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Abstract—In decentralized optimization, multiple nodes in a
network collaborate to minimize the sum of their local loss
functions. The information exchange between nodes required for
this task, is often limited by network connectivity. We consider
a setting in which communication between nodes is hindered
by both (i) a finite rate-constraint on the signal transmitted by
any node, and (ii) additive noise corrupting the signal received
by any node. We propose a novel algorithm for this scenario:
Decentralized Lazy Mirror Descent with Differential Exchanges
(DLMD-DIFFEX), which guarantees convergence of the local
estimates to the optimal solution under the given communication
constraints. A salient feature of DLMD-DIFFEX is the intro-
duction of additional proxy variables that are maintained by
the nodes to account for the disagreement in their estimates
due to channel noise and rate-constraints. Convergence to the
optimal solution is attained by having nodes iteratively exchange
these disagreement terms until consensus is achieved. In order
to prevent noise accumulation during this exchange, DLMD-
DIFFEX relies on two sequences: one controlling the power of
the transmitted signal, and the other determining the consensus
rate. We provide insights on the design of these two sequences
which highlights the interplay between consensus rate and noise
amplification. We investigate the performance of DLMD-DIFFEX
both from a theoretical perspective as well as through numerical
evaluations on synthetic data and MNIST1.

Index Terms—Decentralized optimization; Lazy mirror de-
scent; Additive channel noise; Finite data rate constraint.

I. INTRODUCTION

IN today’s networked world, enormous amounts of data are
being collected by edge devices in a distributed fashion. It

is often preferred to keep the data localized on the edge devices
themselves for privacy concerns, fault-resilience, or the sheer
communication expense of centrally aggregating the available
data. As a consequence, there has been a rapid emergence of
decentralized computational strategies in which global learning
tasks are accomplished only through local processing [1].
These algorithms often offer convergence guarantees of the
local iterates at each node to the optimal solution at rates com-
parable to centralized approaches, even under the constraint
that nodes communicate only with their immediate neighbors.
In system implementations like wearable sensors [2], IoT for
smart agriculture [3], or vehicular communications [4], edge
devices might communicate over a wireless channel, and are
thus limited in connectivity and reliability by the radio envi-
ronment. Consequently, in addition to connectivity constraints
introduced by the network topology, communication between

This work is supported by grants ONR N00014-18-1-2191, Intel grant
134571, and MOST grant 110-2221-E-A49-052.

1MATLAB and Python implementations can be found here.

nodes is also subject to (i) finite rate-constraints, and (ii)
corruption by additive noise. Although these two constraints
are considered separately in the literature, to the best of our
knowledge their combination has been overlooked.

In this work, we emphasize that the simultaneous presence
of both the constraints gives rise to a challenging situation
of noise accumulation at the nodes, which can subsequently
cause any decentralized optimization algorithm to diverge.
Ensuring that the simultaneous effect of quantization noise and
channel noise accumulation does not affect convergence is not
addressed by existing approaches. For this reason, we propose
DLMD-DIFFEX to perform decentralized optimization in
challenging environments of this nature.2

A. Relevant prior work

The last decade has had a flurry of research on decentralized
optimization. In what follows, we briefly mention the results
most closely related to our work in this paper.

Models for decentralized information exchange and compu-
tation were first proposed by Tsitsiklis et al. [6]. Building upon
their information exchange model, Nedı́c and Ozdagler [7]
proposed subgradient methods for collaborative optimization
of a global objective whose components are distributed across
multiple agents. This was followed by the work of Duchi et
al. [8] which characterized the O

`

log pK
?
nq {

?
K
˘

(where
K is the number of iterations and n is the number of nodes)
convergence rate for the class of primal-dual distributed algo-
rithms for non-smooth Lipschitz continuous convex objective
functions. They also address the dependence of convergence
rates on the number of nodes and network topology.

Subsequent works considered various regularity assump-
tions on the objective function, and proposed distributed al-
gorithms with different convergence rates under such assump-
tions. For example, Tsianos et al. [9] obtained a convergence
rate of O plog pK

?
nq {Kq for strongly convex functions,

while Jakovetic et al. [10] showed O
`

K´2
˘

rates for first-
order smooth objective functions. In our work, we consider the
problem of optimizing non-smooth Lipschitz continuous con-
vex objective functions (similar to [8]) under rate-constrained
noisy settings in which nodes have oracle access to (possibly
stochastic) subgradients.

The above-mentioned literature often does not account for
constraints in communication beyond the nodes’ connection

2A preliminary version of this work was presented in ICASSP 2021. [5]
This work presents a much more detailed analysis of the algorithm and
simulations, as well as general sufficient conditions for controlling noise
accumulation.
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topology. Such constraints play an important role for many
scenarios of practical relevance, in which the quality of the
communication link is imperfect. Decentralized algorithms
require communication between devices, which is often a
major bottleneck to the performance of these algorithms in
practice, given wireless and wireline network rate constraints
and latency. Consequently, a lot of research effort has gone
into understanding the effects of constraints other than network
topology [11]–[13]. Broadly, two major veins of work can
be identified with regard to compressing the messages being
exchanged among nodes. The first line of works introduces
dimensionality constraint on the size of messages being ex-
changed to reduce communication demand [14]–[18]. Random
sparsification, top-k sparsification, round-robin coordinate up-
dates and related schemes, are common strategies in these
works. The other vein considers a cardinality constraint on
the messages exchanged and quantizes the information to finite
precision [19]–[21]. Some of these works [14], [19] consider
parameter server frameworks for distributed optimization, as
opposed to fully decentralized; nevertheless we mention them
because their information compression schemes are invariably
applicable to decentralized networks as well.

For wireless environments, quantization is essential because
nodes cannot exchange information with infinite precision
over a channel with finite bandwidth, as noted in [22]. Some
works on decentralized optimization that consider quantization
[19], [23]–[25], have quantizers with infinite dynamic range.
For such infinite-level quantizers, the quantization error is
always bounded. In practice however, for channels with finite
bandwidth, quantizers must always have a finite dynamic
range. If the input to a finite-range quantizer exceeds allowable
bounds, it can get saturated, resulting in the quantization
error getting unbounded and subsequent divergence of the
algorithm. Existing works either ignore these boundary effects,
or even if some works like [26], [27] do take into account a
finite dynamic range, they consider a noiseless environment, as
a result of which they are unambiguously able to choose large
enough initial dynamic ranges so that the quantizers never get
saturated throughout the execution of the algorithm.

The presence of additive noise affecting the information
exchange among nodes is not well studied, except for [28].
Our work considers quantization in the presence of channel
noise for which we address unique challenges and propose
DLMD-DIFFEX.

B. Our contributions

To the best of our knowledge, this work is the first to
develop an algorithm for distributed optimization over a net-
work comprised of both (i) a finite data rate constraint over
information exchanged between nodes, and (ii) corruption of
communications between nodes by channel noise. The inter-
play between these two communication constraints presents
a novel set of challenges that is not addressed with existing
approaches. We propose DLMD-DIFFEX, a variation of lazy
mirror descent (a.k.a. Nesterov’s dual averaging algorithm [8],
[29]) to address this issue. The salient features of DLMD-
DIFFEX are:

1. For achieving consensus between models across different
nodes, DLMD-DIFFEX exchanges differential updates in-
stead of the whole model. At any point of time, each node
maintains an estimate(s) of the model(s) of each of its
neighbor(s). These running estimates are iteratively updated
as nodes receive information about how their neighbors’
current (updated) state disagrees from its own past estimate.

2. These differential exchanges are quantized to a finite set
of values and their amplitudes scaled appropriately before
transmission, in order to satisfy the rate-constraints and
dictate power requirements.

3. With these quantized differentials being exchanged over a
noisy channel, the contribution of additive channel noise
accumulates as the iterations proceed, subsequently causing
the algorithm to diverge. We introduce confidence and
power-control sequences for DLMD-DIFFEX to prevent
this noise accumulation. The confidence sequence dictates
the eagerness with which a node relies on the information
it receives from its neighbors, which in turn controls the
convergence rate of the algorithm. On the other hand, the
power-control sequence specifies the aggressiveness with
which noise accumulation is actively mitigated through
amplitude scaling over successive iterations.

4. We also focus on the design of finite-rate quantizers for
quantizing the differential exchanges and show that by
choosing the dynamic range of the quantizer appropriately,
we can simultaneously ensure that the algorithm converges
(albeit at a slower convergence rate) while also ensuring
that the quantizers remain unsaturated with probability
arbitrarily close to one.

Our main result is the derivation of an upper bound to
the expected suboptimality gap after K iterations, that scales
as O

´

K´
1´γ
2

¯

, 0 ă γ ď 1, given that the quantizers
remain unsaturated with sufficiently high probability. Note that
depending on the choice of γ, this asymptotic rate is close to
O
`

K´1{2
˘

, which is characterized to be the optimal rate for
the convergence of subgradient-type algorithms for the class of
non-smooth convex objective functions [8]. As a corollary to
these results, we show how the confidence and power control
sequences can be jointly designed so as to trade-off between
the convergence speed and the power requirements of the
algorithm.

We remark that our information exchange model over net-
works is quite general and extends beyond wireless settings.
It applies to a number of edge computation scenarios where
communication among devices occurs over a pre-determined
physical layer with a given symbol rate and symbol error
probability. We do not consider any assumption on the ad-
ditive noise source, except for finite variance. For wireline
environments, it can be any source of external noise such as
the decoding error at the receiver (with or without any channel
coding scheme). It can also include any deliberately introduced
disturbances in the presence of an adversary with finite power.

C. Notation

Lower case boldface letters (eg. z) are used for column
vectors and uppercase boldface letters (eg. P) designate ma-
trices. We also adopt the shorthands rm : ns fi tm, . . . , nu
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and rns fi t1, . . . , nu. Subscripts are used for node indices
and parentheses depict iteration index (eg. zipkq denotes the
state of node i at iteration k). p¨q denotes the average of
corresponding quantities across different nodes and xp¨q is
used for iteration-averaged quantities. The noisy version of
a variable is indicated with a tilde, i.e. ra is the version of a
after being corrupted by noise. For any arbitrary norm ‖¨‖, its
dual norm is defined as ‖¨‖˚ “ supx:‖x‖ď1 x¨,xy, where x¨, ¨y
denotes the inner product. We primarily consider Euclidean
norm ‖¨‖2 in this work, which is its own dual. Given a sub-
differentiable function f , its sub-differential at x is denoted
by Bfpxq. Scripts are used to denote sets (eg. A) and |A| is
used to denote its cardinality.

D. Organization of the paper

The remainder of the paper is organized as follows. Sec.
II formally introduces the problem statement of decentralized
optimization along with our communication model over a net-
work. Sec. III summarizes the necessary preliminaries of the
Distributed Lazy Mirror Descent (DLMD) algorithm from [8]
and explains the challenges that arise in the presence of finite
rate-constraint and channel noise. Our proposed algorithm,
DLMD-DIFFEX is presented in Sec. IV. The convergence
theorems of DLMD-DIFFEX are given in Sec. V and a proof
sketch in Sec. VI. Simulation results are provided in Sec.
VII. After some additional remarks in Sec. VIII, the paper
concludes in Sec. IX. The detailed proofs are given in the
appendices.

II. SYSTEM MODEL

We first formally introduce the problem of decentralized
optimization in Sec. II-A, followed by our communication
model in Sec. II-B pertinent for the system implementation of
any decentralized optimization algorithm over a noisy, rate-
constrained network. Then in Sec. II-C, we introduce the
performance evaluation metrics of any optimization algorithm
subject to the constraints of our communication model.

A. Decentralized optimization setting

Consider a network of n computation nodes (or edge
devices), each of which is privy to a local objective function
fi : Rd Ñ R. In distributed optimization, the goal is to solve
the following minimization problem:

min¨
xPX

1

n

ÿ

iPrns

fipxq, (1)

where, X is a closed, convex set and each fi is taken to
be convex and sub-differentiable, but need not be smooth.
Furthermore, we also assume that there exists a finite opti-
mum x˚ P X of (1) and each fi is L-Lipschitz continuous
with respect to some norm ‖¨‖, that is, |fipxq ´ fipyq| ď
L ‖x´ y‖ for all x,y P X . Our objective is to solve (1)
in a fully decentralized setting, i.e. there is no central server
to orchestrate the operation of the different nodes/agents. For
simplicity, we assume that all nodes have a common clock so
that they can exchange information with their neighbors in a

synchronous fashion.3 In distributed optimization algorithms
for solving (1), each node i P rns maintains its own estimate
of the optimal solution of (1) at iteration k, which is denoted
as xipkq. Iterative algorithms as in [8] ensure that xipkq Ñ x˚

as k Ñ8 for all i P rns.
Remark 1: The framework (1) is quite general. For ex-

ample, it encompasses the stochastic optimization problem
in machine learning in which node i P rns observes data
points tξji ujPrms drawn from some probability distribution P .
Suppose X denotes the parameter space and ` px, ξq denotes
the loss incurred with a particular model x P X for a random
data point ξ „ P . One is then interested in minimizing the
population risk: min¨xPX Lpxq ” min¨xPX Eξ„P r` px; ξqs.
Since the probability distribution P is unknown, empirical
risk minimization resorts to solving the following optimization
problem instead:

min¨
xPX

1

nm

ÿ

iPrns

ÿ

jPrms

`
`

x; ξij
˘

“ min¨
xPX

1

n

ÿ

iPrns

fipxq,

where fipxq “ 1
m

ř

jPrms `
`

x; ξij
˘

is known only to node i.

B. Communication setting

Any decentralized algorithm that solves (1), requires com-
munications between the agents in order to guarantee con-
vergence to the optimal solution. Similar to prior works, the
connectivity of the network is described by an undirected
graph G “ pV,Eq, where V “ rns is the set of nodes,
each corresponding to a particular agent, and E Ď rns ˆ rns
denotes the set of edges such that pi, jq P E if and only if
nodes i and j are connected via a link.4 Also, let N pjq “
tk P rns : pj, kq P Eu be the neighborhood of node j. At
iteration k, information of the transmitting node j is encoded
as sijpkq P Rd, transmitted over the channel, and is received
at node i (see Fig. 1) as:

rijpkq “ sijpkq ` nijpkq, (2)

where, nijpkq is the additive channel noise vector with zero
mean E rnijpkqs “ 0 P Rd and bounded covariance with
uncorrelated entries, i.e. E

“

nijpkqnijpkq
J
‰

“ σ2Id.5 The
transmit power consumption for K iterations for transmissions
over edge pi, jq P E is given by:

PpKq “
1

K

ÿ

kPrKs

‖sijpkq‖2
2 . (3)

Furthermore, since nodes cannot send information with infinite
precision and need to exchange quantized values, we assume
that sijpkq can only take values in a finite constellation set
Sk Ă Rd. The cardinality constraint on Sk due to quantization
is taken to be:

log2 |Sk| ď Rd, (4)

where, R is the number of bits per dimension.

3Note that this assumption can be relaxed using techniques from [30].
4Typically, if the communication latency between two agents and/or the

noise corruption are small (for example due to close proximity), then the
corresponding nodes of G are considered to be connected by an edge.

5We assume that the links between nodes are non-interfering. In practice,
this can be ensured through various multiplexing techniques and is left for
future research.
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Node i
fipxq

Node j
fjpxq

`

nijpkq

sijpkqrijpkq

Fig. 1: Information exchange corrupted by additive channel noise in (2).

C. Performance evaluation

Our objective is to design an algorithm that solves the opti-
mization problem in Sec. II-A while communication among
nodes takes place over links modeled as in Sec. II-B. In
this section, we address the question of how to judge the
performance of an algorithm under such constraints. For a
given iteration horizon K, the expected suboptimality gap is
defined as:

epKq fi max
iPrns

Erf ppxipKqqs ´ fpx
˚q, (5)

where, pxipKq “
1
K

ř

kPrKs xipkq is the iteration-averaged
model iterate at node i, and f px˚q is the optimal value. The
expectation in (5) is taken over all sources of stochasticity (e.g.
channel noise) that come into picture. We assume that, if at any
time during the execution of the algorithm up until horizon K,
constraint (4) is violated, then an alarm message is raised and
the algorithm terminates.6 We also consider the probability of
this event never happening, which is denoted as PSpKq (The
subscript S is for success). There exists a trade-off between
these two quantities, and we design the algorithm so that
epKq ă ε for some tolerance level ε, and PSpKq ą 1 ´ ν
for some threshold ν.

In other words, for a particular application, given a lower
bound on the success probability, we want to optimize the
expected suboptimality gap, i.e.

R pK, νq fi min
PSpKqą1´ν

epKq. (6)

III. PRELIMINARIES

We now briefly review some of the relevant concepts of
decentralized lazy mirror descent (a.k.a. distributed dual aver-
aging from [8]), and highlight the challenges that come into the
picture in its implementation over a noisy network with finite
rate constrained links. In Sec. III-A and III-B, we respectively
review the decentralized version of lazy mirror descent, and
present some background on finite-range quantization. In Sec.
III-C, we comment on the role of quantization in adapting de-
centralized lazy mirror descent to the communication channel
model that was presented in Sec. II-B.

A. Decentralized Lazy Mirror Descent (DLMD) algorithm

Consider a doubly stochastic matrix P P Rnˆn that respects
the structure of the network graph G “ pV,Eq, i.e. for
i ‰ j, Pij ą 0 iff pi, jq P E, Pij “ 0 otherwise,
and

ř

jPrnsPij “
ř

iPrnsPij “ 1. In decentralized lazy
mirror descent algorithm, also referred to as distributed dual
averaging [8], each node i P rns maintains a state/model zipkq

6In practice, the constraint in (4) is satisfied through finite range quantiza-
tion. For this reason, (4) is violated if the quantizer input exceeds its dynamic
range, thus leading to saturation.

Algorithm 1 Decentralized Lazy Mirror Descent

1: Input: K, Πψ
X p¨q, tηpkqu

2: Initialization: zip0q “ 0, xip0q “ 0
3: for k P rKs do
4: Consensus step: z1ipk ` 1q “

ř

jPrnsPijzjpkq
5: Subgradient step: zipk ` 1q “ z1ipk ` 1q ` gipkq
6: Projection step: xipk ` 1q “ Πψ

X pzipk ` 1q, ηpkqq
7: end for
8: return txipKquiPrns

at iteration k. The pseudocode of DLMD [8] is given in Alg.
1. Each iteration of the algorithm consists of three steps:
piq Consensus: Every node i computes a consensus of its
neighboring nodes, piiq Subgradient: Each node i computes a
subgradient of its local function gipkq P Bfipxipkqq, and piiiq
Projection: Node i computes a projection of the current state
onto the feasible set X to get the primal iterate xipk ` 1q.

Here, tηpkqukPN is a decreasing step size sequence. ψ :
X Ñ R is a 1-strongly convex proximal function with respect
to some norm ‖¨‖, i.e. it satisfies

ψpyq ě ψpxq ` x5ψpxq,y ´ xy `
1

2
‖x´ y‖2

,

for x, y P X , ψ ě 0 over X and ψp0q “ 0. Exam-
ples include: piq The quadratic function ψpxq “ 1

2 ‖x‖2
2

for x P Rd w.r.t. `2-norm, and piiq the entropy function:
ψpxq “

ř

iPrds xi log pxiq ´ xi over the probability simplex
tx | x ě 0,

ř

iPrds xi “ 1u w.r.t. `1-norm. The projection
operator Πψ

X p¨q is defined as

Πψ
X pz, ηq “ arg min¨

xPX

"

xz,xy `
1

η
ψpxq

*

.

The role of the proximal function is to ensure that the primal
iterate xipkq does not oscillate wildly. We refer the reader to
[8] for a more comprehensive exposition. In the following, we
consider a modification of decentralized lazy mirror descent in
which steps piiq and piiiq are substantially unchanged (since
they only involve local computations) while step piq is adapted
to the communication constraints in Sec. II-B.

B. Finite-range scalar quantizers

The consensus step in Alg. 1 requires nodes to exchange
information with each other. In practical scenarios, this trans-
mission among nodes requires quantization. For the sake of
simplicity and ease of implementation, we focus on probabilis-
tic scalar quantizers to illustrate the system design challenges.
Scalar quantizers act on each coordinate of a vector separately.
However, the same concepts are applicable in general for
vector quantizers too.

Suppose that a link between any two nodes of the net-
work has limited transmission capabilities, i.e. any message
sent over the link is constrained to be of length R-bits
per dimension. Along each dimension, we have M “ 2R

quantization points which we denote here as tu1, . . . , uMu,
where u1 “ ´U and uM “ `U . This means that the dynamic
range of the quantizer (denoted by U ) is finite, and if the input
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to the quantizer v is such that ‖v‖8 ą U , we say that the
quantizer is saturated, which is a violation of requirement (4).
The quantization resolution is defined as

∆ “ sup
v:‖v‖8ďU

∥∥v1 ´ v
∥∥
8
,

where v1 denotes the quantized version of v. Note that for
uniform scalar quantizers, ∆ “ 2U{

`

2R ´ 1
˘

. We denote
our quantization operation by Q∆,U p¨q. The probabilistic
quantization scheme described next has been employed for
distributed consensus problems in [31], [32]. For an input
v “ rv1, v2, . . . , vds

J P Rd, the quantizer output is

v1 “ Q∆,U pvq “ rqpv1q, . . . , qpvdqs
J. (7)

The operation qp¨q is defined for v P ruj , uj`1q Ď R, as:

qpvq “

#

uj with probability r
uj`1 with probability 1´ r,

(8)

where

r “
uj`1 ´ v

uj`1 ´ uj
“
uj`1 ´ v

∆
. (9)

It is shown in [31] that the probabilistic quantization scheme
in (8) is equivalent to a non-subtractive dithered quantizer
[33] with uniformly distributed dither sequence. The following
lemma states that as long as ‖v‖8 ď U , the output v1 “
Q∆,U pvq is an unbiased estimate of v and the quantization
error has bounded variance.

Lemma 1: Suppose v P ruj , uj`1q Ď r´U,`U s Ď R and
let v1 “ qpvq be the R-rate quantization of u according to rule
(8). Then the quantization error e “ v1´ v has zero mean and
bounded variance, that is

E
“

v1
‰

“ v, and E

”

`

v1 ´ v
˘2
ı

ď
∆2

4
“

U2

p2R ´ 1q
2 .

Proof: The probabilistic scalar quantization operation is
unbiased since

E
“

v1
‰

“ ujr ` uj`1 p1´ rq “ uj`1 ´
uj`1 ´ v

∆
∆ “ v.

To obtain an upper bound on the variance, note that

E

”

`

v1 ´ v
˘2
ı

“ pv ´ ujq puj`1 ´ vq . (10)

Since v P ruj , uj`1q, the product in the RHS of (10) is
maximized when v “ uj`uj`1

2 , in which case the maximum
attainable value is ∆2

4 . This completes the proof.

C. Implementation challenges

Quantization is essential for information exchange in the
consensus step. A naive way to do that would be to directly
quantize the states, i.e. node j broadcasts Q∆,U pzjpkqq to its
neighbors and any node i P N pjq uses the quantized state for
computing consensus [23]. For this strategy to be successful
using finite-range quantizers, one requires prior knowledge
of model magnitudes. This might not be readily available in
many scenarios of interest. Alternatively, instead of directly
quantizing the model, some works like [26], [27] resort to
transmitting the quantized difference between the models at

iteration k and that at iteration k ´ 1. The intuition behind
choosing to do this lies in the fact that when the learning rate
is small, nodes need to communicate less with their neighbors.
From a theoretical perspective, it is often possible to obtain
upper bounds on the `8-norm of the model differentials, which
allows us to appropriately design the dynamic range of the
quantizers, so that they remain unsaturated.

We now describe, from a high-level perspective, the chal-
lenges that one encounters when quantized differentials are
exchanged in the presence of channel noise. Consider node
i’s update: Node i requires knowledge of zjpkq for j P N piq
to compute consensus, for which both nodes i and j maintain a
running estimate yijpkq of zjpkq. At iteration k, node j sends
Q∆,U pzjpkq ´ yijpk ´ 1qq to node i. In the noiseless case,
node i updates its running estimate by adding the quantized
differential: yijpkq “ yijpk´1q`Q∆,U pzjpkq ´ yijpk ´ 1qq,
and uses it for consensus. Note that if Q∆,U p¨q had no rate
constraint, then yijpkq “ zjpkq, which is the true state.
Henceforth, yijpkq is referred to as a proxy for zjpkq.

The situation becomes more complicated when differential
exchanges between two nodes take place over additive noisy
links. To see this, suppose that the exchange from node j to i
is corrupted by an additive noise nijpkq. Node i now receives
Q∆,U pzjpkq ´ yijpk ´ 1qq ` nijpkq, as a result of which the
running estimate of node j’s state being maintained at node
i is not exactly yijpkq, but rather a corrupted version of it,
ryijpkq. The contribution from channel noise is the source of
discrepancy between the proxies of zjpkq being maintained
by nodes i and j, i.e. ryijpkq and yijpkq respectively. Simple
algebra (see Appendix A) shows that as iterations proceed, the
variance of this discrepancy grows, and is given by

ryijpkq “ yijpkq `
ÿ

lPrks

nijplq. (11)

When node i uses these ryijpkq’s for consensus, this ac-
cumulated noise term can have unbounded variance. Such
noise accumulation can result in the divergence of the naive
DLMD algorithm. The consideration of quantized differential
exchanges in the presence of channel noise is unique to
our work, and DLMD-DIFFEX makes use of diminishing
confidences and power control to ensure that the variance of
accumulated noise does not grow unbounded. In the following
section, we propose an algorithm which is capable of ensuring
convergence despite the difficulties presented above.

D. Modeling Assumptions

Before delving further, we justify our assumptions on the
communication setting in Sec. II-B as it might appear con-
tradictory that the communication channel has both a rate
constraint, typical of digital communication, and is simulta-
neously corrupted by additive noise, characteristic of analog
communication. Our model assumes that after quantization,
the (digital) quantizer output undergoes a rather general set
of transformations before being mapped to a discrete input
constellation. Post-transmission, the information is demodu-
lated and reconstructed. It is assumed that the overall effect of
these transformations, whatever they are, can be equivalently
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expressed as an additive noise of finite variance. This is a
rather general model, as it allows one to express the over-
all effect of reconstruction errors arising from the cascade
of various operations, including: entropy coding/decoding,
channel encoding/decoding with finite block-length, modula-
tion/demodulation, ACK/NACK for varying channel condi-
tions (for example fading).

We emphasize that our distinction of quantization noise
and additive channel noise is a fundamental one for dis-
tributed optimization algorithms. The quantization noise can
be viewed as a high level abstraction for a variety of noise
sources, whose knowledge is present at the transmitting node
but not at the receiving node. This knowledge can be made
use of to correct for these sources of error using appropri-
ate feedback mechanisms. More specifically, for any given
communication protocol over a digital link, the noise due to
the rate constraint arises from a combination of quantization,
modulation, and communication rate. It can also be due to any
compression schemes as in [11], [12].

Similarly, the additive error (which we refer to as channel
noise) encompasses a broad variety of noise sources, the
effects of which are known at the receiving node, but not
at the transmitting node, such as demodulation and decod-
ing errors owing to the use of finite block-length codes
in communication. The fundamental question we address in
this work is: How to reconcile the information between the
transmitting and receiving nodes when both such noise sources
are simultaneously present?

IV. THE DLMD-DIFFEX ALGORITHM

We now introduce Decentralized Lazy Mirror Descent with
Differential Exchanges (DLMD-DIFFEX). The key idea be-
hind DLMD-DIFFEX is essentially an appropriate modifica-
tion of the consensus step of DLMD (line 4 in Alg. 1) in order
to avoid the accumulation of noise as in (11), for which we
introduce (i) diminishing confidence and (ii) power control.

(i) As iterations proceed, the discrepancy between a node’s
true state and the estimate being maintained by its
neighbor(s) keeps growing. Thus, the estimates grow less
reliable over time. The notion of confidence allows for
the nodes to progressively decrease the contribution of
the neighboring nodes’ states in computing consensus
and increase reliance on its own state.

(ii) In addition to this, power control actively increases
the transmit power in order to combat the decreasing
effective Signal-to-Noise Ratio (SNR) due to channel
noise accumulation. This power control strategy allows
DLMD-DIFFEX to trade-off between the convergence
rate and the nodes’ transmit power requirement.

The pseudocode for DLMD-DIFFEX is given in Alg. 2.
Each node i P rns maintains a state or dual iterate zipkq
as well as a primal iterate xipkq. Apart from these, it
also maintains yjipkq for each of its neighbors j P N piq.
tyjipkq | j P N piqu is a set of proxies for node i’s true state
zipkq. yjipkq is used by node i to compute the differential
of its state for node j’s update and takes into account the
error introduced due to quantization. Moreover, node i also

Algorithm 2 Decentralized Lazy Mirror Descent with Differ-
ential Exchanges (DLMD-DIFFEX) (Node i’s update)

1: Input: K, Πψ
X p¨q, tηpkqu, tβpkqu, tαpkqu

2: Initialization: zip1q “ 0, xip1q “ 0, yijp0q “ 0,
ryijp0q “ 0 for all j P N piq

3: for k P rKs do
4: for j P N piq Node j computes do
5: if

`

‖zjpkq ´ yijpk ´ 1q‖
8
ą U

˘

then
6: return – FAILURE
7: else
8: Compute quantized state differential:

δijpkq “ Q∆,U pzjpkq ´ yijpk ´ 1qq
9: end if

10: Node j updates the proxy for its past state:
yijpkq “ yijpk ´ 1q ` δijpkq

11: Scale and transmit to node i P N pjq:
sijpkq “ αpkqδijpkq

12: end for
13: Note i receives trijpkqujPN piq and decodes:

δ̃ijpkq “ αpkq´1rijpkq

14: Node i updates running estimate of j’s state:
ryijpkq “ ryijpk ´ 1q ` δ̃ijpkq

15: Compute a (possibly stochastic) subgradient
16: rgipkq of fi at xipkq
17: Consensus/Subgradient step: Dual update at Node i:

zi pk ` 1q “ Wiipkqzipkq `
ÿ

jPN piq

Wijpkqryijpkq ` rgipkq

where, Wpkq “ p1´ βpkqq Id ` βpkqP
18: Projection step: Get primal iterate:

xipk ` 1q “ Πψ
X pzipk ` 1q, ηpkqq

19: end for
20: return txipKquiPrns

maintains ryijpkq for j P N piq which are running estimates of
its neighboring nodes’ states. The order of subscripts is worth
noting: yijpkq is a proxy for zjpkq and is maintained by node
j for node i, whereas ryijpkq maintained by node i, is a noise-
corrupted version of yijpkq and acts as an unreliable estimate
for zjpkq. Node i uses tryijpkq | j P N piqu in the consensus
step of DLMD-DIFFEX as follows:

z1i pk ` 1q “ Wiipkqzipkq `
ÿ

jPN piq

Wijpkqryijpkq

“

¨

˝1´ βpkq
ÿ

jPrns

Pij

˛

‚zipkq ` βpkq
ÿ

jPrns

Pijryijpkq, (12)

where Wpkq “ p1´ βpkqq I ` βpkqP is a time-varying
sequence of consensus matrices obtained from the doubly
stochastic matrix P that describes the network topology, and
tβpkqukPN is the confidence sequence. The sequence tβpkqu
dictates the rate with which we decay the contribution of the
neighboring nodes’ states in computing consensus.

Node i’s state update at any iteration k requires knowledge
of the states of each of its neighbors j P N piq. Node
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j P N piq computes its state differential, zjpkq ´ yijpk ´ 1q
for node i and quantizes it subject to the rate-constraint of
the pi, jqth link to get the quantized differential, δijpkq “
Q∆,U pzjpkq ´ yijpk ´ 1qq. It then scales it up by αpkq and
sends sijpkq “ αpkqδijpkq over the noisy link pi, jq P E to
node i. Node i receives rijpkq “ sijpkq`nijpkq as per (2). It
then decodes the quantized diferential δ̃ijpkq “ αpkq´1rijpkq,
and updates the running estimate (maintained by itself) of node
j’s state ryijpkq “ ryijpk ´ 1q ` δ̃ijpkq, which it then uses in
computing consensus as in (12). tαpkqukPN is the predeter-
mined power-control sequence.7 Node j also updates its own
proxy for the next iteration, yijpkq “ yijpk´1q`δijpkq. The
remainder of the algorithm steps involve computing consensus
to get z1ipk`1q according to (12), evaluating (possibly stochas-
tic) subgradient rgipkq, taking a step in the direction of the sub-
gradient zipk`1q “ z1ipk`1q`rgipkq, computing a projection
to get the primal iterate, xipk`1q “ Πψ

X pzipk ` 1q, ηpkqq, and
finally updating the time averaged primal iterate. A summary
of the associated variables is given in Table I.

The worst case memory requirement for any individual node
i executing DLMD-DIFFEX is given by O pp2 ¨ degpiq ` 2qdq,
where degpiq denotes the degree of node i. The quantity
2 ¨ degpiq comes from the set of proxies ryijpkq and yjipkq
for each j P N piq. The additional 2 comes from node i’s
own primal and dual iterates zipkq and xipkq. Furthermore,
apart from the complexity involved in computing consensus,
evaluating subgradients, taking a step in the direction of a
subgradient, and the projection step (all of which are common
to DLMD [8]), the only additional computation involved is in
computing differentials and quantizing them. For our scalar
quantization scheme, this is only Opdq, which is insignificant
compared to what the other computations mentioned above
involve. In our work, we consider P to be constant. Hence,
the computational complexity involved with obtaining Wpkq
is also insignificant. However, for scenarios where P is varying
with k, this also needs to be taken into account. Note that in
line 6 of Alg. 2, when any quantizer saturates, the algorithm
does not necessarily “terminate”. We can, for example, use the
current iterate to warm start a fresh execution of our algorithm
(after an intermediate model exchange step so that the warm
start initialization is same across all the nodes).

V. CONVERGENCE ANALYSIS

In this section, we present our main convergence results,
i.e. Thm. 1 and Thm. 2. Proof sketches of these theorems are
presented in Sec. VI, while most of the algebra is provided in
the appendices.

A. Assumptions

We begin with some standard assumptions required for our
analysis. Denote by Fk, the σ-field containing all information
till iteration k, that is for all i P rns, rgip1q, . . . , rgipkq,
zip1q, . . . , zipk ` 1q, xip1q, . . . ,xipk ` 1q P Fk. Further-
more, for all i ‰ j, yijp1q, . . . ,yijpkq, ryijp1q, . . . , ryijpkq,

7We assume the same sequence tαpkqu irrespective of the node just for
simplicity. We can have different scaling at different nodes.

TABLE I. Summary of variables in DLMD-DIFFEX

Primal iterate of node i at iteration k xipkq

Dual iterate (state) of node i at iteration k zipkq

Proxy for zjpkq maintained by node j for node i yijpkq

Noisy estimate of node j’s state maintained by node i ryijpkq

Quantized differential sent from node j to i δijpkq

Noisy quantized differential received by node i from j rδijpkq

Signal transmitted by node j to node i sijpkq

Signal received by node i from node j rijpkq

(Increasing) Power control sequence αpkq

Step-size sequence for projection step ηpkq

(Diminishing) Confidence sequence βpkq

Quantization resolution ∆

Dynamic range of finite rate quantizer U

δijp1q, . . . , δijpkq, rδijp1q, . . . , rδijpkq P Fk. We consider an
oracle model for subgradient evaluations. Input to the oracle
is an evaluation point x P Rd, and the output is a subgradient
g P Bfpxq. Oracle models provide an abstraction and hide the
computational complexity involved in subgradient evaluations,
which can vary diversely depending on the objective function.

Assumption 1: The noisy subgradient rgipkq is unbiased, i.e.

E rrgipkq|Fk´1s “ gipkq P Bfi pxipkqq , (13)

and its magnitude has bounded second moment, that is

E

”

‖rgipkq‖2
|Fk´1

ı

ď Ω2. (14)

Assumption 2: The channel noise in the communication
model (2) is independent of quantization and oracle noise,
and is unbiased with Varprnijpkqssq “ σ2 where r¨ss denotes
the sth coordinate.

B. Main results
One of the notable features of DLMD-DIFFEX is that it

prevents noise accumulation which would occur with naive
DLMD in the presence of channel noise, as in (11), through an
appropriate choice of confidence and power control sequences.

From line 11 of Alg. 2, we see that sijpkq scales as αpkq,
and hence αpkq dictates the transmit power requirement of the
algorithm as per (3). Moreover, confidence sequence tβpkqu
is decreasing in k, and from (12), it is apparent that the
rate of decay of the sequence βpkq inversely affects the rate
at which consensus is achieved, that is the rate at which
‖zpkq ´ zipkq‖˚ decreases. Recall that zpkq “ 1

n

ř

iPrns zipkq.
From the aforementioned discussion, we see that the interplay
between confidence and power control sequences determines
the rate of convergence and the transmit power requirement
of DLMD-DIFFEX. The following lemma precisely character-
izes sufficient conditions on the sequences tαpkqu and tβpkqu
that prevent channel noise accumulation in DLMD-DIFFEX.

Lemma 2: [Convergence conditions] For any choice of
tαpkqu and tβpkqu in DLMD-DIFFEX (see Alg. 2), the
discrepancy between the noisy estimate of state j maintained
by node i, i.e. ryijpkq and the proxy for node j’s past state
maintained by itself, i.e. yijpkq as given by (11), has bounded
variance if

ÿ

lPrks

1

αplq2
“ Θ

ˆ

1

βpkq2

˙

. (15)
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Lemma 2 gives sufficient conditions for general sequences
tαpkqu and tβpkqu to ensure bounded noise accumulation. The
next theorem, Thm. 1 gives an upper bound to the expected
suboptimality gap in (5) for a particular choice of tαpkqu and
tβpkqu as geometric sequences. This result holds conditioned
on the event that DLMD-DIFFEX succeeds, i.e. none of the
quantizers get saturated. Subsequently, Thm. 2 bounds the
probability of this happening, and shows that with appropriate
choice of design parameters, we can ensure that quantizers
remain unsaturated with a sufficiently high probability.

Theorem 1: [Upper bound on expected suboptimality
gap] Suppose the assumptions in Sec. V-A hold and the
sequence txipkquiPrns is generated by DLMD-DIFFEX as in
Alg. 2, where the confidence, power control, and step-size
sequences are chosen as:

αpkq “
?
c1k

τ{2 (16a)

βpkq “ c0k
´γ (16b)

ηpkq “
R
?

1´ λ

4ξkp1`γq{2
, (16c)

where ξ “
´

Ω2 ` c20
∆2

4 d`
c20σ

2d
2γc1

¯1{2

with Ω2 and σ2 given
as in Asm. 1 & 2, and ψpx˚q ď R2 for some R. If

τ ` 2γ “ 1, (17)

the expected suboptimality gap is bounded as

epKq ď
20R log pK

?
nq

Kp1´γq{2
?

1´ λ

ˆ

Ω2 `
c20∆2d

4
`
c20σ

2d

2γc1

˙

1
2

,

where λ is the second largest eigenvalue of the matrix P.
Note that R is different from the rate R. The suboptimality

gap given by Thm. 1 is conditioned on the event that
DLMD-DIFFEX succeeds. The condition in (17) highlights
the trade-off between the rate of decrease of confidence
sequence and the increase in power allocation. Note that a
lower γ, i.e. faster convergence rate OpK´p1´γq{2q means
a larger τ , i.e. a larger transmit power requirement. The
next theorem states that with appropriate design choices,
DLMD-DIFFEX can be made to succeed with a (high)
probability PSpKq.

Theorem 2: [Lower bound on quantizer unsaturation
probability] Consider the same setting as in Thm. 1. For an
execution of DLMD-DIFFEX till horizon K using finite-range
quantizers of resolution ∆ and dynamic range U , with channel
noise and stochastic subgradient oracle of variances σ2 and Ω2

respectively, we have:

PSpKq ě

ˆ

1´
1

pU ´ Uminq
2

ˆ

c20∆2

2
`
c20σ

2

2γc1
`Ω2

˙˙2Kd|E|

,

(18)
where, Umin “ L is the Lipschitz constant of each fi, and |E|
denotes the number of edges in the connectivity graph.

Thm. 2 shows that if we choose U , R and ∆ appropriately,
PSpKq can be made greater than 1 ´ ν for any specified ν.
The proofs of the above theorems, along with some further
insights, are presented in Sec. VI.

C. System design implications

Note that for a given τ , the power requirement for DLMD-
DIFFEX at any node i P rns can be expressed from (3), as:

PpKq “
1

K

ÿ

kPrKs

αpkq2
ÿ

jPN piq

‖δijpkq‖2
ď
ndc1U

2

τ ` 1
Kτ , (19)

where we use the inequality
ř

kPrKs k
τ ď Kτ`1{ pτ ` 1q, the

fact that the quantized differential satisfies ‖δijpkq‖8 ď U ,
and |N piq| ď n for any i.8 In (19), the subscript i is dropped
for simplicity.9

In any practical application scenario, the desired subopti-
mality gap ε and the failure probability threshold ν would be
specified. Given these specifications, one would be interested
in determining DLMD-DIFFEX parameters necessary to meet
them. In particular, we would need to determine the number of
iterations K so that epKq ă ε subject to PSpKq ą 1´ ν. The
parameters that determine the performance of the algorithm
are (i) the data rate R, (ii) the quantizer dynamic range U ,
and (iii) the confidence parameter γ. Note that the other
parameters in the expressions (except for the constants c0
and c1) are determined from the relations τ ` 2γ “ 1, and
∆ “ 2U{

`

2R ´ 1
˘

. The choice of these parameters is appli-
cation specific. A lower value of γ would decrease the number
of iterations required to reach the desired suboptimality gap
ε, but lower γ implies larger τ , which translates to a larger
transmit power requirement for the algorithm. Furthermore,
for a given value of the data rate R, increasing the quantizer
dynamic range U not only implies a larger number of iterations
to reach a given suboptimality gap ε, but also a higher success
probability PSpKq. For a given value of the dynamic range U ,
increasing R (which translates to a higher network bandwidth
requirement) and subsequently decreasing ∆, implies higher
PSpKq as well as a smaller number of iterations for reaching
the desired suboptimality gap ε. The particular choice of pa-
rameters needs to be optimized for convergence speed, success
probability and power-requirement. It is also worth mentioning
that in our simulations, we have not used any scheme to
determine the optimal choice for the hyperparameters γ and
τ . The choice of γ “ 0.5 ensures least power requirement
and the slowest convergence rate for the algorithm. Similarly,
γ “ 0.1 was chosen to provide a result close to the lower
bound of the noiseless case. τ and γ are scalar values that
satisfy a linear relation between them, i.e. τ ` 2γ “ 1; only
one of them can be varied independently. Since we have a
closed form expression for the upper bound on the expected
suboptimality gap (Thm. 1), as well as an upper bound on the
power requirement from Eq. (19), the (approximately) optimal
value of γ (and hence τ ), can be found in the range γ P p0, 0.5s
by doing a binary search on this interval.

VI. PROOFS SKETCH

In this section, we present a sketch of the proofs of Lemma
2, Thm. 1, and Thm. 2. These three results characterize the

8PpKq is the power requirement at any particular node i.4
9In the more general case, if different nodes use different power control

sequences tαipkqu, we would have a per-node power requirement.
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performance of DLMD-DIFFEX in terms of conditions for
convergence, suboptimality gap and probability of success,
respectively. A principle feature of the proof is that we ensure
asymptotic consensus of the nodes’ states despite the presence
of two distinctive sources of noise as mentioned in Sec. I-B.

Apart from the fact that the subgradient oracle has inher-
ent stochasticity whose variance is assumed to be bounded
according to Asm. 1, stochasticity in the subgradient steps
that DLMD-DIFFEX takes in line 17 of Alg. 2 also comes
from quantization and channel noise. The design of our
finite dynamic range probabilistic quantizer ensures that the
quantization noise has bounded variance when the conditions
in Lemma 1 are satisfied. In order to bound the overall success
probability, the major challenge is to ensure that the variance
of the noise accumulated due to additive noisy channel remains
bounded as the algorithm proceeds. From (11) (which is
derived in Appendix A), we see that the noise variance grows
linearly with the iteration index k. If nothing is done to control
this linear growth, the algorithm would diverge.

DLMD-DIFFEX makes use of power control and diminish-
ing confidence sequences, respectively tαpkqu and tβpkqu, to
ensure that the accumulated noise variance remains bounded as
k Ñ8. Lemma 2 gives a sufficient criteria which, if satisfied
by these sequences, would ensure that the accumulated channel
noise variance remains bounded. The proof of Lemma 2 in
Appendix A analyzes the discrepancy between the true state
of a node i.e. zjpkq and the noisy version used by its neighbors
for computing consensus, i.e. ryijpkq. The discrepancy consists
of the sum of two terms: (i) the quantization error, and (ii)
the accumulated channel noise. In other words, the effects
of quantization noise and channel noise are simply additive
and this observation simplifies the analysis a great deal. From
independence (Asm. 2), the variance of these two contributions
can be added up and we focus on them separately.

The proof of Thm. 1 considers geometric sequences for
αpkq and βpkq. The requirement τ ` 2γ “ 1 in the statement
of the theorem is the sufficiency requirement of Lemma 2. The
proof first shows that the variance of the effective stochasticity
in the subgradient step of DLMD-DIFFEX, i.e. ξ2 is bounded.
The rest of the proof (presented in Appendix B) is quite similar
to that in [8], and consists of the following steps:

1. Deriving an upper bound for the network consensus error
‖zpkq ´ zipkq‖˚ in the presence of confidence sequence
βpkq, which we do in Lemma 6 and Lemma 7.

2. Obtaining an upper bound on the expected suboptimality
gap E fppxipKqq ´ fpx˚q in terms of E ‖zpkq ´ zipkq‖˚.

3. Substituting the expression for ‖zpkq ´ zipkq‖˚ and getting
the result.

Finally, Thm. 2 gives an expression for the success proba-
bility of DLMD-DIFFEX, i.e. that none of the quantizers get
saturated. The proof of this (presented in Appendix C) com-
putes the `8 norm of the differential vector being exchanged
at any iteration, and makes use of Chebyshev’s inequality to
show that for a high enough dynamic range and data rate, it
is relatively unlikely that the quantizers would ever saturate.

VII. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of DLMD-
DIFFEX for a common learning scenario: Training a Support
Vector Machine (SVM) over data distributed across multiple
nodes of a network. As depicted in Fig. 2, we consider two
topologies: A 2-neighbour ring network and a fully-connected
network. In both cases, we choose n “ 10 nodes.

Fig. 2: Ring with 2 neighbors (left) and fully-connected (right) topologies
over a network of n “ 5 nodes.

The local datasets for SVM training (as discussed in Remark
1) are as follows: Node i P rns has access to the data points
taij , biju, for j P rms, where m is the local dataset size, aij P
Rd with d “ 30, and bij P t´1,`1u is the label identifying
the class that datapoint aij belongs to. We consider m “ 10
datapoints per node. Each point is generated from Gaussian
distributions with different means for each of the two classes:
bij “ ´1 and bij “ `1.

In addition, we also consider the case in which the dis-
tribution of datapoints is polarized, that is a particular node
contains datapoints from one particular class only. The global
objective is to train an SVM which can correctly classify the
entire dataset (across all the nodes). Such a polarized data dis-
tribution prevents local training from being successful and the
SVM must be trained in a decentralized fashion. Decentralized
training of a soft-margin SVM can be formulated according
to (1) as the following `22-regularized hinge loss minimization
problem:

min¨
xPRd

1

n

ÿ

iPrns

»

–

1

m

ÿ

jPrms

max
 

0, 1´ bijx
Jaij

(

`
µ

2
‖x‖2

2

fi

fl ,

(20)
where, µ “ 0.1 is the regularization parameter. In other words,
the solution of (20) yields the linear separator which can
classify these N “ nm datapoints with the maximum margin.

For this optimization problem, we wish to characterize the
performance of DLMD-DIFFEX in two ways: piq First, we
plot the suboptimality gap vs. number of iterations for different
choices of confidence and power control parameters, γ and τ .
From Thm. 1, lower values of γ imply faster convergence, but
the trade-off (17) requires us to have a larger τ , i.e. a larger
power requirement. piiq Next, we investigate the suboptimality
gap vs. success probability trade-off and comment on how
the choice of the dynamic range U affects this trade-off. A
summary of the parameters used for simulations is presented
in Table II. The proximal function is taken to be the quadratic
function, ψpxq “ 1

2 ‖x‖2
2. Since the optimal step-size depends

on unknown parameters, we choose any small step size which
gives a reasonable convergence. However, once chosen, it
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TABLE II. Parameters for simulations in Sec. VII-A and VII-B.

Figures Parameter Value

All Figs.
n 10
d 30
m 10

Figs. (3)
R 6
σ2 0.1
U 100

Figs. (4)

R 3
σ2 0.05
U 0.8 to 1.8
K 75

is kept unchanged throughout the different simulations to
maintain consistency of comparison.

For fully-connected networks, the adjacency matrix P P

Rnˆn is given by Pij “ 1{n for all i, j P rns. For a ring
network with 2-neighbors, P is given by:

Pij “

#

1{3 j “ i˘ 1 mod n

0 otherwise,
(21)

Fully-connected networks have a larger spectral gap (i.e.
smaller λ) than ring-networks and hence achieve consensus
faster (which depends inversely on the spectral gap).

A. Suboptimality gap vs. number of iterations
In Fig. 3, we plot the suboptimality gap across nodes, i.e.,

favpKq ´ f˚ “
1

n

ÿ

iPrns

fpxipkqq ´ fpx
˚q, (22)

versus the number of iterations K.10 Here, f˚ “ fpx˚q.
Fig. 3 has four plots. (i) The label “noiseless” (black)

refers to the setting in which the noise variance is set to zero,
i.e. σ2 “ 0. Accordingly, the confidence and power control
sequences are set to the all-one sequence. In this case, DLMD-
DIFFEX reduces to the naive DLMD algorithm of Sec. III-A
but with an additional noise term arising from the finite-range
quantization. Given the noiseless setting, this curve provides a
lower bound for the other simulations in the plot. (ii) The label
“noisy without confidence” (red) considers the noisy setting
but we use naive DLMD as in [8] without any confidence
or power control, i.e. once again, they are set to all-ones
sequence. In this case, we see that the algorithm diverges when
nothing is done to prevent channel noise accumulation. The
blue and green plots correspond to DLMD-DIFFEX with two
different choices of parameters. The channel noise variance in
these cases is the same as the noisy plot; yet DLMD-DIFFEX
achieves convergence under this setting. γ “ 0.5 shows slower
convergence than γ “ 0.1, which is consistent with Thm.
1. Note that smaller γ implies larger τ (according to (17))
and a subsequently larger power requirement for DLMD-
DIFFEX. Each plot is obtained by averaging over 5 different
realizations. The initialization is kept the same in all cases for
a fair comparison. The data rate and the dynamic range for this
set of simulations is kept high enough so that the quantizers
never saturate.

10Note that (22) is the empirically averaged suboptimality gap across nodes
for a given K, while (5) is the expected gap of one node across iterations
over sources of stochasticity like channel noise, quantization and subgradient
oracle.

B. Suboptimality gap vs. success probability

In Fig. 4a, we empirically demonstrate the trade-off between
the success probability PSpKq and the suboptimality gap at a
particular node, that is fpx1pkqq´fpx

˚q. The plots correspond
to two different network topologies, and for the same value of
PSpKq, they have different suboptimality gaps because of the
difference in their spectral gaps.

We next turn our attention to Fig. 4b which plots the
variation of the success probability with the quantizer dynamic
range U . From this figure, we notice that as U increases,
PSpKq also increases according to Thm. 2. This implies
that ∆ “ 2U{

`

2R ´ 1
˘

increases, subsequently increasing
the expected suboptimality gap according to Thm. 1. For a
specific value of U , DLMD-DIFFEX is executed 100 times
and we count the number of times the algorithm execution is
completed up to K “ 75 iterations (reaching which without
the quantizers getting saturated is deemed as a success). The
final suboptimality gap of Fig. 4a is obtained by averaging out
only over those successful iterations. Note that after a certain
value of U , PSpKq reaches 1. This occurs because there is
a value of U after which success is practically guaranteed
and increasing U beyond that point only deteriorates the
suboptimality gap. To move along either of the plots in Figs.
4a and 4b, the dynamic range U of the finite-rate quantizers
is varied.

Another worthwhile thing to note in Fig. 4b is the fact that
for the same value of U , the ring-network has higher success
probability than the fully-connected network. This is consistent
with the fact that |E|, the number of edges, appears as an
exponent in the expression for PSpKq in Thm. 2. Moreover,
λ does not appear in the expression for success probability in
Thm. 2.

The simulation outputs are consistent with the system design
implications in Sec. V-C. DLMD-DIFFEX requires us to look
into transmit power consumption and data rate requirements
for any specified application. Note that if for a given choice
of parameters, DLMD-DIFFEX has a failure probability 1 ´
PSpKq, repeating the algorithm execution M times reduces
the failure probability to p1´ PSpKqqM , which can be made
arbitrarily small by making M appropriately large. However,
repeating the algorithm execution multiple times increases the
wall-clock time elapsed for finding the optimal solution by a
factor of M and hence, it is important to take into account how
large PSpKq should be while choosing algorithm parameters
γ and U . For time-critical applications, where it undesirable to
repeat the algorithm execution several times, one would want
PSpKq to be relatively large; in other words, it is desirable to
operate at a point on the far right of Fig. 4a.

C. MNIST digit Classification using Fully-Connected Neural
Networks (NN)

In this section, we consider the problem of classifying
handwritten digits from the MNIST dataset [34]. We consider
a ring network comprised of 5 nodes. The data is distributed
in way so that each node consists of data from only two of
the ten possible classes. This once again means that if each
of the nodes were to independently train a model without
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Fig. 3: Suboptimality gap vs. number of iterations in Sec. VII-A for the two topologies in Fig. 2.

(a) Node 1 suboptimality vs. success probability.
(b) Variation of success probability with quantizer dynamic

range.

Fig. 4: Suboptimality gap vs. probability of success and Success Probability vs. Dynamic Range in Sec. VII-B for the two topologies in Fig. 2.

(a) Test accuracy using fully-connected neural network
(b) Top-5 test accuracy using fully-connected neural

network

Fig. 5: Performance of a DLMD-DIFFEX for decentralized training of a fully-connected neural network

collaborating with others, they would not have been successful.
We consider a fully-connected network for the classification
task. The network takes in a 28ˆ 28 dimensional image and
flattens it into a vector. This is followed by a dense layer with
64 nodes, finally followed by another dense layer with 10
nodes. The proximal function is taken to be 1

2 ‖x´ xinit‖2
2,

where xinit is the random initialization.

In Figs. 5a and 5b, we plot the test accuracy and the top-
5 accuracy of the neural network trained in a decentralized
fashion. Top-5 accuracy refers to if the ground truth of a test
input belongs to the top 5 predicted classes. We consider a
dynamic range of U “ 30 for our finite range quantizers, and
M “ 2R “ 100 quantization points per dimension. The noise
variance is taken to be σ2 “ 0.1.

Although we have done the analysis only for convex ob-

jective functions, we see that our algorithm converges for
non-convex objectives (i.e. NN training) as well under rate-
constrained and noisy settings. The blue plots correspond
to the accuracy of the noiseless setting. The green plots
are obtained when the differential exchanges are noisy, and
DLMD-DIFFEX is used as the optimization algorithm with
a confidence parameter of γ “ 0.1, and a power control
parameter of τ “ 0.8. We leave the analysis for non-convex
settings for future research.

VIII. ADDITIONAL REMARKS

Before concluding the paper, we mention some limitations
of our problem formulation and possible future research di-
rections. We note that our channel model incorporating data-
rate constraints and additive channel noise, which gives rise
to the associated trade-offs as uncovered in this paper, can
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also be extended to other classes of decentralized optimization
algorithms such as primal-only and second order methods.
Moreover, the corresponding trade-offs in the study of non-
convex settings, for example decentralized training of neural
networks, is still open.

In particular, using Lazy mirror descent for non-convex
objectives requires the use of an appropriate proximal func-
tion ψp¨q that makes effective use of the geometry of the
objective function and with respect to which projection can
be computed. For our simulations in Sec. VII-C, we have
used a quadratic proximal function which reduces lazy mirror
descent to the standard subgradient algorithm. For primal-only
algorithms, works like [35] study communication compression
for non-convex optimization. The extension of their proposed
algorithm MARINA to take into account additive noise accu-
mulation is worth considering.

Channel fading: A practical concern for wireless envi-
ronments is fading. We would like to remark that in this
work, we have considered perfect channel knowledge at the
receiving node, so that the effects of fading can be inverted.
This requires us to deviate from our choice of confidence
and power control sequences as geometric sequences, in order
to effectively incorporate channel inversion techniques. It is
also possible to extend the framework proposed in Sec. II
to the case of heterogeneous links by suitably choosing the
confidence and power sequences to be dependent on the nodes.

Random link failures: Another relevant concern for wire-
less networks is that the links may be randomly time-varying.
[8] considers the case of stochastic communication where
the only assumption made on the randomly varying network
topology is that the expected spectral gap is constant, i.e.
λ2pGq “ λ2pErPptqJPptqsq is independent of t. It is possible
to extend the proof provided in [8, Sec. VII] which considers a
sequence tPptqu8t“0 of random matrices that describe the ran-
domly varying network topology typical of wireless networks,
and utilize properties of Markov chain mixing for completing
the proof.

Extension to compression schemes: A possible extension
of the proposed algorithm is by incorporating more general
compression schemes [11], by deriving a result similar to
Lemma 1 for general compression operators, as such operators
have bounded error.

For general compression operators such as the ones con-
sidered in [36], [37] (which include biased compressors),
the variance of the quantization error is correlated with the
value of the input to the quantizer. These works consider
compressors Cp¨q characterized by a parameter 0 ă δ ď 1
such that E ‖x´ Cpxq‖2

ď p1 ´ δq ‖x‖2. To ensure that our
analysis is tight, the fact that this upper bound on the variance
depends on the actual value of the parameter might necessitate
a slightly different analysis. This is because in our work, the
expected quantization error is upper bounded by a term that
only requires knowledge of the quantizer dynamic range U .

Lastly, it is interesting to note that the transmit power
is dependent on K (19). The setting in which the transmit
power is constant is obtained by setting τ “ 0. This will
require γ “ 1{2 (according to eq. (17)), which means that
the convergence rate drops to OpK´1{4q. If we consider

an iteration horizon K beforehand for which we decide
we will execute the algorithm, eq. (19) tells us the power
requirement of the algorithm. It is still an open question
whether this tradeoff between the power requirement and
the convergence rate is Pareto optimal. An intuitive way to
understand this dependence of power on K is to note that
for non-smooth functions, it is possible that the subgradient at
each step has equal magnitude, i.e. it is possible that the update
zpk` 1q “ zpkq`gpkq in the subgradient step of lazy mirror
descent is equally informative for all k. Note that since noise
accumulates, for gpkq to have finite variance for large values
of k, it becomes important to geometrically increase power
in the later stages of iteration, and hence the dependence of
the transmission power on K appears. However, for smooth
and strongly convex objectives, the magnitude of the gradients
decrease as iterations K increase. For such objective functions,
it might be possible that the power requirement is independent
of K. The case for strongly convex and smooth objectives is
yet to be studied.

IX. CONCLUSIONS

In this work, we considered the problem of decentralized
optimization over a network of nodes, where the information
exchange between them is constrained by network connectivity
and finite data rate, as well as corrupted by an additive channel
noise. We argued that the simultaneous presence of both finite
data rate and channel noise gives rise to a set of difficulties that
do not arise when either of them is considered individually. In
particular, we show that straightforward extensions of existing
algorithms to such settings can lead to noise accumulation
and subsequent divergence. For this reason, we propose a
novel algorithm: Decentralized Lazy Mirror Descent with
Differential Exchanges (DLMD-DIFFEX). We showed that the
algorithm parameters in DLMD-DIFFEX allow us to trade off
power consumption, data rate requirements, convergence rate
and success probability. We analyzed DLMD-DIFFEX and
demonstrated that our numerical simulations were consistent
with our theoretical analysis.
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APPENDIX A
PROOF OF LEMMA 2

From line 8 of Alg. 2, note that the quantized state differ-
ential is obtained as

δijpkq “ zjpkq ´ yijpk ´ 1q `∆ijpkq, (23)

where ∆ijpkq is the quantization error. Line 13 in Alg. 2 gives

rδijpkq “ αpkq´1rijpkq “ δijpkq ` ñijpkq, (24)

where Var
`

rñijpkqss
˘

“ σ2{αpkq2 for s P rds. The running
estimate of node j’s state maintained by node i is updated as:

ryijpkq “ δ̃ijpkq ` ryijpk ´ 1q (25)
“ zjpkq `∆ijpkq ` rnijpkq ` rryijpk ´ 1q ´ yijpk ´ 1qs .

To track the evolution of the discrepancy ryijpk´1q´yijpk´
1q in k, note that the proxy at node j is updated as yijpkq “
δijpkq ` yijpk ´ 1q, and the estimate at node i is:

ryijpkq “ rδijpkq ` ryijpk ´ 1q

“ δijpkq ` ñijpkq ` ryijpk ´ 1q.

Accordingly the discrepancy above grows as

ryijpkq ´ yijpkq “ ryijpk ´ 1q ´ yijpk ´ 1q ` rnijpkq (26)

Unrolling this telescopic sum gives ryijpkq ´ yijpkq “
ř

lPrks rnijplq. From Asm. 2, the variance of the accumulated
noise (which adds to the stochasticity of the subgradient as
seen in (31)) is

Var prrnipkqssq “ Var

¨

˝

»

–

ÿ

jPrnsztiu

ÿ

lPrks

Wijpkqrnijplq

fi

fl

s

˛

‚

ď
ÿ

jPrnsztiu

ÿ

lPrks

Var
`

rβpkqPijpkqrnijplqss
˘

ď
ÿ

jPrnsztiu

ÿ

lPrks

βpkq2

αplq2
P2
ijσ

2

ď σ2βpkq2
ÿ

lPrks

1

αplq2
. (27)

From (27), we see that the condition
ř

lPrks αplq
´2 “

Θ
`

βpkq´2
˘

in (15) is sufficient to guarantee that this variance
stays bounded as k Ñ8. Note that taking a summation over
all nodes weighted by Pij is equivalent to taking consensus
over the neighborhood.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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APPENDIX B
PROOF OF THEOREM 1

The proof of Thm. 1 closely follows the convergence proof
of distributed dual averaging [8] with appropriate modifica-
tions to take into account the effects of additional sources of
stochasticity, i.e. quantization and channel noise. The proof
structure is as follows: (i) We begin by introducing some
necessary lemmas from [8] which we state without proof. (ii)
Then, we show that as a consequence of Lemma 1, Asm. 1,
Asm. 2, and with the confidence and power control sequences
chosen to be geometric sequences, the effective stochasticity
in the subgradient vector due to stochastic oracle, quantization
and channel noise has bounded variance. (iii) Next, in Ap-
pendix B-A, we derive an upper bound to the consensus error
‖zpkq ´ zipkq‖˚ in the presence of diminishing confidence but
without additive channel noise or rate constraint. (iv) Finally,
in Appendix B-B, we combine the result in (iii) with that of
(ii) to bound the overall suboptimality gap and conclude the
proof.

Lemma 3: [8, Lemma 2] For any arbitrary pair u,v P Rd,
it holds that∥∥∥Πψ

X pu, ηq ´Πψ
X pv, ηq

∥∥∥ ď η ‖u´ v‖˚ . (28)

Lemma 4: [8, Lemma 3] Let tgpkqukPN P Rd be an arbi-
trary sequence of vectors and consider the sequence txpkqukPN
defined by x pk ` 1q “ Πψ

xPX

´

ř

sPrks g psq , ηpkq
¯

. Then for
any non-increasing sequence tηpkqukPN of positive step-sizes,
and for any x˚ P X , we have

ÿ

kPrKs

xg pkq ,x pkq ´ x˚y ď (29)

1

2

ÿ

kPrKs

η pk ´ 1q ‖gpkq‖2
˚ `

1

ηpKq
ψ px˚q .

Lemma 5: [8, Lemma 4] For the sequence typkqukPN
obtained as y pkq “ Πψ

xPX pzpkq, ηpkqq, where zpkq “
1
n

ř

iPrns zipkq is the node-averaged state sequence, we have
ÿ

kPrKs

rfpxipkqq ´ fpx
˚qs ď (30)

ÿ

kPrKs

rfpypkqq ´ fpx˚qs ` L
ÿ

kPrKs

ηpkq ‖zpkq ´ zipkq‖ .

Furthermore, if the iteration-averaged iterates are denoted as
pypKq “ K´1

ř

kPrKs ypkq and, pxipKq “ K´1
ř

kPrKs xipkq,
we also have fppxipKqq ´ fpx˚q ď fppypKqq ´ fpx˚q `
LK´1

ř

kPrKs ηpkq ‖zpkq ´ zipkq‖.
From (25) and (26), the running estimate of node j’s state

at node i is given as ryijpkq “ zjpkq`∆ijpkq`
ř

lPrks rnijplq.
At any iteration k, the state update at node i is then obtained
as

zi pk ` 1q “ Wiipkqzipkq`

ÿ

jPrnsztiu

Wijpkq

¨

˝zjpkq `∆ijpkq `
ÿ

lPrks

rnijplq

˛

‚` rgipkq

“
ÿ

jPrns

Wijpkqzjpkq ` pgipkq, (31)

where, rgipkq is the output of subgradient oracle and,

pgipkq “ rgipkq `
ÿ

jPrnsztiu

Wijpkq

¨

˝∆ijpkq `
ÿ

lPrks

rnijplq

˛

‚

is the effective stochastic subgradient which also includes
errors due to quantization and channel noise.

Denote the quantization error at node i by qipkq “
ř

jPrnsztiuWijpkq∆ijpkq, and noise contribution as rnipkq “
ř

jPrnsztiuWijpkq
ř

lPrks rnijplq. From Lemma 1,

Var prqipkqssq “
ÿ

jPrnsztiu

Var
`

rWijpkq∆ijpkqss
˘

ď
ÿ

jPrnsztiu

βpkq2P2
ijVar

`

r∆ijpkqss
˘

ď c20
∆2

4
. (32)

The last inequality follows from our choice βpkq “ c0k
´γ .

For αpkq “
?
c1k

τ{2, (27) simplifies to Var prrnipkqssq “

σ2 c
2
0k
´2γ

c1

ÿ

lPrks

l´τ ď σ2 c
2
0k
´2γ

c1

ż k

0

l´τdτ “ σ2 c
2
0

c1

k1´τ´2γ

p1´ τq
.

(33)
In particular, (33) implies that the condition of Lemma 2 is sat-
isfied if the rates for geometric confidence and power control
sequences satisfy τ ` 2γ “ 1. This gives us Var prrnipkqssq “
c20σ

2

2γc1
.

Since pgipkq “ rgipkq ` qipkq ` rnipkq, taking expectations
and recalling Lemma 1, Asm. 1, and Asm. 2, we have
E rpgipkqs “ gipkq P Bfi pxipkqq. We now upper bound the
second moments:11

E

”

‖pgipkq‖2
2

ı

“ E

”

‖rgipkq‖2
2 ` ‖qipkq‖2

2 ` ‖rnipkq‖2
2

ı

` 2E
“

rgipkq
Jqipkq ` qipkq

J
rnipkq ` rgipkq

J
rnipkq

‰

. (34)

From Asm. 2, we have

E
“

qipkq
J
rnipkq

‰

“ rEqipkqs
J
rE rnipkqs “ 0 (35a)

E
“

rgipkq
J
rnipkq

‰

“ rE rgipkqs
J
rE rnipkqs “ 0. (35b)

Furthermore, recalling that for a given i P rns, xipkq P
Fk´1 and zjpkq,yijpk ´ 1q P Fk´1 for all j P N piq,
we have E

“

rgipkq
Jqipkq

‰

“ E
“

E
“

rgipkq
Jqipkq|Fk´1

‰‰

“

E

”

E rrgipkq|Fk´1s
J
E rqipkq|Fk´1s

ı

“ 0, where the second
equality follows from the fact that given Fk´1, rgipkq and
qipkq are conditionally independent of each other. Also,

E

”

‖qipkq‖2
2

ı

“ E

»

–

ÿ

sPrds

rqipkqs
2
s

fi

fl ď c20
∆2

4
d,

E

”

‖rnpkq‖2
2

ı

“ E

»

–

ÿ

sPrds

rrnipkqs
2
s

fi

fl ď
c20σ

2d

2γc1
.

Accordingly, the effective stochasticity is bounded as:

E

”

‖rgipkq‖2
2

ı

ď Ω2 `
c20∆2d

4
`
c20σ

2d

2γc1
fi ξ2. (36)

11assuming the norm is `2, otherwise we need to upper bound the second
moment slightly differently.
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Now, once the errors due to quantization and channel noise
have been clubbed into the stochastic subgradient with
bounded effective stochasticity ξ2, analyzing (31) is very
similar to distributed dual averaging of [8], except for the
fact that the consensus matrix Wpkq “ p1´ βpkqq I`βpkqP
depends on k. The analysis is [8] first assumes that there
is no stochasticity in the subgradient, i.e. (31) uses gipkq
instead of noisy rgipkq and derives convergence rate for this
case. It then shows that even if the sub-gradients are noisy,
as long as they have bounded variance, much of the analysis
remains unchanged. We adopt a similar approach. We first
derive an upper bound in Lemma 7 to the consensus error
‖zpkq ´ zipkq‖˚ in the presence of diminishing confidences
but without any sources of stochasticity, i.e. subgradient oracle
is exact, channels are noiseless and there is no data rate
constraint. We then provide an upper bound in Lemma 8 to the
expected suboptimality gap epKq in terms of the consensus
error ‖zpkq ´ zipkq‖˚ in the presence of subgradient oracle
noise, finite data rate and channel noise. Finally to prove Thm.
1, we combine the results of Lemma 7 and 8.

A. Consensus error ‖zpkq ´ zipkq‖˚ with exact subgradient
oracle, infinite data rate and noiseless channel

We first provide an auxillary lemma (Lemma 6) regarding
the rate at which products of doubly stochastic matrices
converge to the uniform matrix. This lemma is required for
deriving the upper bound on consensus error in Lemma 7. In
other words, if Φpk, sq “ WpkqWpk´ 1q . . .Wpsq, then we
show that Φpk, sq approaches 11J

n at an exponential rate.
Lemma 6: For any fixed doubly stochastic matrix P P Rnˆn

with eigenvalues 1 “ λ1pPq ě λ2pPq ě . . . ě λnpPq,
define Wpkq as a convex combination of I and P: Wpkq “
p1´ βpkqq I ` βpkqP, where βpkq “ c0k

´γ is geomet-
rically decaying confidence sequence, and let Φpk, sq “
ś

tPrs:ksWptq. Then for any vector x in the unit simplex,
i.e. x P ∆n “ tx P Rn | x ě 0,xJ1 “ 1u, we have:∥∥∥∥Φpk, sqx´

1

n

∥∥∥∥
1

ď
?
n

∥∥∥∥Φpk, sqx´
1

n

∥∥∥∥
2

ď
?
ne´c0

1´λ
1´γ rpk`1q1´γ´s1´γs, (37)

where, λ “ maxtλ2pPq,´λnpPqu is the eigenvalue of P with
second largest magnitude.

Proof: Note that Wptq, s ď t ď k are doubly stochastic
matrices since convex combination of doubly stochastic matri-
ces remains so. We have,

∥∥∥Φpk, sq ´ 11J

n

∥∥∥
2
“ µpk, sq, where

‖¨‖2 denotes the operator norm of a matrix, and µpk, sq is the
second-largest eigenvalue of Φpk, sq. From the definition of
operator norm, we have for any x P ∆n,

∥∥Φpk, sqx´ 1
n

∥∥
2
ď

µpk, sq. To get an upper bound on µpk, sq, consider the eigen-
value decomposition of P “ VΛVJ. Since the eigenspace
of I is Rn, the eigen decomposition of Wptq is Wptq “
V pp1´ βptqq I` βptqΛqVJ. This gives us the eigenvalue
decomposition of Φpk, sq to be

Φpk, sq “ V

»

–

ź

tPrs:ks

pp1´ βptqq I` βptqΛq

fi

flVJ,

The second-largest eigenvalue of Φpk, sq is then µpk, sq “
ś

tPrs:ks r1` βptq pλ´ 1qs. Using the fact that log p1` xq ď
x,

logµpk, sq “
ÿ

tPrs:ks

log p1` βptq pλ´ 1qq ď pλ´ 1q
ÿ

tPrs:ks

βptq,

Moreover,
ř

tPrs:ks βptq is evaluated as:

ÿ

tPrs:ks

c0
tγ
ě

ż k`1

t“s

c0
tγ
dt “

c0
1´ γ

”

pk ` 1q
1´γ

´ s1´γ
ı

.

Substituting this, we get that for x P ∆n,∥∥∥∥Φpk, sqx´
1

n

∥∥∥∥
2

ď µpk, sq ď e´c0
1´λ
1´γ rpk`1q1´γ´s1´γs.

This, along with standard norm inequality between `1 and `2
norms, yields the result.

We now present the main lemma of this subsection.
Lemma 7: Consider exact subgradient oracle with noiseless

channels having infinite data rate. Then the state update
equations for any node i P rns, taking into account diminishing
confidences is zi pk ` 1q “

ř

jPrnsWijpkqzjpkq ` gipkq and
xipk`1q “ Πψ

X pzipk ` 1q, ηpkqq. For a given horizon K and
any k P rKs, the network consensus error is upper bounded
by

‖zpkq ´ zipkq‖˚ ď
2L

c0 p1´ λq

`

Kγ log
`

K
?
n
˘˘

` 3L,

where L is the Lipschitz constant of each fi.
Proof: Define Φ pk, sq “ 11J

n ´Φ pk, sq. Then, unrolling
the state update equation from time k back till time s, we have

zi pk ` 1q “
ÿ

jPrns

rΦ pk, sqsji zjpsq (38)

`
ÿ

rPrs`1:ks

¨

˝

ÿ

jPrns

rΦ pk, rqsji gj pr ´ 1q

˛

‚` gi pkq ,

where rΦ pk, sqsji denotes the jth entry of the ith column of
Φ pk, sq. The average state evolves as:

z pk ` 1q “
1

n

ÿ

iPrns

zi pk ` 1q (39)

“
1

n

ÿ

iPrns

¨

˝

ÿ

jPrns

Wijpkqzjpkq ` gi pkq

˛

‚“ z pkq `
1

n

ÿ

iPrns

gi pkq .

Since we initialize our dual iterates to zi p0q “ 0 for all i P rns,
unrolling the above yields z pkq ´ zi pkq “

ÿ

sPrk´1s

ÿ

jPrns

ˆ

1

n
´ rΦ pk ´ 1, sqsji

˙

gj ps´ 1q

`

¨

˝

1

n

ÿ

jPrns

pgj pk ´ 1q ´ gi pk ´ 1qq

˛

‚ (40)

Furthermore, taking ‖¨‖˚ on both sides of (40), and using
the fact that each component function fi of our objective is
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L-Lipschitz continuous, i.e. ‖gi pkq‖˚ ď L, simple algebraic
manipulation gives us:

‖zpkq ´ zipkq‖˚ ď
ÿ

sPrk´1s

L

∥∥∥∥Φpk ´ 1, sqei ´
1

n

∥∥∥∥
1

` 2L.

(41)
Here, ei denotes the ith standard basis vector. We now split the
sum in (41) into two parts separated by a point pk. The first part
consists of iteration steps k for which

∥∥Φpk ´ 1, sq ´ 1
n

∥∥
1

is
small, and the second part has limited number of terms in
the summation. Since ei P ∆n, from Lemma 6 we have,∥∥Φ pk ´ 1, sq ei ´

1
n

∥∥
1
ď

?
ne´c0

1´λ
1´γ rk

1´γ
´s1´γs. If we

split the sum (41) at pk “
”

k1´γ ´
1´γ

c0p1´ λq log pK
?
nq
ı

1
1´γ

,

we have for s ď pk,
∥∥Φpk ´ 1, sqei ´

1
n

∥∥
1
ď 1

K , and for larger
s, we use the more trivial bound

∥∥Φpk ´ 1, sqei ´
1
n

∥∥
1
ď 2.

Doing this yields,

‖zpkq ´ zipkq‖˚ ď L
k´1
ÿ

s“pk`1

∥∥∥∥Φ pk ´ 1, sq ei ´
1

n

∥∥∥∥
1

` 3L.

(42)
Using the inequality p1´ xqn ě 1´ nx when x ď 1 for any
even positive integer n, we get,

pk ´ 1q ´
´

pk ´ 1
¯

` 1 ď
kγ log pK

?
nq

c0 p1´ λq

Substituting this in (42) and recalling that k ď K, we obtain
the desired result.

B. Expected suboptimality gap in the presence of stochastic
subgradient oracle and noisy channel with finite data rate

Lemma 8: Let the sequences txipkqukPN and tzipkqukPN be
generated by DLMD-DIFFEX. Then, for any x˚ P X and for
each node i P rns, we have E fppxipKqq ´ fpx˚q ď

1

KηpKq
ψpx˚q `

ξ2

2K

ÿ

kPrKs

ηpk ´ 1q

`
L` ξ

nK

ÿ

kPrKs

ÿ

iPrns

ηpkqE ‖zpkq ´ zipkq‖

`
L

K

ÿ

kPrKs

ηpkqE ‖zpkq ´ zipkq‖ ,

where ‖¨‖ denotes the `2-norm which is its own dual.
Proof: The proof of this follows the proof of [8, Thm.

1] very closely. Hence, we highlight the major differences
from that proof and omit the tedious algebraic manipula-
tions while referring the reader to the relevant equations
in [8] for reference. Consider the running sum SpKq “
ř

kPrKs rfpypkqq ´ fpx
˚qs. Following steps similar to [8,

Eqns. 19, 20],

SpKq ď
1

n

ÿ

kPrKs

ÿ

iPrns

xpgipkq,xipkq ´ x˚y

`
L

n

ÿ

kPrKs

ÿ

iPrns

‖ypkq ´ xipkq‖

`
1

n

ÿ

kPrKs

ÿ

iPrns

xgipkq ´ pgipkq,xipkq ´ x˚y . (43)

The expression inside the summation over k in the first term
of (43) can be written as

A

1
n

ř

iPrns pgipkq,xipkq ´ x˚
E

“

C

1

n

ÿ

iPrns

pgipkq,ypkq ´ x˚

G

`

C

1

n

ÿ

iPrns

pgipkq,xipkq ´ ypkq

G

.

(44)
Note that even in the presence of stochasticity, the central-

ized state sequence zpkq evolves in a very simple way:

zpk ` 1q “
1

n

ÿ

iPrns

zipk ` 1q

“
1

n

ÿ

iPrns

¨

˝

ÿ

jPrns

Wijpkqzjpkq ` pgipkq

˛

‚

“ zpkq `
1

n

ÿ

iPrns

pgipkq.

From Lemma 4, with the sequence
!

1
n

ř

iPrns pgipkq
)

in place of tgipkqu we have
ř

kPrKs

A

1
n

ř

iPrns pgipkq,ypkq ´ x˚
E

ď
1

ηpKq
ψpx˚q `

1

2

ÿ

kPrKs

ηpk ´ 1q

∥∥∥∥∥∥ 1

n

ÿ

iPrns

pgipkq

∥∥∥∥∥∥
2

, (45)

Taking expectations and using Holder’s inequality,

E

»

—

–

∥∥∥∥∥∥ 1

n

ÿ

iPrns

pgipkq

∥∥∥∥∥∥
2
fi

ffi

fl

ď
1

n2

ÿ

i,jPrns

E r‖pgipkq‖ ‖pgjpkq‖s

ď
1

n2

ÿ

i,jPrns

´

E

”

‖pgipkq‖2
ı¯

1
2
´

E

”

‖pgjpkq‖2
ı¯

1
2
ď ξ2.

(46)

The second term in (44) is, E rxpgipkq,xipkq ´ ypkqys

ď E r‖pgipkq‖ ‖xipkq ´ ypkq‖s
“ E rE r‖pgipkq‖ |Fk´1s ¨ ‖xipkq ´ ypkq‖s
ď ξE r‖xipkq ´ ypkq‖s . (47)

We then get,
ř

kPrKs
1
n

ř

iPrnsE rxpgipkq,xipkq ´ x˚ys

ď
1

ηpKq
ψpx˚q `

ξ2

2

ÿ

kPrKs

ηpk ´ 1q

`
ξ

n

ÿ

kPrKs

ÿ

iPrns

ηpkqE r‖zpkq ´ zipkq‖s , (48)

where the final term is obtained by taking expectations
on both sides of Lemma 3. The second term of
(43) is upper bounded similarly using Lemma
3, that is, L

n

ř

kPrKs

ř

iPrnsE r‖ypkq ´ xipkq‖s ď
L
n

ř

kPrKs

ř

iPrns ηpkqE r‖zpkq ´ zipkq‖s.
Finally, taking expectations of the third term in (43),

E rxgipkq ´ pgipkq,xipkq ´ x˚ys

“ E rE rxgipkq ´ pgipkq,xipkq ´ x˚y |Fk´1ss

“ E rxE rgipkq ´ pgipkq|Fk´1s ,xipkq ´ x˚ys “ 0
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With all this, E rSpKqs eventually boils down to

E rSpKqs ď
1

ηpKq
ψpx˚q `

ξ2

2

ÿ

kPrKs

ηpk ´ 1q

`
L` ξ

n

ÿ

kPrKs

ÿ

iPrns

ηpkqE ‖zpkq ´ zipkq‖ . (49)

Since px “ 1
K

ř

kPrKs xipkq, using Jensen’s inequality,

E rfppxipKqqs ´ fpx
˚q ď

1

K
E

»

–

ÿ

kPrKs

fpxipkqq ´ fpx
˚q

fi

fl

Finally, recalling Lemma 5,

E fippxipkqq´fpx
˚q ď E rSpKqs`L

ÿ

kPrKs

ηpkq ‖zpkq ´ zipkq‖ .

Substituting (49) here, the proof is complete.

C. Proof of Theorem 1

The proof of Thm. 1 is essentially substituting Lemma 7
in Lemma 8. First, note that E r‖pgipkq‖s ď ξ. This follows
from the fact that ‖¨‖ is a convex function and Jensen’s
inequality yields pE r‖pgipkq‖sq2 ď E

”

‖pgipkq‖2
ı

ď ξ2. This
shows that an analogous version of Lemma 7 holds even in
the presence of stochasticity. Simply replacing ‖zpkq ´ zipkq‖
by E ‖zpkq ´ zipkq‖, and ‖gipkq‖ ď L everywhere in the
derivation with E ‖pgipkq‖ ď ξ, we get

E ‖zpkq ´ zipkq‖ ď
2ξ

c0p1´ λq
Kγ log

`

K
?
n
˘

` 3ξ. (50)

Replacing the expected network consensus error
E ‖zpkq ´ zipkq‖ in the expression of Lemma 8 by this
upper bound in (50), the expression for stepsize ηpkq, the
inequality

ř

kPrKs k
´p ď

şK

0
k´pdk “ K1´p{p1´ pq, and the

facts that 1´ λ ă 1 and L ď ξ, we get our result.

APPENDIX C
PROOF OF THEOREM 2

Let us denote the input to the quantizer along the link
between nodes i and j by

ωijpkq “ zjpkq ´ yijpk ´ 1q. (51)

We need to ensure that ωijpkq remains within the dynamic
range of the quantizer with high-probability. Note that:

ωijpkq “ rzjpk ´ 1q ´ yijpk ´ 1qs

´ βpk ´ 1q
ÿ

wPN pjq

Pjw pzjpk ´ 1q ´ ryjwpk ´ 1qq ` rgjpk ´ 1q.

Some simple algebraic manipulations yield:

ωijpkq “ ´∆ijpk ´ 1q

` βpk ´ 1q
ÿ

wPN pjq

Pjw

»

–

ÿ

sPrk´1s

rnjwpsq `∆jwpk ´ 1q

fi

fl

` rgjpk ´ 1q. (52)

Recall that conditioned on the event that all quantizers were
unsaturated at time k ´ 1, quantization, channel noise, and
stochastic subgradient oracle noise are unbiased. So, we have:

E rωijpkqs “ gjpk ´ 1q

ùñ E rωijsp “ rgjpk ´ 1qsp ď L, for p P rds.

From the above expression, making use of double stochasticity
of P and plugging in the geometric sequences for βpkq and
αpkq, we also get Var rωijpkqsp

ď
`

1` β2pk ´ 1q
˘ ∆2

4
`
β2pk ´ 1qσ2

c1

ÿ

sPrk´1s

s´τ ` Ω2

ď

ˆ

c20∆2

2
`
c20σ

2

2γc1
` Ω2

˙

fi Ψ2. (53)

where the last inequality makes a simplifying assumption c0 ě
1. Note that in the absence of any stochasticity, a quantizer
range of L would have ensured that it never gets saturated. But
in the presence of quantization, channel noise and stochasticity
from subgradient oracle, no matter what the chosen range of
the quantizer is, there will always be a non-zero probability
that it gets saturated. However, if we choose the dynamic range
of the quantizers to be large enough, as long as it is at least
Umin “ L, we can upper bound the probability of quantizer
saturation by an arbitrarily small value. From Chebyshev’s
inequality, for any p P rds, we have:

P

´

| rωijpkqsp ´E rωijpkqsp | ě u
¯

ď
Ψ2

u2

ùñ P

´

´U ď rωijpkqsp ď `U
¯

ě 1´
Ψ2

pU ´ Uminq
2 ,

(54)

where, U is the chosen dynamic range of the quantizer,
Umin “ L is the Lipschitz constant of the objective function,
and Ψ2 is the variance of each coordinate of the vector
input to the quantizer. Using the chain rule of probability,
P

`

‖ωijpkq‖8 ď U @ i, j
˘

“

P

`

‖ωijpkq‖8
ď U @ i, j | ‖ωijpk ´ 1q‖

8
ď U @ i, j

˘

¨P
`

‖ωijpk ´ 1q‖
8
ď U @ i, j

˘

“
ź

sPrks

P

`

‖ωijpsq‖8
ď U @ i, j | ‖ωijps´ 1q‖

8
ď U @ i, j

˘

ě

ˆ

1´
Ψ2

pU ´ Uminq
2

˙2kd|E|

. (55)

where, the 2 appears in the exponent because the network
links are taken to be bidirectional. This proves Thm. 2.
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