
Reduction of Resolution Refutations
and Interpolants via Subsumption

Roderick Bloem1?, Sharad Malik2??, Matthias Schlaipfer3?, and
Georg Weissenbacher3? ? ?

1 Graz University of Technology, Austria
2 Princeton University

3 Vienna University of Technology, Austria

Abstract. Propositional resolution proofs and interpolants derived from
them are widely used in automated verification and circuit synthesis.
There is a broad consensus that “small is beautiful” — small proofs
and interpolants lead to concise abstractions in verification and compact
designs in synthesis. Contemporary proof reduction techniques either
minimise the proof during construction, or perform a post-hoc trans-
formation of a given resolution proof. We focus on the latter class and
present a subsumption-based proof reduction algorithm that extends ex-
isting single-pass analyses and relies on a meet-over-all-paths analysis to
identify redundant resolution steps and clauses. We show that smaller
refutations do not necessarily entail smaller interpolants, and use la-
belled interpolation systems to generalise our reduction approach to in-
terpolants. Experimental results support the theoretical claims.

1 Introduction

Resolution proofs and interpolants are an integral part of many verification-
related techniques such as abstraction [24] and model checking [17], vacuity
detection [29], synthesis [18, 20], and patch generation [32]. These techniques
take advantage of the fact that refutations and interpolants direct the focus
to the core of the problem instance (literally and metaphorically). In practice,
small refutations provide concise abstractions in model checking [24], and small
interpolants enable precise refinement and compact designs in synthesis [20].

Consequently, proof reduction as well as the minimisation of unsatisfiable
cores has received ample attention. We roughly group the resulting reduction
approaches into two categories: techniques that minimise the proof during con-
struction, and techniques that rely on a post-hoc proof transformation. Algo-
rithms for the extraction of minimal unsatisfiable subsets (such as [25, 4]) typ-
ically fall into the former category and rely on iterative calls to a SAT solver.

? Supported by the Austrian Science Fund (FWF) through grants S11403-N23 (Na-
tional Research Network RiSE) and W1255-N23 (LogiCS doctoral programme).

?? Funded by C-FAR, one of six centers supported by the STARnet phase of the Focus
Center Research Program (FCRP), a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

? ? ? Funded by grant VRG11-005 of the Vienna Science and Technology Fund (WWTF).

Representatives of the latter class reduce the proof size by identifying and elimi-
nating redundancies (e.g. [3, 16, 28, 7]). The focus of these reduction algorithms is
not on minimality but scalability, which is why they avoid additional SAT calls.
Naturally, there are also hybrid approaches: Gershman et al. [14], for instance,
rely on a solver to detect redundancies in a given proof.

The focus of our work is on post-hoc proof transformations. The motivation
for this decision is two-fold. Firstly, while small proofs and interpolants are de-
sirable, minimality is often not necessary and comes at the cost of scalability [3].
Secondly, it is possible to harvest information from a complete proof that is
not available during proof construction. This idea is very explicit in [16], where
a meet-over-all-paths analysis identifies redundant literals and resolution steps
(discussed in §3.1). Other authors [3, 28] deploy a richer set of transformation
rules (including pivot and unit recycling), but fail to exploit the information
readily available in the proof. In §3, we cast pivot and unit recycling [3, 16,
13, 28] more generally as subsumption and generalise them in a single concise
transformation rule (Theorem 1). Subsumption has been successfully deployed
during proof construction (in [33], for instance). We use subsumption as a post-
processing step and carry forward the idea of [16] to use proof analysis to identify
redundancies that were not eliminated during proof construction. proof con-
struction (in [33], for instance, and implicitly in [15]). We use subsumption as a
post-processing step and carry forward the idea of [16] to use proof analysis to
identify redundancies not eliminated during proof construction.

Interpolation is often an after-thought to proof reduction. It is common prac-
tice to extract interpolants from a reduced proof [27] and to subsequently com-
pact the result by removing structural redundancy [8]. We show in §4 that pivot
and unit recycling can actually increase the number of variables in an inter-
polant. In §4, we lift the results from §3 to labelled clauses in the framework of
labelled interpolation systems [12], thus avoiding transformations that introduce
nonessential [10] (or peripheral [29]) variables.

Contributions. In §3, we present a single concise transformation rule (Theorem 1)
which, based on subsumption, generalises existing proof reduction techniques [3,
13, 16]. We show in §4 that careless transformations may increase interpolant size,
and lift the results from §3 to labelled clauses [12] to rule out detrimental reduc-
tions (Theorem 2). §5 covers our implementation and provides an experimental
evaluation that demonstrates a small but consistent improvement over [13, 16].

2 Notation and Preliminaries

This section introduces our notation and restates some prior results on proof
restructuring [11] in §2.1, and labelled interpolation systems [12, 10] in §2.2.

2.1 Formulae, Proofs, and Transformations

Propositional Formulae. We work in the standard setting of propositional logic.
Formulas are defined over a set X of propositional variables, the logical con-

stants T and F (denoting true and false, respectively), and the standard logical
connectives ∧, ∨,⇒, and ¬ (denoting conjunction, disjunction, implication, and
negation, respectively).

LitX = {x, x |x ∈ X} is the set of literals over X, where x is short for ¬x.
We write var(t) for the variable occurring in the literal t ∈ LitX , and Var(F)
to denote the variables occurring in a formula F . A clause C is a set of literals
interpreted as a disjunction. A clause C subsumes a clause D if C ⊆ D. The
empty clause � contains no literals and is interpreted as F. The disjunction of
two clauses C and D is their union, denoted C∨D, which is further simplified to
C ∨ t if D is the singleton {t}. A propositional formula in Conjunctive Normal
Form (CNF) is a conjunction of clauses, also represented as a set of clauses.

Resolution Proofs. The resolution rule is an inference rule deriving a new clause
from two clauses containing complementary literals. The clauses C∨x and D∨x
are the antecedents, x is the pivot, and C ∨ D is the resolvent. Res(C,D, x)
denotes the resolvent of C and D with the pivot x.

Definition 1 (Resolution Proof, Refutation). A resolution proof R is a
directed acyclic graph (VR, ER, pivR, `R, sR), where VR is a set of vertices, ER

is a set of edges, pivR is a function mapping vertices to pivot variables, `R
is a function mapping vertices to formulae, and sR ∈ VR is a designated sink
vertex. An initial vertex has in-degree 0. All other vertices are internal and
have in-degree 2. The sink sR has out-degree 0. For every internal vertex v with
(v1, v), (v2, v) ∈ ER, we have `R(v) = Res(`R(v1), `R(v2), pivR(v)). A resolution
proof R is a resolution refutation if `R(sR) = �.

The subscripts above are dropped if clear from the context. A vertex vi ∈ R
is a parent of vj if (vi, vj) ∈ ER. Let v+ and v− be the parents of v such that
piv(v) ∈ `(v+) and ¬piv(v) ∈ `(v−). A vertex vi is an ancestor of vj if there is
a path from vi to vj . A vertex vi dominates vj if all paths from vj to sR visit
vi. The substitution R[v1 ← v2] replaces the sub-proof rooted at v1 with the
sub-proof rooted at v2:

Definition 2. Let R = (VR, ER, pivR, `R, sR), and let v1, v2 ∈ VR (v1 6= v2)
such that v1 is not an ancestor of v2. The substitution of v1 with v2 in R, denoted
by R[v1 ← v2], is the directed acyclic graph G = (VG, EG, pivG, `G, sG), where
VG = VR \ {v1}, EG = (ER \ {(u, v)|u = v1 ∨ v = v1}) ∪ {(v2, v)|(v1, v) ∈ ER},
`G(v) = `R(v) and pivG(v) = pivR(v) for all v 6= v1, and sG is sR if v1 6= sR
and v2 otherwise.

The transformation R[v1 ← v2] does not necessarily yield a valid resolution
proof. The transformation RestoreRes(G, v) as defined below restores the validity
of the single resolution step at vertex v.

Definition 3. Let G be the directed acyclic graph (VG, EG, pivG, `G, sG). The
transformation RestoreRes(G, v) yields G if v is an initial vertex of G. For an
internal vertex v ∈ VG,

proc ReconstructProof (R, v)
if v 6∈ visited then

visited ← visited ∪ {v}
foreach (u, v) ∈ ER

ReconstructProof (R, u)
R← RestoreRes (R, v)

(a) ReconstructProof

�

x1

x1 x2 x2

x1 x2 x3 x1 x3

x2 x1 x2 x3 x1 x2

x1

7→

�

x1

x2 x1 x2

x1

(b) Reducing proof size

Fig. 1. Reconstructing proofs

– if ∃(v+, v), (v−, v) ∈ EG with pivG(v) ∈ `G(v+) ∧ piv(v) ∈ `G(v−) then

RestoreRes(G, v) = (VG, EG, pivG, `, sG)

with `(u)
def
=

{
Res(`G(v+), `G(v−), piv(v)) if u = v
`G(u) otherwise

– otherwise, let u and w be the parents of v, and RestoreRes(G, v) = G[v ← u],
where u is chosen such that

(piv(v) ∈ `(u)⇒ piv(v) ∈ `(w)) ∧ (piv(v) ∈ `(u)⇒ piv(v) ∈ `(w)).

The second case in Definition 3 affords us a choice for u if neither parent
contains the pivot or both parents contain the pivot literal in the same phase.
The latter situation can arise in proofs that contain tautological clauses.

The algorithm ReconstructProof in Figure 1(a) (introduced in [3]) per-
forms a linear time post-order (parents first) traversal of the graph, applying
RestoreRes to re-establish ∀(v1, v), (v2, v) ∈ E . `(v) = Res(`(v1), `(v2), piv(v)).

The following lemma is an adaptation of Lemma 2 from [11] to our setting.

Lemma 1. Let R be a resolution proof, and let π = {v1 7→ u1, . . . , vk 7→ uk} be a
mapping such that vi is not an ancestor of uj for 1 ≤ i, j ≤ k. If `R(ui) ⊆ `R(vi)
for 1 ≤ i ≤ k, then the proof P obtained by applying ReconstructProof to
R[v1 ← u1] . . .[vk ← uk] has sink sP with `P (sP) ⊆ `R(sR).

Proof: By induction on the number of ancestors of sR (cf. the more general
proof of Theorem 1 on page 7).

Example 1. Consider the left proof in Figure 1(b), in which the mapping π from
Lemma 1 is indicated by 7→. The refutation on the right of Figure 1(b) shows
the result of ReconstructProof after substituting x1x2 for x1x2x3. C

2.2 Interpolation Systems and Labelling Functions

The following variant of Craig interpolants [9] has been introduced by McMil-
lan [22] and is commonly used in the context of verification.

Definition 4 (Propositional Interpolant). An interpolant for a pair of propo-
sitional formulae (A,B), where A ∧ B is unsatisfiable, is a formula I such that
A⇒ I, B ⇒ ¬I, and Var(I) ⊆ Var(A) ∩Var(B) holds.

Let A and B be formulae in CNF. A refutation R is an (A,B)-refutation of
an unsatisfiable formula A∧B if `R(v) is a clause in A or a clause in B for each
initial vertex v ∈ VR.

An interpolation system Itp is a function that given an (A,B)-refutation
R yields a function, denoted Itp(R,A,B), from vertices in R to formulae over
Var(A)∩Var(B). An interpolation system is correct if for every (A,B)-refutation
R with sink s, it holds that Itp(R,A,B)(s) is an interpolant for (A,B). We
write Itp(R) for Itp(R,A,B)(s) when A and B are clear. Let v be a vertex in an
(A,B)-refutation R. The pair (`(v), Itp(R,A,B)(v)) is an annotated clause and
is written `(v) [Itp(R,A,B)(v)] in accordance with [23].

In the following, we review the labelled interpolation systems introduced
in [12], which generalise the propositional interpolation algorithms presented by
Huang [19], Kraj́ıček [21] and Pudlák [26], and McMillan [22]. A distinguishing
feature of a labelled interpolation system is that it assigns an individual label
c ∈ {⊥, a, b, ab} to each literal in the resolution refutation.

Definition 5 (Labelling Function). Let (S,v,u,t) be the lattice below, where
S = {⊥, a, b, ab} is a set of symbols and v, u and t are defined by the Hasse
diagram to the right. A labelling function LR : VR× Lit→ S for a refutation R
over a set of literals Lit satisfies that for all v ∈ VR and t ∈ Lit:

1. LR(v, t) = ⊥ iff t /∈ `R(v)
2. LR(v, t) = LR(v+, t) t LR(v−, t) for an internal vertex

v, its parents v+ and v−, and literal t ∈ `R(v). ⊥

a b

ab

Definition 6 (Locality). A literal t is A-local if var(t) ∈ Var(A) \ Var(B).
Conversely, t is B-local if var(t) ∈ Var(B)\Var(A). All other literals are shared.
A labelling function L is locality preserving if for any initial vertex v ∈ VR and
t ∈ `(v), L(v, t) = a if t is A-local and L(v, t) = b if t is B-local.

Shared literals may be labelled a, b, or ab. Given a labelling function L,
the downward projection of a clause at a vertex v with respect to c ∈ S is

`(v)�c,L
def
= {t ∈ `(v) |L(v, t) v c}. The subscript L is omitted if clear from the

context.

Definition 7 (Labelled Interpolation System for Resolution). Let L be
a locality preserving labelling function for an (A,B)-refutation R. The labelled
interpolation system Itp(L) maps vertices in R to partial interpolants as defined
in Figure 2.

For an initial vertex v with `(v) = C

(A-clause)
C [C�b]

if C ∈ A (B-clause)
C [¬(C�a)]

if C ∈ B

For an internal vertex v with piv(v) = x, `(v+) = C1 ∨ x and `(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]

C1 ∨ C2 [I3]

(A-Res) if L(v+, x) t L(v−, x) = a, I3
def
= I1 ∨ I2

(AB-Res) if L(v+, x) t L(v−, x) = ab, I3
def
= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if L(v+, x) t L(v−, x) = b, I3
def
= I1 ∧ I2

Fig. 2. Labelled interpolation systems

Itp yields interpolants of a highly redundant propositional structure. The
structural redundancy is typically reduced in a subsequent step [8]. Therefore,
we resort to the number of variables as a measure of interpolant size. Labelled
interpolation systems support the elimination of nonessential (or peripheral [29])
variables from interpolants [10], as stated by the following lemma.

Lemma 2. Let L and L′ be locality preserving labelling functions for an (A,B)-
refutation R, where L(v, t) = a if `R(v) ∈ A and L(v, t) = b if `R(v) ∈ B for all
initial vertices of R. Then Var(Itp(L)(v)) ⊆ Var(Itp(L′)(v)) for all v ∈ VR.

Example 2. Assume that the left refutation in Figure 1(b) is an (A,B)-refutation
with (x1 x2 x3), (x1 x2 x3), (x1) ∈ A and (x2), (x1 x2) ∈ B, and let L be the
labelling function from Lemma 2. Itp(L,R)(v) = F for all initial vertices v in A
and Itp(L,R)(v) = T for all remaining initial vertices. The internal vertices are
annotated as follows:

x1 x3 [(x2 ∨ T) ∧ (x2 ∨ F)︸ ︷︷ ︸
x2

], x1 x2 [x2 ∨ F], x2 [(x1 ∨ F) ∧ (x1 ∨ T)︸ ︷︷ ︸
x1

]

x1 [(x2 ∨ x2) ∧ (x2 ∨ x1)︸ ︷︷ ︸
x1∨x2

], � [(x1 ∨ x2) ∨ F]

Accordingly, Itp(L,R)(sR) = x1 ∨ x2. For the same partition (A,B) and the
right refutation P in Figure 1(b) we obtain Itp(L,P)(sP) = x1. C

According to Lemma 2, the set Var(Itp(L,R)(v)) in Example 2 cannot be
reduced any further by mutating L. The proof transformation in Figure 1(b),
however, results in an interpolant with fewer variables.

We present a proof transformation technique aimed at reducing proof size
in §3. In §4, we show that smaller proofs do not always yield interpolants with
fewer variables, and specialise our reduction technique to eliminate variables
(and Boolean connectives) from interpolants.

3 Proof Reduction via Subsumption

Example 1 in §2.1 demonstrates that the size of proofs can be reduced by means
of clause subsumption. In general, let R be a resolution proof with vertices
ui, vi ∈ VR such that `R(ui) ⊆ `R(vi) for 1 ≤ i ≤ k. Then the sub-proofs of R
rooted at vi can be pruned by means of substitution (see Def. 2) if no vi is an
ancestor of a uj for 1 ≤ i, j ≤ k (cf. Lemma 1). The following example shows
that the requirement `R(ui) ⊆ `R(vi) is sufficient but not necessary.

Example 3. Let R be a refutation resembling the proof on the left of Figure 1(b)
except that we replace the clause x1 x2 x3 with x2 x3. In this setting, Lemma 1
does not justify the substitution proposed in Example 1 anymore, since x1 x2 6⊆
x2 x3. The substitution of x2 x3 with x1 x2 followed by ReconstructProof,
however, still results in the proof on the right of Figure 1(b). The substitution
is still valid because x1 is eliminated along all paths from x1 x2 to � in the
resulting graph. Intuitively, this situation arises since x1 is a merge-literal [2] of
the resolution Res(x1 x2 x3, x1 x3, x3) in the original proof in Example 1. C

The set of literals eliminated along all paths from v ∈ VR to sR can be defined
as the meet-over-all-paths in the terminology of data-flow analysis:

rlit(v, w) = t s.t. t ∈ `(v), var(t) = piv(w),∃u 6= w . (u,w) ∈ E ∧ rlit(u,w) = t

σ(v) =

{
∅ if v = sR⋂

(v,w)∈E (σ(w) ∪ {rlit(v, w)}) otherwise

(1)
A solution to the data-flow equation 1 can be computed in linear time since

the graph R is acyclic. Our definition of σ resembles the safe literals [13] and
expansion set [16]. Unlike Gupta in [16] we do not rule out literals of opposing
phase in σ(v).

Given a resolution proof R and a solution of σR of Equation 1 for R, we call
`R(v)∪σR(v) the augmented clause of v ∈ VR. The following theorem generalises
Lemma 1 to use subsumption of augmented clauses.

Theorem 1. Let R be a resolution proof, let σR be a solution of Equation 1
for R, and let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such that for all
1 ≤ i ≤ j ≤ k it holds that a) no vertex vi is an ancestor of uj, and b) if vj is an
ancestor of ui then σR(ui) ⊆ σR(vi). If `R(ui) ⊆ (`R(vi) ∪ σR(vi)) for 1 ≤ i ≤ k,
then applying ReconstructProof to R[v1 ← u1] . . .[vk ← uk] yields a proof
P with sink sP such that `P (sP) ⊆ `R(sR).

The proof is led by nested structural induction on the number of substitutions
and the number of ancestors of sR. The core insight is that for every sub-proof
of R rooted at sR, ReconstructProof yields a proof P with sink sP such
that `P (sP) ⊆ (`R(sR) ∪ σR(sR)).

The restrictions on the substitutions π in Theorem 1 are much weaker than in
Lemma 1 (which corresponds to [11, Lemma 2]). Theorem 1 as well as Lemma 1
allow overlapping proofs in the range of π. In addition, Theorem 1 allows the sub-
stitution of vertices that are ancestors of preceding substitutions, and introduces

�

p p

p x2 x2 x1px1

p x2p x2 x1p p x1

x0p x0x2 p x0x1

(a) A redundant proof

�

p p

p x2 p x2 x1pp x1

p x2p x2 x1 p p x1

x0p x0x2 p x0x1

(b) After substitution

Fig. 3. Subsumption for elimination of redundant resolution steps

a more general notion of subsumption by considering augmented clauses. In the
following section, we show that Theorem 1 justifies the redundancy elimination
algorithms presented in [3, 13, 16].

3.1 Eliminating Redundant Resolution Steps

In the published version of his 1966 talk at a Leningrad seminar, Grigory Tseitin
introduced the notion of regular proofs [30]. A resolution proof R is regular if,
along any path from an initial vertex to the sink sR, every pivot occurs at most
once. If proofs are represented as trees rather than directed acyclic graphs, then
refutations of minimal size are always regular [31, Lemma 5.1]. Consequently,
pivots that repeatedly occur along a path in tree-shaped proofs are redundant.
Bar-Ilan et al. [3] introduce an algorithm (RmPivots) which eliminates such
redundant resolution steps in the tree-shaped parts of a proof.

Fontaine et al. [13] generalise this algorithm to directed acyclic graphs con-
sidering all paths from a given vertex to the sink.4 To this end, they introduce
the notion of a safe literals, which resembles our definition of σ in Equation 1.
The following example illustrates the algorithm from [13] on a redundant proof
and shows that the resulting reduction is justified by Theorem 1.

Example 4. Consider the proof in Figure 3(a). Let v1 and v2 be the vertex for
which `(v1) = x1 and `(v2) = x2, respectively. Then σ(v1) = {p, x1} and σ(v2) =
{p, x2}, and the algorithm from [13] prunes the sub-proofs for x1 p and p x2.

Now let v3 and v4 be the vertices such that `(v3) = p x1 and `(v4) = p x2.
Since σ(v1) = {p, x1} and σ(v2) = {p, x2}, we may perform the transformation
R[v1 ← v3][v2 ← v4] by Theorem 1. This transformation corresponds to pruning
the sub-proofs as described above. Figure 3(b) shows the corresponding proof
returned by ReconstructProof. C

4 The resulting proofs are not necessarily regular. This is not a shortcoming of the
algorithm, as minimal refutations are in general not regular [1].

proc RmPivots (R, v)
if v 6∈ visited and

{u | (v, u) ∈ E} ⊆ visited
then

visited ← visited ∪ {v}
V± ← {v+, v−}
R← SubsumeRes (R, v)
foreach u ∈ (V± ∩ VR)

RmPivots (R, u)

(a) RmPivots

proc RmPivots> (R, v)
if v 6∈ visited and {u | (v, u) ∈ E} ⊆ visited then

visited ← visited ∪ {v}
σ(v) =

⋂
(v,w)∈E (σ(w) ∪ {rlit(v, w)})

V± ← {v+, v−}
R← SubsumeRes (R, v)
if v 6∈ VR then σ(v)← >
foreach u ∈ V±

RmPivots> (R, u)

(b) Optimised variant of RmPivots

Fig. 4. Removing redundant resolutions

In the following, we provide a subsumption-based formalisation of the redun-
dancy elimination algorithm RmPivots which relies on σ to identify redundant
resolution steps.

Proposition 1. If piv(v) ∈ σ(v) then `(v+) ⊆ (`(v) ∪ σ(v)). If piv(v) ∈ σ(v)
then `(v−) ⊆ (`(v) ∪ σ(v)).

Based on Proposition 1, the following proof transformation eliminates redun-
dant resolution steps.

Definition 8. Let R be the resolution proof (VR, ER, pivR, `R, sR), and let σR
be a solution of Equation 1 for R. We define the following transformation:

SubsumeRes(R, v)
def
=

{
R[v ← v+] if piv(v) ∈ σR(v)

R[v ← v−] if piv(v) ∈ σR(v)

The procedure RmPivots in Figure 4(a) performs a pre-order traversal of
the proof (starting at the root), which guarantees that the order of substitu-
tions performed by SubsumeRes(R, sR) satisfies condition a) in Theorem 1. The
fact that σ(v+) = σ(v) ∪ {piv(v)} and σ(v−) = σ(v) ∪ {piv(v)} in combina-
tion with the conditions of SubsumeRes in Definition 8 (piv(v) ∈ σ(v) and
piv(v) ∈ σ(v), respectively) establishes condition b). Proposition 1 guarantees
that `(ui) ⊆ (`(vi) ∪ σ(vi)). Therefore, applying RmPivots followed by Recon-
structProof yields a valid refutation.

Optimisations. The definition of σ is unnecessarily restrictive in the context of
RmPivots. Observe that σ(v) is propagated even if RmPivots prunes the node
v. The constraints propagated along pruned paths may result in the unnecessary
exclusion of literals from ancestors of v. We amend this by setting σ(v) to the
top element > of the power set lattice if a vertex v is pruned. Figure 4(b) shows

the optimised version of RmPivots, which intertwines the computation of σ and
RmPivots.

3.2 Limiting the Number of Candidates for Subsumption

RmPivots (as introduced in §3.1) only considers a subset of all feasible sub-
sumptions. For the proof in Example 1 in §2.1, for instance, RmPivots substi-
tutes x2 for x1x3 (resulting in a different proof than the substitution suggested
in Example 1). The algorithm RecycleUnits [3], on the other hand, only con-
siders unit clauses and would substitute x2 for x1x2x3. However, RmPivots and
RecycleUnits may miss valid subsumptions.

Example 5. Consider the refutation to the
right. Note that no pivots are eliminated
more than once along any of the paths, and
none of the unit clauses are valid candidates
for substitutions, since their vertices violate
the ancestor requirement of Definition 2. Let
v be the vertex with `(v) = x1x3. Since
σ(v) = {x1, x2, x3, x4}, v is subsumed by
x1x2 (as indicated by 7→ in the figure). C �

x4

x3 x3x4

x2 x3 x2x4

x4

x2

x2x1 x1x3 x1x4x1x27→

The computational cost for checking all pairs of clauses satisfying the ancestor
requirement in Definition 2 for subsumption is substantial. In the following, we
derive a lemma that allows us to reduce the number of subsumption checks.

Proposition 2. If vi dominates vj then the following subset relations hold:

a) (`(vj) \ `(vi)) ⊆ σ(vj) and b) σ(vi) ⊆ σ(vj)

Corollary 1. If R is a refutation, then `(v) ⊆ σ(v) for all v ∈ VR that are
ancestors of sR.

Corollary 2. Let R be a resolution refutation, and let ui, vi ∈ VR be such that
`(ui) ⊆ (`(vi) ∪ σ(vi)). Then `(ui) ⊆ σ(vj) for any vj ∈ VR dominated by vi.

This is a simple consequence of Proposition 2b and Corollary 1. The following
lemma allows us to exclude vertices that dominate a path segment of vertices
with out-degree one from our search for subsumed vertices.

Lemma 3. Let vj → vj+1 → . . . → vk be a path in a refutation R such that
all vertices vi have out-degree 1 and rlit(vi, vi+1) 6∈ σ(vk) (where j ≤ i < k).
Further, let uk be such that `(uk) ⊆ (`(vk) ∪ σ(vk)) and vj is not an ancestor
of uk. Then applying ReconstructProof to R[vk ← ui] or R[vj ← ui] yields
the same refutation.

if σ(v) 6= > ∧ (V± = ∅ ∨ ∃u ∈ V± . |{w|(u,w) ∈ E}| > 1) then

pick u ∈ {w | `(w) ⊆ σ(v) ∧ v 7→ w satisfies Theorem 1}
R← R[v ← u]

Fig. 5. Subsumption-based substitution of vertices

Proof: We consider only the case that vk is an ancestor of sR, since vj and
vk are otherwise not visited by ReconstructProof. Since R is a refutation,
`(uk) ⊆ σ(vk) (Corollary 1), and therefore `(uk) ⊆ σ(vj) (Corollary 2). Since
rlit(vi−1, vi) 6∈ σ(vk) for j < i ≤ k and `(uk) ⊆ σ(vk), we have rlit(vi−1, vi) 6∈
`(uk) and rlit(w, vi) ∈ `(w) for w 6= vi−1 and (w, vi) ∈ E. Therefore, RestoreRes
propagates vertex uk until vk is reached (cf. Definition 3).

We claim that the restriction in Lemma 3 that vj may not be an ancestor of
uk does not exclude viable candidates for subsumption: Every `(vi) (j ≤ i < k)
contains a literal rlit(vi, vi+1) 6∈ σ(vk) and therefore `(vi) 6⊆ σ(vk).

RmPivots establishes the condition rlit(vi, vi+1) 6∈ σ(vk) (j ≤ i < k) on
paths as defined in Lemma 3. Consequently, we only need to search for clauses
subsuming vertices with either no parent or a parent with out-degree greater than
one (i.e., meets for σ in Equation 1). The corresponding pseudo-code is shown
in Figure 5 and can be incorporated into RmPivots> (Figure 4(b)) before the
recursive call. We present an efficient technique to detect clauses subsuming
σ(vj) (i.e., the second line in Figure 5) in §5.

Lemma 3 reduces the computational burden, not least because contemporary
SAT solvers such as PicoSAT [5] construct resolution chains whose intermediate
vertices have out-degree one.

Finally, we point out that vertices v with {x, x} ⊆ (`(v) ∪ σ(v)) can be
replaced with a fresh vertex u 6∈ VR with `(u) = (xx). However, RmPivots
already guarantees that {x, x} ⊆ (`(v) ∪ σ(v)) only occurs on pruned traces.

4 Interpolant Reduction via Subsumption

It is tempting to apply the techniques of §3 with the intention to reduce inter-
polant size. The following example demonstrates that this approach may in fact
have the opposite effect.

Example 6. Consider the (A,B)-refutation R with (x0), (x0 x1), (x1 x2) ∈ A and
(x1 x2), (x1) ∈ B on the left of Figure 6. We use a labelled interpolation system
(Definition 7) with the labelling L (Definition 5) from Lemma 2. Each vertex is
annotated with `(v) [Itp(L,R)(v)] as described in §2.2, and the label L(t) of each
literal t ∈ `(v) is indicated using a superscript. The shared variable x1 does not

occur in Itp(L,R)(s), since the literals
a
x1 and

a
x1 are peripheral.5

5 Intuitively, since resolution corresponds to existential quantification and x1 is elim-
inated within the A partition ((∃x1 . (x0 ∨ x1) ∧ (x1 ∨ x2)) ⇒ (x0 ∨ x2)), the pivot

� [x2]

a
x0 [F]

a
x0 [x2]

a
x0

b
x1 [x2]

b
x1 [T]

a
x0

a
x2 [F] b

x1
b
x2 [T]

a
x0

a
x1 [F]

a
x1

a
x2 [F]

�

a
x0 [F] � [x1∨x2]

ab
x1 [x2]

b
x1 [T]

a
x1

a
x2 [F] b

x1
b
x2 [T]

a
x0

a
x1 [F]

a
x1

a
x2 [F]

before reduction after RmPivots

Fig. 6. Reduced proof size may increase number of variables in interpolant

We obtain the proof P on the right of Figure 6 by applying RmPivots
and ReconstructProof to R. P is smaller than R, but the substitution has
eliminated a peripheral resolution step and Itp(L,P) is forced to introduce x1

when we resolve on
ab
x1 and

b
x1.

Using a different interpolation technique (such as Pudlák’s [26] or McMil-
lan’s [22]) or changing L does not resolve this problem. Labelled interpolation
systems generalise Pudlák’s and McMillan’s interpolation systems [12], and ac-
cording to Lemma 2, any labelling L would require Itp(L,P) to introduce x1 at
some point in P [10]. C

The elimination of the redundant vertex in Example 6 introduces a merge
literal x1 at the node v with `(v) = x1 with L(v, x1) = ab. In order to rule out
substitutions that change the label of peripheral pivots from a or b to ab, we
strengthen the subsumption requirement in Theorem 1 to include labels. Given
a refutation R, we compute a mapping ς : VR × Lit→ S in lockstep with σ:

litlab(u, v, t) =

{
L(v+, var(t)) t L(v−, var(t)) if t = rlit(u, v)
ς(v, t) otherwise

ς(v, t) =

{
⊥ if v = sRd

(v,w)∈E litlab(v, w, t) otherwise

(2)

In analogy to Corollary 1, we observe the following relationship between the
labelling L and ς:

Lemma 4. Let R be an (A,B)-refutation, L be a locality preserving labelling
function for R, and ςR,L be a solution of Equation 2. Then L(v, t) v ςR,L(v, t)
for all v ∈ VR and t ∈ Lit.

Proof: By structural induction. The claim holds trivially for sR. Let (v, w) ∈
E and L(v, t) 6= ⊥. If t 6= rlit(v, w) then t ∈ `(w) and L(v, t) v L(w, t) by

can be “renamed” and treated as a local variable. As a side-effect, fewer logical
connectives are introduced (prior to structural reduction), since the rule (AB-Res)
introduces two more connectives than (A-Res) or (B-Res) (see Definition 7).

Definition 5, and L(v, t) v ς(w, t) by the induction hypothesis. If t = rlit(v, w)
then L(v, t) v litlab(v, w, t). Therefore, L(v, t) v

d
(v,w)∈E litlab(v, w, t).

Abusing our notation, we use v to denote the order on S (Definition 5)
extended point-wise to the literals Lit. In the following, we lift Theorem 1 to
labelled sets of literals using the product order � for the Cartesian product of
the power set of Lit and (Lit→ S), defined as follows:

〈`(u), L(u)〉 � 〈σ(v), ς(v)〉 def
= (`(u) ⊆ σ(v)) ∧ (L(u) v ς(v))

Based on the definition of ς (Equation 2) and the order �, Theorem 2 disal-
lows substitutions that may introduce additional variables in an interpolant:

Theorem 2. Let R be an (A,B)-refutation and let σR, ςR be solutions of the
Equations 1 and 2 for R. Let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such
that for all 1 ≤ i ≤ j ≤ k it holds that a) no vertex vi is an ancestor of uj,
and b) if vj is an ancestor of ui then 〈σR(ui), ςR(ui)〉 � 〈σR(vi), ςR(vi)〉. If
〈`R(ui), L(ui)〉 � 〈σR(vi), ςR(vi)〉 for 1 ≤ i ≤ k, then applying Reconstruct-
Proof to R[v1 ← u1] . . .[vk ← uk] yields a proof P such that Var(Itp(L,P)) ⊆
Var(Itp(L,R)).

The proof is an extension of the proof of Theorem 1 to labelled clauses. For
the labelling L that maps all shared literals to ab, L(v) v ς(u) is always satisfied,
allowing us to relax the labelling constraint.

In the setting of Example 6, let v be the vertex with `(v) = x0 x2 and let u be
the vertex with `(u) = x1 x2. We obtain ς(v, x1) = b. Accordingly, the condition
L(u) v ς(v) in Theorem 2 rules out the substitution R[v ← u]. The following
example, however, demonstrates that this restriction is not always beneficial.

Example 7. We continue working in the setting of Example 2. Let v1, v2 be the
vertices such that `(v1) = (x0x2x3) and `(v2) = x1, and u1, u2 be the vertices
with `(u1) = x1x2 and `(u2) = x2. Recall that the substitution R[v1 ← u1]
reduced the interpolant from x1 ∨ x2 to x1. Theorem 2 disallows v1 7→ u1, since
ς(v1, x1) = a and ς(u1, x1) = b. Detecting that it is safe to introduce x1 at v2
(where ς(v2, x1) = a) since x1 ∈ Var(Itp(R)(u2)) would require a computation-
ally more expensive analysis. The substitution R[v1 ← u2] is valid, however,
since ς(v1, x2) = ab and ς(u2, x2) = b. The corresponding interpolant is x1. C

The conservative restrictions of Theorem 2, which enforce
Var(Itp(P)(v)) ⊆ Var(Itp(R)(v)) for all v ∈ VP , may prevent
ReconstructProof from eliminating variables by pruning.
One strategy to relax this restriction is to replace the meet in
Equation 2 with the operation to the right. This modification

a b ab
a a ⊥ ab
b ⊥ b ab
ab ab ab ab

effectively enables the introduction of a variable at vertex v if it is already
introduced along one path from v to sR. In general, the detection of variables
already introduced in other parts requires a more sophisticated analysis.

synthesis [16] vs. t0 vs. t20 [16] vs. t0

solved 92/133 126/133
max size 367044 1150888

size (%) 17.35 22.89 25.23 18.74 24.57
vars (%) 0.62 0.68 0.68 0.65 0.69
time (s) 5 5 207 18 15
mem (GB) 1.2 1.2 2.5 2.2 2.3

HWMCC [16] vs. t0 vs. t20 [16] vs. t0

solved 38/131 111/131
max size 311151 1710588

size (%) 11.49 14.12 16.61 20.60 25.66
vars (%) 1.61 1.99 1.99 1.87 2.47
time (s) 3 3 218 30 23
mem (GB) 0.8 0.8 2.5 3.4 3.4

Table 1. We provide results for the benchmarks from synthesis and the HWMCC. We
use a locality-preserving labelling function. For synthesis benchmarks, the partitions are
acquired from the synthesis tool. For HWMCC benchmarks we use a random partition
(A,B). We compare all-RmPivots [16] to RmPivots> without (t0) and with (t20)
a search for subsumed clauses (limited to at most 20 minutes). We chose to implement
all-RmPivots rather than the algorithm from [13] because it is not clear how pruned
edges are treated. In each comparison we use the intersection of solved benchmarks
(no time- or mem-out in any configuration). Max size is the size of the largest solved
proof measured in vertices. Size (%) is the average reduction in proof vertices. Vars (%)
is the average reduction in variables in the final interpolant (analogous to interpolant
size, cf. Footnote 5). Time (s) is the average run time (without proof creation). Mem
(GB) is the average memory usage after proof creation.

5 Implementation and Experiments

We implemented (in Scala) the algorithms of §3.1 and §3.2 generalised to labelled
clauses as described in §4. The performance of the algorithm in §3.1 and §3.2
hinges on an efficient check for the conditions of Theorems 1 and 2 (line 2 in
Figure 5):

– Subsumption check. To identify clauses that subsume σ(v), we maintain a
single watch literal for each clause in R. By incrementally assigning the
literals in σ(v) to F, the watch literal enables us to identify clauses `(u) that
are inconsistent with ¬σ(v). We may terminate before all subsuming clauses
are found, in which case the algorithm favours shorter clauses. By prioritising
literals in `(v) ⊆ σ(v), we also avoid the unnecessary introduction of merge
literals. The compatibility of L(v) and ς(u) is checked separately.

– Ancestor check. Our algorithm performs a pre-order traversal starting from
sR. To detect cycles, we maintain ancestor information that is restricted to
initial vertices and vertices with out-degree larger than one (see Lemma 3).
If a substitution vi 7→ ui is performed, we remove the successors of vi from
the list of watched clauses up to the point where all literals in `(ui) \ `(vi)
have been merged or eliminated (to avoid invalid substitutions), and mark
all ancestors of ui as tainted. We currently disallow any vj to be an ancestor
of ui (j ≥ i) in our subsumption check.

We present an experimental evaluation of our algorithms in Table 1. We use
benchmarks from reactive synthesis [6] obtained via [20] and single safety prop-
erty examples from the 2013 Hardware Model Checking Competition (HWMCC).

We use PicoSAT [5] 957 (synthesis) and 959 (HWMCC) to obtain resolution
proofs in TraceCheck format (-t option). We limited synthesis benchmarks to
a TraceCheck file size between 100kB and 10MB (resulting in 133 benchmarks).
We obtained the HWMCC proofs by unrolling until the file size grew beyond
10MB and pick the last file smaller than 10MB (resulting in 131 benchmarks).
The experiments were run on an Intel Xeon E5645 2.40GHz with a 16GB JVM
memory limit and a timeout of 30 minutes.

RmPivots> provides small but consistent improvements over Gupta’s al-
gorithm [16], for proof as well as interpolant reduction. Subsumption beyond
SubsumeRes yields additional proof reduction, but is significantly more expen-
sive (in consistence with the results in [3]). Since we currently choose the first
(and smallest) subsuming clause found, we believe that there is still room for
improvement by adding heuristics for selecting better candidates.

6 Conclusion

We present a framework for the reduction of refutations and interpolants, gen-
eralising the proof analysis introduced in [16] to subsumption. We point out
potential conflicts between the reduction of proofs and interpolants and intro-
duce conservative criteria that prevent subsumptions that are detrimental to
interpolant size. As future work, we intend to explore more sophisticated proof
analyses enabling a more aggressive reduction of interpolant size.

References

1. M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. An exponential sep-
aration between regular and general resolution. In STOC. ACM, 2002.

2. P. B. Andrews. Resolution with merging. J. ACM, 15(3):367–381, 1968.
3. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Reducing

the size of resolution proofs in linear time. STTT, 13(3):263–272, 2011.
4. A. Belov, I. Lynce, and J. Marques-Silva. Towards efficient mus extraction. AI

Communications, 25(2):97–116, 2012.
5. A. Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.
6. R. Bloem, R. Könighofer, and M. Seidl. Sat-based synthesis methods for safety

specs. In K. McMillan and X. Rival, editors, Verification, Model Checking, and
Abstract Interpretation, volume 8318 of Lecture Notes in Computer Science, pages
1–20. Springer Berlin Heidelberg, 2014.

7. J. Boudou and B. W. Paleo. Compression of propositional resolution proofs by
lowering subproofs. In TABLEAUX, volume 8123 of LNCS. Springer, 2013.

8. G. Cabodi, C. Loiacono, and D. Vendraminetto. Optimization techniques for craig
interpolant compaction in unbounded model checking. In Design, Automation and
Test in Europe, pages 1417–1422. ACM, 2013.

9. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symbolic Logic, 22(3):250–268, 1957.

10. V. D’Silva. Propositional interpolation and abstract interpretation. In European
Symposium on Programming, volume 6012 of LNCS. Springer, 2010.

11. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Restructuring
resolution refutations for interpolation. Technical report, Oxford, October 2008.

12. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant
strength. In VMCAI, volume 5944 of LNCS, pages 129–145. Springer, 2010.

13. P. Fontaine, S. Merz, and B. W. Paleo. Compression of propositional resolution
proofs via partial regularization. In CADE, volume 6803 of LNCS. Springer, 2011.

14. R. Gershman, M. Koifman, and O. Strichman. Deriving small unsatisfiable cores
with dominators. In CAV, volume 4144 of LNCS, pages 109–122. Springer, 2006.

15. E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe, pages 886–891. IEEE, 2003.

16. A. Gupta. Improved single pass algorithms for resolution proof reduction. In
ATVA, volume 7561 of LNCS, pages 107–121. Springer, 2012.

17. N. Halbwachs and L. Zuck, editors. Applications of Craig Interpolants in Model
Checking, volume 3440 of LNCS. Springer, 2005.

18. G. Hofferek, A. Gupta, B. Könighofer, J.-H. R. Jiang, and R. Bloem. Synthesizing
multiple boolean functions using interpolation on a single proof. In Formal Methods
in Computer-Aided Design, pages 77–84. IEEE, 2013.

19. G. Huang. Constructing Craig interpolation formulas. In Computing and Combi-
natorics, volume 959 of LNCS, pages 181–190. Springer, 1995.

20. J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from large
Boolean relations. In ICCAD, pages 779–784. ACM, 2009.

21. J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, 1997.

22. K. L. McMillan. Interpolation and SAT-based model checking. In CAV, volume
2725 of LNCS, pages 1–13. Springer, 2003.

23. K. L. McMillan. An interpolating theorem prover. Theoretical Comput. Sci.,
345(1):101–121, 2005.

24. K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In TACAS, volume 2619 of LNCS, pages 2–17. Springer, 2003.

25. A. Nadel, V. Ryvchin, and O. Strichman. Efficient MUS extraction with resolution.
In Formal Methods in Computer-Aided Design, pages 197–200. IEEE, 2013.

26. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic, 62(3):981–998, 1997.

27. S. F. Rollini, L. Alt, G. Fedyukovich, A. E. J. Hyvärinen, and N. Sharygina.
PeRIPLO: A framework for producing effective interpolants in SAT-based soft-
ware verification. In Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 8312 of LNCS, pages 683–693. Springer, 2013.

28. S. F. Rollini, R. Bruttomesso, N. Sharygina, and A. Tsitovich. Resolution proof
transformation for compression and interpolation. The Computing Research Repos-
itory, abs/1307.2028, 2013.

29. J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. Exploiting resolution proofs
to speed up LTL vacuity detection for BMC. STTT, 12(5):319–335, 2010.

30. G. Tseitin. On the complexity of derivation in propositional calculus. Studies in
Mathematics and Mathematical Logic, Part II, 1970.

31. A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic,
1(4):425–467, 1995.

32. B.-H. Wu, C.-J. Yang, C.-Y. Huang, and J.-H. Jiang. A robust functional ECO
engine by SAT proof minimization and interpolation techniques. In ICCAD, 2010.

33. L. Zhang. On subsumption removal and on-the-fly CNF simplification. In SAT,
volume 3569 of LNCS, pages 482–489. Springer, 2005.

A Proofs

Theorem 1. Let R be a resolution proof, let σR be a solution of Equation 1
for R, and let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such that for all
1 ≤ i ≤ j ≤ k it holds that a) no vertex vi is an ancestor of uj, and b) if vj is an
ancestor of ui then σR(ui) ⊆ σR(vi). If `R(ui) ⊆ (`R(vi) ∪ σR(vi)) for 1 ≤ i ≤ k,
then applying ReconstructProof to R[v1 ← u1] . . .[vk ← uk] yields a proof
P with sink sP such that `P (sP) ⊆ `R(sR).

Proof: Because of condition a), R[v1 ← u1] . . .[vk ← uk] is cycle-free. Oth-
erwise, there must be a substitution vj 7→ uj introducing a cycle through uj .
Since vj is not an ancestor of uj in R, the cycle must visit an edge from ui to a
successor of vi introduced by the substitution vi 7→ ui. This is impossible, since
vi is not an ancestor of uj . Condition b) prevents that the substitution vi 7→ ui
introduces a path from vj through a successor of vi to sR along which not all
literals in σ(vj) are eliminated.

The core of the proof is led by nested structural induction on the number of
substitutions and the number of ancestors of sR:

Outer base case (π = ∅). Applying ReconstructProof to R trivially results
in a proof P satisfying that `P (sP) ⊆ (`R(sR) ∪ σR(sR)).

Outer induction step. The outer induction hypothesis is that for every vertex v
in R[v1 ← u1] . . .[vj ← uj], the literals in σR(v) are eliminated along every path
from v to the sink, and ReconstructProof yields a proof P with `P (sP) ⊆
(`R(sR) ∪ σR(sR)) if applied to R[v1 ← u1] . . .[vj ← uj].

Inner base case. Assume sR has no ancestors. If sR 6= vj+1, then sP = sR
and `(sP) = `(sR). Otherwise, sP = uj+1 = π(sR), where uj+1 is the root
of a sub-proof of R such that no vi is an ancestor of uj+1 for 1 ≤ i ≤
j+ 1. Therefore, ReconstructProof leaves uj+1 and `(uj+1) unmodified.
The premise guarantees that `R(ui+1) ⊆ (`R(sR) ∪ σR(sR)), and therefore
`R(sP) ⊆ (`R(sR) ∪ σR(sR)). Condition b) warrants that the substitutions
{vi 7→ ui | j + 1 < i ≤ k} remain feasible.

Inner induction step. Consider the case that sR has n + 1 ancestors. The
case where sR = vj+1 is equivalent to the base case above. Therefore, let
sR 6= vj+1, and let R+ and R− be the sub-proofs rooted at s+R and s−R,
respectively. Each parent of s+R has at most n ancestors, so by induction ap-
plying ReconstructProof to R+[v1 ← u1] . . .[vj+1 ← uj+1] yields a proof
P+ with sink s+P and `P+(s+P) ⊆ (`R(s+R)∪σ(s+R)), and similarly for R−. Since
RestoreRes(sR) eliminates the literals rlit(s+R, sR) and rlit(s−R, sR), applying
RestoreRes to sR results in a proof P satisfying `P (sP) ⊆ (`R(sR) ∪ σ(sR)).

Finally, the fact that σ(sR) = ∅ establishes `P (sP) ⊆ `R(sR).

Theorem 2. Let R be an (A,B)-refutation and let σR, ςR be solutions of the
Equations 1 and 2 for R. Let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such

that for all 1 ≤ i ≤ j ≤ k it holds that a) no vertex vi is an ancestor of uj,
and b) if vj is an ancestor of ui then 〈σR(ui), ςR(ui)〉 � 〈σR(vi), ςR(vi)〉. If
〈`R(ui), L(ui)〉 � 〈σR(vi), ςR(vi)〉 for 1 ≤ i ≤ k, then applying Reconstruct-
Proof to R[v1 ← u1] . . .[vk ← uk] yields a proof P such that Var(Itp(L,P)) ⊆
Var(Itp(L,R)).

Proof: Given a sub-proof rooted at sR, applying ReconstructProof
yields a sub-proof P such that `(sP) ⊆ σ(sR) (by Corollary 1 and the induc-
tion hypothesis of the proof in Theorem 1). By lifting the proof of Theorem 1
to �, we derive L(sP) v ς(sR). Let sR be a vertex with ancestors s+R and
s−R. By induction, 〈`(s+P), L(s+P)〉 � 〈σ(s+R), ς(s+R)〉, and similarly for s−R. Since

ς(s+P , piv(sP)) v litlab(s+P , sP , piv(sP)) and similarly for s−P and piv(sP) (by

Equation 2), we have (L(s+P , piv(sP)) t L(s−P , piv(sp))) v (L(s+R, piv(sR)) t
L(s−R, piv(sR))), and therefore Var(Itp(R,L)(sP)) ⊆ Var(Itp(R,L)(sR)) by Def-
inition 7.

B More Details on Related Work

Gupta [16] introduces the notion of an expansion set ρ, which resembles our σ
in Equation 1, but rules out literals of opposing phase:

⋂
(v,w)∈E

(ρ(v) ∪ {rlit(v, w)}) \ {¬rlit(v, w)} . (3)

According to [16], the expansion set ρ(v) is the “largest set of literals” such
that the “appearance of literals from ρ(v) in `(v)” due to a proof transformation
does not result in an invalid proof. Since the definition of ρ in Equation 3 (unlike
σ) rules out literals of opposing phase, ρ(v) “is a subset of the resolving literals
that appear in all the paths from v to sR” [16]. RmPivots performs a post-order
traversal of R. Whenever ρ(v) contains piv(v) (piv(v), respectively), Gupta’s
version of RmPivots prunes the sub-proof rooted at v− (v+, respectively).

The following example shows that ρ(v) is in fact not the “largest set of
literals” whose introduction at v preserves the validity of a proof (as claimed
in [16]) and that the restrictive definition of ρ in Equation 3 is detrimental.

Example 8. Consider the extension of the refutation in Figure 3(a) to the right.
Let v1 and v2 be the vertices for
which `(v1) = p x2 and `(v2) = x1p,
and let v0 be such that `(v0) = x0.
We obtain ρ(v1) = {p, x2, x3}, and
ρ(v2) = {p, x1, x3} (since ρ only prop-
agates last elimination of a literal over
p), and therefore ρ(v0) = {x0}. On the
other hand, σ(v1) = {p, p, x2, x3} and
σ(v1) = {p, p, x1, x3}, and thus σ(v0) =
{p, x0}. Accordingly, ρ potentially ad-
mits fewer eliminations of redundant
resolution steps than σ.

x3

p x3 p

p x2 x3 x2 x1px1

p x2p x2 x1p p x1

x3

p x3

x0
p x0x3

p x0x2 p x0x1

�

p x3

C

Thus, the algorithm in Fontaine et al. [13] and consequently our subsumption-
based algorithm in Section 3.1 achieves at least the same reduction as Gupta’s
version of RmPivots.

In fact, the definition of σ is unnecessarily restrictive in the context of
RmPivots. Observe that σ(v0) = {p, x0} in the refutation in Example 8, even
though RmPivots prunes all but one outgoing edge of v0. The constraints prop-
agated from v1 and v2 result in the unnecessary exclusion of x3 from σ(v0). We
amend this by setting σ(v) to the top element > of the power set lattice if a
vertex v is pruned. Figure 4(b) shows the optimised version of RmPivots, which
intertwines the computation of σ and RmPivots.

Boudou et al. [7] introduce a proof reconstruction technique called lowering,
where resolutions are moved downwards in the proof by means of projection
of literals. This technique is similar to the algorithm deployed in [11], where a
similar approach is used to move resolutions on local pivots (c.f. 6) upwards in
the proof. As pointed out in [7] paper, lowering can be sequentially combined
with other proof reduction techniques such as our framework.

C Additional Experimental Results

synthesis t0 vs. t0-ns t20 vs. t20-ns

solved 127/133 92/133
max size 1150888 367044

size (%) 24.74 24.76 25.23 25.25
vars (%) 0.69 0.69 0.68 0.68
time (s) 18 18 209 210
mem (GB) 2.4 2.4 2.5 2.5

HWMCC t0 vs. t0-ns t20 vs. t20-ns

solved 111/131 38/131
max size 1710588 311151

size (%) 25.66 25.67 16.61 16.62
vars (%) 2.47 2.48 1.99 2.02
time (s) 23 23 218 215
mem (GB) 3.4 3.4 2.6 2.6

Table 2. Comparison of suppression of certain substitutions due to v (regular ap-
proach) and ignoring the label information (*-ns configuration).

Table 2 provides additional experimental results showing that for our bench-
marks reducing the proof as much as possible yields a slight improvement of
interpolant reduction as well.

