rationality level k. Consequently, the strategy

space of each device i is dependent on the device’s beliefs gk. Constraint
∑

i∈L τi = 1 becomes

Egk
[∑

i∈L τi

]
= 1. We denote by Si,gk the strategy space of device i based on its belief gk. The

expression of Egk
[∑

i∈L τi

]
of an MTD i at a CH level k (1 ≤ k ≤ l − 1) is given by

Egk
[∑
i∈L

τi

]
=

k∑
h=0

gk(h)
∑
j∈L

bh
T ·W log(1 + γ∗j (h))

(16)

The expression of Egk
[∑

i∈L τi

]
of an HTD i at a CH level k (l ≤ k) is given by

Egk
[∑
i∈L

τi

]
=

l−1∑
h=0

gk(h)
∑
j∈L

bh
T ·W log(1 + γ∗j (h))

+
k∑

h=l+1

gk(h)
∑
j∈L

τ ∗j (h) (17)
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where γ∗j (h) is the CHE strategy of MTD j at level h and τ ∗j (h) is the CHE strategy of HTD j at

level h. Since devices belonging to the same CH level are of the same type, the only parameter

that is different is the channel quality. Computing (16) and (17) requires evaluation of the CHE

strategy at each level h (h ≤ k) for all the channel variance values of the devices in L, which

has a computational complexity linear in the number of devices L. Given that the number of

devices L is very large, we assume that the BS quantize the set of channel variances of all

devices into a discrete set C of C values where C << L. Then, it broadcasts the quantized set

to all of its associated devices. Hence, (16) and (17) can be rewritten as:

Egk
[∑
i∈L

τi

]
=

k∑
h=0

gk(h)
∑
q∈C

Nq
bh

T ·W log(1 + γ∗q (h))
, (18)

Egk
[∑
i∈L

τi

]
=

l−1∑
h=0

gk(h)
∑
q∈C

Nq
bh

T ·W log(1 + γ∗q (h))

+
k∑

h=l+1

gk(h)
∑
q∈C

Nqτ
∗
q (h), (19)

where γ∗q (h) is the CHE of MTD having quantized channel variance value q at CH level h, and

τ ∗q (h) is the CHE of HTD having quantized channel variance value q at CH level h, Nq is the

number of devices having quantized channel variance value q. To compute (18) and (19), we can

see that each device i at CH level k must know the expected equilibrium strategies of devices at

the same level. This is challenging since each device finds its CHE strategy based on its beliefs

and not by using learning based on the devices’ actions as in GNE. Since devices belonging to

the same level are of the same type, we assume that each device i believes that all devices at

the same rationality level will choose the same action.

Next, we define the cognitive hierarchy equilibrium of the HTA game as follows.

Definition 2. A strategy profile a∗ is said to constitute a cognitive hierarchy equilibrium for

the HTA game if and only if:

a∗i (k) = arg max
ai∈Si,gk

Ui(ai) , ∀i ∈ L, (20)

where k is the CH level of player i and Si,gk is the strategy space of device i based on its belief

gk.
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To find the CHE, MTD i at CH level k ≥ 1 solves the following problem

min
γi

Pkbk

W log(1 + γi(k))e
− γi(k)σ

2

α2
i
Pk

, (21a)

s.t.
(
1− e−

γi(k)σ
2

αiPk

)tk
≤ ε, (21b)

bk
T ·W log(1 + γi(k))

≤ 1

gk(k) · L

(
1−

k−1∑
h=0

gk(h)

×
∑
q∈C

Nq
bh

T ·W log(1 + γ∗q (h))

)
. (21c)

A level k HTD i solves the following optimization problem

max
τi(k)

Ehi [W log(1 +
|hi|2Pk
σ2

)]τi(k), (22a)

s.t. Pkτi(k) ≤
Ei
T
, 0 ≤ τi(k) ≤ 1, (22b)

τi(k) ≤
1

gk(k) · L

(
1−

k−1∑
h=l+1

gk(h)
∑
q∈C

Nqτ
∗
q (h)

−
l∑

h=0

gk(h)
∑
q∈C

Nq
bh

T ·W log(1 + γ∗q (h))

)
. (22c)

Based on the optimization problems in (21) and (22), to find its optimal CHE strategy, a

device i at CH level k needs to compute the actions of the remaining devices for each CH

level h (0 ≤ h < k) based on its belief gk. Hence, in CH, each device finds its CHE based

on its own beliefs about other devices and not through an iterative learning process as in GNE.

Thus, the CHE is a stable solution (similar to the stability of a Nash equilibrium) since each

player, due to its bounded rationality, has no incentive of deviating to another strategy once it

computes its CHE. Therefore, in terms of stability, the CHE provides the same stability as the

GNE, but under the more realistic model with bounded rationality. Further, the CHE strategy of

a device at level k is a function of the channel quality between the BS and the device. Thus,

devices belonging to the same CH level might have different CHE strategies. In the following

proposition, we characterize the CHE of the HTA game.

Proposition 4. The CHE of the HTA game is the vector a∗ such that for MTD i at level k ≥ 1

the CHE strategy is given by (23), and the CHE strategy of HTD i at level k is

a∗i (k) = min
{
Ei
TPi

, 1
gk(k)·L

(
1−

∑k−1
h=l+1 gk(h)

∑
q∈C Nqτ

∗
q (h)−

∑l
h=0 gk(h)

∑
q∈C Nq

bh
T ·W log(1+γ∗q (h))

)}
.

Proof. The proof is in Appendix A.
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a∗i (k) =



γi,UB, if γ′i ≥ γi,UB,

γ′i, if e

bk

T ·W
gk(k)

(
1−

∑k−1
h=0

gk(h)
∑
q∈C Nq

bh
T ·W log(1+γ∗q (h))

)
− 1 ≤ γ′i ≤ γi,UB,

e

bk

T ·W
gk(k)·L

(
1−

∑k−1
h=0

gk(h)
∑
q∈C Nq

bh
T ·W log(1+γ∗q (h))

)
− 1, otherwise.

(23)

Given this characterization, we can compute the computational complexity of finding the CHE

at each CH level.

Theorem 3. The complexity of the optimization done at device of level k to find the CHE is

O((k + 1) · C) where C is the size of the quantized channel variance set C.

Proof. The proof is in Appendix B.

Theorem 3 first shows that the process of finding the CHE at each CH level k is guaranteed to

converge. Further, Theorem 3 shows that the computational complexity of the optimization done

by each device at CH level k to find the CHE is linear in the CH level while the computational

complexity of the GNE learning algorithm is polynomial in the number of devices L. Since

k << L, Theorem 3 validates that the CH proposed approach is more suitable for IoT devices

that are of heterogeneous computational capabilities and typically resource constrained.

In the proposed CH approach, all devices obtain their CHE strategy based on their beliefs.

This is reflected in the constraint Egk
[∑

i∈L τi

]
= 1. Hence, the resulting sum of time fractions

of all devices at CHE may not be equal to 1. However, when
∑

i∈L τi,CHE ≥ 1, the time fractions

of all devices must be normalized. The sum of time fractions at CHE is given by∑
i∈L

τi,CHE =
∑
i∈M

bi
T ·W log(1 + a∗i (hi))

+
∑
i∈H

a∗i (hi) (24)

where τi,CHE is the value of time fraction of device i at CHE and hi is the CH level of device i.

Let γgk = e

bk

T ·W
gk(k)

(
1−

∑k−1
h=0

gk(h)
∑
q∈C Nq

bh
T ·W log(1+γ∗q (h))

)
− 1.

The normalized time fraction for each MTD i will be

νi =



bi
T ·W log(1+γi,UB)∑

i∈M
bi

T ·W log(1+a∗
i
(hi))

+
∑
i∈H a

∗
i (hi)

, if γ′i ≥ γi,UB,

bi
T ·W log(1+γ′

i
)∑

i∈M
bi

T ·W log(1+a∗
i
(hi))

+
∑
i∈H a

∗
i (hi)

, if γgk ≤ γ′i ≤ γi,UB,

bk

T ·W
gk(k)·L

(
1−

∑k−1
h=0

gk(h)
∑
q∈C Nq

bh
T ·W log(1+γ∗q (h))

)
∑
i∈M

bi
T ·W log(1+a∗

i
(hi))

+
∑
i∈H a

∗
i (hi)

otherwise.

(25)
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νi =
min

{
E
TPi

, 1
gk(k)·L

(
1−

∑k−1
h=l+1 gk(h)

∑
q∈C τ

∗
q (h)−

∑l
h=0 gk(h)

∑
q∈C Nq

bh
T ·W log(1+γ∗q (h))

)}
bi

T ·W log(1+a∗i (hi))
+
∑

i∈H a
∗
i (hi)

.

(26)

The normalized time fraction for each HTD i is given by (25).

We define γνi to be the SNR threshold for device i when the time fraction of device i is νi.

In practice, for the first two transmission time slots, the devices transmit according to their

computed CHE time fraction. In our proposed scheme, devices transmit in a pre-determined

order, e.g. device 1, device 2, until device L. Since the IoT devices are densely deployed, device

i + 1 can hear and decode the packet transmitted by device i to the BS. Device i + 1 can

detect the signal transmitted by device i either by carrier sensing or by energy detection, i.e.

if the energy of the transmitted signal exceeds a predefined threshold, as done for example in

CSMA protocols [24]. Also, device i+ 1 can decode the packet and determine from its header

if the packet is transmitted by device i. Thus, device i+ 1 starts transmitting as soon as device

i completes its transmission. Then, each device records the times ti,1 and ti,2 during which

it accesses the channel in the first and second time slot, respectively. Finally, each device i

computes the time duration T ′ as the difference ti,2 − ti,1. Finally, device i normalizes its time

fraction as νi =
τi,CHE ·T
ti,2−ti,1 .

In the proposed normalization process, each device computes its normalized time fraction based

on the transmission times of the remaining IoT devices. Thus, transmission is not interrupted

during the process of normalization. Further, there are no extra control messages required to

perform the normalization. Such a normalization scheme does not require information exchange

among the devices, and, thus, it does not result in signaling overhead. Hence, it is suitable for

dynamic networks where devices join or leave the network.

In the following proposition, we compare the performance of the CHE and GNE strategy

profiles of the HTA game. We show the conditions under which the CHE strategy can constitute

also a GNE strategy, and show that in the other cases (i.e. when the CHE strategy profile does

not constitute a GNE) that there always exists at least a GNE that yields a better performance,

in terms of the total system utility. Naturally, such a performance improvement stems from the

fact that the GNE requires more information and more computations per device.
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Theorem 4. Let d = (d1, d2, ..., dL) be a strategy profile corresponding to the normalized CHE

time fractions with di = νi if device i is an HTD and di = γνi if device i is an MTD

• If
∑

i∈L τi,CHE ≥ 1, the strategy vector d is a GNE strategy of the HTA game if for every

level-0 device i, its CHE strategy satisfies a∗i (0) ≥ min{γ′i, γi,UB}.

• If
∑

i∈L τi,CHE < 1, the CHE strategy vector of the HTA game is a GNE if

–
∑

i∈M′
bi

T ·W log(1+γ′i)
+
∑

i∈H
Ei

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
≤ 1,

– The CHE equilibrium strategy for each MTD i is a∗i (ki) = γ′i if i ∈ M′ and a∗i (ki) =

γi,UB if i ∈M−M′ ∀ki ≥ 0.

– The CHE equilibrium strategy for each HTD i is a∗i (ki) =
Ei

T ·WPi
.

Otherwise, there exists at least one GNE that yields a better performance than the CHE,

in terms of the total system utility.

Proof. The proof is in Appendix B.

Theorem 4 provides the conditions under which the strategy profile d corresponding to the

normalized CHE time fractions constitutes a GNE strategy. Hence, the devices do not lose in

performance by having limited information and computational capabilities. However, if these

conditions are not met, the CHE strategy does not constitute, in most cases, a GNE strategy,

and the performance is degraded due to bounded rationality.

C. Signaling Overhead

The communication overhead is specifically evaluated in terms of the total bits exchanged to

reach the CHE and GNE solutions, respectively. In the proposed CH scheme, the BS needs to

broadcast one packet to its associated devices whenever devices enter or leave the network (e.g.,

during handshaking or device registration). The broadcasted packet includes the updated network

information necessary for the devices to compute the CHE. Thus, the broadcasted packet will

include the number of devices N , the quantized channel variance set C, and the proportion of

devices fq having quantized channel value q ∈ C. The BS acquires the CSI of each device

upon registration to the network. Further, the packet includes the parameters’ values and QoS

constraints of each type of devices. For each type h of MTDs, the packet includes the packet

size bh and the time constraint th. For each type h of HTDs, the packet includes the energy

constraint Eh.

Thus, the size of the broadcasted packet depends on the number of bits required to represent

each of the aformentioned parameters. Concerning the number of devices N , the number of bits
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required BN depends on Nmax, the maximum number of devices that the BS can serve. Assuming

that Nmax is 10,000, the required number of bits will be BN = 14. As for the channel information

and considering a static setting, the channel variance value αq is typically less than one, and the

number of required bits Bα is 4 bits assuming that the fractional part of the quantized variance

value is represented by 1 digit. Also, the proportion of devices having a quantized variance

value αq can be represented by Bf = 7 assuming that the fractional part of each proportion is

captured by 2 digits. Next, for each type of MTDs, the number of required bits for the packet

size is Bb = 10 since MTDs usually have small packet sizes (< 1,000 bits). Assuming that the

maximum delay is 1, 000 ms and that the time slot duration is 1 ms [25], [26], the number of

bits Bt needed to represent the time constraint of each type of MTDs is Bt = 10. For HTDs,

assuming that the energy upper bound Eh (in µ J) is represented by two digits, the number of

bits required will be BE = 7. Hence, the number of bits to represent each type of MTD is

BM = Bb + Bt = 20 and for each type of HTD is BH = BE = 7. The size of the packet (in

bytes) is M = 14C+7NH+20NM
8

where NH and NH are the number of types of HTDs and MTDs

respectively. For a network with two types of MTDs and one type of HTDs and when C = 5,

the size of the packet will be 15 bytes. The typical packet size of an MTD with time critical

application [23] ranges from 40 to 1, 000 bytes. Thus, the proposed CH scheme does not incur

significant overhead.

As for the GNE, the overhead stems mainly from the actions exchanged among the devices to

obtain the GNE. In Theorem 2, it is shown that, in the worst case, three rounds of communication

are required among the devices to converge to the GNE. Assuming that the fractional part of

the time fraction is represented by 3 digits, the number of bits required to represent the time

fraction is 10. Thus, the total number of bits exchanged to reach the GNE is 30 · L . When

the number of devices is 1,000, the total number of bits exchanged will be 30, 000. Hence, the

overhead of the GNE solution is significantly higher than the proposed CHE.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, we set the bandwidth W to 100 MHz, the time period T to 3 ms, the noise

variance σ2 to −90.8 dBm, and ε to 0.0001. The value of the time period is chosen to be small

enough to be suitable for IoT devices that have ultra low latency requirements, yet adequate to

accomodate the minimum time requirements for an IoT with massive number of devices. We

consider three types of devices: the first two are MTDs while the third is HTD. MTD type
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1 devices represent MTDs with strict latency requirements such as e-healthcare sensors while

MTD type 2 devices represent MTDs with relaxed delay constraints such as smart meters. Thus,

the packet size for the MTD types 1 and 2 are set 128 and 50 bytes respectively, and the latency

constraint for MTD types 1 and 2 are set to be 5 ms and 1 s respectively in line with the

guidelines of [25]–[28]. The transmission powers for MTD types 1 and 2 and for HTDs are 0.1,

0.1, and 0.5 W respectively. The variance of the Rayleigh fading distribution of all channels

is α2 = 0.1. The rate of the Poisson distribution of devices over the CH levels is τ = 1. This

value implies that the proportion of devices in each CH decreases with the CH levels, and the

probability that a device belongs to a CH level higher than 3 is negligible. Thus, it is suitable

for our system because the maximum number of CH levels considered is 3.

First, we assess the performance of the GNE solution of the HTA game by computing the

price of anarchy (PoA) [23] as follows.

A. Price of Anarchy of the GNE

The PoA is the ratio between the optimal centralized solution that maximizes total utility, and

the minimum total utility that can be possibly achieved by a GNE strategy. Thus, the PoA is a

measure of how much the performance of the system degrades when the GNE is used. In our

problem, the utility of HTDs is expressed in terms of the achieved rate whereas the utility of

each MTD is expressed in terms of the energy cost. Hence, in order to have a better evaluation

of the performance of MTDs and HTDs, we compute separate PoAs for the MTDs and for the

HTDs. The PoA of MTDs is defined as the ratio of the maximum energy consumed that can be

possibly achieved by a GNE and the minimum possible energy consumed by MTDs. The PoA

of HTDs, on the other hand, is defined as the ratio of maximum total rate of HTDs and the

minimum total rate that can be possibly achieved by a GNE solution. Fig. 1 shows the PoA of

HTDs as a function of the network size. As shown in Fig. 1, the PoA of HTDs is one for the

considered network sizes since the GNE is unique in this case. Fig. 2 shows the PoA of MTDs

as a function of the network size. Again, the PoA of MTDs is also 1 for the considered network

sizes since the GNE is unique. Thus, Figs. 1 and 2 show that the GNE solution provides a stable

performance for both MTDs and HTDs.

B. CHE Solution Evaluation

For the considered simulation values, we compute the CHE solution when the network size

varies between 1,000 and 10,000 in steps of 1,000. Since level-0 devices choose their time
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Fig. 1: Price of anarchy of HTDs vs. num-

ber of devices.
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Fig. 2: Price of anarchy of MTDs vs. num-

ber of devices.
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Fig. 3: Sum of CHE time fractions vs. the number of devices for different values of the mean

of the distribution of the level-0 devices’ time fractions.

fraction randomly, 1,000 samples of level-0 devices time fractions are generated, and the total

sum of CHE time fractions is computed. Then, the average sum CHE time fraction as well as

the average time fraction of each MTD type 2 and each HTD are computed. We consider two

cases: A first case in which the mean µ of the distribution of time fractions of level-0 devices

is 2τ0,LB where τ0,LB is lower bound on the time fractions of level-0 devices and a second case

with µ = 3τLB. Fig. 3 shows the average sum of CHE time fractions versus the network size.

As shown in Fig. 3, the average sum of CHE time fractions increases with the network size

where it exceeds one for network sizes greater than 8, 000. When µ increases to 3τ0,LB, the sum

of CHE time fractions increases for each considered network. This is because, as µ increases,

level-0 devices have a higher chance of transmitting with larger time fractions, which eventually

increases the sum of CHE time fractions.

Fig. 4 shows the normalized CHE time fractions for type 2 MTDs, as the number of devices
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Fig. 4: Normalized CHE time fraction of

type 2 MTDs vs. number of devices.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of devices (L)

1

1.5

2

2.5

3

3.5

C
H

E
 t

im
e

 f
ra

ct
io

n
 o

f 
e

a
ch

 H
T

D

10
-4

Cognitive hierarchy equilibrium  = 2 
0,LB

Cognitive hierarchy equilibrium  = 3 
0,LB

Lower bound

Fig. 5: Normalized CHE time fraction of

HTDs vs. number of devices.

varies. When µ = 2τ0,LB and when the number of devices is less than or equal to 8, 000, each

type 2 MTD transmits with its optimal time fraction which is 0.8853 × 10−5. In this case, the

sum of CHE time fractions of all devices is less than one as shown in Fig. 3. However, since the

the sum of CHE time fractions is greater than one for higher number of devices, the normalized

CHE time fraction of each type 2 MTD decreases until it reaches 0.7691×10−5 when the number

of devices is 10, 000. Fig. 4 also shows that when the number of devices is greater than 8, 000,

the time fraction allocated for type 2 MTDs decreases with µ due to the increase in the sum

of CHE time fractions. For a small network size, the CHE time fraction is the same for both

values of µ since the sum of CHE time fractions is less than one.

Fig. 5 shows the normalized CHE time fractions for HTDs as the number of devices varies.

When the number of devices is less than or equal to 8, 000 and µ = 2τ0,LB, each HTD transmits

with its highest possible time fraction which is 0.3333× 10−3. For a higher number of devices,

the sum of CHE time fractions increases beyond one, and the normalized CHE time fraction for

each HTD decreases until it reaches 0.2714× 10−3. Also, the normalized CHE time fraction of

each HTD decreases with the mean µ when the number of devices is greater than 8, 000, since

the sum of CHE time fractions increases with µ and is greater than one.

C. CHE Performance Evaluation

The performance of the CHE solution is next assessed in terms of the average total utilities

of MTDs and HTDs, and the average percentage of devices with satisified QoS. Also, we assess

the average performance of the GNE solution. The state-of-the-art GNE solution is used as a

game-theoretic baseline since the GNE assumes that the players are fully rational, while the CHE
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Fig. 6: Percentage of devices with satisfied QoS vs. number of devices for different values of

the mean of the distribution of the level-0 devices’ time fractions.

solution assumes that players belong to discrete levels of bounded rationality. Further, for the

considered simulation values, the GNE is unique, and, thus, performance of the GNE solution

serves as a bound on the performance of the CHE solution. This is achieved by generating

1,000 random initial vectors of the devices’ time fractions. Then, for each generated random

vector, the total utility and the percentage of devices with satisfied QoS of the resulting GNE are

computed. Then, the average total utility and the average percentage of devices are computed.

We also consider, a non game-theoretic baseline, the “equal time policy” that splits the time

duration T equally among the IoT devices.

Fig. 6 shows the percentage of devices with satisfied QoS constraints resulting from the CHE,

the average GNE, and the equal time policy as a function of the number of devices. For the GNE,

the percentage is maintained at 100% for all network sizes. For the CHE and when µ = 2τ0,LB,

Fig. 6 shows that the percentage of devices with satisfied QoS constraints is 100% when the

number of devices less than or equal to 8, 000. When the number of devices is greater than

8, 000, the percentage of of devices with satisfied QoS constraints decreases slightly until it

reaches 97.35%. This decrease is mainly due to the fact that the normalized time fractions of

some of the CH level-0 devices drops below the lower bound, whereas the time fraction of

type 2 MTDs and HTDs are above the lower bound as shown in Figs. 4 and 5 in the revised

manuscript. When µ = 3τ0,LB, the CHE maintains the same percentage of devices with satisfied

QoS constraints as the case when µ = 2τ0,LB for network sizes less than or equal 8, 000. Then,

the percentage of devices with satisfied QoS drops to 96% as the network size increases to

10, 000. As for the equal time policy, from Fig. 6, we can see that the percentage of devices

with satisfied QoS constraints is 100% for a network size less than 8, 000. When the number of



25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of devices (L)

0

0.5

1

1.5

2

2.5

S
um

 o
f a

ch
ie

ve
d 

ra
te

s 
of

 H
T

D
s 

(b
its

/s
ec

) 10
8

Cognitive hierarchy equilibrium  = 2 
0,LB

Cognitive hierarchy equilibrium  = 3 
0,LB

Unique generalized Nash equilibrium

Equal time policy

Fig. 7: Total rate of HTDs vs. number of

devices.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of devices (L)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
o
ta

l e
n
e
rg

y 
co

n
su

m
e
d
 b

y 
M

T
D

s 
(J

)

10
-4

Cognitve hierarchy equilibrium  = 2 
0,LB

Cognitive hierarchy equilibrium  = 3 
0,LB

Unique Generalized Nash equilibrium

Equal time policy

Fig. 8: Total energy consumed by MTDs

vs. number of devices.

devices is greater than 8, 000, the percentage of devices with satisfied QoS constraints decreases

to 73%. This is because, in this case, the time fraction assigned to each device drops below

the lower bound on the time fraction of each HTD. Thus, Fig. 6 shows that CHE can maintain

stable performance, in terms of the percentage of devices with satisified QoS, as good as the

GNE solution and always outperforming the equal policy solution.

Next, we compute the minimum, maximum, and average total rate of HTDs and total energy

of MTDs achieved by the GNE solution, the average total rate of HTDs and total energy of

MTDs achieved by the CHE solution, and the total rate of HTDs and the total energy of MTDs

of the equal time policy. Fig. 7 shows the total achieved rate of HTDs versus the network size

for the considered value of the mean µ. For all network sizes, the GNE solution is unique and

thus the minimum, maximum, and average total rates of HTDs achieved at the GNE are equal

and increasing with the network size. For the CHE solution, when µ = 2τ0,LB, the total rate

of the CHE solution is the same as the total rate of the GNE solution for network sizes less

than 8, 000. This is because the CHE time fraction of each HTD is the optimal solution, and the

sum of CHE time fractions is less than 1 as shown in Figs. 3 and 5. For network sizes larger

than 8, 000, the total rate of the CHE becomes less than total rate of the GNE solution since

the CHE time fractions of all devices decreases due to normalization. When µ is increased to

3τ0,LB, the total rate achieved by CHE decreases for network sizes greater than 8, 000 since the

sum of CHE time fractions increases and is greater than one. For the equal time policy and for

all considered network sizes, the total rate stays fixed at 65.832 Mbits/sec. This is because the

time fraction assigned to each device decreases with the network size and becomes less than the

HTD optimal value for the considered network sizes. Also, the value of the total rate is fixed
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since we are considering HTDs of the same type. Thus, Fig. 7 shows that the CHE solution

maintains the same performance as the GNE for network sizes less than 8,000. For network

sizes larger than 8, 000, the degradation of the total rate using the CHE solution, compared to

the GNE solution, is only around 11%. Also, the CHE solution can be bring a two-fold increase

in the total rate of HTDs compared to the equal time policy.

Fig. 8 shows the total energy consumed as a function of the network size. Here, we note

that, for the considered networks, the GNE is unique and the total energy consumed by MTDs

at this GNE is increasing with the network size. For the CHE, when µ = 2τ0,LB, the average

total energy consumed by MTDs is higher than the total energy of the GNE solution for all

considered network sizes. This is due to the fact that, due to their limited capabilities, level-0

devices choose their time fraction randomly while in the GNE solution level-0 devices choose

the optimal time fraction. When µ is increased to 3τ0,LB, the total energy consumed increases

for all considered network sizes since level-0 devices transmit with higher time fractions. For the

equal time policy, the total energy consumed by MTDs stays fixed at 0.2208 mJ. Fig. 8 shows

that the energy consumed by the CHE solution, when µ = 2τ0,LB, is reduced by around 78%

compared to the equal time policy.

In order to assess the efficiency of the CHE solution, we define a performance metric similar

to the PoA, but tailored to the CH approach. We call this metric the price of bounded rationality

(PoB).

D. Price of Bounded Rationality

The PoB is defined as the ratio of the optimal total utility and the total utility achieved using

the CHE strategy. Due to the different performance metrics between MTDs and HTDs and similar

to the case of PoA, we define a PoB separate for MTDs and another PoB for HTDs. The PoB

of MTDs is defined as the ratio of the total energy consumed by MTDs using the CHE solution

and the minimum total energy consumed by MTDs. The PoB of HTDs, on the other hand, is

defined as the ratio of the maximum total rate of HTDs and the total rate of HTDs achieved by

the CHE solution. Fig. 9 shows the PoB of MTDs versus the IoT network size for the considered

values of µ. From this figure, we can see that when µ = 2τ0,LB, the PoB of MTDs is around

2.27 when the network size is 1,000. Then, the PoB increases with the network size until it

reaches 2.81 when the network size is 10, 000. This is due to the fact that the number of level-0

devices, that choose their time fraction randomly, increases with the network size which results

in a higher energy consumption compared to the GNE solution. When µ increases to 3τ0,LB,
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the PoB of MTDs increases for each considered network size. This increase is mainly due to

the fact that as µ increases, the probability that a CH level-0 device transmits with higher time

fractions increases, which increases the total energy consumed. Fig. 10 also shows that the PoB

of MTDs increases at a low rate with the network size. Thus, the proposed CH approach can

clearly maintain a stable performance of MTDs for larger network sizes.

Fig. 10 shows the PoB of HTDs versus the IoT network size for the considered values of the

mean µ. When the network size is less than 8,000 and when µ = 2τ0,LB, the PoB of HTDs is

1. This is because the CHE time fraction of each HTD is the time fraction that maximizes its

utility. As the network size increases beyond 8,000, the PoB of HTDs increases until it reaches

1.15 when the network size is 8, 000. This increase in PoB is due to decrease in the normalized

CHE time fraction of each HTD as shown in Fig. 5 in the revised manuscript. When µ increases

to 3τ0,LB, the PoB of HTDs increases for network sizes larger than 8, 000 due to the decrease in

the normalized CHE time fraction according to Fig. 5 in the revised manuscript. Fig. 10 shows

that the PoB of HTDs increases at a low rate with the network size. Thus, the proposed CH

approach can maintain stable performance of HTDs for larger network sizes.

V. CONCLUSION

In this paper, we have considered the problem of distributed uplink time allocation in an IoT

network where the IoT devices have heterogeneous quality-of-service requirements. We have

formulated the problem as a noncooperative game that takes into account the heterogeneous

requirements of the IoT devices. In this game, the players are the IoT devices, and their actions

are to choose the time fractions necessary to ensure their quality-of-service requirements. In

the proposed game, the strategy set of each device is dependent on the actions taken by the
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other devices. Hence, we have first characterized the set of GNEs. Moreover, we have proposed

an algorithm to find the GNE of the devices and shown that the computational complexity is

polynomial in the number of devices. Then, we have proposed a novel solution using CH theory

to take into account the heterogeneous computational capabilities of the IoT devices. Thus,

the proposed CH solution provides a more realistic solution than the GNE that assumes that all

players have the same capabilities. We have characterized the cognitive hierarchy equilibrium and

compared it analytically to the GNE. Extensive simulations have been conducted to thoroughly

assess the various performance tradeoffs of the proposed approach. Finally, we note that, beyond

the IoT application treated here, the proposed cognitive hierarchy framework can be generalized

to any wireless network in which heterogeneity and bounded rationality are key features.
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[23] Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, Game Theory in Wireless and Communication Networks: Theory,
Models, and Applications, Cambridge University Press, 2012.

[24] L. Angrisani, M. Bertocco, G. Gamba, and A. Sona, “Modeling the Performance of CSMA-CA Based Wireless Networks
Versus Interference Level," in Proc. IEEE Instrumentation and Measurement Technology Conference, Victoria, Canada, May
2008, pp. 376-381.

[25] IEEE 802 16p-11/0014. IEEE 802.16p Machine to Machine (M2M) Evaluation Methodology Document (EMD). IEEE
802.16 Broadband Wireless Access Working Group, 2010.

[26] IEEE 802 16p-10/0005. IEEE 802.16p Machine to Machine (M2M) Communication Technical Report. IEEE 802.16
Broadband Wireless Access Working Group, 2010.
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APPENDIX A
A. Proof of Lemma 1

By applying the log function to the energy function χi(γi) = Pibi

W log(1+γi)e
− γiσ

2

α2
i
Pi

we have

logχi(γi) = logPibi − log(W )− log log(1 + γi) +
γiσ

2

α2
iPi

. The term − log log(1 + γi) is convex in

γi since log log(1 + γi) is concave in γi. Also, the term γiσ
2

α2
iPi

is linear in γi. Hence, the function

logχi(γi) is convex in γi. It follows that the energy function χi(γi) is convex in γi as it logconvex

in γi. Then, the utility of MTD i is concave since Ui(γi) = −χi(γi).

B. Proof of Proposition 1

For each HTD i, the utility function is linear in its action ai = τi hence it is also concave.

For each MTD i, it is shown in Lemma 1 that the utility is a concave in its action ai = γi. Also,

for each device i the strategy space Si(a∗−i) is nonempty, closed and convex. The result follows

directly from [22, Theorem 4.1].

C. Proof of Proposition 2

The utility of HTD i is an increasing linear function of τi. Thus, the optimal value of τi is its

upper bound. From the constraints of (3b), we get (15).

D. Proof of Proposition 3

As shown in Lemmas 1 and 2, the utility of MTD i is concave and attains its maximum at

γ′i. Hence, given any strategy vector a−i, MTD i chooses ai = γ′i if γ′i ∈ Si(a−i). Otherwise,

MTD i chooses the upper bound of its strategy set ai = −α2
iPi log(1− ti

√
ε)

σ2 if the upper bound is

less than γ′i since the utility is increasing over the strategy set in this case. The last case is when

the lower bound is greater than γ′i, MTD i chooses the lower bound since the utility function is

decreasing over the strategy set.
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E. Proof of Proposition 4

Since MTD i utility is concave in γi, the result follows using a similar argument as the proof

of Proposition 3. For HTD i, the utility function is increasing in its strategy ai. Thus, the optimal

value is the upper bound of the strategy space of HTD i.
APPENDIX B

A. Proof of Theorem 1

For the first case i.e. when
∑

i∈M′
bi

T ·W log(1+γ′i)
+
∑

i∈H
Ei

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
≤ 1,

it is clear according to the best response equations in propositions (2) and (3) that for the action

profile a∗∗i = γ′i ∀i ∈ M′ and a∗∗i = −α2
iPi log(1− ti

√
ε)

σ2 ∀i ∈ M−M′, and a∗∗i = E
T ·WPi

for each

HTD i, no device has the incentive to change its strategy since a∗∗i is the optimal solution of

the utility of device i. Next, we show that there exists no other action profile that constitutes a

GNE. For any action profile a′ other than a∗∗, a device i ∈M′ will always change its strategy

to the optimal strategy γ′i if a′i < γ′i since γ′i is the optimal solution of its utility and it yields a

lower time fraction. Also, any device i ∈M−M′ has an incentive to change its strategy to the

optimal strategy γi,UB if a′i < γi,UB resulting in a lower time fraction. Similarly, any HTD i will

reduce its strategy to Ei
T ·WPi

if a′i >
Ei

T ·WPi
since Ei

T ·WPi
is the upper bound. Let D be the set of

all such devices. For the newly formed action profile a′′ s.t. a′′i = a∗∗i if i ∈ D and a′′i = a′i if i ∈

L−D ,
∑

i∈D∩M
bi

T ·W log(1+a∗∗i )
+
∑

i∈D∩H
Ei

T ·WPi
+
∑

i∈(L−D)∩M
bi

T ·W log(1+a′i)
+
∑

i∈(L−D)∩H a
′
i <∑

i∈M′
bi

T ·W log(1+γ′i)
+
∑

i∈H
Ei

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
≤ 1 since U(a′i) < U(a∗∗i ) for

a′i > a∗∗i for each MTD in L−D and a′i < a∗∗i for each HTD in L−D, and, hence, each device

in L −D has an incentive to change its action to a∗∗i .

For the second case i.e.
∑

i∈M′
bi

T ·W log(1+γ′i)
+
∑

i∈H
Ei

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
> 1

for any action profile a′ /∈ N . Similar to the first case, any device i ∈ D (D being same set

previously defined) has an incentive to change its strategy to γ′i if i ∈ D ∩ M′ and γi,UB if

i ∈ D ∩ (M−M′) and to Ei
T ·WPi

if i ∈ D ∩ H. For the newly formed action profile a′′ s.t.

a′′i = a∗∗i if i ∈ D and a′′i = a′i if i ∈ L − D. It can be easily verified that each action a∗ ∈ N

is a GNE. No device in Aj has any incentive to change its strategy since a∗i is the optimal

value of its utility and all other devices in L−Aj cannot improve their utility since the sum of

time fractions corresponding to a∗ is one and an improvement in their utility will need a higher

allocated time fraction.
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B. Proof of Theorem 2

First, we show that Algorithm 1 converges in at most three iterations. Without loss of gener-

ality, we assume that the initial sum of time fractions allocated to the devices is one. In the first

iteration of the algorithm, all MTDs that can improve their utility by reducing their current time

fraction will change their strategy. If there are no such MTDs that can improve their utility in the

first round, the algorithm stops since no device can change its strategy. The worst-case scenario

occurs when during the first round the last MTD that changes its strategy by reducing its time

fraction is the last in the order. This is because by the end of the first round, the sum of time

fractions of all devices is less than one. Hence, in the second round, it is only possible for the

devices to improve their utilities by choosing a higher time fraction. The algorithm terminates

in the third round because no other device can further improve its utility.

C. Proof of Corollary 1

Based on Theorem 2, the complexity of the computations done at each device, to find the

GNE, is O(L) since Algorithm 1 converges in at most three iterations. Each device solves at

most two best response optimization problems to converge to its GNE strategy. The complexity

of finding the best response based on Propositions 2 and 3 is O(L).

D. Proof of Theorem 3

To find the CHE, a device at level k needs to evaluate CHE strategies of all devices assuming

that they are level 1 to k based on its beliefs. Based on Propositions 4 and 5, finding the strategy

of each device takes O(1) times. Hence, to find the strategy of all devices of each level takes

O(C) times. Thus, to find the strategy of devices for all levels up to k takes O((k + 1) · C).

E. Proof of Theorem 4

For the first case, we start by investigating the strategy profile d. Since level-0 MTDs choose

their time fractions randomly, the CHE strategy of level-0 MTD i could possibly be γνi <

min{γ′i, γi,UB}. In this case, the normalized time fraction of level-0 device will be greater than

the time fraction that maximizes its utility. Hence, level-0 MTD i has the incentive to change

its strategy to min{γ′i, γi,UB}, and, hence, the CHE solution will not be a GNE. In the second

case when γνi > min{γ′i, γi,UB}, the normalized time fraction of level-0 MTD i will be less than

the optimal time fraction. In this case, level-0 MTD i cannot increase its time fraction since

the sum of the CHE time fractions is one. Now, for any MTD i belonging to a level higher

than 0, if γ′i ≥ γi,UB, the CHE strategy of MTD i will be γi,UB and γνi will be greater than
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or equal to γi,UB. In this case, the normalized time fraction νi will be lower than the lower

bound of the time fraction (which is the value of the time fraction that corresponds to γi,UB).

Hence, MTD i has no incentive to further reduce its allocated time fraction. For the case in

which e

bk

T ·W
gk(k)

(
1−

∑k−1
h=0

gk(h)
∑
q∈Ck

Nq
bh

T ·W log(1+γ∗q (h))

)
− 1 ≤ γ′i ≤ γi,UB, the CHE strategy of MTD i

is γ′i and hence γνi will be greater than or equal to γ′i. Hence, MTD i has no incentive to

increase its γi since this will result in decreasing its utility. Also, MTD i can not increase its

time fraction by reducing its γi since the sum of the normalized time fractions is one. When

e

bk

T ·W
gk(k)·L

(
1−

∑k−1
h=0

gk(h)
∑
q∈Ck

Nq
bh

T ·W log(1+γ∗q (h))

)
−1 > γ′i, γνi will be greater than γ′i using an argument

similar to the previous case, hence, MTD i has no incentive to change its strategy di. Any HTD

i cannot increase its allocated time fraction νi since the sum of the normalized time fractions is

one.

For the second case, if
∑

i∈M′
bi

T ·W log(1+γ′i)
+
∑

i∈H
E

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
> 1, we

know from Theorem 1 that the GNE is not unique and that the sum of time fractions is one.

Hence, the CHE strategy is not a GNE. Thus, for the CHE strategy d, there exists a subset of

devices that can improve their utility until the sum of time fractions is one. Otherwise when∑
i∈M′

bi
T ·W log(1+γ′i)

+
∑

i∈H
E

T ·WPi
+
∑

i∈M−M′
bi

T ·W log(1+γi,UB)
≤ 1 , we know from Theorem 1

that the GNE is unique and hence based on Theorem 1 the CHE strategy is a GNE according

to Theorem 1 if the CHE strategy is for any MTD i di(ki) = γ′i if i ∈ M′ and di(ki) = γi,UB

if i ∈M−M′. Otherwise, any other CHE strategy profile d will have a lower performance in

terms of the total utility than that of the GNE since every action a∗∗i in the GNE strategy profile

a∗∗ maximizes device i utility. Here, we also recall that the utility function of each device is

independent of the actions of the remaining devices. Thus, the performance of the CHE, due to

bounded rationality, is upper bounded by the GNE.
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