

How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration-exploitation tradeoffs

Ecology Letters ELE-00933-2017.R1 Ideas and Perspectives 19-Feb-2018 Monk, Christopher; Leibniz-Institut fur Gewasserokologie und Binnenfischerei, Biology and Ecology of Fishes Barbier, Matthieu; National Centre for Scientific Research (CNRS), Centre for Biodiversity Theory and Modelling Romanczuk, Pawel; Leibniz-Institut fur Gewasserokologie und
Ideas and Perspectives 19-Feb-2018 Monk, Christopher; Leibniz-Institut fur Gewasserokologie und Binnenfischerei, Biology and Ecology of Fishes Barbier, Matthieu; National Centre for Scientific Research (CNRS), Centre for Biodiversity Theory and Modelling
19-Feb-2018 Monk, Christopher; Leibniz-Institut fur Gewasserokologie und Binnenfischerei, Biology and Ecology of Fishes Barbier, Matthieu; National Centre for Scientific Research (CNRS), Centre for Biodiversity Theory and Modelling
Monk, Christopher; Leibniz-Institut fur Gewasserokologie und Binnenfischerei, Biology and Ecology of Fishes Barbier, Matthieu; National Centre for Scientific Research (CNRS), Centre for Biodiversity Theory and Modelling
Binnenfischerei, Biology and Ecology of Fishes Barbier, Matthieu; National Centre for Scientific Research (CNRS), Centre for Biodiversity Theory and Modelling
Binnenfischerei, Biology and Ecology of Fishes; Humboldt-Universitat zu Berlin, Institute of Theoretical Biology; Princeton University Department of Ecology and Evolutionary Biology Watson, James; Stockholm University, Stockholm Resilience Centre; Oregon State University, College of Earth, Ocean and Atmospheric Sciences Nakayama, Shinnosuke; New York University Tandon School of Engineering, Mechanical and Aerospace Engineering Alós, Josep; Instituto Mediterraneo de Estudios Avanzados Rubenstein, Dan; Princeton University Department of Ecology and Evolutionary Biology Levin, Simon; Department of Ecology & Evolutionary Biology, Princeton University Arlinghaus, Robert; Leibniz-Institut fur Gewasserokologie und Binnenfischerei, Biology and Ecology of Fishes; Humboldt-Universität zu Berlin, Faculty of Life Science, Division of Integrative Fisheries Management, Department of Crop and Animal Sciences
social-ecological system, human behaviour, sustainability, cooperation, conflict, predator-prey, consumer-resource, governance, fish and fisheries

SCHOLARONE[™] Manuscripts

1 2		
- 3 4	1	How ecology shapes exploitation: a framework to predict the behavioural response of human
5 6 7 8 9 10 11 12 13	2	and animal foragers along exploration-exploitation tradeoffs
	3	Social dynamics of Natural resource consumers
	4	
	5	Christopher T. Monk ¹ *, Matthieu Barbier ² *, Pawel Romanczuk ^{1,3,4} *, James R. Watson ^{5,6} *, Josep
	6	Alós ⁷ , Shinnosuke Nakayama ⁸ , Daniel I. Rubenstein ⁴ , Simon A. Levin ⁴ & Robert Arlinghaus ^{1,9}
14 15	7	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	8	* These authors contributed equally to this work
	9	
	10	¹ Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and
	11	Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany. ² Centre for Biodiversity Theory
	12	and Modelling, National Centre for Scientific Research(CNRS), France. ³ Institute of Theoretical
	13	Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
	14	⁴ Department of Ecology and Evolutionary Biology, Princeton University, Princeton, 08544 New
	15	Jersey, USA. 5 The Global Economic Dynamics and the Biosphere programme, Swedish Royal
	16	Academy of Sciences, Stockholm Sweden. ⁶ College of Earth, Ocean and Atmospheric Sciences,
	17	Oregon State University, Oregon, USA. ⁷ Instituto Mediterráneo de Estudios Avanzados, IMEDEA
	18	(CSIC-UIB), Esporles, Illes Balears, Spain. ⁸ Department of Mechanical and Aerospace
	19	Engineering, New York University Tandon School of Engineering, New York, USA ⁹ Division of
	20	Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life
	21	Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany.
41 42	22	
43 44	23	Corresponding author: Christopher T. Monk, Department of Biology and Ecology of Fishes,
45 46	24	Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587
47 48 49 50	25	Berlin, Germany Tel.: +49-3064181-615, Fax: +49-30-64181-750, monk@igb-berlin.de
	26	
51	27	Contacts: monk@igb-berlin.de (CTM), contact@mrcbarbier.org (MB), pawel.romanczuk@hu-
52 53	28	berlin.de (PR), james.watson@su.se (JRW), alos@imedea.uib-csic.es (JA), shinn407@gmail.com
54 55	29	(SN), dir@princeton.edu (DIR), slevin@princeton.edu (SL), arlinghaus@igb-berlin.de (RA)
56 57		
58 59		1
60		

1		
2 3	30	
4 5	31	Keywords: social-ecological system, fish and fisheries, human behaviour, sustainability,
6 7	32	cooperation, conflict, predator-prey, consumer-resource, governance
8 9	33	
10 11	34	Author Contributions: All authors developed the framework (substantial contributions from
12 13	35	DIR & MB), MB & JRW developed the mathematical model, PR developed the lattice model,
14	36	CTM, JA & SN conducted the case study review, CTM & RA wrote the first draft and all authors
15 16	37	provided subsequent revisions and feedback.
17 18	38	
19 20	39	Data accessibility statement: Not relevant, as no new data is presented in this manuscript.
21 22	40	
23 24	41	Abstract word count: 195
25 26	42	Main text word count: 7499
27	43	Box 1 word count: 740
28 29	44	Number of references: 148
30 31	45	Number of figures: 4
32 33	46	Number of tables: 2
34 35	47	Number of boxes: 1
36 37		
38		
39 40		
41 42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
56 57		
58		2
59 60		

1		
2 3		
4 5 6	48	Abstract
7 8 9	49	Understanding how humans and animals behave in response to changes in their environments
10 11	50	is vital for predicting population dynamics and the trajectory of coupled social-ecological
12 13 14	51	systems. Here, we present a novel framework for identifying emergent social behaviours in
14 15 16	52	foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on
17 18 19	53	the exploration difficulty and exploitation potential of a renewable natural resource. A
20 21	54	qualitative framework is introduced that predicts when foragers should behave territorially,
22 23	55	search collectively, act independently, or switch among these states. To validate it, we derived
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	56	quantitative predictions from two models of different structure: a generic mathematical model,
	57	and a lattice-based evolutionary model emphasizing exploitation and exclusion costs. These
	58	models independently identified that the exploration difficulty and exploitation potential of the
	59	natural resource controls the social behaviour of resource exploiters. Our theoretical
	60	predictions were finally compared to a diverse set of empirical cases focusing on fisheries and
	61	aquatic organisms across a range of taxa, substantiating the framework's predictions.
	62	Understanding social behaviour for given social-ecological characteristics has important
41 42 43	63	implications, particularly for the design of governance structures and regulations to move
44 45	64	exploited systems, such as fisheries, towards sustainability. Our framework provides concrete
46 47 48	65	steps in this direction.
49 50		
51		
52 53		

66 Introduction

67	The ecosystems in which animals, including humans, are embedded act as complex
68	adaptive systems, where outcomes at macro-scales, such as energy flow, population dynamics,
69	or sustainability emerge from micro-scale interactions among individual agents and ecosystem
70	components (Levin 1998; Holling 2001). Humans and ecosystems are further tightly linked
71	within coupled social-ecological systems (SESs) (Schlüter et al. 2012; Levin et al. 2013;
72	Arlinghaus et al. 2017). Key to addressing macro-scale ecological and socio-economic
73	challenges, such as fully understanding population dynamics of species, avoiding overharvest,
74	preventing biodiversity loss, optimizing species reintroductions, or mitigating the effects of
75	climate change, is improving knowledge about the dynamical feedbacks among agents and
76	between natural and human systems across scales (Levin 1998; Levin <i>et al.</i> 2013). Many key
77	interactions among individual animals or between animals and humans in SESs are initiated or
78	controlled by individual behavioural responses that affect collectives (Milner-Gulland 2011; Sih
79	et al. 2012; Ward et al. 2016). In this context, the emergence of particular resource use
80	patterns fundamentally affects animal population dynamics (Huey & Pianka 1981; Brown et al.
81	1999; Grant et al. 2017), the exploitation rates induced by fishers or hunters (Laundré et al.
82	2010; Januchowski-Hartley et al. 2011), and social conflicts in natural resource use contexts
83	(Gutiérrez et al. 2011). A better understanding of which human and animal behavioural
84	responses are expected for a given ecological state is an important step to move us forward
85	along a trajectory towards the ultimate normative goal of sustainability and resilience (Pine <i>et</i>
86	<i>al.</i> 2009; Berger-Tal <i>et al.</i> 2011; Mangel <i>et al.</i> 2015).

Page 5 of 48

1

Ecology Letters

2 3	
4 5	
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53 54	
54 55 56	
57 58	
59 60	

87 In many ecosystems, resource use patterns are dependent on foraging decisions made 88 by individuals or groups of individuals (Dill 1987; Lima & Dill 1990; Lima & Zollner 1996). Social 89 interactions form a major component of foraging decisions, which can encompass a range of 90 strategies, from territoriality, to collective search, to individualism (Grant 1993; Ranta et al. 91 1993; Giraldeau & Caraco 2000; Maher & Lott 2000). The dynamic and connected nature of 92 complex adaptive systems means social behaviours are constantly coevolving with the 93 environment, with individuals potentially switching among behavioural strategies as 94 environmental cues change (Elgar 1986; Higginson & Ruxton 2015; Tilman et al. 2016). An 95 improved understanding of the manifestation and switches among forms of social interaction in 96 both animal and human foragers has important consequences for wildlife management and 97 natural resource governance. For example, in coupled SESs a shift from communal information-98 sharing to territorial behaviour, while under a common property regime, requires a new set of 99 management rules to avoid subsequent overexploitation (Boserup 1965; Poteete & Ostrom 100 2004; Chabot-Hanowell & Smith 2012). As an example from animal populations, the facilitation 101 of the invasion success of the Argentine ant (Linepithema humile) through the breakdown in 102 territorial behaviour upon introduction to southern California, demonstrates how better 103 predictions of changes in social behaviour could improve models of invasion risks (Holway et al. 104 1998; Holway & Suarez 1999). Importantly, shifts in the social behaviour of foragers can affect 105 the harvested resource in ways that may in turn feed back to further influence the behaviour of 106 the foragers (Wiens 1976; Schlüter et al. 2012; Stoop et al. 2012; Lade et al. 2015). 107 Our objective is to provide a novel theoretical framework for predicting both the level 108 and form of social behaviour when foraging for renewable resources in both animals and

1 2		
3 4 5 6 7 8 9 10 11	109	humans. Our interdisciplinary work builds on literature from behavioural ecology (Brown 1968;
	110	Wiens 1976) and several anthropological works, which have proposed frameworks for
	111	understanding the emergence of territorial human behaviour in natural resource systems
	112	(Dyson-Hudson & Smith 1978; Acheson 2015). In particular, we were interested in predicting
12 13 14	113	which social behaviour to expect in response to spatio-temporally varying ecological properties
15 16	114	and whether such behavioural responses would be seen in both human and animal foragers. In
17 18 19	115	this context, a classical anthropological framework based on the concept of "economic
20 21	116	defendability" proposed that property rights emerge from generic ecological properties (Dyson-
22 23 24	117	Hudson & Smith 1978; Acheson 2015). We built our framework on this idea, but propose that
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	118	the "exploration difficulty" and "exploitation potential" of a resource, and not economic
	119	defendability per se, are the two major determinants of the foragers' social behaviour and that
	120	this applies generally across both animal and human foragers.
	121	To develop our case, we first present a novel qualitative framework. We then use a
	122	general mathematical model and an agent-based evolutionary simulation model as a detailed
	123	validation of the expectations derived from the qualitative framework. Finally, we present
	124	results of a literature review of empirical case studies using fisheries as an example of SESs and
	125	studies on aquatic organisms to understand how well our models apply across a variety of
	126	empirical systems. We also discuss examples beyond fish and fisheries, but for space reasons do
	127	not present a comprehensive review of terrestrial literature. We conclude that our framework
	128	promises to generate robust predictions of the form of social behaviour shown by foraging
	129	animals, and in particular humans, in response to characteristic ecological or technological
54 55	130	attributes of a given ecological or socio-ecological system. In particular, we propose that
56 57 58 59 60		6

1

Ecology Letters

2		
3 4	131	reflections along just two axes are sufficient to explain the emergence of a rich family of
5 6 7 8 9	132	resource exploitation systems.
10 11	133	A Qualitative Framework for Understanding Forager Behaviour
12 13	134	Behavioural ecology has long inspired hypotheses about which forms of social foraging
14 15 16	135	to expect under particular ecological contexts (Caraco & Giraldeau 1991; Grant 1993; Potts &
17 18	136	Lewis 2014). In applications to animals, a classic framework by Wiens (1976) suggests that the
19 20 21	137	social organization should be a function of resource aggregation or unpredictability and the
22 23	138	expense of resource defence. Herding and nomadism were predicted when defence costs were
24 25 26	139	high and resources were unpredictable, territoriality was predicted when defence costs were
27 28	140	low and resources were predictable, and coloniality or refuging were predicted at intermediate
29 30	141	defense costs and resource predictability (Wiens 1976).
31 32 33	142	Anthropological models of human social behaviour have built on these ideas (Dyson-
34 35 36 37 38 39 40 41 42 43	143	Hudson & Smith 1978), emphasizing "economic defendability" (Brown 1968) to determine the
	144	expected type of human territorial behaviour. It was suggested territoriality will form when the
	145	benefits from maintaining a territory are greater than the defense costs (Brown 1968). By
	146	contrast, when defense costs are greater, one should expect cooperative or individualistic
44 45	147	behaviours over territorial resource use (Rubenstein 1981; Chabot-Hanowell & Smith 2012;
46 47 48 49 50 51 52	148	Acheson 2015). Dyson-Hudson & Smith (1978) also proposed social behaviour responds to
	149	natural resources according to two factors (axes in a graph): resource density and the
	150	predictability of the resource (Brown 1968; Dyson-Hudson & Smith 1978). It was suggested that
53 54 55	151	when both the resource density and predictability are low, foragers should be dispersed and
56 57 58 59 60		7

Page 8 of 48

1 2	
2 3	
4	
5	
6	
7	
8 Q	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
23	
24	
25	
26	
27	
20	
30	
31	
32	
33	
54 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
52 53	
55 54	
55	
56	
57	
58 59	
59 60	

1

mobile; when both the resource density and predictability are high, foragers should be
territorial; when the resource density is low but the predictability is high, foragers should be in
a non-territorial home-range system; last, when the resource density is high, but the
predictability is low, foragers should be sharing information within spatio-temporally confined
territories (Dyson-Hudson & Smith 1978). These ideas were consistent with the earlier models
of animal social behaviour proposed by Wiens (1976).

158 There are several issues with applying the above-mentioned frameworks to forager 159 behaviour as highlighted by several anomalous empirical case-studies (summarized in Acheson 160 2015). The original axes – resource density and predictability — fall short of encompassing all 161 relevant ecological and social factors, affecting the pay-off of certain social behaviours. They do 162 not allow robust metrics for comparing different empirical systems, where the dynamics of 163 abundance or resource density may take on very different meanings. Resource density must be 164 understood as the potential benefit gained from extracting the resource, accounting for factors 165 such as resource value (in terms of either monetary value or energy for growth) as well as the 166 ability to extract the resource (which relates to technology or competition with other foragers). 167 The term "density" will then be potentially misleading, as resources can be disproportionally 168 valued because of their rarity within a given system: this is seen for example in recreational 169 fisheries, where the presence of an individual trophy fish and not the density of fish per se can 170 drive angler site choice behaviour (Arlinghaus et al. 2014). Abundance or density must thus be 171 replaced by some relative measure of access to desired resources if a framework to predict 172 social behaviour as a function of ecological factors is to be applied across different case 173 systems.

Page 9 of 48

1

Ecology Letters

2	
2 3	1
4 5	
6 7	1
8	1
9 10	
11	1
12 13 14 15 16 17	1
14 15	
16	1
17 18	1
19	
20	1
20 21 22 23 24 25 26 27 28 29 30	1
24	
25 26	1
27 28	1
29	
31	1
32 33	1
34	
35 36	1
37 38	1
39	1
40 41	1
42 43	1
44	1
45 46	1
47 48	1
49	1
50 51	1
52	1
53 54	1
55 56	1
57	
58 59	
60	

74 Similar shortcomings can be expressed in relation to the axis "predictability", which 75 does not distinguish the various effects of predictability on foragers, in particular the ability to 76 find the resource, and to exploit the resource once found. We consider the latter to be a more 77 direct contributor to the emergence of social behaviours of resource exploiters than the 78 predictability of a resource per se.

79 Developments in understanding when individuals are expected to behave territorially, 80 or share information have diverged from one another (Ranta et al. 1993; Maher & Lott 2000; 81 Danchin et al. 2004; Rendell et al. 2011; Potts & Lewis 2014; Higginson & Ruxton 2015; Smolla 82 et al. 2015), and to our knowledge the shortcomings of the original frameworks (Wiens 1976; 83 Dyson-Hudson & Smith 1978; Acheson 2015), have not yet been addressed. To advance the 84 frameworks proposed by Wiens (1976) and Dyson-Hudson & Smith (1978), we redefined its 85 axes into the more general "exploration difficulty" and "exploitation potential" (Fig. 1). This 86 terminology follows the classic framing of forager behaviour as a trade-off between exploration 87 and exploitation (Dugatkin & Wilson 1991; Enquist & Leimar 1993; Smaldino & Schank 2012; 88 Hills et al. 2015; Barbier & Watson 2016). Exploration difficulty reflects the effort spent 89 searching per unit of resource value found (independent of its abundance), while exploitation 90 potential represents the fraction of the value that can be extracted by an individual once found. .91 Each of these axes combine multiple properties of both environment and foragers (including 92 gear and technology), so as to fully determine when it is more advantageous to be territorial, 93 individualistic, or search collectively.

94 We view foragers as searching the environment for and harvesting distinct patches of 95 resources with varying degrees of mobility, temporal persistence and sparseness (Elton 1949;

2 3	
4 5	
6 7	
8	
o 9 10	
12	
14	
 11 12 13 14 15 16 17 	
18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
34 35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

1

196 Kotliar & Wiens 1990; Barbier & Watson 2016). Accordingly, exploration difficulty (the y axis in 197 Fig. 1) is modified by both the distribution of the resource patches in the environment and the 198 ability of individual foragers to find new patches. It is, crucially, a *relative* metric: harder-to-find 199 but richer patches may lead to the same search effort per unit value and therefore an 200 equivalent "exploration difficulty". While we generally think of patchiness as spatial, 201 exploration may involve learning the resource's temporal patterns, in which case temporal 202 predictability is integrated into the exploration difficulty as well. 203 The second axis (the x axis in Fig. 1) – exploitation potential – is the fraction of value 204 that can be extracted by a lone forager from a resource patch after finding it, and also relates to 205 a number of ecological and social factors, for example, how efficient the forager is at extracting 206 the resource from a patch, and the temporal resource variability. Ephemeral resource patches 207 (e.g., harvesting desert wildflowers) have low exploitation potential because, even when 208 patches are discovered, the resource may disappear before it can be completely extracted. 209 Patches may also disappear before complete extraction because other foragers are also 210 harvesting the resource or because the resource patch may move (e.g., a fish school moving 211 along a coastline). Conversely, a resource that can be continuously exploited at a given location 212 has high exploitation potential. Again, the exploitation potential metric is relative as a resource 213 patch that disappears more quickly, but can also be extracted more efficiently may result in an 214 equivalent exploitation potential. 215 When resources have a high exploration difficulty and low exploitation potential (Fig. 1, 216 Quadrant 1, "Collective Search"), it may be beneficial to share information as the resource is

217 difficult to find and retain, and we expect to see collective searching behaviour in both animal

Page 11 of 48

Ecology Letters

1		
2		
3		
4		
5		
6		
7		
8		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1		
	, 8	
	9	
	0	
2	1	
2	2	
2	3	
2	4	
	5	
2		
2	7	
2	8	
	9	
	0	
2 2	1	
3	1	
3	2	
3	3	
3	4	
3	5	
	6	
	7	
-	8	
	9	
4	0	
4		
4		
4		
4 4		
4		
4		
4	7	
4	8	
	9	
5		
5	1	
5	2	
5	3	
5	4	
	5	
5		
د		
r		
5	7	
5		

60

218 and human foragers. If both exploration difficulty and exploitation potential are high (Fig. 1, 219 Quadrant 2, "Territoriality"), for instance because of sparse but long-lasting resource patches, 220 the value of defending the resource should be very high and the foragers should establish 221 territories and exclude outsiders, either via formal or informal norms, or antisocially through 222 aggression. Where exploration difficulty is low, individuals can easily find more resources on 223 their own, and the advantages of territorial exclusion or collective search vanish, leading to 224 generally individualistic behaviour, more so if individualism comes with its own benefits (e.g. 225 freedom of movement). Low exploration difficulty also means that more foragers are likely to 226 find the same patch by chance over its lifespan. If exploitation potential is low (Fig. 1, Quadrant 227 3, "Individualism"), the presence of other foragers on the same patch does not affect individual 228 gains, and there is effectively no competition. If exploitation potential is high, however, (Fig. 1, 229 Quadrant 4, "Scrambling"), these foragers do interfere with each other and their utility is 230 reduced by scramble competition, but the advantage that would be provided by territorial 231 exclusion is still too weak to justify its costs (in terms of time, energy or risk). We propose any 232 social-ecological system and any natural forager system, based on the exploitation of a natural 233 resource can be located along the two axes of Fig. 1 (excluding several edge cases, see 234 Supporting Information 1).

235 Quantitative Models for Understanding Forager Behaviour

To better understand collective behaviour of foragers in the context of the novel
 framework we propose in Fig. 1, we performed a quantitative exploration of behavioural
 strategies across the full spectrum of exploration difficulty and exploitation potential. To do so,

Page 12 of 48

1 2				
3 4	239	we developed two models. First, we propose a simple formalization of the qualitative		
5 6 7	240	framework in Fig. 1, to understand its fundamental assumptions and test their consistency.		
8 9	241	Given a population of foragers in a fixed ecological setting, this mathematical model gives		
10 11 12	242	analytical predictions for collectively optimal strategies. However, it ignores the possibility of		
12 13 14	243	foragers exhibiting different individual behaviours, in particular via explicit spatial dynamics		
15 16	244	which may allow the coexistence of diverse strategies. Therefore, we also implemented a lattice		
17 18 19	245	(grid-based) evolutionary simulation model to investigate the resulting spatial and temporal		
20 21	246	dynamics, abstracting out the search process and adopting discrete space and time for		
22 23 24	247	computational efficiency, so as to identify emergent strategies over many generations. While		
24 25 26	248	these two approaches differ significantly, we finally show that both models convey the same		
27 28	27 28 249 qualitative message in support of the predictions in Fig. 1. This provides evidence that the			
29 30 31	250	results we report are not model-dependent, but reflect generic social-behaviour patterns in		
32 33	251	foragers within complex adaptive systems, as a function of exploration difficulty and		
34 35 36	252	exploitation potential.		
37 38				
39 40 41	253	Model 1: General Mathematical Model		
42 43	254	Description		
44 45	255	Our mathematical model (see Supporting Information 1 for details and Table 1 for		
46 47	256			
48 49	230	parameter definitions) closely follows the qualitative analysis above. To translate the		
50 51	257	framework's axes into definite quantities, they can be expressed in terms of timescales, taking a		
52 53	258	clue from ecological models of predation: the consumption efficiency of a predator can be		
54 55 259 expressed in terms of T_s , the time spent searching, and T_h , the time spent handling a pr 56		expressed in terms of T_s , the time spent searching, and T_h , the time spent handling a prey		
57 58		12		
59 60				

Page 13 of 48

Ecology Letters

1 2	
3 4	26
5 6	26
7 8	26
9 10 11	26
12 13	26
14 15	26
16 17	
18 19 20	26
20 21 22	26
23 24	26
25 26	26
27 28 29	27
29 30 31	27
32 33	27
34 35	27
36 37 38	27
38 39 40	27
41 42	27
43 44	
45 46	27
47 48 49	27
50 51	27
52 53	28
54 55	28
56 57	
58 59	

60

50 (Holling 1959). The ratio of these timescales T_s/T_h corresponds to exploration difficulty, that is 51 how much time it takes to find one unit of the resource, where units here are measured in 52 terms of how long it takes to handle them. Adding T_r , the timescale of resource persistence, we can define exploitation potential as a second ratio, T_r/T_h , which is small for resource patches 53 54 that are ephemeral compared to their richness. 55 All three time scales can be computed for various resource-use settings, using specific 56 models that integrate relevant environmental and socio-technological parameters, e.g. for 57 fisheries (Barbier & Watson 2016). They will be taken here as the external parameters that 58 determine the social dynamics. 59 Given the three parameters and the number N of foragers, our goal is to compute the 70 forager's utility U, specified as their average rate of resource extraction (or total value gained 71 over a fixed time period), as a function of the adopted social strategy. An additional parameter 72 must be provided: c the fraction of time spent defending a territory, if the territorial strategy is 73 selected. Indeed, collective search naturally comes at the cost of sharing a patch, but territorial 74 exclusion would always be preferable over individualism unless it is made costly, here in terms 75 of lost exploitation time. It is then possible to abstract all spatial dynamics by simply 76 considering the "behavioural states" of the foragers, and their transition rates (see Box 1 for 77 details of the model). The state-based description can easily be extended to account for other 78 processes of interest. Spatial patterns are sufficiently captured by n, the expected number of 79 foragers exploiting the same patch, either due to voluntary sharing or scrambling, which can be 30 computed as a function of the three timescales and the social strategy. Despite this simplicity, 31 the mathematical model, previously implemented without consideration of territoriality, has 13

Page 14 of 48

Ecology Letters

1 2		
3 4	282	been shown to agree qualitatively and quantitatively with spatially-explicit agent-based
5 6 7	283	simulations (Barbier & Watson 2016). We thus present only the mathematical model outcomes
8 9	284	here.
10 11 12	285	
13 14 15	286	Results
16 17	287	Figure 2 validates the outcomes of the qualitative analysis by demonstrating that
18 19 20	288	domains with distinct strategies corresponding to the quadrants of the qualitative Fig. 1 emerge
20 21 22	289	straightforwardly from the mathematical model. In the left panel of Fig. 2, the y-axis is
23 24 25	290	exploration difficulty and the x-axis exploitation potential, as defined from the key timescales in
25 26 27	291	the previous section. We focus here on collective optima: all foragers can either communicate
28 29	292	to a degree $\lambda \in [0,1]$ (yellow), or put an effort $\mu \in [0,1]$ (red) into excluding others from their
30 31 32	293	territory. The color pictured represents the one that maximizes the average intake of any
33 34	294	individual forager in the group, and therefore the best strategy for the population as a whole.
35 36 37	295	
38 39	296	Model 2: Evolutionary Lattice-model
40 41 42	297	Description
43 44 45	298	We complement our mathematical modelling approach by introducing a simple, yet
46 47	299	generic, evolutionary simulation model of interacting agents, which compete for a temporally
48 49 50	300	variable finite resource that is spatially distributed on a lattice (see Box 1 for implementation
51 52	301	details and Table 2 for parameters). The model is computationally inexpensive and enables
53 54 55	302	simulations of large (evolving) agent populations. It focuses on competition among exploiters in
56 57		
58 59 60		14

Page 15 of 48

Ecology Letters

1 2		
3 4 5 6 7 8 9 10 11 12 13 14	303	terms of resource access and exploitation, as well as on collective searching via information
	304	sharing. The evolutionary lattice-based model does not explicitly model individual search
	305	strategy, but studies the selection operating on behavioural strategies. The evolutionary aspec
	306	of this model accounts for the opportunity for learning, to transmit foraging strategies
	307	culturally, or to transfer resources through inheritance. It thus applies to both animal and
15 16	308	human foragers.
17 18 19	309	We consider the exploitation of a resource, randomly distributed on a two-dimensiona
20 21	310	discrete lattice, by a population of <i>N</i> agents. Each lattice site either contains a constant amour
22 23	311	of the resource or is empty. The spatial distribution of the resource is characterized by the are
24 25 26	312	fraction covered f_c . The average density of the resource in the environment is fixed, thus
27 28 29 30 31 32 33 34 35 36	313	depending on the area covered there exists either few high-yield sites given a low f_c or many
	314	low-yield sites given a large f_c . In the simplest case considered here, there is no spatial
	315	correlation in the resource distribution (see Supporting Information 1 for more details).
	316	The distribution of the resource is assumed to have a finite life-time, T_r , setting a
37 38	317	characteristic time-scale, during which the agents may harvest the resources. Once the life-tin
39 40 41	318	of the resource distribution is reached it is replaced by a new random distribution with the
42 43	319	same area covered. Thus, the resources can represent ephemeral stationary natural resources
44 45	320	or mobile ones.
46 47 48 49 50 51 52 53	321	All agents (i.e., foragers) may invest in three different strategies to try to maximize the
	322	harvesting pay-off: 1) faster <i>exploitation</i> of the resources by increasing their harvest rate (c_{upt}
	323	2) information sharing via investing into their communicability (c_{sig}), and 3) effective exclusion
54 55	324	of competitors from resources by investing in their "repulsion" strength (c_{rep}). We distinguish
56 57 58		15
59 60		

303	terms of resource access and exploitation, as well as on collective searching via information
304	sharing. The evolutionary lattice-based model does not explicitly model individual search
305	strategy, but studies the selection operating on behavioural strategies. The evolutionary aspect
306	of this model accounts for the opportunity for learning, to transmit foraging strategies
307	culturally, or to transfer resources through inheritance. It thus applies to both animal and
308	human foragers.
309	We consider the exploitation of a resource, randomly distributed on a two-dimensional
310	discrete lattice, by a population of N agents. Each lattice site either contains a constant amount
311	of the resource or is empty. The spatial distribution of the resource is characterized by the area
312	fraction covered f_c . The average density of the resource in the environment is fixed, thus
313	depending on the area covered there exists either few high-yield sites given a low f_c or many
314	low-yield sites given a large f_c . In the simplest case considered here, there is no spatial
315	correlation in the resource distribution (see Supporting Information 1 for more details).
316	The distribution of the resource is assumed to have a finite life-time, T_r , setting a
317	characteristic time-scale, during which the agents may harvest the resources. Once the life-time
318	of the resource distribution is reached it is replaced by a new random distribution with the
319	same area covered. Thus, the resources can represent ephemeral stationary natural resources
320	or mobile ones.
321	All agents (i.e., foragers) may invest in three different strategies to try to maximize their
322	harvesting pay-off: 1) faster <i>exploitation</i> of the resources by increasing their harvest rate (c_{upt}),
323	2) information sharing via investing into their communicability (c_{sig}), and 3) effective exclusion

Page 16 of 48

Ecology Letters

2		
3 4	325	t
5 6	326	١
7 8 9	327	'
10 11	328	ā
12 13	329	
14 15 16	330	k
10 17 18	331	I
19 20	332	
21 22	332	r
23 24	333	K
25 26	334	C
27 28	335	١
29 30 31	336	f
32 33	337	
34 35	338	r
36 37 38	339	i
39 40	340	F
41 42 43	341	t
44 45	342	C
46 47 48	343	i
49 50	344	t
51 52	345	e
53 54 55	346	k
56 57		
58 59		
60		
1		

1 2

three main strategies based on the primary investment of the respective agents: "Individualists" with the main investment into increasing their harvesting rate, "Communicators" (or "Information Sharers") who invest primarily in their communication ability, and "Territorial" agents who invest most into excluding others from resource patches. For computational simplicity we assume a sequential structure of a single competition bout, consisting of the following steps: 1) random placement on a randomly generated resource landscape (abstract search process), 2) signalling phase (communication) where agents on resource patches may attract others based on their communication phenotype, 3) competition phase with all agents at the same location performing pair-wise fights, where the losing agent is displaced from the location to a neighbouring lattice site, and finally 4) exploitation phase, where all agents remaining on the same resource patch harvest it in parallel constrained by the finite life-time of the resource. In the evolutionary lattice-model we employ a minimal search process: a random placement of agents on the resource landscape. Here a key parameter is the probability that an individual finds a resource patch, which equals the area fraction covered f_c . Reinterpreting this probability as a rate of "landing" on a resource patch allows us to define a characteristic "search

time" in dimensionless units as the inverse probability, $T_s = 1/f_c$, which we then can use to quantify the exploration difficulty (Fig. 3). The exploitation potential of the resource landscape is quantified simply by the life-time of the resource T_r (Fig. 3). Note that in the lattice-model

there is no fixed time-scale associated with the resource exploitation, as the uptake rate is an evolvable parameter. However, we can consider a corresponding handling time-scale set by the base uptake rate $T_0 = 1/\alpha_0 = 1$.

Page 17 of 48

Ecology Letters

1 2	
3 4	34
5 6	34
7 8 9	34
10 11	35
12 13 14	35
14 15 16	35
17 18	35
19 20 21	35
22 23	35
24 25 26	35
27 28	35
29 30 31	35
31 32 33	35
34 35	36
36 37 38	
39 40	36
41 42 43	36
44 45	36
46 47	36
48 49 50	36
51 52	36
53 54 55	36
56 57	
58 59 60	

347	Results
348	In Fig. 3 we summarize exemplary results for the evolved stationary strategies as a
349	function of the exploitation potential (resource life-time T_r) and exploration difficulty
350	(dimensionless search time). For long-lived and sparse resources $T_r \gg 1$, $T_s \gg 1$, the
351	predominant evolved strategy corresponds to 'Territoriality' with high investments in repulsion
352	$c_{rep} > c_{upt}, c_{sig}$, whereby the largest evolved c_{rep} corresponds to highest resource sparseness.
353	For short-lived resources ($T_r \ll 1$), and high exploration difficulty, the most frequent
354	behavioural phenotype is "Communicator", with the highest investments into signalling. Finally,
355	for low exploration difficulty the dominant strategy is "Individualism", with the highest
356	investments in increasing harvest rate for short resource lifetimes. The resulting strategy space
357	closely resembles the predictions of our qualitative framework and the general mathematical
358	model. Whereas this general structure is conserved for a wide range of model parameters (see
359	Table 2), the detailed shape and extension of the different regions will depend on specific
360	parameter choice (see Supporting Information 1 for details).
361	Empirical Evidence in Fisheries and Aquatic Organisms as Case Studies

We searched the literature (see Supporting Information 1 for methods) for empirical cases in aquatic systems that describe the social behaviour of foragers ("harvesters" in the case of fisheries) in response to the ecology of food patches or fish stocks and, in human cases, technology. We focused on capture fisheries and aquatic systems as empirical cases because of the relatively high uncertainty in outcomes and patterns of property rights formation in capture fisheries systems (Acheson 2015) and the complementary wide behavioural diversity within

Page 18 of 48

1 2		
2 3 4	368	aquatic animal systems, particularly fish (Keenleyside 1979). We briefly touch on terrestrial
5 6 7 8 9 10 11 12 13 14 15	369	cases in the Discussion because we think the framework (Fig. 1) should apply generally. Our aim
	370	was to gather examples across diverse systems to evaluate empirical support for our
	371	framework and not to collect all known cases.
	372	Results
16 17	373	We retained 84 empirical cases (33 from capture fisheries and 51 from aquatic
18 19 20	374	organisms; see Supporting Information 2). These cases covered a diversity of systems, from
20 21 22	375	small scale multi-species fisheries, to large scale commercial fishing fleets, targeting species
23 24	376	across trophic levels from urchins (Strongylocentrotus spp.) to lobsters (Homarus americanus),
25 26 27	377	to tuna (Thunnus spp.). Further, the cases examined animal populations in a range of ecological
28 29	378	conditions, including deep-sea abyssal plains, caves, lakes, reefs, rivers, and the marine pelagic.
30 31 32	379	We thus feel confident that our cases are sufficient to examine our framework's support.
33 34	380	The majority of evaluated fisheries systems corresponded primarily to collective
35 36 27	381	searching (n = 21 out of 33). Published cases with primarily territorial or individualistic
37 38 39	382	behaviour were less common in fisheries systems, with only five and seven cases respectively.
40 41	383	By contrast, cases specific to aquatic organisms corresponded primarily to territoriality (n = 35
42 43 44	384	out of 51), while nine cases and seven cases corresponded to collective searching and
45 46 47 48 49 50 51	385	individualism respectively.
	386	When judging the social outcomes in each of the examined 84 cases against our
	387	predictions, we found strong support that the forager's key social strategies — collective
52 53 54	388	searching, territoriality and individualism — followed our model predictions as a function of
55 56	389	exploitation potential and exploration difficulty (see Supporting Information 2). In fact, our
57 58 59		18
59 60		

Page 19 of 48

1 2

Ecology Letters

3 4	390	predictions were supported in 66 of 84 cases, partially supported in 15 cases and completely
5 6 7	391	unsupported in only three fish cases (Fig. 4). To our surprise, there were very few cases of
7 8 9	392	complete disagreement. A partially supported case included a mixture of the predicted and
10 11	393	unpredicted social behaviours existing within the same system, such as the glass shrimp,
12 13 14	394	Pasiphaea japonica, fishery in Toyama Bay, Japan where individualistic fishers fish on opposite
15 16	395	days to a group of cooperative, catch sharing fishers, despite targeting the exact same resource
17 18 19	396	with comparable fishing gear (Carpenter & Seki 2011). Ayu, Plecoglossus altivelis, are an
20 21	397	additional example from aquatic organism cases, where 30-50% of individuals defend rich algal
22 23 24	398	patches as predicted, while the remaining individuals of the population shoal and intrude the
25 26	399	defended patches (Kawanabe 1969).
27 28 29	400	Collectively, our case studies indicate — in agreement with our qualitative framework
30 31	401	and two quantitative models — that key ecological and social properties subsumed in the
32 33	402	exploration-exploitation trade-off lead to the emergence of characteristic behavioural
34 35 36	403	strategies of the average forager. For example, in fisheries systems, pot and trap fisheries,
37 38	404	targeting lobsters and crayfish tended to show territoriality, and were characterized by medium
39 40 41	405	to high exploration difficulty and high exploitation potential (Acheson 1975; Levine 1984;
42 43	406	Wagner & Davis 2004; Acheson & Gardner 2005; Turner <i>et al.</i> 2013, 2014). By contrast, shellfish
44 45	407	fisheries which target molluscs such as cockles and scallops and also sea urchins, were
46 47 48	408	characterised by low to high exploitation potential and low exploration difficulty and thus
49 50	409	tended to show individualism (Murray <i>et al</i> . 2011; Johnson <i>et al</i> . 2012; Beitl 2014, 2015;
51 52 53	410	Lynham 2017). Moreover, large-scale commercial pelagic fishing fleets, targeting mobile, and
54 55	411	sparse (high exploration difficulty and low exploitation potential) pelagic species such as tuna
56 57 58		10
58 59 60		19

Page 20 of 48

ו ר	
2 3	
4	2
5	
6	4
7	
8	4
9 10	
10 11	4
12	
13	4
14	
15	2
16	
12 13 14 15 16 17 18	,
18	2
20	
21	4
22	
23	4
24	
25 26	4
26 27	
28	2
29	
30	4
31	
32 33	2
33	
34 35	,
36	2
37	
38	2
39	
40	4
41 42	
42 43	4
44	
45	4
46	
47	4
48	
49 50	4
51	
52	4
53	-
54	
55	
56	
57 58	
50 59	
60	

1

412 and billfish with trawls or long-lines, showed high degrees of collective searching (Mangel & 413 Clark 1983; Dreyfus-Leon & Kleiber 2001; Curtis & McConnell 2004; Gaertner & Dreyfus-Leon 414 2004; Dreyfus-Leon & Gaertner 2006; Girardin et al. 2016). 415 Cases of aquatic organisms also mostly showed characteristic social behaviours 416 according to our framework. We found territoriality in river and stream dwelling fish feeding on 417 drifting invertebrates (e.g. Slaney & Northcote 1974; Grant & Noakes 1987; Blanchet et al. 418 2006; Steingrímsson & Grant 2008) and in reef fish exploiting algal patches (e.g. Brawley & Adey 419 1977; Roberts & Ormond 1992; Letourneur 2000; Hamilton & Dill 2003) as both environments 420 are characterized by sparse, yet rich patches of small prey, which relates to a high exploration

421 difficulty and exploitation potential. Collective searching tended to occur in organisms hunting

422 mobile shoaling pelagic prey as predicted by our framework (e.g. Schmitt & Strand 1982;

423 Parrish 1993), but counter to the fisheries cases, collective search was commonly paired with

424 other social strategies, such as collective hunting and anti-predator behaviour, suggesting

differences between animal and human foragers. Finally, individualism was recorded in deep sea scavengers (Priede *et al.* 1990a) and pelagic filter feeders (Sims & Quayle 1998; Sims 2008),

which is understandable because deep-sea food falls are scarcely, but randomly distributed and
consumed quickly (i.e. scramble competition), and pelagic plankton blooms are relatively easily

found (low exploration potential) and have high exploitation potential. The resemblance of

various case studies from similar, but geographically separate aquatic systems and fisheriesoverall supported our proposition that the properties of finding and harvesting a given resource

432 systematically relate to the emergence of specific social behavioural patterns of the foragers.

Page 21 of 48

Ecology Letters

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30	
25	
26	
27	
28	
29	
30	
31	
32	
33 34 35 36 37	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

433	Importantly, we found three cases, all examples of foraging fish, in complete
434	disagreement with our qualitative framework. Firstly, in experiments within drainable ponds,
435	group-foraging adult Eurasian perch, Perca fluviatilis, captured more prey and grew faster
436	compared to solitary perch (Eklöv 1992). Perch are known to be social foragers and group
437	naturally in the wild even when prey fish are abundant and widely distributed (Nakayama et al.
438	2018), which we predict fosters individualism bordering territoriality depending on spatial
439	patchiness. Adult northern pike, Esox lucius, by contrast, forage on the same prey species in the
440	same habitats as perch, but showed agonistic reactions and avoidance behaviour and were
441	most successful when foraging alone (Eklöv 1992), as predicted by our framework. Telemetry
442	studies show pike are usually solitary, forming home ranges, and do not like to feed in the
443	presence of conspecifics (Nilsson <i>et al.</i> 2006; Kobler <i>et al.</i> 2009; Rosten <i>et al.</i> 2016). Secondly,
444	several surgeonfish species (Acanthurus spp.), feeding on algal patches and expected to behave
445	territorially, were unable to dominate individual damselfish (Stegastes spp.) defending algal
446	patches in reef systems and therefore, counter to predictions, surgeonfish either formed
447	groups to overwhelm the damselfish and access preferred patches, or foraged individually and
448	suffered from increased damselfish attacks (Foster 1985; Reinthal & Lewis 1986). Lastly, Parrish
449	(1993) found green jacks, Caranx caballus, and black skipjacks, Euthynnus lineatus, foraged for
450	herring alone; however, in agreement with our framework, the most efficient foraging strategy
451	was found to be collective searching. The low number of cases in complete disagreement
452	indicates exceptions to our framework may be rare, but the causes of such exceptions appear
453	to be variable and often involve a survival risk from predation or threatening interspecific
454	interactions.

Discussion

General Assessment

Our framework integrates ideas from behavioural ecology, evolutionary biology, anthropology, and complex adaptive systems theory. It offers a qualitative baseline for an improved understanding of the expected feedbacks between social behaviour and the ecology of renewable resources within animal populations and coupled social-ecological systems. The framework accounts for technological factors affecting consumption efficiency and resource discovery. The framework we derived qualitatively was supported by two distinct models, and also draws empirical support from a diversity of reviewed empirical cases in fisheries and aquatic animals. We thus contend our framework provides an important conceptual advance towards understanding how social-ecological feedbacks operate at the individual level, ultimately giving rise to macro-level outcomes relevant for management, conservation and understanding animal behaviour. Although we restricted our empirical evaluation to aquatic and marine systems, our framework should also apply to terrestrial systems. To provide some examples, with respect to humans, food sharing is commonly observed in hunter-gatherer societies (Gurven 2005; Gurven & Jaeggi 2015), where the exploration difficulty is high -4% of hunting trips are successful for the Hadza (Gurven & Jaeggi 2015) — and the exploitation potential is low — meat left in the open draws attention and is eaten quickly (Hawkes et al. 2001). As hunter-gather societies have transitioned to agricultural practices, where the exploitation potential and exploration difficulty are high, because farming requires high inputs of time and energy and offers high yields, private property systems were quickly implemented (Kaplan & Gurven 2005). Indeed, agriculture

60

Ecology Letters

1 2		
3 4	477	appears to consistently tend towards private property systems (i.e. territorial behaviour)
5 6 7	478	(Acheson 2015).
7 8 9	479	There is also much support for our predictions in terrestrial animals. Increased
10 11	480	clumping, or increased predictability of food patches tends to result in territoriality across a
12 13 14	481	variety of taxa as expected (see Maher & Lott 2000 for a comprehensive review of vertebrate
15 16	482	territoriality). Information sharing has been observed in patchy resource environments, where
17 18 19	483	food cannot be consumed completely alone (Stevens & Gilby 2004) (i.e. high exploration
20 21	484	difficulty and low exploitation potential). For example, Elgar (1986) showed that when
22 23	485	presented food was divisible, house sparrows, Passer domesticus, were more likely to recruit
24 25 26	486	conspecifics to the food source. Further, in mesic habitats with abundant, evenly distributed,
27 28	487	long-lasting, quickly regenerated food sources (low exploration difficulty, high exploitation
29 30 31	488	potential), family groups of Plains zebras, Equus burchelli, show overlapping homeranges and
32 33	489	no territoriality, as predicted (Rubenstein 2010). By comparison, in nearby xeric habitats, where
34 35 36	490	food is patchy and long-lasting (high exploration difficulty and exploitation potential), Grevy's
30 37 38	491	zebras, Equus grevyi, show characteristic territorial behaviour (Rubenstein 2010)
39 40	492	Our combined results of conceptual theorizing, quantitative modelling and empirical
41 42 43	493	cases suggest it may indeed be possible to identify characteristic social behaviours within
44 45	494	specific SES types or animal populations on average across empirical systems. Hence, it may be
46 47 48	495	possible to make generalisations about broad groups of SESs regarding how they exploit natural
49 50	496	resources of given ecological properties (see types of fisheries placed on Fig. S12). We suggest
51 52 53	497	the consistent highly communicative behaviour of pelagic fishing fleets, territoriality of trap
55 55	498	fishers, stream-dwelling juvenile salmonids or herbivorous reef fish, and the independence of
56 57		
58 59		23

Page 24 of 48

Ecology Letters

shellfish divers and trawlers and of many recreational fisheries found in our case studies can
largely be caused by the ecological properties of the targeted natural resources, specifically in
terms of exploration difficulty and exploitation potential, in light of biological or technological
foraging constraints.

Although our qualitative framework predicts one dominant social strategy, a number of empirical cases showed multiple behavioural strategies co-existing within the same system. A stable co-existence of multiple social strategies is a possible outcome according to the lattice-model (see Supporting Information 1, Fig. S4) and is commonly reported in natural populations in terms of animal personalities (Kobler et al. 2009; Spiegel et al. 2017). Hence, mixed strategies may naturally emerge. For example, in two SESs dominated by individualism (diving for urchins and bottom trawling for hoki, Macruronus novaezelandiae) tracking the movement of other boats without explicit communication was common (Vignaux 1996; Lynham 2017). Similarly, abyssal grenadiers, Coryphaenoides spp., foraging on deep-sea food falls behave individualistically, but may also minimize turbulence while swimming to avoid the risk of alerting other individuals to potential food sources (Priede et al. 1990b, 1991). These cases with multiple coexisting strategies are likely positioned closer to boundaries between qualitative framework's quadrants (Fig. 1).

516Other mixed strategy cases can be better explained through mechanisms unaccounted7517for in our framework. In some SES cases the ability to defend a territory or search collectively8518related to membership in an exclusive group requiring strong social ties (Gatewood 1984;7519Carpenter & Seki 2011; Beitl 2014, 2015) or to a historical separation of communities (Krause &7520Ramos 2015), stressing the relevance of social norms, social and personal capital, social

1 2		
3 4	521	identity, the need for repeated interactions and path dependencies of property rights.
5 6 7	522	Additionally, mixed strategies may be the result of different top-down governmental controls
8 9	523	emerging from development of a fishery under different political systems (e.g., socialist to
10 11 12	524	democratic political systems, Daedlow et al. 2011), or biological constraints such as the threat
13 14	525	of predation pressure (James 1987; Hoare et al. 2004). These processes, in addition to the three
15 16 17	526	empirical cases in complete disagreement with our predictions, emphasize limitations to our
17 18 19	527	qualitative framework and quantitative modelling.
20 21 22	528	
23 24	529	Framework and Model Limitations
25 26 27	530	Our model is based on a number of assumptions, notably that foragers maximize their
28 29	531	fitness through resource exploitation and natural selection or cultural evolution has guided
30 31 32	532	foragers towards optimal behaviour (Pyke 1984). In reality, behaviour, even of commercial
33 34	533	fishers, is guided by multiple factors, some of which are unrelated to the expected utility
35 36 37	534	derived from resource intake (Dall <i>et al.</i> 2005; Arlinghaus 2006; Girardin <i>et al.</i> 2016). For
38 39	535	example, recreational anglers frequently cite non-catch related benefits, such as experiencing
40 41 42	536	nature or social experiences, as more important than catch related ones for determining
43 44	537	whether, when and where to fish (Fedler & Ditton 1994; Beardmore et al. 2011; Hunt et al.
45 46 47	538	2011). If the currency on which foraging decisions are based is misidentified, then predictions
47 48 49	539	from our framework will collapse. Accordingly, we expect our models will be most appropriate
50 51 52	540	in contexts where behaviour is mainly harvest-oriented, such as in top predators, or commercial
52 53 54	541	fisheries where mortality risk is relatively low.
55 56		
57 58		25

1 2		
3 4	542	Further, we expect our framework will be more accurate when applied to social-
5 6 7	543	ecological systems than to animal populations. Studies of optimal foraging in animal
8 9	544	populations frequently observe deviations from predictions because behaviours are
10 11	545	constrained by unaccounted factors, such as predation risk, sensory or memory limitations or
12 13 14	546	incomplete information (Perry & Pianka 1997; Matsumura et al. 2010). An enduring mortality
15 16	547	threat is a critical factor in an animal's behavioural decisions (Werner et al. 1983; Boutin 1990;
17 18 19	548	Laundré et al. 2010), which does not exist to the same extent in human foragers. Accordingly,
20 21	549	because shoaling has multiple advantages for fish against predation risks (Pitcher 1986),
22 23 24	550	foraging in groups to combat predation threats regardless of resource distribution or
25 26	551	exploitability may be more common in fish populations (e.g. James 1987; Hoare <i>et al.</i> 2004).
27 28 29	552	However, human foragers will also experience constraints on social behaviour such as harvest
30 31	553	regulations or other institutions (e.g. Acheson & Gardner 2005). Our framework cannot
32 33	554	represent such transitory institutional influences on social behaviour.
34 35 36	555	Our case studies highlight additional important differences between fish and fisher
37 38	556	behaviour, further challenging whether our framework can be similarly applied to animal
39 40 41	557	populations and SESs. Animals often lack the sophisticated communication technology of
42 43	558	modern humans, which allows instant and complex information sharing across long distances.
44 45 46	559	However, differences in communication range and ability between human and animal foragers
47 48	560	may be rectified by adjusting the scale of patch and patch lifetime definitions, which are
49 50 51	561	context dependent (Wu & Loucks 1995; Marceau 1999). Human foragers are additionally
52 53	562	affected by strong social norms (Tavoni <i>et al.</i> 2012; Kinzig <i>et al.</i> 2013; Tilman <i>et al.</i> 2016),
54 55	563	cultural values (Manfredo et al. 2017), governance systems and associated institutions (Branch
56 57 58 59 60		26
50		

1 2

Ecology Letters

2 3 4	564	et al. 2006; Ostrom 2007; Lubchenco et al. 2016), market mechanisms and associated
5 6 7	565	prosociality (Basurto et al. 2016) and historical path-dependencies (Levin et al. 2013);
8 9	566	phenomena which may not translate directly into animal populations. Although some of these
10 11 12	567	factors are conceptually integrated in the two axes of our framework, others are not,
12 13 14	568	specifically the overwhelming importance of social norms and culture. Experimental and
15 16 17	569	empirical studies are needed to analyse how well our framework approaches behavioural
17 18 19	570	reality in a range of contextual conditions.
20 21 22	571	
23 24	572	Empirical Measurement
25 26 27	573	A critical step forward is to translate exploration difficulty and exploitation potential
28 29	574	into empirical measurements in real systems. Specifically, three factors must be measured to
30 31 32	575	test our framework: the relative exploration difficulty of a resource, the relative exploitation
33 34	576	potential of a resource and the social behaviour of the foragers. The three factors must be
35 36 37	577	measured according to the correct currency (e.g. net energy gain, or monetary gain) of patch
38 39	578	value and defence costs (Higginson & Ruxton 2015). To measure exploration difficulty, one may
40 41 42	579	measure the time (or cost) of the average search investment (e.g., during a fishing trip or
43 44	580	foraging bout) or the investment into attractants, such as fish-chum, to discover the targeted
45 46 47	581	resource. To measure exploitation potential, one must be able to measure the proportion of a
48 49	582	patch/resource unit harvested before it is lost. In animal populations the individual
50 51 52	583	consumption rate relates to the functional response (Holling 1959). In fisheries the harvest rate
53 54	584	relates to the catchability coefficient q, the fraction of the resource unit harvested per unit
55 56 57	585	effort (Arreguín-Sánchez 1996). If the typical resource patch life-span is known (e.g., how fast a
57 58 59 60		27

1

1 2		
3 4	586	fish school leaves an area), and the individual-specific (or gear-specific) functional response or
5 6 7 8 9 10 11	587	q, is also known, then an individual's effort to exploit a full patch can be calculated. The effort
	588	exerted before the patch disappears can then be divided by the effort to exploit a full patch as
	589	an indication of the exploitation potential. If the definition of a patch is unclear, or the ability to
12 13 14	590	measure the full amount of a resource within a patch is impossible before resource exploitation
15 16	591	can begin, then the functional response, or <i>q</i> alone, can provide a reasonable relative
17 18 19	592	approximation when comparing foragers exploiting environments with identical resource
20 21	593	properties. To estimate the foragers' social behaviour one can use bio-logging techniques when
22 23	594	possible (Krause <i>et al.</i> 2013; Lennox <i>et al.</i> 2017) or more standard methods such as surveys,
24 25 26	595	participant observation and semi-structured interviews (Acheson 1975; Neis et al. 1999;
27 28	596	Acheson & Gardner 2005; Mueller et al. 2008). We suggest experimental and observational
29 30 31	597	tracking studies where both foragers and resources are followed in real-time (Hussey et al.
32 33	598	2015; Monk & Arlinghaus 2017; Stowers et al. 2017) as direct measurements of forager-
34 35 36	599	resource interactions, uptake rate and other parameters key to empirical tests of our
37 38	600	framework.
39 40 41	601	
42 43	602	Implications for Policy and Management
44 45	002	implications for Folicy and Management
46 47	603	Our framework offers some implications for governance and management systems as
48 49	604	they may emerge from the behavioural patterns shown by humans in response to spatio-
50 51 52 53 54 55 56	605	temporal natural resource variability or technological change (Wilson et al. 2013). Depending
	606	on whether local and regional outcomes are judged as desirable or not, institutions could be
	607	tuned to incentivize certain social behavioural strategies for improved biological and
57 58 59		28
60		

Page 29 of 48

Ecology Letters

1 2 3 4	
5 6 7 8 9 10	
11	
16 17 18 19 20	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
26 27 28 29 30	
31 32 33	
 34 35 36 37 38 39 40 	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54	
55 56 57 58 59	
60	

608	socioeconomic outcomes (Lubchenco et al. 2016). These policy options will strongly differ
609	depending on whether exploiters' behaviour is individualistic, collective searching or territorial.
610	Individualistic behaviours tend to be associated with the race-for-fish, with overexploitation in
611	open access systems being a likely outcome (Hardin 1968). In particular, individualistic
612	behaviour may be associated with scrambling behaviour to collect resources before others,
613	which creates excess and wasteful investment into new technologies required to keep up with
614	competitors (Homans & Wilen 1997). Such situations are particularly hard to manage, and
615	building proper incentives usually means forceful implementation of harvest regulations (e.g.,
616	effort controls, licensing, individual quotas in fisheries). Under these situations, incentivising
617	proper behaviour could be improved by implementation of some form of access or harvest
618	rights, e.g., individual transferable quotas (Copes 1986; Costello <i>et al.</i> 2008), which often
619	promotes efficiency and long-term planning. With respect to territoriality, the primary
620	management issues may be antisocial behaviours related to territory defence and possibly
621	equity. Explicitly acknowledging and legally enforcing the emerging territories through
622	traditional user rights to fishing (TURFs) could reduce conflicts (Acheson & Gardner 2005) and
623	split the costs of territory enforcement evenly among all foragers. Shared costs may increase
624	the economic rent from the resource (Humphries et al. 2012), but also introduces the
625	substantial equity based issue of defining who is entitled to become a territory member. There
626	are few panaceas: depending on the context, even community-based management may lead to
627	resource overuse, for instance when there are abundant actors, few alternatives to fishing and
628	good access to markets (Cinner et al. 2012). Finally, systems where collective searching
629	behaviour is prominent fall somewhere in-between individualistic and territorial systems in

Page 30 of 48

2	
3	
4	
5	
6	
7	
, 8	
9	
9 10	
11	
12	
12	
13 14	
14	
16 17	
18	
19	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
53 54	
54 55	
55 56	
50 57	
57	
50 59	
60	
00	

1

630 terms of biological and socioeconomic sustainability. Collective search improves a management 631 body's monitoring capabilities and improves the ability to feed information into the fleet or community, but may also contribute to inequalities in success among foragers under certain 632 633 conditions (Klein et al. 2017). In this context, it would be important to detect leaders in the 634 social network and to work proactively with these individuals (Gutiérrez et al. 2011; Barnes et 635 al. 2016). Lastly, collective information sharing increases the likelihood informal institutions, 636 such as agreed-upon rules of proper behaviour through self-enforcement, will develop (Ostrom 637 2007). 638 The ability to identify characteristic social behaviours within animal populations can also 639 inform management decisions. For example territorial defence of high quality patches could 640 lead to range contraction as territorial individuals are harvested and replaced, which can 641 facilitate overharvesting (Post et al. 2002; Burgess et al. 2017). When range contractions cannot 642 be directly observed, the foraging ecology of a target species could provide early indications of 643 potential overharvesting. Changes in social behaviour may also alter the exposure of individuals 644 to predation risk and increase the natural mortality rate (Huey & Pianka 1981; Werner et al. 645 1983; Brown et al. 1999). Anticipating changes in natural mortality rates would help fine tune 646 population assessments, and adjust conservation measures, or harvest rates accordingly (Clark 647 1999; Laundré et al. 2010). Importantly, our framework highlights that social behaviour is 648 dynamic and changes in the social behaviour of the predators and prey feedback to one 649

650 Therefore if these dynamics do not stabilize, policy implementations may require temporal

651 updates or re-evaluations.

30

another through changes in space use, resource depletion or consumer rarefaction (See Fig S4).

1 2	
3 4	652
5 6 7	653
7 8 9	654
10 11	655
12 13 14	656
15 16	657
17 18 19	658
20 21	659
22 23	660
24 25 26	661
27 28	662
29 30 31	663
32 33	664
34 35 36	665
37 38	666
39 40 41	667
42 43	
44 45 46	668
40 47 48	669
49 50	670
51 52 53	671
54 55	672
56 57 58	
59	

60

652	Conclusions
653	We have developed a novel framework for predicting social forager behaviour,
654	demonstrating that the exploration difficulty and exploitation potential of a given social-
655	ecological system gives rise to three social strategies – territoriality, collective search and
656	individualism. Our framework received substantial empirical support when judged against a set
657	of cases from fisheries and aquatic organisms. Going forward, it is important that the
658	framework be tested with a range of new empirical and experimental studies, to systematically
659	understand whether the predictions we offer are accurate. To that end, we proposed measures
660	that could be used to quantify the exploration difficulty and exploitation potential. In the case
661	of fisheries, novel Global Positioning System technology can be used to study the spatial
662	behaviour of fish and fishers in almost real-time, which is particularly useful to advance the
663	empirical understanding of how the ecology of renewable natural resources interfaces with
664	human factors to determine outcomes of harvesting patterns. If the amount of empirical
665	support for our framework continues to grow, it may advance context-specific governance and
666	management solutions and help support sustainable fisheries and other natural resource
667	systems.

668 Acknowledgements

669 The work on this paper was supported by a Strategic Grant by Princeton University and
670 Humboldt-Universität zu Berlin on "Princeton-Humboldt Centre for the Reality Mining of Animal
671 Social Systems," the "Cooperation and Collective Cognition Network" and by the project "B672 Types" (SAW-2013-IGB-2; www.b-types.igb-berlin.de). We thank all participants of the various

2	
3	
4	
5	
6	
4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 8 9 20 21 22 23 24 5 26 27 28 9 30 31 2 33 34 35 36 37 8 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 33 34 35 36 37 8 9 30 31 32 31 32 32 33 33 34 35 36 37 8 9 30 31 32 31 32 33 33 33 33 33 33 33 33 33 33 33 33	
8	
Q	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
20	
51	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	

682

685

687

690

694

698

702

705

1 2

673 Princeton-Humboldt workshops for their constructive inputs into the ideas presented here.

- 674 Watson, Barbier and Levin acknowledge the support of NSF Dynamics of Coupled Natural-
- 675 Human Systems award GEO-1211972. Levin also acknowledges the support of the Nordforsk-
- 676 funded project Green Growth Based on Marine Resources: Ecological and Socio-Economic
- 677 Constraints (GreenMAR) and National Science Foundation grant OCE-1426746. JA was
- 678 supported by a JdC post-doc grant funded by the Spanish Ministry of Economy, Industry and
- 679 Competitiveness (ref. IJCI-2016-27681). We thank three anonymous reviewers for their very
- 680 valuable and encouraging contributions to this manuscript.

681 References

- 683 1.Acheson, J.M. (1975). The lobster fiefs: economic and ecological effects of territoriality in the
 684 Maine lobster industry. *Hum. Ecol.*, 3, 183–207
- 686 2.Acheson, J.M. (2015). Private land and common oceans. *Curr. Anthropol.*, 56, 28–55
- 688 3.Acheson, J.M. & Gardner, R.J. (2005). Spatial strategies and territoriality in the Maine lobster
 689 industry. *Ration. Soc.*, 17, 309–341
- 4.Arlinghaus, R. (2006). On the apparently striking disconnect between motivation and
 satisfaction in recreational fishing: the case of catch orientation of German anglers. *North Am. J. Fish. Manag.*, 26, 592–605
- 695 5.Arlinghaus, R., Alós, J., Beardmore, B., Daedlow, K., Dorow, M., Fujitani, M., *et al.* (2017).
 696 Understanding and managing freshwater recreational fisheries as complex adaptive social 697 ecological systems. *Rev. Fish. Sci. Aquac.*, 1–41
- 699 6.Arlinghaus, R., Beardmore, B., Riepe, C., Meyerhoff, J. & Pagel, T. (2014). Species-specific 700 preferences of German recreational anglers for freshwater fishing experiences, with emphasis 701 on the intrinsic utilities of fish stocking and wild fishes. *J. Fish Biol.*, 85, 1843–1867
- 703 7.Arreguín-Sánchez, F. (1996). Catchability: a key parameter for fish stock assessment. *Rev. Fish* 704 *Biol. Fish.*, 6, 221–242

32

57 58

1		
2 3	706	8.Barbier, M. & Watson, J.R. (2016). The spatial dynamics of predators and the benefits and
4	707	costs of sharing information. <i>PLoS Comput. Biol.</i> , 12, E1005147
5 6	708	
7	709	9.Barnes, M.L., Lynham, J., Kalberg, K. & Leung, P. (2016). Social networks and environmental
8 9	710	outcomes. Proc. Natl. Acad. Sci., 113, 6466–6471
10	711	
11	712	10.Basurto, X., Blanco, E., Nenadovic, M. & Vollan, B. (2016). Integrating simultaneous prosocial
12 13	713 714	and antisocial behavior into theories of collective action. Sci. Adv., 2, e1501220–e1501220
14	714	11.Beardmore, B., Haider, W., Hunt, L.M. & Arlinghaus, R. (2011). The importance of trip
15	716	context for determining primary angler motivations: Are more specialized anglers more catch-
16 17	717	oriented than previously believed? North Am. J. Fish. Manag., 31, 861–879
18	718	
19 20	719	12.Beitl, C.M. (2014). Navigating over space and time: Fishing effort allocation and the
20 21	720	development of customary norms in an open-access mangrove estuary in Ecuador. <i>Hum. Ecol.</i> ,
22	721	42, 395–411
23 24	722	12 Deith C.M. (2015) Machility in the memory Catch rates deity decisions and dynamics of
24 25	723 724	13.Beitl, C.M. (2015). Mobility in the mangroves: Catch rates, daily decisions, and dynamics of artisanal fishing in a coastal commons. <i>Appl. Geogr.</i> , 59, 98–106
26	724	artisanar fishing in a coastal commons. Appl. Geogr., 59, 98–100
27 28	726	14.Berger-Tal, O., Polak, T., Oron, A., Lubin, Y., Kotler, B.P. & Saltz, D. (2011). Integrating animal
29	727	behavior and conservation biology: A conceptual framework. <i>Behav. Ecol.</i> , 22, 236–239
30	728	
31 32	729	15.Blanchet, S., Dodson, J.J. & Brosse, S. (2006). Temporal and spatial variation in growth of
33	730	juvenile Atlantic salmon. J. Fish Biol., 68, 1062–1076
34	731	
35 36	732 733	16.Boserup, E. (1965). The conditions of agricultural growth: The economics of agrarian change under population pressure. Earthscan, London
37	733 734	under population pressure. Earthscall, Londoll
38 39	735	17.Boutin, S. (1990). Food supplementation experiments with terrestrial vertebrates: patterns,
40	736	problems, and the future. <i>Can. J. Zool.</i> , 68, 203–220
41	737	
42 43	738	18.Branch, T.A., Hilborn, R., Haynie, A.C., Fay, G., Flynn, L., Griffiths, J., et al. (2006). Fleet
44	739	dynamics and fishermen behavior: lessons for fisheries managers. Can. J. Fish. Aquat. Sci., 63,
45	740	1647–1668
46 47	741 742	10 Provider S.H. & Adam W.H. (1077) Torritorial behavior of threeses at demostich
48	742 743	19.Brawley, S.H. & Adey, W.H. (1977). Territorial behavior of threespot damselfish (<i>Eupomacentrus planifrons</i>) increases reef algal biomass and productivity. <i>Environ. Biol. Fishes</i> ,
49 50	743 744	2, 45–51
50 51	745	_,
52	746	20.Brown, J. (1968). The evolution of diversity in avian territorial systems. Wilson Bull., 76, 160-
53 54	747	169
54 55	748	
56	749	21.Brown, J.S., Laundre, J.W. & Gurung, M. (1999). The ecology of fear: optimal foraging, game
57 58		33
59		
60		

1		
2 3 4	750	theory, and trophic interactions. J. Mammal., 80, 385–399
5	751 752	22 Durance M.C. Costelle, C. Fredeter Hermann, A. Dinely, M.L. Coines, C.D. Tilmen, D. et
6 7	752 752	22.Burgess, M.G., Costello, C., Fredston-Hermann, A., Pinsky, M.L., Gaines, S.D., Tilman, D., <i>et</i>
7 8	753 754	al. (2017). Range contraction enables harvesting to extinction. <i>Proc. Natl. Acad. Sci.</i> , 114, 3945–
9		3950
10	755 756	22 Caraca T & Ciraldon L A (1001) Capiel foreging, Draducing and caracussing in a stachastic
11	756	23.Caraco, T. & Giraldeau, LA. (1991). Social foraging: Producing and scrounging in a stochastic
12 13	757	environment. J. Theor. Biol., 153, 559–583
13 14	758 750	
15	759	24.Carpenter, J. & Seki, E. (2011). Do social preferences increase productivity? Field
16	760	experimental evidence from fishermen in Toyama Bay. <i>Econ. Inq.</i> , 49, 612–630
17	761	
18	762	25.Chabot-Hanowell, B. & Smith, E.A. (2012). Territorial and nonterritorial routes to power:
19 20	763	Reconciling evolutionary ecological, social agency, and historicist approaches. Archeol. Pap. Am.
20	764	Anthropol. Assoc., 22, 72–86
22	765	
23	766	26.Cinner, J.E., McClanahan, T.R., MacNeil, M.A., Graham, N.A.J., Daw, T.M., Mukminin, A., <i>et</i>
24	767	al. (2012). Comanagement of coral reef social-ecological systems. Proc. Natl. Acad. Sci., 109,
25 26	768	5219–5222
20 27	769	
28	770	27.Clark, W.G. (1999). Effects of an erroneous natural mortality rate on a simple age-structured
29	771	stock assessment. Can. J. Fish. Aquat. Sci., 56, 1721–1731
30	772	
31	773	28.Copes, P. (1986). A critical review of the individual quota as a device in fisheries
32 33	774	management. Land Econ., 62, 278–291
34	775	
35	776	29.Costello, C., Gaines, S.D. & Lynham, J. (2008). Can catch shares prevent fisheries collapse?
36	777	Science, 321, 1678–81
37	778	
38 39	779	30.Curtis, R.E. & McConnell, K.E. (2004). Incorporating information and expectations in
40	780	fishermen's spatial decisions. Mar. Resour. Econ., 19, 131–143
41	781	
42	782	31.Daedlow, K., Beckmann, V. & Arlinghaus, R. (2011). Assessing an adaptive cycle in a social
43 44	783	system under external pressure to change: The importance of intergroup relations in
44 45	784	recreational fisheries governance. <i>Ecol. Soc.</i> , 16, 3
46	785	
47	786	32.Dall, S.R.X., Giraldeau, L.A., Olsson, O., McNamara, J.M. & Stephens, D.W. (2005).
48	787	Information and its use by animals in evolutionary ecology. <i>Trends Ecol. Evol.</i> , 20, 187–193
49	788	mornation and its use by animals in evolutionary ecology. <i>Henus Leon Lvon, 20, 107–135</i>
50 51	789	33.Danchin, É., Giraldeau, LA., Valone, T.J. & Wagner, R.H. (2004). Public information: from
51 52	789	nosy neighbors to cultural evolution. <i>Science</i> , 305, 487–491
53	790 791	nosy neignbols to tuitulal evolution. Science, 503, 407-431
54		24 Dill 1 NA (1087) Animal decision making and its applagical approximates the future of
55	792 702	34.Dill, L.M. (1987). Animal decision making and its ecological consequences: the future of
56 57	793	aquatic ecology and behaviour. <i>Can. J. Zool.</i> , 65, 803–811
57 58		34
59		
60		

1

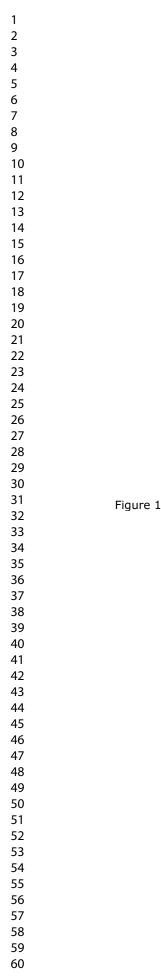
2		
3	794	
4	795	35.Dreyfus-Leon, M. & Gaertner, D. (2006). Modeling performance and information exchange
5	796	between fishing vessels with artificial neural networks. <i>Ecol. Modell.</i> , 195, 30–36
6		between fishing vessels with a thickar heural hetworks. Ecol. Woden., 195, 50–50
7 8	797 700	
9	798	36.Dreyfus-Leon, M. & Kleiber, P. (2001). A spatial individual behaviour-based model approach
10	799	of the yellowfin tuna fishery in the eastern Pacific Ocean. Ecol. Modell., 146, 47–56
11	800	
12	801	37.Dugatkin, L.A. & Wilson, D.S. (1991). Rover: A strategy for exploiting cooperators in a patchy
13	802	environment. <i>Am. Nat.,</i> 138, 687–701
14	803	
15 16	804	38.Dyson-Hudson, R. & Smith, E.E.A. (1978). Human territoriality: An ecological reassessment.
17	805	Am. Anthropol., 80, 21–41
18	806	
19	807	39.Eklöv, P. (1992). Group foraging versus solitary foraging efficiency in piscivorous predators:
20	808	the perch, Perca fluviatilis, and pike, <i>Esox lucius</i> , patterns. <i>Anim. Behav.</i> , 44, 313–326
21	809	the perch, rerea huviatins, and pike, 250x lacias, patterns. Anim. Benuv., 44, 515-520
22		40 Floor MAA (1096) House another is foreging floor by siving chirmup calls if the
23	810	40.Elgar, M.A. (1986). House sparrows establish foraging flocks by giving chirrup calls if the
24 25	811	resources are divisible. Anim. Behav., 34, 169–174
26	812	
27	813	41.Elton, C. (1949). Population interspersion: an essay on animal community patterns. J. Ecol.,
28	814	37, 1–23
29	815	
30	816	42.Enquist, M. & Leimar, O. (1993). The evolution of cooperation in mobile organisms. Anim.
31	817	Behav., 45, 747–757
32 33	818	
34	819	43.Fedler, A.J. & Ditton, R.B. (1994). Understanding angler motivations in fisheries
35	820	management. Fisheries, 19, 6–13
36	821	
37	822	44.Foster, S.A. (1985). Group foraging by a coral reef fish: a mechanism for gaining access to
38	822	defended resources. Anim. Behav., 33, 782–792
39		defended resources. Annin. Benuv., 55, 782–792
40 41	824	45 Crashee D. & Dec. (a local M. (2004). A set site of a set linear relative bit set is a set of
41	825	45.Gaertner, D. & Dreyfus-Leon, M. (2004). Analysis of non-linear relationships between catch
43	826	per unit effort and abundance in a tuna purse-seine fishery simulated with artificial neural
44	827	networks. ICES J. Mar. Sci., 61, 812–820
45	828	
46	829	46.Gatewood, J.B. (1984). Cooperation, competition, and synergy: Information-sharing groups
47	830	among southeast Alaskan salmon seiners. <i>Am. Ethnol.</i> , 11, 350–370
48 49	831	
49 50	832	47.Giraldeau, LA. & Caraco, T. (2000). Social foraging theory. Princeton University Press
51	833	
52	834	48.Girardin, R., Hamon, K.G., Pinnegar, J., Poos, J.J., Thébaud, O., Tidd, A., <i>et al.</i> (2016). Thirty
53	835	years of fleet dynamics modelling using discrete-choice models: What have we learned? Fish
54	836	Fish., 18, 638–655
55	830	
56 57	031	
57 58		35
59		55
60		

1 2		
3	838	49.Grant, J.W.A. (1993). Whether or not to defend? The influence of resource distribution. <i>Mar.</i>
4	839	Behav. Physiol., 23, 137–153
5		Benuv. Physiol., 25, 157–155
6	840	50 Creat LM/A & Nachas DJ C (1007) Mayor and staying Earsting to the
7 8	841	50.Grant, J.W.A. & Noakes, D.L.G. (1987). Movers and stayers: Foraging tactics of young-of-the-
9	842	year Brook charr, Salvelinus fontinalis. J. Anim. Ecol., 56, 1001–1013
10	843	
11	844	51.Grant, J.W.A., Weir, L.K. & Steingrímsson, S. (2017). Territory size decreases minimally with
12	845	increasing food abundance in stream salmonids: Implications for population regulation. J. Anim.
13	846	<i>Ecol.</i> , 86, 1308–1316
14 15	847	
16	848	52.Gurven, M. (2005). To give and to give not: The behavioral ecology of human food transfers.
17	849	Behav. Brain Sci., 27, 543–583
18	850	
19	851	53.Gurven, M. & Jaeggi, A. V. (2015). Food Sharing. In: Emerging Trends in the Social and
20 21	852	Behavioral Sciences. John Wiley & Sons, pp. 1–12
21	853	
23	854	54.Gutiérrez, N.L., Hilborn, R. & Defeo, O. (2011). Leadership, social capital and incentives
24	855	promote successful fisheries. Nature, 470, 386–389
25	856	
26	857	55.Hamilton, I.M. & Dill, L.M. (2003). The use of territorial gardening versus kleptoparasitism by
27 28	858	a subtropical reef fish (<i>Kyphosus cornelii</i>) is influenced by territory defendability. <i>Behav. Ecol.</i> ,
20	859	14, 561–568
30	860	
31	861	56.Hardin, G. (1968). The tragedy of the commons. <i>Science</i> , 162, 1243–1248
32	862	
33 34	863	57.Hawkes, K., O'Connell, J.F. & Blurton Jones, N.G. (2001). Hadza meat sharing. Evol. Hum.
35	864	Behav., 22, 113–142
36	865	
37	866	58.Higginson, A.D. & Ruxton, G.D. (2015). Foraging mode switching: The importance of prey
38	867	distribution and foraging currency. Anim. Behav., 105, 121–137
39 40	868	distribution and foraging currency. Annn. Denav., 103, 121 137
40	869	59.Hills, T.T., Todd, P.M., Lazer, D., Redish, A.D., Couzin, I.D., Bateson, M., et al. (2015).
42	870	Exploration versus exploitation in space, mind, and society. <i>Trends Cogn. Sci.</i> , 19, 46–54
43		Exploration versus exploitation in space, mind, and society. Trends Cogn. Sci., 19, 40–34
44	871	(Ollegre D.L. Courin J.D. Codin J.C.L. & Krause J. (2004). Contaut dependent group size
45 46	872 872	60.Hoare, D.J., Couzin, I.D., Godin, J.G.J. & Krause, J. (2004). Context-dependent group size
40	873	choice in fish. <i>Anim. Behav.</i> , 67, 155–164
48	874	
49	875	61.Holling, C.S. (1959). The components of predation as revealed by a study of small-mammal
50	876	predation of the European pine sawfly. <i>Can. Entomol.</i> , 91, 293–320
51	877	
52 53	878	62.Holling, C.S. (2001). Understanding the complexity of economic, ecological, and social
54	879	systems. <i>Ecosystems</i> , 4, 390–405
55	880	
56	881	63.Holway, D.A. & Suarez, A. V. (1999). Animal behavior: an essential component of invasion
57		
58 59		36
55		

1		
2		
3	882	biology. Trends Ecol. Evol., 14, 328–330
4 5	883	
6	884	64.Holway, D.A., Suarez, A. V & Case, T.J. (1998). Loss of intraspecific aggression in the success
7	885	of a widespread invasive social insect. Science, 282, 949–952
8 9	886	
9 10	887	65.Homans, F.R. & Wilen, J.E. (1997). A model of regulated open access resource use. <i>J. Environ.</i>
11	888	Econ. Manage., 32, 1–21
12	889	
13 14	890	66.Huey, R.B. & Pianka, E.R. (1981). Ecological consequences of foraging mode. <i>Ecology</i> , 62,
14	891	991–999
16	892	
17	893	67.Humphries, S., Holmes, T.P., Kainer, K., Koury, C.G.G., Cruz, E. & de Miranda Rocha, R.
18 19	894	(2012). Are community-based forest enterprises in the tropics financially viable? Case studies
20	895	from the Brazilian Amazon. <i>Ecol. Econ.</i> , 77, 62–73
21	896	COLUMN A dischars De Later N. O.K. shars' L. D. (2014). The effects of exclosed and inc
22	897	68.Hunt, L.M., Arlinghaus, R., Lester, N. & Kushneriuk, R. (2011). The effects of regional angling
23 24	898	effort, angler behavior, and harvesting efficiency on landscape patterns of overfishing. <i>Ecol.</i>
24	899 900	Appl., 21, 2555–2575
26	900 901	60 Husson N.E. Kossol S.T. Aprostrup K. Cooko S.L. Cowlow D.D. Fisk A.T. at al. (2015)
27	901 902	69. Hussey, N.E., Kessel, S.T., Aarestrup, K., Cooke, S.J., Cowley, P.D., Fisk, A.T., <i>et al.</i> (2015).
28 29	902 903	Aquatic animal telemetry: A panoramic window into the underwater world. <i>Science</i> , 348, 1255642
30	903 904	1255042
31	905	70.James, A.G. (1987). Feeding ecology, diet and field-based studies on feeding selectivity of
32	906	the cape anchovy <i>engraulis capensis</i> Gilchrist. <i>South African J. Mar. Sci.</i> , 5, 673–692
33 34	907	
35	908	71.Januchowski-Hartley, F.A., Graham, N.A.J., Feary, D.A., Morove, T. & Cinner, J.E. (2011). Fear
36	909	of fishers: human predation explains behavioral changes in coral reef fishes. <i>PLoS One</i> , 6,
37	910	e22761
38 39	911	
40	912	72.Johnson, T.R., Wilson, J.A., Cleaver, C. & Vadas, R.L. (2012). Social-ecological scale
41	913	mismatches and the collapse of the sea urchin fishery in Maine, USA. Ecol. Soc., 17, 15
42 43	914	
43 44	915	73.Kaplan, H. & Gurven, M. (2005). The natural history of human food sharing and cooperation:
45	916	a review and a new multi-individual approach to the negotiation of norms. In: Moral sentiments
46	917	and material interests: The foundations of cooperation in economic life. pp. 75–113
47 48	918	
40 49	919	74.Kawanabe, H. (1969). The significance of social structure in production of the "ayu",
50	920	Plecoglossus altivelis. In: The Symposium on Salmon and Trout in Streams, HR MacMillan
51	921	Lectures in Fisheries (ed. Northcote, T.G.). University British Columbia, Vancouver: Institute of
52 53	922	Fisheries, pp. 243–251
55 54	923	
55	924	75.Keenleyside, M.H.A. (1979). <i>Diversity and adaptation in fish behaviour</i> . Springer-Verlag,
56	925	Berlin, NY
57 58		37
59		57
60		

1		
2 3	0.0	
4	926 027	76 Kinsig A.D. Ehrlich D.D. Alston I.J. Arrow K. Dorrott C. Buchmon T.C. at al. (2012)
5	927 928	76.Kinzig, A.P., Ehrlich, P.R., Alston, L.J., Arrow, K., Barrett, S., Buchman, T.G., <i>et al.</i> (2013). Social norms and global environmental challenges: The complex interaction of behaviors,
6 7	928 929	values, and policy. <i>Source Biosci. Biosci.</i> , 63, 164–175
8	929 930	
9	931	77.Klein, E.S., Barbier, M.R. & Watson, J.R. (2017). The dual impact of ecology and management
10 11	932	on social incentives in marine common-pool resource systems. <i>R. Soc. Open Sci.</i> , 170740
12	933	
13	934	78.Kobler, A., Klefoth, T., Mehner, T. & Arlinghaus, R. (2009). Coexistence of behavioural types
14	935	in an aquatic top predator: A response to resource limitation? <i>Oecologia</i> , 161, 837–847
15 16	936	
17	937	79.Kotliar, N.B. & Wiens, J.A. (1990). Multiple scales of patchiness and patch structure: a
18	938	hierarchical framework for the study of heterogeneity. <i>Oikos1</i> , 59, 253–260
19	939	
20 21	940	80.Krause, C. & Ramos, H. (2015). Sharing the same waters. <i>Br. J. Can. Stud.</i> , 28, 23–41
22	941	
23	942	81.Krause, J., Krause, S., Arlinghaus, R., Psorakis, I., Roberts, S. & Rutz, C. (2013). Reality mining
24	943	of animal social systems. <i>Trends Ecol. Evol.</i> , 28, 541–551
25 26	944	
27	945	82.Lade, S.J., Niiranen, S., Hentati-Sundberg, J., Blenckner, T., Boonstra, W.J., Orach, K., <i>et al.</i>
28	946	(2015). An empirical model of the Baltic Sea reveals the importance of social dynamics for
29	947	ecological regime shifts. Proc. Natl. Acad. Sci., 112, 11120–11125
30 31	948	
32	949	83.Laundré, J.W., Hernandez, L. & Ripple, W.J. (2010). The landscape of fear: ecological
33	950	implications of being afraid. <i>Open Ecol. J.</i> , 3, 1–7
34 25	951 052	Alleman DL Assertuur K. Casha CL Caulay DD Dang 7 D Field A T at al (2017)
35 36	952 052	84.Lennox, R.J., Aarestrup, K., Cooke, S.J., Cowley, P.D., Deng, Z.D., Fisk, A.T., <i>et al.</i> (2017).
37	953 054	Envisioning the future of aquatic animal tracking: technology, science, and application.
38	954 955	Bioscience, 67, 884–896
39 40	955 956	85.Letourneur, Y. (2000). Spatial and temporal variability in territoriality of a tropical benthic
40	957	damselfish on a coral reef (Reunion Island). <i>Environ. Biol. Fishes</i> , 57, 377–391
42	958	damsenish on a corai reer (neumon island). Environ. Diol. Fishes, 57, 577-551
43	959	86.Levin, S.A. (1998). Ecosystems and the biosphere as complex adaptive systems. <i>Ecosystems</i> ,
44 45	960	1, 431–436
46	961	1, 101 100
47	962	87.Levin, S., Xepapadeas, T., Crépin, AS., Norberg, J., De Zeeuw, A., Folke, C., <i>et al.</i> (2013).
48	963	Social-ecological systems as complex adaptive systems: Modeling and policy implications.
49 50	964	Environ. Dev. Econ., 18, 111–132
51	965	
52	966	88.Levine, H.B. (1984). Forms of "Territoriality" in three New Zealand crayfishing villages.
53	967	Ethology, 23, 89–99
54 55	968	
56	969	89.Lima, S. & Zollner, P. (1996). Towards a behavioral ecology of ecological landscapes. <i>Trends</i>
57		
58		38
59 60		

2		
3	970	Ecol. Evol., 11, 131–135
4 5	971	
6	972	90.Lima, S.L. & Dill, L.M. (1990). Behavioral decisions made under the risk of predation: a review
7	973	and prospectus. Can. J. Zool., 68, 619–640
8	974	
9 10	975	91.Lubchenco, J., Cerny-Chipman, E.B., Reimer, J.N. & Levin, S.A. (2016). The right incentives
10	976	enable ocean sustainability successes and provide hope for the future. Proc. Natl. Acad. Sci.,
12	977	113, 14507–14514
13	978	
14	979	92.Lynham, J. (2017). Identifying peer effects using gold rushers. Land Econ., 93, 527–548
15 16	980	
17	981	93.Maher, C.R. & Lott, D.F. (2000). A review of ecological determinants of territoriality within
18	982	vertebrate species. Am. Midl. Nat., 143, 1–29
19	983	
20 21	984	94.Manfredo, M.J., Bruskotter, J.T., Teel, T.L., Fulton, D., Schwartz, Shalom, H., Arlinghaus, R., <i>et</i>
21	985	al. (2017). Why social values cannot be changed for the sake of conservation Michael J.
23	986	Manfredo. Conserv. Biol., 31, 772–780
24	987	
25	988	95.Mangel, M. & Clark, C.W. (1983). Uncertainty, search, and information in fisheries. J. du
26 27	989	Cons. Perm. Int. pour l'Exploration la Mer, 41, 93–103
28	990	
29	991	96.Mangel, M., Dowling, N. & Arriaza, J.L. (2015). The behavioral ecology of fishing vessels:
30	992	Achieving conservation objectives through understanding the behavior of fishing vessels.
31 32	993	Environ. Resour. Econ., 61, 71–85
33	994	
34	995	97.Marceau, D.J. (1999). The scale issue in the social and natural sciences. <i>Can. J. Remote Sens.</i> ,
35	996	25, 347–356
36 37	997	
38	998	98.Matsumura, S., Arlinghaus, R. & Dieckmann, U. (2010). Foraging on spatially distributed
39	999	resources with sub-optimal movement, imperfect information, and travelling costs: Departures
40	1000	from the ideal free distribution. <i>Oikos</i> , 119, 1469–1483
41 42	1001	
42	1002	99.Milner-Gulland, E.J. (2011). Integrating fisheries approaches and household utility models
44	1003	for improved resource management. <i>Proc. Natl. Acad. Sci.</i> , 108, 1741–1746
45	1004	
46 47	1005	100.Monk, C.T. & Arlinghaus, R. (2017). Eurasian Perch, Perca fluviatilis, spatial behaviour
47	1006	determines vulnerability independent of angler skill in a whole-lake reality mining experiment.
49	1007	Can. J. Fish. Aquat. Sci., 1–47
50	1008	
51 52	1009	101.Mueller, K.B., Taylor, W.W., Frank, K.A., Robertson, J.M. & Grinold, D.L. (2008). Social
52 53	1010	networks and fisheries: The relationship between a charter fishing network, social capital, and
54	1011	catch dynamics. North Am. J. Fish. Manag., 28, 447–462
55	1012	
56	1013	102.Murray, L.G., Hinz, H. & Kaiser, M.J. (2011). Functional response of fishers in the Isle of Man
57 58		39
59		57
60		


1		
2 3	1014	scallop fishery. <i>Mar. Ecol. Prog. Ser.,</i> 430, 157–169
4 5	1015	
6	1016	103.Nakayama, S., Doering-Arjes, P., Linzmaier, S., Briege, J., Klefoth, T., Pieterek, T., et al.
7	1017	(2018). Fine-scale movement ecology of a freshwater top predator, Eurasian perch (Perca
8	1018	fluviatilis), in response to the abiotic environment over the course of a year. Ecol. Freshw. Fish,
9 10	1019	1–15
10	1020	
12	1021	104.Neis, B., Schneider, D.C., Felt, L., Haedrich, R.L., Fischer, J. & Hutchings, J.A. (1999).
13	1022	Fisheries assessment: What can be learned from interviewing resource users? Can. J. Fish.
14	1023	Aquat. Sci., 56, 1949–1963
15 16	1024	
17	1025	105.Nilsson, P.A., Turesson, H. & Brönmark, C. (2006). Friends and foes in foraging: intraspecific
18	1026	interactions act on foraging-cycle stages. <i>Behaviour</i> , 143, 733–745
19	1027	
20	1028	106.Ostrom, E. (2007). A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci.,
21 22	1029	104, 15181–15187
23	1030	
24	1031	107.Parrish, J.K. (1993). Comparison of the hunting behavior of four piscine predators attacking
25	1032	schooling prey. Ethology, 95, 233–246
26 27	1033	
27	1034	108.Perry, G. & Pianka, E.R. (1997). Animal foraging: Past, present and future. <i>Trends Ecol. Evol.</i> ,
29	1035	12, 360–364
30	1036	
31	1037	109.Pine, W.E., Martell, S.J.D., Walters, C.J. & Kitchell, J.F. (2009). Counterintuitive responses of
32 33	1038	fish populations to management actions: some common causes and implications for predictions
34	1039	based on ecosystem modeling. <i>Fisheries</i> , 34, 165–80
35	1040	
36	1041	110.Pitcher, T.J. (1986). Functions of shoaling behaviour in teleosts. In: The behaviour of teleost
37 38	1042	fishes. Springer, pp. 294–337
30 39	1043	
40	1044	111.Post, J.R., Sullivan, M., Cox, S., Lester, N.P., Walters, C.J., Parkinson, E.A., et al. (2002).
41	1045	Canada's recreational fisheries: The invisible collapse? Fisheries, 27, 6–17
42	1046	
43 44	1047	112.Poteete, A.R. & Ostrom, E. (2004). Heterogeneity, group size and collective action: The role
45	1048	of institutions in forest management. Dev. Change, 35, 435–461
46	1049	
47	1050	113.Potts, J.R. & Lewis, M.A. (2014). How do animal territories from and change Lessons from
48 49	1051	20 years of mechanistic modeling. Proceeding R. Soc. Biol., 281
50	1052	
51	1053	114.Priede, I.G., Bagley, P.M., Armstrong, J.D., Smith Jr., K.L. & Merrett, N.R. (1991). Direct
52	1054	measurement of active dispersal of food-falls by deep sea demersal fishes. Nature, 351, 647–
53	1055	649
54 55	1056	
56	1057	115.Priede, I.G., Smith, K.L. & Armstrong, J.D. (1990a). Foraging behavior of abyssal grenadier
57 58		40
59		
60		

1 2		
- 3 4	1058	fish: inferences from acoustic tagging and tracking in the North Pacific Ocean. Deep Sea Res.
5	1059	Part A, Oceanogr. Res. Pap., 37, 81–101
6 7	1060	11 Christell C. Smith In K.L. & Americana J.D. (1000h) Equation shakes introduction
8	1061 1062	116.Priede, I.G., Smith Jr., K.L. & Armstrong, J.D. (1990b). Foraging behavior of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific Ocean. <i>Deep.</i>
9	1062	Res., 37, 81–101
10	1065	
11 12	1065	117.Pyke, G.H. (1984). Optimal foraging theory : A critical review. Annu. Rev. Ecol. Syst., 15,
13	1066	523–575
14	1067	
15 16	1068	118.Ranta, E., Hannu, R. & Lindstrom, K. (1993). Competition versus cooperation: success of
17	1069	individuals foraging alone and in groups. Am. Nat., 142, 42–58
18 19	1070	
20	1071	119.Reinthal, P.N. & Lewis, S.M. (1986). Social behaviour, foraging efficiency and habitat
21	1072 1073	utilization in a group of tropical herbivorous fish. Anim. Behav., 34, 1687–1693
22 23	1073	120.Rendell, L., Fogarty, L., Hoppitt, W.J.E., Morgan, T.J.H., Webster, M.M. & Laland, K.N.
23	1075	(2011). Cognitive culture: Theoretical and empirical insights into social learning strategies.
25	1076	Trends Cogn. Sci., 15, 68–76
26 27	1077	
28	1078	121.Roberts, C.M. & Ormond, R.F.Y. (1992). Butterfly fish social behavior, with special reference
29	1079	to the inciolence of territoriality - a review. <i>Environ. Biol. Fishes,</i> 34, 79–93
30 31	1080	
32	1081	122.Rosten, C.M., Gozlan, R.E. & Lucas, M.C. (2016). Allometric scaling of intraspecific space
33	1082	use. <i>Biol. Lett.</i> , 12, 20150673
34 35	1083 1084	123. Rubenstein, D.I. (1981). Population density, resource patterning, and territoriality in the
36	1084	everglades pygmy sunfish. Anim. Behav., 29, 155–172
37	1086	
38 39	1087	124.Rubenstein, D.I. (2010). Ecology, social behavior, and conservation in zebras. Adv. Study
40	1088	Behav. Behav. Ecol. Trop. Anim. Elsevier Press, Oxford, UK
41	1089	
42 43	1090	125.Schlüter, M., McAllister, R.R.J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hoelker, F., <i>et al.</i>
44	1091	(2012). New horizons for managing the environment: a review of coupled social-ecological
45 46	1092	systems modeling. Nat. Resour. Model., 25, 219–272
40	1093 1094	126.Schmitt, R.J. & Strand, S.W. (1982). Cooperative foraging by yellowtail, Seriola lalandei
48	1094	(Carangidae), on two species of fish prey. <i>Copeia</i> , 3, 714–717
49 50	1095	
50 51	1097	127.Sih, A., Cote, J., Evans, M., Fogarty, S. & Pruitt, J. (2012). Ecological implications of
52	1098	behavioural syndromes. <i>Ecol. Lett.</i> , 15, 278–289
53 54	1099	
55	1100	128.Sims, D.W. (2008). Chapter 3 Sieving a Living. A Review of the Biology, Ecology and
56	1101	Conservation Status of the Plankton-Feeding Basking Shark Cetorhinus Maximus. Adv. Mar.
57 58		41
59		
60		

1		
2 3	1102	Biol., 54, 171–220
4 5	1103	
6	1104	129.Sims, D.W. & Quayle, V.A. (1998). Selective foraging behaviour of basking sharks on
7	1105	zooplankton in a small-scale front. <i>Nature</i> , 393, 460–464
8 9	1106	
9 10	1107	130.Slaney, P.A. & Northcote, T.G. (1974). Effects of prey abundance on density and territorial
11	1108	behavior of young rainbow trout (Salmo gairdneri) in laboratory stream channels. J. Fish. Board
12	1109	Canada, 31, 1201–1209
13 14	1110	
15	1111	131.Smaldino, P.E. & Schank, J.C. (2012). Movement patterns, social dynamics, and the
16	1112	evolution of cooperation. <i>Theor. Popul. Biol.</i> , 82, 48–58
17 18	1113 1114	132.Smolla, M., Gilman, R.T., Galla, T. & Shultz, S. (2015). Competition for resources can explain
10	1114	patterns of social and individual learning in nature. <i>Proc. R. Soc. London B Biol. Sci.</i> , 282,
20	1115	20151405
21	1117	
22 23	1118	133.Spiegel, O., Leu, S.T., Bull, C.M. & Sih, A. (2017). What's your move? Movement as a link
24	1119	between personality and spatial dynamics in animal populations. <i>Ecol. Lett.</i> , 20, 3–18
25	1120	
26 27	1121	134.Steingrímsson, S.Ó. & Grant, J.W.A. (2008). Multiple central-place territories in wild young-
27	1122	of-the-year Atlantic salmon Salmo salar. J. Anim. Ecol., 77, 448–457
29	1123	
30	1124	135.Stevens, J.R. & Gilby, I.C. (2004). A conceptual framework for nonkin food sharing: Timing
31 32	1125	and currency of benefits. Anim. Behav., 67, 603–614
33	1126	
34	1127	136.Stoop, J., Noussair, C.N. & Van Soest, D. (2012). From the lab to the field: Cooperation
35 36	1128	among fishermen. J. Polit. Econ., 120, 1027–1056
37	1129 1130	137.Stowers, J.R., Hofbauer, M., Bastien, R., Griessner, J., Higgins, P., Farooqui, S., et al. (2017).
38	1130	Virtual reality for freely moving animals. <i>Nat. Methods</i> , 14, 995–1002
39 40	1131	virtual reality for freely moving animals. Nat. Wethous, 14, 555 1662
41	1133	138.Tavoni, A., Schlüter, M. & Levin, S.A. (2012). The survival of the conformist: social pressure
42	1134	and renewable resource management. J. Theor. Biol., 299, 152–161
43 44	1135	
45	1136	139.Tilman, A.R., Watson, J.R. & Levin, S. (2016). Maintaining cooperation in social-ecological
46	1137	systems : Effective bottom-up management often requires sub-optimal resource use. Theor.
47 48	1138	Ecol.
40	1139	
50	1140	140.Turner, R.A., Gray, T., Polunin, N.V.C. & Stead, S.M. (2013). Territoriality as a driver of
51 52	1141	fishers' spatial behavior in the Northumberland lobster fishery. Soc. Nat. Resour., 26, 491–505
52 53	1142	
54	1143	141. Turner, R.A., Polunin, N.V.C. & Stead, S.M. (2014). Social networks and fishers' behavior:
55	1144 1145	Exploring the links between information flow and fishing success in the Northumberland lobster
56 57	1145	fishery. <i>Ecol. Soc.</i> , 19, 38
58		42
59		

1		
2 3	1146	
3 4 5	1146 1147	142 Vignaux M (1006) Analysis of vessel meyoments and strategies using commercial satch
		142.Vignaux, M. (1996). Analysis of vessel movements and strategies using commercial catch and effort data from the New Zealand hoki fishery. <i>Can. J. Fish. Aquat. Sci.</i> , 53, 2126–2136
6 7	1148 1149	and enort data from the New Zealand noki fishery. <i>Cun. J. Fish. Aquut. Sci.</i> , 53, 2126–2136
8	1149	143.Wagner, J. & Davis, A. (2004). Property as a social relation: Rights of "kindness" and the
9	1150	social organization of lobster fishing among northeastern Nova Scotian Scottish Gaels. Hum.
10	1151	Organ., 63, 320–333
11 12	1152	Organ., 03, 320–333
12	1155	144.Ward, H.G.M., Allen, M.S., Camp, E. V., Cole, N., Hunt, L.M., Matthias, B., <i>et al.</i> (2016).
14	1154	Understanding and managing social–ecological feedbacks in spatially structured recreational
15	1155	fisheries: The overlooked behavioral dimension. <i>Fisheries</i> , 41, 524–535
16	1150	nshenes. The overlooked behavioral dimension. <i>Fishenes</i> , 41, 524, 555
17 18	1158	145.Werner, E.E., Gilliam, J.F., Hall, D.J. & Mittelbach, G.G. (1983). An experimental test of the
19	1159	effects of predation risk on habitat use in fish. <i>Ecology</i> , 64, 1540–1548
20	1160	
21	1161	146.Wiens, J.A. (1976). Population responses to patchy environments. Annu. Rev. Ecol. Syst., 7,
22 23	1162	81–120
24	1163	
25	1164	147.Wilson, J.A., Acheson, J.M. & Johnson, T.R. (2013). The cost of useful knowledge and
26	1165	collective action in three fisheries. <i>Ecol. Econ.</i> , 96, 165–172
27 28	1166	
20	1167	148.Wu, J. & Loucks, O.L. (1995). From balance of nature to hierarchical patch dynamics: a
30	1168	paradigm shift in ecology. <i>Q. Rev. Biol.</i> , 70, 439–466
31	1169	
32 33	1170	Figure Captions
34	1171	
35	1172	Figure 1. Conceptual model of how exploitation potential and exploration difficulty in natural
36	1173	resources should select for particular social behaviour by foragers.
37 38	1174	
39	1175	Figure 2: Results of the general mathematical model for <i>N</i> = 30 users. Optimal behaviour versus
40	1176	exploitation potential $log_{10} T_r/T_h$ and exploration difficulty $log_{10} T_s/T_h$. For clarity, investment
41	1177	into territorial exclusion (red, μ) and communication (yellow, λ) are made mutually exclusive
42 43	1178	here. The cost of exclusion is set to $c = 0.3$, meaning that agents must spend 30% of their
44	1179	time on a patch defending it to guarantee full exclusivity. Three domains are made apparent:
45	1180	territorial (T), collective searching (C) and individualistic (I) agents.
46	1181	
47 48	1182	Figure 3: Evolutionary lattice model: (a) Behavioural map obtained from the evolutionary
48 49	1183	simulations distinguishing three regimes based on most frequent strategy in the population:
50	1184	Communication (C) with $c_{sig} > c_{rep}$, c_{upt} , Territoriality (T) with $c_{rep} > c_{sig}$, c_{upt} and
51	1185	Individualism (I) with $c_{upt} > c_{sig}$, c_{rep} . The red dots show parameter values corresponding to
52 53		the ternary plots (b,c,d) of the evolved phenotype distribution for different regimes: (b)
	1186	
54	1187	Communication, (c) Territorial, (d) Individualistic.
54 55		Communication, (c) Territorial, (d) Individualistic.
54 55 56	1187	Communication, (c) Territorial, (d) Individualistic.
54 55 56 57	1187	
54 55 56	1187	Communication, (c) Territorial, (d) Individualistic. 43
54 55 56 57 58	1187	

1 2		
2 3	1100	Figure 4. Discompant of examining apparent discussithin the qualitative frequency of based on
4	1189	Figure 4. Placement of empirical case studies within the qualitative framework, based on
5	1190	agreement with predictions. Panel (a) shows placement for fisheries case studies, and panel (b)
6	1191	shows placement for aquatic organism cases.
7 8	1192	
9	1193	Boxes
10	1194	Box 1, Evolutionary Lattice Model Details; Box1.pdf
11	1195	
12	1196	Figures
13 14	1197	See separate files
15	1198	Figure 1: Figure 1.png
16	1199	Figure 2: Figure 2.eps
17	1200	Figure 3: Figure 3.png
18	1201	Figure 4: Figure 4.png
19 20	1202	
21	1203	Tables
22	1204	See separate files
23	1205	Table 1: General mathematical model parameters; Table 1.pdf
24 25	1206	Table 2: Evolutionary lattice-model parameters and variables; Table 2.pdf
25 26		
27		
28		
29		
30 31		
32		
33		
34		
35		
36 37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47 48		
49		
50		
51		
52 53		
53 54		
55		

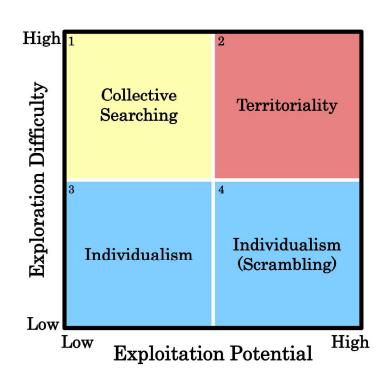
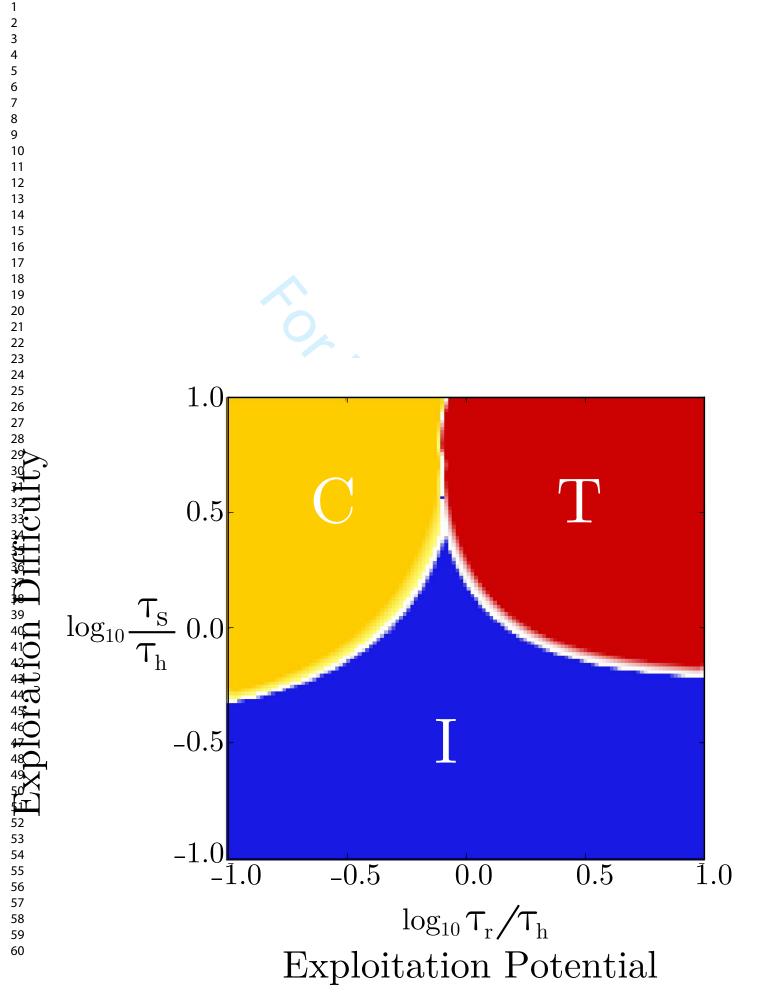



Figure 1. Conceptual model of how exploitation potential and exploration difficulty in natural resources should select for particular social behaviour by foragers.

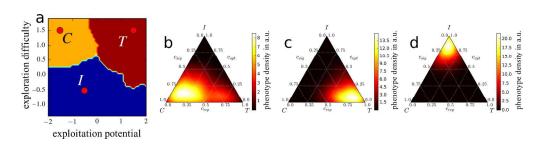
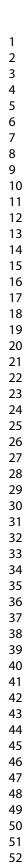



Figure 3: Evolutionary lattice model: (a) Behavioural map obtained from the evolutionary simulations distinguishing three regimes based on most frequent strategy in the population: Communication (C) with c_sig>c_rep,c_upt, Territoriality (T) with c_rep>c_sig,c_upt and Individualism (I) with c_upt>c_sig,c_rep. The red dots show parameter values corresponding to the ternary plots (b,c,d) of the evolved phenotype distribution for different regimes: (b) Communication, (c) Territorial, (d) Individualistic.

or periezony

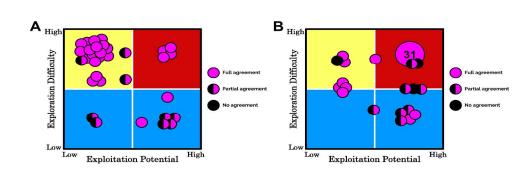


Figure 4. Placement of empirical case studies within the qualitative framework, based on agreement with predictions. Panel (a) shows placement for fisheries case studies, and panel (b) shows placement for aquatic organism cases.