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The fractional quantum Hall state at Landau level (LL) filling factor ν= 5/2 is extremely interesting
because it is likely the first non-Abelian state, but its precise nature remains unclear after decades of
study. We demonstrate this can be resolved by studying the chirality of its graviton excitations, using
circularly polarized Raman scattering. We discuss the advantage of this bulk probe over the existing
edge probes.

PACS numbers: 73.43.Nq, 73.43.-f

Introduction and Motivation – Non-Abelian fractional
quantum Hall (FQH) liquids are arguably the most exotic
quantum states of matter, which can provide a platform
for topological quantum computation. The most promis-
ing candidate for such a liquid is the one at Landau level
(LL) filling factor ν = 5/2[1], and the leading candidate
states (based on extensive numerical studies[2–15]) are
the Moore-Read (MR) Pfaffian state [16], and its particle-
hole conjugate partner, the anti-Pfaffian (APf) state [17,
18], both describing electrons in a half-filled LL. In the ab-
sence of LL mixing and other symmetry-breaking pertur-
bations, a half-filled LL possesses particle-hole symmetry,
as a result of which the MR and APf states are exactly de-
generate. LL mixing breaks particle-hole symmetry and
appears to favor the APf state[19–21]. The situation is
much murkier on the experimental front. It has been long
believed that the MR and APf states, while topologically
distinct, can only be distinguished in their edge proper-
ties. As a result existing experiments attempting to de-
termine the nature of the 5/2 state have been focused on
the edge (for a review of earlier experimental work that
also includes bulk spin polarization measurements which
are consistent with both MR and APf states, see Ref. [22]).
Among them perhaps the most direct probe is the recent
thermal Hall conductance measurement [23]. While the
discovery of half-integer quantization definitely points to
the non-Abelian nature of the 5/2 state, its specific value
turns out to be consistent with neither the MR nor APf
state, but suggests a particle-hole symmetric state in-
stead. This (apparent) particle-hole symmetry could be
due to the spatial mixture of MR and APf liquids in the
sample, that form either spontaneously[24] or due to dis-
order that locally breaks the particle-hole symmetry[25–
27], which could yield an edge structure that gives rise to
the measured thermal Hall conductance. The viability of
this scenario is currently under debate[28, 29]. Another
controversial explanation of the experiment is the lack of
equilibration at the edge[30–32], which is an extrinsic ef-
fect. There is, of course, the possibility of an intrinsically
particle-hole symmetric FQH state known as PH Pfaffian
(PH Pf)[33, 34], but none of the numerical studies [35–38]

have seen a clear gapped phase or a state that can ener-
getically compete with either the MR or APf state[38] (see
also[39]).

In this paper we point out that the MR, APf, PH Pf
(or any other intrinsically particle-hole symmetric FQH
state), and in principle their spatial mixtures, can be dis-
tinguished by measuring the chirality of a bulk geometric
excitation termed graviton[40], which is accessible via po-
larized Raman scattering[40, 41]. In our earlier work[40]
we demonstrated that for electron states (like those in the
Laughlin sequence with ν= 1/m) the gravitons carry spin
-2, and pointed out their particle-hole conjugate states at
1−ν 6= ν the chirality is reversed and gravitons carry spin
+2 (see also Ref. [42]). This, however, leaves the situation
ambiguous at the particle-hole symmetric filling factor of
ν= 1/2= 1−ν. It has already been demonstrated[40] that
MR graviton carries spin -2. The APf graviton then must
carry spin +2, while both chiralities should be present in
a particle-hole symmetric state. Should there be a mix-
ture among these different states, the local chirality can
be revealed as long as the probing light can be localized
in a region smaller than the domain size. In addition to
the obvious and potentially far-reaching experimental rel-
evance, our results also reveal the deep connection be-
tween the geometric[42–48] and topological[49] aspects
of FQH effect (which has been perhaps somewhat under-
appreciated thus far), and point to the possibility of bulk
probes of topological order (for an earlier suggestion in
this general direction see Ref. [50]).

Models and graviton operators for the 5/2 state – As
shown in Refs. [40, 46], electrons in an LL couples to an
external oscillating metric through a set of 2-body gravi-
ton operators, whose spectral functions describe the ab-
sorption rate of “gravitational wave" propagating through
the system. The graviton operators we employ here are
different from their lowest LL counterparts[40] and are
modified by the presence of a non-trivial LL form factor,
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and can be derived the same way as in Ref. [46]:

Ô(2)
± (n)= ∑

qx,qy

(qx ± iqy)2V (q)e−q2/2ρ̄(q)ρ̄(−q)Fn(q), (1)

Fn(q)= |Ln(q2/2)|2 −2Ln(q2/2)L′
n(q2/2), (2)

where n is the LL index, V (q) is the Fourier transform
of the Coulomb potential, Ln is the nth Laguerre polyno-
mial, the projected density operator is ρ̄(q) = ∑

n e−iq·Rn ,
and R is the guiding center coordinate. The prime on Ln
signifies the derivative with respect to the argument. The
wave vector q is measured in units of inverse magnetic
length 1/`, where ` = ħ/eB. Ô(2)

± (n) describe coupling to
the “gravitational wave" with opposite (circular) polariza-
tions, that change the angular momentum of the electron
liquid by ±2 respectively.

The Hamiltonian for the Coulomb repulsion for the nth
LL is

H(n)= 1
2

∑
qx,qy

V (q)e−q2/2ρ̄(q)ρ̄(−q) fn(q), (3)

fn(q)= L2
n(q2/2). (4)

In this work we ignore inter-LL transitions (or LL-mixing)
and focus on the valence electrons at ν= 5/2= 2+1/2 that
half-fill the second LL with index n = 1. The form factors
of the graviton operator and the Hamiltonian simplify to
F1(q) = (1− q2/2)(3− q2/2) and f1(q) = (1− q2/2)2 respec-
tively. In some cases we have also increased the first Hal-
dane pseudopotential of the Coulomb repulsion by a small
amount. It is important for our purposes to also break
particle-hole symmetry by introducing a weak 3-body in-
teraction. The exact form is immaterial and we choose
the simplest case for which the MR state is a zero energy
ground state. This is a repulsive interaction that penal-
izes the closest approach of 3-particles[51]. We will also
use its attractive counterpart by flipping its sign. Such
additional pseudopotentials terms also contribute to the
graviton operators, in a way that do not involve LL form
factors (see Ref. [40]).

In experiment, LL-mixing breaks PH symmetry by
generating a slew of 3-body pseudopotentials from the
2-body Coulomb repulsion, which have been calculated
perturbatively[52, 53] in the LL mixing parameter κ =
ε/ħω, where ε= e2/4πε` is the Coulomb interaction scale,
and ε is the dielectric constant of the material. In most
of what follows we quote energies in units of ε. We also
set ħ = 1 and ignore the width of the electron layer. For
weak LL-mixing the strongest component corresponds to
the MR pseudopotential and is negative: -0.0147κ.

Numerical Calculations- Our calculations are on high
symmetry tori, namely square and hexagonal geometries.
These are somewhat complementary and are helpful in
discerning finite size effects. Below we review the known
characteristics for both MR and APf model states (exact
ground states of idealized 3-body model Hamiltonians)

as well as for generic states. For even numbers of elec-
trons the topological sectors (excluding the 2-fold Center-
of-Mass degeneracy) are either a triplet (hexagonal) with
3-fold point symmetry or split into a doublet and a sin-
glet for square symmetry. For the model Hamiltonians,
all 3 ground states are degenerate with zero energy in
any geometry. Only their respective crystal momenta are
different for different geometries. In hexagonal geometry
these are at the 3 corners of the Brillouin zone (BZ). In
the case of the square unit cell the singlet is at the zone
corner (ZC)(1,1), while the doublet is at the zone bound-
ary (ZB) (0,1)(1,0). For generic states in the presence of
PH symmetry and for even electrons, the K-vectors of the
topological sectors are the same as in the model states.
The degeneracy, however, is different for square geome-
try. There is a small splitting of energy between the sin-
glet and the doublet (ZB). Depending on size both the sin-
glet and the doublet could become the absolute ground
state. In our calculations we have assumed that both are
valid candidates irrespective of which one is the absolute
ground state. The splitting is a finite-size effect and the
degeneracy is recovered for large sizes.

For the model Hamiltonians with odd numbers of elec-
trons there is one zero energy ground state with K = 0
at the zone center, corresponding to the only topological
sector for all geometries.

For the generic case, in hexagonal geometry and de-
pending on whether the number of electrons modulo 6 is
one or not, the ground state is a singlet or a doublet re-
spectively. Both topological sectors of the MR and APf
are represented by the doublet[54]. This is an interesting
case and we will return to discuss it later.

In all cases we calculate the spectral functions of the
graviton operators[40]:

I±(ω)=∑
n
|〈Ψ0|Ô(2)

± |Ψn〉|2δ(ω−ωn), (5)

where |Ψ0〉 is a ground state, which is included in the sum
over intermediate states. As a result the total graviton
weight can be normalized to one by dividing the RHS of
the above by 〈Ψ0±|Ψ0±〉, where |Ψ0±〉 = Ô(2)

± |Ψ0〉, so that∫
I±(ω)dω= 1.
Square Geometry – In this geometry for even number

of electrons and the ground state doublet there is a con-
served unitary operator that results from the product of
two anti-unitary mirror and PH conjugation operators.
The entire energy spectrum can be classified by a Z2 par-
ity quantum number. However, for ZB (ground and ex-
cited) states the chiral graviton operator has mixed parity.
That is, the real and the imaginary parts of Ô(2)

± produce
states with opposite parities. This means the two parts
are not present simultaneously and hence the graviton
weight is always non-zero. A finite graviton weight for
the ground states, however, is an undesirable effect and
will be removed below.

In contrast, for the singlet ground state as well as
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the excited states, there are angular momentum selec-
tion rules irrespective of the presence or absence of PH
symmetry. Some states have a finite graviton weight and
some not, according to whether their angular momentum
is within ±2 of the ground state. However, when PH sym-
metry is broken the weights are different for the chiral-
ities ±2, but they occur for the same states since on a
square the discrete angular momentum 2=−2 mod (4).

Since the energies and the graviton weights are iden-
tical for the case of degenerate ground states, we include
them in the intermediate sum of Eq. 5 and trace over the
ground states. It proves convenient to combine the two
ZB ground states as follows:

|Ψ0〉± = |ψ0〉1 ±|ψ0〉2p
2

. (6)

The wavefunctions in the two (1,2) sectors have differ-
ent translatonal quantum numbers and are orthogonal.
The graviton operator preserves these quantum numbers
and hence the matrix elements over the excited states are
now included for both sectors. Because of orthogonality,
the intermediate sum over the excited states separates
into two sums. The contribution of the ground state to
the sum is the square of

1〈ψ0|Ô(2)
± |ψ0〉1 +2 〈ψ0|Ô(2)

± |ψ0〉2 = 0, (7)

thus dropping out as verified numerically (to machine pre-
cision) for all cases that we have studied. This removes
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FIG. 1. Color online – Graviton spectral functions for 11-17 elec-
trons on a square unit cell. For even number of electrons we
have included data for both ZC and ZB (dotted lines). discussed
in the text. We have only shown the spectrum for positive chi-
rality (with angular momentum +2). In the inset we have added
a v1 = 0.035 Haldane pseudopotential to the n = 1 Coulomb in-
teraction. In an isolated n=1 LL the overloaps with MR or APF
states are at or near their maximum for this v1. The graviton
spectrum for negative chirality, by particle-hole (PH) symmetry,
is identical to the one shown as verified.
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FIG. 2. Color online – Same as in Fig. 1 except that we break
PH symmetry by introducing a 3-body interaction potential, as
described in the main text, with a strength of -0.01 The figure
shows the spectrum for positive chirality. The inset shows the
spectrum for negative chirality, the response is seen to be sup-
pressed by an order of magnitude.

the graviton weight of the ground state, which is always
absent for an odd number of electrons, because of angular
momentum selection rules.

We start with the case of pure Coulomb interaction.
The PH symmetry is present in this case, and the ground
state can be viewed as the PH-symmetrized MR state[3].
As a result we have I+(ω)= I−(ω), which are presented in
Fig. 1. Similar to the cases studied in Ref. [40], we ob-
serve fairly sharp peaks indicating the presence of gravi-
ton excitations in the system, except they come with both
chiralities. In Figs. 2 and 3 we show the graviton spectral
functions in the presence of small 3-body PH symmetry
breaking interactions. In calculating the relative weights
of two chiralities we normalize the weaker spectrum by
the total weight of the stronger.

Fig. 2 corresponds (roughly) to the case of LL mixing
parameter κ≈ 0.7, which is representative of realistic sit-
uations, and tilts the ground state toward APf. While this
results in a very small negative 3-body potential, it has a
dramatic effect on the spectral functions: we find I+ dom-
inates I−, with the total weight of the latter reduced to
about 10% of the former. This indicates gravitons with
angular momentum +2 dominates the gravitational re-
sponse of the system, which is in a hole-like APf state. In
Fig. 3 we reverse the sign of the 3-body potential which
favors the Pfaffian state, and the situation is reversed:
I− dominates I+, with the total weight of the latter re-
duced to about 20% of the former. This indicates gravitons
with angular momentum −2 dominates the gravitational
response of the system, as we already saw in Ref. [40] for
the Pfaffian state. We thus find the graviton chirality is



4

opposite for the Pfaffian and APf states, and can be used
to distinguish them experimentally (more on this point
later).

Hexagonal Geometry – Here, for an even number of
electrons, the topological sector is a set of 3-fold degen-
erate (related by rotations) ground states and symmetry
analysis of the graviton operator and the ground states
is more complicated. Notwithstanding, the ground state
weight can be removed by a set of new orthogonal states,
as was done above for the ZB doublets, except that the
coefficients are the cube roots of unity:

|Ψ0〉a = α|ψ0〉1 +β|ψ0〉2 +γ|ψ0〉3p
3

(8)

where α = e2iπ/3, β = e4iπ/3, and γ = −α−β=1. The other
two states |Ψ0〉b and |Ψ0〉c are obtained by cyclic permu-
taions of α, β, and γ. Again, the 3 expectation values of
Ô(2)

± adds to zero for all there ground state as in the case
for ZB doublets:

α(1〈ψ0|Ô(2)
± |ψ0〉1)+β(2〈ψ0|Ô(2)

± |ψ0〉2)+γ(3〈|Ô(2)
± |ψ0〉3)= 0.

Figs. 4 and 5 are the hexagonal counterparts of Figs.
2 and 3, where we see very similar behavior. The con-
sistency between different geometries is indication that
finite-size effects are minimal in our calculations.

We now return to the case of generic interactions for
an odd number of particles. The combination of anti-
unitary PH symmetry and discrete rotational symmetry
could produce Wigner’s extra degeneracies[54, 55]. The
doublet appears for all sizes except when Ne mod (6)= 1.
In this case, the PH partners can each have a different
angular momentum which leads to degeneracies. For the
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FIG. 3. Color online – Same as in Fig. 2 except we have added
a 3-body pseudopotential with the opposite sign (0.01). The
stronger intensity is for negative -2 chirality. The inset gives the
same result but for positive +2 chirality, which is suppressed.
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FIG. 4. Color online – Graviton spectral functions for 11-15 elec-
trons on hexagonal geometry in the presence of a 3-body poten-
tial of strength -0.01. As in the case of square geometry the
+2 chirality is dominant while the -2 chirality is strongly sup-
pressed (inset).

same reason and conditions, the MR state and the Apf
are orthogonal[54]. We find that our calculations already
break the PH symmetry spontaneously. However, because
of the degeneracy our code mixes the angular momenta of
the doublet and as a result the matrix elements of the
graviton operator is “contaminated” and the weights be-
come non-zero for every state. The addition of a very small
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FIG. 5. Color online – Same as Fig. 4 except for repulsive (0.01)
3-body potential. The suppression of the opposite chirality (in-
set) is somewhat less suppressed than in Fig. 4 chirality. The
inset shows the spectrum for positive chirality, the response here
is also suppressed.



5

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 50 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

I + ( ω)  N e = 1 1
 N e = 1 5

ω

I - ( ω)

FIG. 6. Color online – The graviton spectrum for doublet ground
states that can occur for odd electrons (see main test). We have
added a 3-body M=3 negative pseudopotential −10−6. The sys-
tem has broken PH symmetry even before the 3-body interaction
is added. The red line at zero comes from the doublet member
which is split off by a very weak 3-body potential. The inset
shows the spectrum for negative chirality. It is suppressed by
a factor of ≈ 5.0. The added 3-body potential has little rule in
breaking PH symmetry.

3-body potential (of magnitude −10−6) lifts the degener-
acy and restores the correct values of ground states angu-
lar momenta; the selection rules reappear and the chiral
graviton weights (many of them zero) look very much like
any other odd electron case.

Fig. 6 shows that I+(ω) is dominant while I−(ω) is sup-
pressed. If the sign of the 3-body pseudopotential is re-
versed then the plot looks the same, except I+ and I− are
exchanged.

Discussion and Summary – We have calculated gravi-
ton spectral functions for Hamiltonians appropriate for
the ν = 5/2 FQH state. While originally formulated as
the system’s response to a "gravitational wave"[40, 46], it
was anticipated that the gravitons and in particular their
chiralities are detectable experimentally by Raman scat-
tering of circularly polarized light[40, 41]. In a very re-
cent paper[56], Nguyen and Son demonstrated that the
Raman spectral functions are identical to the graviton
spectral functions calculated here and in Ref. [40] (if the
small anisotropy of the valence band is neglected), thus
facilitating direct and quantitative comparison between
theory and experiment. We note Pinczuck and cowork-
ers’ earlier results on the 1/3 Laughlin state[57] are in
good agreement with our calculations[40], although the
graviton chirality could not be extracted since they used
unpolarized light.

In sharp contrast to the 1/3 state, the situation is much
murkier at 5/2, with many competing theoretical propos-

als. We demonstrated the leading candidates based on
numerics, Moore-Read Pfaffian and anti-Pfaffian, can be
clearly distinguished by the chiralities (∓2 respectively) of
their graviton excitations, which are detectable using cir-
cularly polarized Raman scattering. We emphasize this
is a bulk probe which does not suffer from many compli-
cations and subtleties at the edge. We note recent ther-
mal transport experiments favor a particle-hole symmet-
ric state at 5/2[23, 58]. This could be due to the pres-
ence of domains of Pfaffian and anti-Pfaffian states in the
system[24–27, 29]. Such domains can also be revealed by
Raman scattering, as long as their sizes are larger than
the spatial resolution of the experiment. While we do not
have a microscopic model that stabilizes an intrinsically
particle-hole symmetric state, as discussed earlier we ex-
pect on general grounds that gravitons with both chirali-
ties should be present and contribute (roughly equally) to
the Raman scattering intensity of light with both circular
polarization. We thus conclude polarized Raman scatter-
ing can potentially resolve all of the leading candidates
for the 5/2 state.

We thank D. Nguyen and D. Son for useful conversa-
tions. This work was supported by DOE grant No. DE-
SC0002140. KY’s work was performed at the National
High Magnetic Field Laboratory, which is supported by
National Science Foundation Cooperative Agreement No.
DMR-1644779, and the State of Florida.
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