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The Hamiltonian of the magic-angle twisted symmetric trilayer graphene (TSTG) can be de-
composed into a TBG-like flat band Hamiltonian and a high-velocity Dirac fermion Hamiltonian.
We use Hartree-Fock mean field approach to study the projected Coulomb interacting Hamilto-
nian of TSTG developed in Călugăru et al. [Phys. Rev. B 103, 195411 (2021)] at integer fillings
ν = −3,−2,−1 and 0 measured from charge neutrality. We study the phase diagram with w0/w1,
the ratio of AA and AB interlayer hoppings, and the displacement field, which introduces an inter-
layer potential U and hybridizes the TBG-like bands with the Dirac bands. At small U , we find the
ground states at all fillings ν are in the same phases as the tensor products of a Dirac semimetal
with the filling ν TBG insulator ground states, which are spin-valley polarized at ν = −3, and fully
(partially) intervalley coherent at ν = −2, 0 (ν = −1) in the flat bands. An exception is ν = −3
with w0/w1 & 0.7, which possibly become a metal with competing orders at small U due to charge
transfers between the Dirac and flat bands. At strong U where the bandwidths exceed interactions,
all the fillings ν enter a metal phase with small or zero valley polarization and intervalley coher-
ence. Lastly, at intermediate U , semimetal or insulator phases with zero intervalley coherence may
arise for ν = −2,−1, 0. Our results provide a simple picture for the electron interactions in TSTG
systems, and reveal the connection between the TSTG and TBG ground states.

I. INTRODUCTION

The rich physics discovered in twisted bilayer graphene
(TBG), including the correlated insulating phase at in-
teger fillings and the superconducting phase with fi-
nite doping have attracted the attention of both ex-
perimental and theoretical communities [1–111]. The
progress on TBG systems has also inspired interest in
other twisted moiré materials. Among the twisted mul-
tilayer graphene systems and motivated by theoretical
proposals in Refs. [112–121], the twisted symmetric tri-
layer graphene (TSTG) has recently been realized in ex-
periments [122–124]. Correlated insulating states and su-
perconducting states are also observed in TSTG. Similar
to the twisted bilayer graphene, the electron density in
TSTG is tunable via gate voltages. Moreover, an ex-
ternal displacement field perpendicular to the graphene
sheets can be applied to the system, which makes the
band structure also tunable by gate voltages. The ex-
perimental discoveries also triggered a deeper theoretical
look at this system [125–130].

TSTG is made of three graphene sheets in AAA stack-
ing, with the middle layer twisted by a small angle θ rela-
tive to the top and bottom sheets. This lattice structure
is shown to be energetically stable [117]. In the absence
of the external displacement field, the system has mir-
ror symmetry, by reflection around the graphene middle
layer. Therefore we are able to use the eigenstates of this
mirror symmetry as the basis: the TSTG decouples into
two sectors with +1 and −1 mirror eigenvalues, which
correspond to a TBG-like Hamiltonian with the effective

interlayer hopping enhanced by a
√

2 factor, and a Dirac
cone Hamiltonian with a large unrenormalized Fermi ve-
locity, respectively [113]. Similar to the pure TBG sys-
tem, the TBG-like sector in TSTG exhibits flat bands at
the TSTG magic angle θM ≈ 1.5◦, which is

√
2 times of

the TBG magic angle. The band dispersion also depends
on the parameter w0/w1 ∈ [0, 1], which is the ratio be-
tween interlayer in AA and AB hoppings. When an out-
of-plane displacement field is turned on, these two mirror
sectors will hybridize with each other. Equivalently, the
out-of-plane displacement field can be captured by a in-
terlayer potential U . In Ref. [125], we provided the per-
turbation schemes of the low energy bands in TSTG with
and without the displacement field, derived the projected
Hamiltonian for TSTG with a screened Coulomb interac-
tion, and carefully analyzed the discrete symmetries and
continuous symmetries of the TSTG Hamiltonian. These
provide the foundation of the TSTG projected Hamilto-
nian we study in this paper.

In this paper, we employ the Hartree Fock (HF)
mean field theory to study numerically the ground states
of the projected interacting Hamiltonian of magic an-
gle TSTG with a screened Coulomb repulsive interac-
tion derived in Ref. [125]. We focus on integer fillings
ν = −3,−2,−1, 0, defined as the number of electrons per
moiré unit cell relative to the charge neutrality, where
insulating or semimetallic behaviors are observed exper-
imentally [122–124]. Our numerical results show that at
small U , the TSTG phases at all integer fillings ν are
states that can adiabatically connect to the tensor prod-
uct of a semimetal in the Dirac sector with the TBG
sector ground states at flat band fillings ν: the TBG sec-
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tor flat bands are fully spin-valley polarized at ν = −3,
fully intervalley coherent at ν = −2 and 0, and partially
intervalley coherent at ν = −1. The only exception is the
case of ν = −3 with w0/w1 > 0.7, where the TSTG may
enter a large Fermi surface metal phase with competing
orders, including a potential translation symmetry break-
ing, due to the charge transfers between the Dirac and
TBG sectors. At fillings ν = −2,−1, 0, as U increases
(at w0/w1 > 0), we find a universal first order transition
into a phase with zero intervalley coherence, which either
remains a semimetal (ν = −2,−1) or may even become
an insulator (ν = −1, 0). Lastly, at stronger U for which
the TSTG free bandwidth exceeds the Coulomb interac-
tion energy scale, all the integer fillings enter a metallic
phase with large Fermi surfaces and small or zero valley
polarization and intervalley coherence.

The rest of the paper is organized as follows. In Sec. II,
we review the single body Hamiltonian of TSTG and its
mirror symmetric basis. The projected Hamiltonian into
the low energy bands being studied is also discussed. Sec.
III presents the Hartree-Fock mean field approximation
to the TSTG projected Hamiltonian, the self consistent
conditions, and the HF order parameters which charac-
terize the physical properties of the mean field ground
state. In Sec. IV, we provide the HF numerical results
at integer filling factor ν = −3. The phase diagram and
ground state properties are discussed. We have also cal-
culated the HF band structure in different phases. Simi-
larly, the discussion of the HF numerical results at filling
factors ν = −2,−1 and 0 are also presented in Secs. V,
VI and VII, respectively.

II. INTERACTING MODEL FOR TSTG

We first briefly review the non-interacting Bistritzer-
MacDonald Hamiltonian for mirror symmetric twisted
trilayer graphene, which can be written as the sum
of a TBG Hamiltonian [3] with renormalized interlayer
hopping and an independent Dirac fermion Hamiltonian
[113, 125]. We also introduce a displacement field per-
pendicular to the graphene sheets that can couple the
Dirac fermion and TBG fermion together. The interact-
ing Hamiltonian projected into the low energy bands is
also discussed in this section [125].

A. Single particle Hamiltonian

The twisted trilayer graphene geometry with mir-
ror symmetry was introduced in Refs. [113, 114]. In
this article we will use the notations of Ref. [37–
39, 70, 86, 87, 100, 125] where the non-interacting model

and its symmetries are discussed in detail. We use â†p,α,s,l
to represent the electron creation operator with momen-
tum p measured from the Γ point of single layer graphene
Brillouin zone, sublattice α = A,B, spin s =↑, ↓ and

layer l = 1, 2, 3. Similar to the derivation of Bistritzer-
MacDonald model for twisted bilayer graphene, Dirac
equation can be used to describe the low energy physics of
each individual layer. We define K+ = K1 = K3 as the
K point of the bottom and the top layers, and K− = K2

for the middle layer. Here |K±| = 1.073Å
−1

. For con-

venience, we also define vectors qj = Cj−1
3z (K+ −K−).

The reciprocal lattice of the moiré lattice Q0 is spanned
by the basis vectors bM1 = q3 − q1 and bM2 = q3 − q2.
Adding the vectors qi iteratively gives us momentum lat-
tices Q± = Q0 ± q1, and they form the hexagon lat-
tice in the momentum space. In order to describe the
low energy physics, we introduce the electron operators
âk,Q,η,α,s,l = âηKl+k−Q,α,s,l, where Q ∈ Qη if l = 1, 3 or
Q ∈ Q−η if l = 2. Without the displacement field along
ẑ direction, the system is invariant under mirror sym-
metry mz which switches the first layer with the third
layer, and leaves the middle layer invariant. Therefore,
the Bistritzer-MacDonald model for TSTG can be sim-
plified using the following basis transformation:

ĉ†k,Q,η,α,s =

{
1√
2

(
â†k,Q,η,α,s,1 + â†k,Q,η,α,s,3

)
Q ∈ Qη ,

â†k,Q,η,α,s,2 Q ∈ Q−η .
(1)

where k belongs to the moiré Brillouin zone (MBZ).
These operators (dubbed as TBG fermions) have even
eigenvalue under mz transformation. Fermion operators
with odd mz eigenvalue (dubbed as Dirac fermions) are
given by:

b̂†k,Q,η,α,s =
1√
2

(
â†k,Q,η,α,s,1 − â

†
k,Q,η,α,3

)
Q ∈ Qη .

(2)
Since the single body Hamiltonian commutes with mz

transformation in the absence of the external displace-
ment field, it can be written as a block diagonal form:

Ĥ0 = ĤTBG + ĤD . (3)

It can be shown that the Hamiltonian in the mirror sym-
metric sector ĤTBG contains ĉ, ĉ† operators and is iden-
tical to the ordinary TBG Hamiltonian [3, 86], with the
interlayer hopping parameter multiplied by a factor of√

2. It reads:

ĤTBG =
∑

k∈MBZ
QQ′∈Q±
η,s,α,η

[
h

(η)
Q,Q′(k)

]
αβ
ĉ†k,Q,η,α,sĉk,Q′,η,β,s , (4)

in which the “first quantized Hamiltonian” of the η = +
valley is given by:

h
(+)
Q,Q′(k) = vFσ · (k−Q) δQ,Q′ +

∑
j=1,2,3

√
2TjδQ−Q′,±qj

(5)
where vF = 6104.5 meV · Å is the Fermi velocity of single
layer graphene, and interlayer hopping matrices Tj are
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given by:

Tj = w0σ0 + w1

[
cos

2π(j − 1)

3
σx + sin

2π(j − 1)

3
σy

]
.

(6)
Similar to the TBG Hamiltonian, w0 and w1 stand for
the interlayer hopping strength around the AA and AB
stacking regions, respectively. In this article we use w0 as
a tunable parameter, and keep the value of w1 = 110 meV
fixed. Similar to ordinary TBG, we define w0 = 0 as the
chiral limit. In the realistic case we have 0 ≤ w0 < w1

due to lattice relaxation effects [59, 66, 90, 93]. The
√

2
factor in Eq. (5) comes from the transformation in Eq.
(1). Due to the fact that the effective interlayer hopping
is stronger, the magic angle of TSTG where the bands
around charge neutral point are flat will be around θ ≈
1.5◦, which is bigger than the magic angle in TBG [113].
The Hamiltonian in valley η = − can be obtained by
applying C2z transformation to Eq. (5).

On the other hand, ĤD only includes the contribution
from mirror anti-symmetric sector. It is given by the
following expression:

ĤD =
∑

k∈MBZ
η,s,α,β

∑
Q∈Qη

[
hD,ηQ (k)

]
αβ
b̂†k,Q,η,α,sb̂k,Q,η,β,s (7)

in which the first quantized Hamiltonian for Dirac cone
reads:

hD,+Q (k) = vFσ · (k−Q) , (8)

hD,−Q (k) = σxh
D,+
−Q (−k)σx . (9)

We can introduce an external displacement field per-
pendicular to the graphene sheets. When this exter-
nal field is turned on, the mirror symmetry mz is bro-
ken, which will lead to mixing terms between the TBG
fermions in the mirror symmetric sector and the Dirac
fermions in the mirror anti-symmetric sector. We denote
the potential difference between the top and bottom layer
by U , and the Hamiltonian which describes the electric
field can be written as:

ĤU =
U

2

∑
k,η,sα

∑
Q∈Qη

∑
l=1,3

(l − 2)â†k,Q,η,α,s,lâk,Q,η,α,s,l .

(10)
This Hamiltonian can be rewritten using the Dirac and
TBG fermions:

ĤU =
U

2

∑
k,η,sα

∑
Q∈Qη

(
b̂†k,Q,η,α,sĉk,Q,η,α,s + h.c.

)
, (11)

which couples the mirror symmetric and anti-symmetric
sectors. In conclusion, the non-interacting Hamiltonian
can be written as the summation of these three terms:

Ĥ0 = ĤTBG + ĤD + ĤU . (12)

B. Interaction and Projected Hamiltonian

In this article we will assume that the interaction be-
tween electrons in TSTG system is given by the Coulomb
potential screened by a top and bottom gate. The inter-
action Fourier transformation reads:

V (q) = πξ2Uξ
tanh(ξq/2)

ξq/2
(13)

where ξ ≈ 10 nm is the distance between the top and
bottom gates, and Uξ = e2/εξ ≈ 24 meV is the strength
of the Coulomb interaction with dielectric constant ε ∼ 6
[4, 5, 61]. The interacting Hamiltonian can be written as
[27, 38, 125]:

ĤI =
1

2NMΩc

∑
q∈MBZ

∑
G∈Q0

V (q + G)δρq+Gδρ−q−G

(14)
where Ωc is the area of moiré unit cell, and NM is the
number of moiré unit cells. δρ is the electron density at
momentum q + G relative to the charge neutral point
and can be written as:

δρq+G = δρĉq+G + δρb̂q+G, (15)

δρĉq+G =
∑

k,η,α,s
Q∈Q±

(
ĉ†k+q,Q−G,η,α,sĉk,Q,η,α,s −

1

2
δq,0δG,0

)
,

(16)

δρb̂q+G =
∑

k,η,α,s
Q∈Qη

(
b̂†k+q,Q−G,η,α,sb̂k,Q,η,α,s −

1

2
δq,0δG,0

)
.

(17)

By projecting the system into the low energy bands,
the dimension of Hamiltonian matrix in Hartree Fock
calculation will be reduced dramatically, and therefore
greatly improving the numerical calculations. By diago-
nalizing the single particle TBG Hamiltonian h(η)(k) and
the Dirac Hamiltonian hD,η(k), we obtain the disper-

sion relation εf̂m,η(k) and the single body wavefunctions

uf̂Qα,mη(k) for the TBG and Dirac fermions (f̂ = ĉ, b̂).
For each spin and valley, we project the kinetic Hamilto-
nian into the two bands which are closest to the charge
neutral point for both ĤTBG and ĤD. Therefore, the
kinetic part of the projected Hamiltonian can be written
in the following form when U = 0:

HTBG +HD =
∑
f̂=ĉ,b̂

∑
k,m=±1,η,s

εf̂m,η(k)f̂†k,m,η,sf̂k,m,η,s

(18)
where the creation operators in band indices are defined

as f̂†k,m,η,s =
∑

Qα u
f̂
Qα,mη f̂

†
k,Q,η,α,s. The Dirac fermions

in the antisymmetric sector b̂ are degenerate on certain
high symmetry lines between the projected bands and
the bands above and below when folding over the MBZ,
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therefore there is an ambiguity of choosing its single-body
wavefunction. We provide a careful discussion of this
issue and how we solve it in Appendix A.

As shown in Refs. [29, 30, 38, 70], by fixing the sewing
matrix of C2zT symmetry to identity (where C2z is the
2-fold rotation about the z axis, and T is the time rever-
sal), one can recombine the TBG flat energy band basis

ĉ†k,m,η,s into a Chern band basis

d̂†k,eY ,η,s =
ĉ†k,+1,η,s + ieY ĉ

†
k,−1,η,s√

2
, (19)

where eY = ±1 gives the Chern number of the Chern
band basis (which is also the eigenvalue of the Pauli ma-
trix ζy in the space of TBG energy band index m = ±1).

The displacement field term ĤU in Eq. (11) can also
be written using band basis and projected into the lowest
bands:

HU =
U

2

∑
k,η,s

∑
m=±1

∑
n=±1

Nη
mn(k)

(
b̂†k,m,η,sĉk,n,η,s + h.c.

)
,

(20)
where the displacement field overlap matrices are given
by

Nη
mn(k) =

∑
Q∈Qη,α

ub̂∗Qα,mη(k)uĉQα,nη . (21)

Thus the projected non-interacting Hamiltonian can be
written as the following quadratic form:

H0 =HTBG +HD +HU

=
∑

k,f̂ f̂ ′,ηη′,ss′

H(0)

f̂mηs,f̂ ′nη′s′
(k)f̂†k,m,η,sf̂

′
k,n,η′,s′ , (22)

in which the matrix H(0)(k) is given by

H(0)

f̂mηs,f̂ ′nη′s′
(k) = εf̂m,η(k)δf̂ f̂ ′δmnδηη′δss′

+
U

2
(Nη

mn(k)δf̂ b̂δf̂ ′ĉ +Nη∗
mn(k)δf̂ ĉδf̂ ′b̂)δηη′δss′ . (23)

Here εf̂m,η(k) is the dispersion of TBG(f̂ = ĉ) and

Dirac(f̂ = b̂) fermions without displacement field. The
eigenvalues of H(0)(k) can give us the approximate dis-
persion of the non-interacting TSTG at non-zero dis-
placement field. The projected Hamiltonian can cap-
ture the band width of the bands around charge neu-
trality accurately [125]. We also provide plots comparing
the dispersion of the projected Hamiltonian H(0)(k) and
the band structure obtained from the unprojected BM
Hamiltonian in Appendix A Fig. S2 [125].

Similarly, the interacting Hamiltonian can also be pro-
jected into these bands:

HI =
1

2NMΩc

∑
q,G∈Q0

V (q + G)δρq+Gδρ−q−G , (24)

in which the density operators after being projected are
defined as:

δρq+G =
∑
f̂=ĉ,b̂

δρ
f̂

q+G (25)

δρ
f̂

q+G =
∑

k,m,n,η,s

M f̂ ,η
mn(k,q + G)

(
f̂†k+q,m,η,sf̂k,n,η,s −

1

2
δq,0δmn

)
,

(26)

M f̂ ,η
mn(k,q + G) =

∑
Qα

uf̂∗Q−Gα,mη(k + q)uf̂Qα,nη(k) .

(27)

The components of these form factors M f̂ ,η
mn(k,q + G)

depend on the gauge choice of the single body wavefunc-
tions. As mentioned in Eq. (19), we fix the gauge choice
of the single-body wavefunction of the TBG fermions
uĉQα,mη(k) such that the sewing matrix of C2zT is the
identity.

For convenience, we can rewrite the interacting Hamil-
tonian as the following form:

HI =
1

2Ωtot

∑
k,k′,q

∑
ηη′ss′

∑
f̂ ,f̂ ′=ĉ,b̂

∑
mnm′n′

Ṽ
(f̂η;f̂ ′η′)
mn;m′n′ (q;k,k′)

×
(
f̂†k+q,m,η,sf̂k,n,η,s −

1

2
δq,0δmn

)
×
(
f̂ ′†k′−q,m′,η′,s′ f̂

′
k′,n′,η′,s′ −

1

2
δq,0δm′n′

)
, (28)

in which the matrix elements Ṽ
(f̂η;ĥη′)
mn;m′n′(q;k,k′) are given

by:

Ṽ
(f̂η;ĥη′)
mn;m′n′(q;k,k′)

=
∑
G

V (q + G)M f̂ ,η
mn(k,q + G)M ĥ,η′

m′n′(k
′,−q−G) .

(29)

The mean field Hamiltonian will have a simpler form us-
ing this notation, as we will discuss in Sec. III.

In this paper, we fix the twist angle to θ = 1.51◦,
which is near the magic angle of TSTG and gives rise to
flat bands in the mirror symmetric sector. Since both the
band structure and the wavefunctions of the mirror sym-
metric sector depend on the parameter w0, the projected
Hamiltonian also depends on w0. And by adding all the
terms in kinetic energy and potential energy, we obtain
the tunable Hamiltonian with parameters w0 and U :

H(w0, U) = HTBG(w0) +HD +HU (w0, U) +HI(w0) .
(30)

Similar to that in TBG, we define w0 = 0 as the chi-
ral limit, and HTBG(w0) = 0 (zero TBG bandwidth) as
the flat (TBG band) limit. In these limits or their com-
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binations, the symmetry of the TSTG is enhanced to a
U(4) symmetry in the combined spin and valley space
[125]. In this paper, we will not tune the bandwidth in
the mirror symmetric (TBG) sector, therefore the non-
interacting band structure will only depend on w0 and U
(at the fixed twist angle θ = 1.51◦ and AB/BA interlayer
hopping strength w1 = 110 meV).

III. HARTREE-FOCK THEORY

We perform Hartree Fock (HF) mean field calculations
for the projected Hamiltonian we obtained in Eq. (30),
which is at fixed twist angle θ = 1.51◦. In Appendix B,
we provide a more detailed discussion of the HF calcula-
tions. In this section, we focus on the assumption and the
quantities that we will rely on in the rest of our paper.

In Refs. [29, 61, 70, 100, 107], it has been shown that
the ground states of TBG at integer fillings (integer num-
ber of electrons per moiré unit cell, relative to the charge
neutral point) around the chiral flat band limit (i.e. the
value of w0/w1 is small and disregarding the flat band dis-
persion) are correlated insulator states (sometimes with
non-zero Chern number) without translation symmetry
breaking. This picture is expected to be valid till reason-
ably large physical w0/w1 values (depending on electron
fillings) [62, 85, 100]. Meanwhile, the high Fermi veloc-
ity and vanishing Fermi surfaces of the Dirac fermions
make them unlikely to contribute to translation symme-
try breaking (which requires certain low energy Fermi
surface nestings).

Therefore, we assume there is no translation symmetry
breaking in our HF calculation for TSTG (with a notable
exception in Appendix C 1 where we discuss the possible
CDW order at MM point at ν = −3 filling). This as-
sumption simplifies our numerical calculation by reduc-
ing the number of HF mean field order parameters. For
this reason, within the assumption, the HF mean field
order parameter can be defined as the following 16 × 16
matrix at each k:

∆f̂mηs;f̂ ′nη′s′(k) =
〈
f̂†k,m,η,sf̂

′
k,n,η′,s′−

1

2
δf̂ f̂ ′δmnδηη′δss′

〉
,

(31)

where f̂ , f̂ ′ stand for the TBG and Dirac fermion opera-
tors. The matrix ∆(k) is the single-body density matrix
at each momentum k. As we explained, this assumption
of no translation breaking is reasonable when w0/w1 is
small (typically w0/w1 . 0.7), and it is possible that our
assumption will be violated for large w0/w1 [61, 100].
Therefore, the Hartree Fock result is less trustable when
w0/w1 gets bigger.

For an arbitrary momentum k, the Hartree and Fock

mean field Hamiltonians are given by the following:

H(H)

f̂mηs,f̂ ′nη′s′
(k) =

1

Ωtot

∑
k′,f̂ ′,m′n′,η′′,s′′

Ṽ
(f̂η;f̂ ′η′′)
mn;m′n′ (0;k,k′)

×∆f̂ ′m′η′′s′′;f̂ ′n′η′′s′′(k
′)δηη′δss′

(32)

H(F )

f̂mηs,f̂ ′nη′s′
(k) =− 1

Ωtot

∑
k′,m′n′

Ṽ
(f̂ ′η′;f̂η)
m′n;mn′ (k′ − k;k,k′)

×∆f̂ ′m′η′s′;f̂n′ηs(k
′) (33)

Together with the non-interacting term H(0)(k) defined
in Eqs. (22) and (23), we obtain the Hartree Fock Hamil-
tonian HHF (k) = H(0)(k) +H(H)(k) +H(F )(k). By di-
agonalizing the Hartree Fock Hamiltonian, we obtain the
HF band structure Ei(k), which is related to the dis-
persion of the charge excitations, and the corresponding
wavefunction φf̂mηs,i(k):∑
f̂ ′,n,η′,s′

HHF
f̂mηs,f̂ ′nη′s′

(k)φf̂ ′nη′s′,i(k) = Ei(k)φf̂mηs,i(k)

(34)
For a filling factor ν, which is defined as the number of
electrons per moiré unit cell relative to charge neutrality,
the HF ground state is given by occupying the single
particle states Ei(k) (where i = 1, · · · , 16 at each k)
from low to high up to filling ν. For each single body
state Ei(k), valley polarization vi(k) can be defined as:

vi(k) =
∑

f̂msηη′

φ∗
f̂mηs,i

(k)(τz)ηη′φf̂mη′s,i(k) , (35)

and the valley physics of the system can be captured by
vi(k) of each individual occupied state at every k.

The self-consistent condition also gives a relation be-
tween these wavefunctions and the order parameter:

∆f̂mηs;f̂ ′nη′s′(k) =
∑

i∈occupied

(
φ∗
f̂mηs,i

(k)φf̂ ′nη′s′,i(k)

− 1

2
δf̂ f̂ ′δmnδηη′δss′

)
. (36)

For each integer filling factor ν, we use various initial
conditions in our HF calculation, and we choose the result
with the lowest energy. Detailed discussion about the
choices of initial conditions at different filling factors can
be found in Appendix B. In this article, the filling factor
ν is measured from the charge neutrality, and it is related
with the order parameter in Eq. (36) by:

ν =
1

NM

∑
k,f̂ ,m,η,s

∆f̂mηs;f̂mηs(k) . (37)

Moreover, since the particle numbers of Dirac fermion
and TBG fermion are conserved when the displacement
field is turned off, we can define the filling factors (mea-
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sured from the charge neutrality) for these fermion flavors
separately:

νTBG =
1

NM

∑
k,m,η,s

∆ĉmηs;ĉmηs(k) , (38)

νD =
1

NM

∑
k,m,η,s

∆b̂mηs;b̂mηs(k) . (39)

The summation of these two quantities is the total filling
factor:

ν = νD + νTBG . (40)

For the projected bands we keep, the two filling fac-
tors range within νD ∈ [−4, 4] and νTBG ∈ [−4, 4], re-
spectively. We will be focusing on total integer fillings
ν = −3,−2,−1, 0 in this paper. Since the physics at
filling −ν is particle-hole symmetric to that at filling ν
[125], it is sufficient to study fillings ν ≤ 0.

Various physical quantities can be derived from
∆f̂mηs;f̂ ′nη′s′(k), which can be used to describe the na-

ture of the ground state, such as the intervalley coher-
ence and valley polarization. As shown in Ref. [70], the
ground state at ν = ±2 filling in TBG has intervalley
coherence when the system is non-chiral non-flat. In or-
der to measure the coherence between the two valleys,
we define the quantity C which is based on the norm of
the off-diagonal block in valley space:

C =
1

NM

∑
k∈MBZ

∑
f̂ f̂ ′,mn,ss′

|∆f̂m+s;f̂ ′n−s′(k)|2 , (41)

where NM is the number of moiré lattice sites. This
quantity includes both the contribution from the TBG
flat bands and the Dirac fermions. Its value is

C =
n

4
(42)

if there are n filled TBG flat bands which are fully inter-
valley coherent.

The expectation value of any single-body quantity
can be obtained from the Hartree-Fock order parameter
∆(k). In this article, we calculate three quantities that
we will now define: the valley polarization Nv, the spins
in each valley Sη and the quantity Ch which provides in-
formation about the Chern number of the occupied TBG
fermions.

The valley polarization Nv is the electron number dif-
ference between the two valleys. This can also be ob-
tained from the order parameter:

Nv =
∑
k

∑
f̂=ĉ,b̂

∑
ηη′ms

(τz)ηη′∆f̂mηs;f̂mη′s(k) , (43)

where τz is the Pauli z matrix in valley space.

Similarly, we can track the spin order. Due to the
U(2)×U(2) symmetry of the system, the total spin of the

two valleys are conserved independently. For each valley

η, the semi-classical total spin per moiré unit cell ~Sη can
be obtained by the following equation:

2~Sη(k) =
1

NM

∑
k

∑
f̂=ĉ,b̂

∑
mss′

(~s)ss′∆f̂mηs;f̂mηs′(k) , (44)

where ~s = (sx, sy, sz) are the Pauli matrices in spin space.
Finally, we can define a quantity within the TBG band

sector:

Ch =
1

NM

∑
k

∑
ηsmn

(ζy)mn∆ĉmηs;ĉnηs(k) , (45)

where ζy is the Pauli y matrix in the space of the energy
band index m. If the Dirac bands and the TBG bands
in the HF Hamiltonian are decoupled (e.g. at U = 0 and
without mz breaking order parameters), Ch characterizes
the Chern number in the TBG sector when the TBG
sector is insulating, which can be seen by transforming
Ch into the Chern band basis in Eq. (19). Generically
(e.g., U > 0), Ch is not necessarily an integer, but it is
related with the Chern number of the (partially or fully)
occupied TBG flat band basis. For example, this value
is close to ±2 if the two occupied TBG flat bands have
the same Chern number. Similar to the filling factor for
Dirac and TBG fermion flavors, this quantity is a useful
characterization of the many-body state when U is close
to zero.

We perform the HF calculations on a C3z preserv-
ing NL × NL momentum lattice in the MBZ (see Fig.
S1), with NL up to 10. As discussed in Appendix B,
we are also able to obtain the band structure plot along
high symmetry lines by using the HF order parameters
we obtained on these NL × NL lattices. In the band
structure plots, we use subscript M to denote the high
symmetry points in the moiré Brillouin zone. Our HF
calculations are restricted within the pamameter ranges
0.1 ≤ w0/w1 ≤ 1 and U ≥ 0. We do not discuss the
HF calculation in the chiral limit w0 = 0 in this paper,
the convergence of which is difficult due to the enhanced
symmetry and enlarged ground state degeneracy mani-
fold. We note that the realistic TSTG is always away
from the w0 = 0 chiral limit.

IV. NUMERICAL RESULTS AT FILLING
FACTOR ν = −3

We start our discussion about HF calculations for
TSTG with filling factor ν = −3. As a comparison,
the ground state at ν = −3 filling in TBG at small
w0 and small nonzero bandwidth is a spin and valley
polarized Chern insulator state with Chern number ±1,
and may enter translation or rotation symmetry break-
ing phases at large w0, which has been predicted in
Refs. [29, 70, 100, 107]. In this section, we will explore
the HF ground states in TSTG at ν = −3 in the param-
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FIG. 1. (a) The phase diagram at filling factor ν = −3 obtained on 8 × 8 momentum lattice in the (w0, U) plane. The
color represents the valley polarization Nv/NM of the ground state. (b) The displacement field dependence of other quantities
C, Nv, S± and Ch on 8 × 8 lattice at w0/w1 = 0.2. (c) Similar to sub-figure (b), the displacement field dependence of these
quantities with w0/w1 = 0.8. (d) The filling factors for Dirac fermions and TBG fermions as a function of w0. In this plot, the
interlayer potential is fixed to be U = 0 meV.

FIG. 2. Some typical HF band structures illustrating the three regions of the phase diagram at filling factor ν = −3 on 10× 10
momentum lattice. (a) The band structure in region I with w0/w1 = 0.2 and U = 50 meV. (b) The band structure in region II
with w0/w1 = 0.2 and U = 180 meV. (c) The band structure in region III with w0/w1 = 1 and U = 0 meV. The color of each
point represents the valley polarization vi(k) of each single body state, which is defined in Eq. (35).

eter space of w0/w1 and U (see Eq. (30) for definition).

Here we restrict the parameter ranges within 0.1 ≤
w0/w1 ≤ 1 and 0 ≤ U ≤ 300 meV. The maximal value
of U is motivated by the experimental results [123]. The
valley polarization Nv as a function of w0 and U is shown
in Fig. 1(a). We find the HF ground states show differ-
ent behaviors in three different parameter regions, which
are labeled by I, II and III in Fig. 1(a). We also cal-
culate other physical quantities, including C, Nv, S± and
Ch, the values of which along certain line cuts in the
parameter space are shown in Fig. 1(b) and (c). Based
on these quantities, we describe the TSTG phases in the
three regions in details below.

Region I: we find C ≈ 0, Nv/NM ≈ 1, 2S+ ≈ 1, 2S− ≈
0 and Ch ≈ 1 throughout the whole region (Fig. 1(b) and
(c)). This indicates that the ground state is a spin-valley
polarized state dominantly occupying one Chern band
in the TBG sector (defined in Eq. (19)) of a particular

spin and valley. In particular, at U = 0, where the elec-
tron numbers in the Dirac sector and the TBG sector are
both conserved, we find νD = 0 and νTBG = −3 within
region I (see w0/w1 < 0.6 in Fig. 1(d)). Therefore, in
region I, the ν = −3 HF ground state at U = 0 is the
tensor product of the νTBG = −3 TBG spin-valley polar-
ized Chern insulator and the Dirac fermion semimetal at
charge neutrality νD = 0. The ground states at U > 0 in
region I are adiabatically in the same semimetal phase.
As an example, the band structure at w0/w1 = 0.2 and
U = 50 meV is shown in Fig. 2(a), which is almost a
Dirac semimetal. At U > 0, where the Dirac and TBG
sectors are hybridized, the gapless Dirac nodes are due to
the C2zT symmetry within the empty valley-spin flavors,
as shown in Appendix D. The color (from red to purple)
indicates the valley polarization of of each band, and an
occupied flat band can be seen clearly.

Region II: we find the valley polarization Nv/NM drops



8

abruptly to small values near zero, and so do the other
quantities as shown in Fig. 1(b) in this region where the
displacement field is large. Accordingly, the HF ground
state can be understood as a metal with little spin/valley
polarization or intervalley coherence. A typical HF band
structure in region II is shown in Fig. 2(b), which has
a large Fermi surface around KM (K ′M ) point in valley
η = + (η = −), showing that the system is a metal. A
sharp phase boundary between region I and II can be
identified in Fig. 1(a), which is at U ≈ 150 meV when
w0/w1 = 0.2, and at U ≈ 250 meV when w0/w1 = 0.8.
The reason for such a metallic phase is that a large U
significantly hybridizes the Dirac sector and the TBG
sector, and turns the flat bands near KM (K ′M ) point of
valley + (−) into dispersive Dirac fermions with kinetic
energies comparable to the interaction energies. This
leads to a Fermi surface reconstruction, where electrons
prefer to occupy the electron states near the KM and
K ′M points with lower kinetic energies and form a metal.
We provide the non-interacting band width as a function
of w0/w1 and U in Figs. S4(a) and (b) of Appendix A.
The phase boundary between region I and II is close to
an equal value contour in these figures, which also im-
plies that the transition to the metallic phase happens
as the non-interacting bandwidth exceeds a critical value
around the order of the interaction energy scale.

Region III: we find that the HF ground state exhibit
competing orders in this region which is located in the
weak displacement field region with w0/w1 & 0.6. In
Fig. 1(c) we plot the HF mean field quantities, e.g. C,
S± and Ch, at w0/w1 = 0.8 with respect to U . When
U < 50 meV (region III), we see all the quantities are
strongly oscillating. Moreover, we also notice strong size
effect in this region, which can be seen by considering
other system sizes at w0/w1 = 0.8, as discussed in Ap-
pendix C. In previous numerical studies in TBG systems
[62, 85, 100] (which do not have the U parameter), it has
been shown that the translation symmetry of the TBG at
filling ν = −3 could be broken at large w0/w1 (typically
w0/w1 & 0.7). Therefore, we expect the ground states
in region III not to be accurately captured by our HF
calculation, which does not allow translation symmetry
breaking. In Appendix C 1, we provide numerical evi-
dence for a translation symmetry breaking phase via a
modified HF calculation. Nevertheless, we provide some
universal observation of our HF results in region III. In
Fig. 1(d), we plot νD and νTBG = −3− νD as a function
of w0/w1 at U = 0. We find the Dirac electron filling
νD is 0 for w0/w1 < 0.6 (i.e., in region I), but begins to
decrease as w0/w1 increases beyond 0.6 (i.e., in region
III). This indicates that electrons are transferred from
the Dirac valence bands into the TBG flat bands in re-
gion III, making νD < 0 and νTBG > −3. For instance,
when w0 = w1 at U = 0, our HF calculation shows that
νD ≈ −1 and νTBG ≈ −2, the HF band structure of
which is shown in Fig. 2(c). The Fermi level of this HF
band structure in region III is far from the Dirac point
energy, giving rise to a metal with large Fermi surfaces.

Therefore, the ground states in region III are likely to be
metals with competing orders, such as translation sym-
metry breaking.

In summary, at ν = −3, we have identified three phases
in three regions of Fig. 1(a). In region I the ground state
is almost a spin-valley polarized semimetal, in region II
the ground state is a metal with little spin/valley polar-
ization or intervalley coherence, while in region III the
ground state may be a metal with competing orders.

V. NUMERICAL RESULTS AT FILLING
FACTOR ν = −2

In this section, we study the HF results for TSTG at
integer filling ν = −2. By comparison, in TBG sys-
tems, the ground state at ν = −2 at small w0 and small
bandwidth is given by an intervalley coherent insulator
with Chern number 0, which has been predicted in Refs.
[29, 61, 70, 100, 107]. At large w0, the TBG ground state
may become a metal [39]. However, there is no evidence
of translation symmetry breaking at ν = −2 in TBG so
far. Therefore, we also conjecture that translation break-
ing is less likely in the TSTG at ν = −2, and thus regard
our HF results as more reliable than at ν = −3 in the
large w0/w1 region.

Our HF results for TSTG at ν = −2 identified 3 dis-
tinct regions I, II, III in the w0/w1 and U parameter
space as shown in Fig. 3(a). In Fig. 3(a), the color scale
indicates the ν = −2 ground state intervalley coherence
C, defined in Eq. (41) (note that this is different from the
ν = −3 phase diagram Fig. 1(a), where valley polariza-
tion is shown by color, while intervalley coherence is near
zero). Other HF quantities along certain constant w0/w1

line cuts are shown in Fig. 3(b) and (c). From these quan-
tities, we can see clear phase transitions between regions
I and II, and between regions II and III. We now describe
the HF ground states in the three regions, respectively.
Region I: this region contains the entire range of w0/w1

up to some w0-dependent U value. There we find C ≈ 0.5,
Ch ≈ 0, Nv/NM ≈ 0 and 2S± ≈ 1. This implies that
there are two fully intervalley coherent flat bands oc-
cupied, which have the same spin and have zero total
Chern number. This is the same as the TBG ground
state at ν = −2 filling. When U = 0 in region I,
the electron numbers in the Dirac sector and the TBG
sector are conserved, respectively, and the HF ground
state is almost the tensor product of the νTBG = −2 in-
tervalley coherent TBG ground state predicted in Refs.
[29, 61, 70, 100, 107] and the Dirac band ground state
at charge neutrality νD = 0. A typical band structure in
region I at w0/w1 = 0.8 and U = 0 is given in Fig. 4(a),
where the valley polarization values vi(k) of the occupied
single body states (defined in Eq. (35)) are represented
by color. One can see the valley polarization of the 2 oc-
cupied flat bands are approximately zero, consistent with
an intervalley coherent state. The ν = −2 ground state in
region I is thus almost an intervalley coherent semimetal,



9

FIG. 3. (a) The phase diagram at filling factor ν = −2 obtained on a 8 × 8 momentum lattice in the (w0, U) plane, and the
color represents the intervalley coherence, which is defined in Eq. (41). (b) and (c) The displacement field dependence of
physical quantities C, Nv,Ch and S± on a 8 × 8 at fixed w0/w1 = 0.2 (b) and w0/w1 = 0.8 (c). By considering the different
HF parameters and band structure, we can define three different regions in the phase diagram, denoted I, II and III in (a).

FIG. 4. The HF band structure at w0/w1 = 0.8 for U = 0 (a), at w0/w1 = 0.2 for U = 100 meV (b), at w0/w1 = 0.8 for
U = 220 meV (c) and at w0/w1 = 0.2 for U = 180 meV (d) on a 10 × 10 lattice at filling factor ν = −2. The color represents
the valley polarization vi(k) of each single body state defined in Eq. (35).

in which the Dirac fermion is slightly doped away from
the Dirac nodes. In particular, at U > 0 where the Dirac
and TBG sectors are hybridized, the gapless Dirac nodes
are protected by a remaining anti-unitary symmetry Gγ
(G2
γ = 1), which is a combination of the C2zT and a rel-

ative intervalley phase rotation (see Appendix D).

Region II: the interlayer potential U is intermediate,
and we find C ≈ 0, Nv/NM ≈ 2,Ch ≈ 0 and 2S± ≈ 0.
This indicates that the ground state becomes a valley
polarized state, and the two occupied TBG flat bands
approximately have zero total Chern number. We plot
two typical HF band structures with different w0/w1 val-
ues in Fig. 4(b) and (c). In both of the band structure
plots, the valley polarization values of occupied single
body states in the flat bands are vi(k) ≈ 1. The oc-
cupied flat bands with smaller (larger) w0/w1 value has
smaller (larger) band width. The band structures plots
also show that there is a small electron pocket around
K ′M point, and a small hole pocket around ΓM point,
indicating the system is almost a semimetal with a small
Fermi surface.

Region III: the interlayer potential U is further in-
creased (e.g., U & 150 meV at w0/w1 = 0.2, and U &
280 meV at w0/w1 = 0.8), the valley polarizationNv/NM

drops significantly, and the intervalley coherence slightly
re-enters, as shown in Fig. 3(b) and (c). In this case, the
ν = −2 TSTG enters a metallic phase with large Fermi
surfaces. A HF band structure in this region is shown in
Fig. 4(c). Similar to the region II phase at filling ν = −3,
the region III phase at ν = −2 here is due to the change
of flat bands into high energy dispersive Dirac bands near
KM (K ′M ) point of valley + (−) at large U , yielding tran-
sitions into less valley polarized metal with large Fermi
surfaces.

To summarize, the phase diagram at filling factor
ν = −2 can be roughly separated into three regions, as
shown in Fig. 3(a). In the small U region I, the ground
state is nearly an intervalley coherent semimetal and is
adiabatically connected with the tensor product of the
TBG ground state and a high velocity Dirac fermion
at charge neutrality. In region II with intermediate U ,
the ground state is fully valley polarized and almost a
semimetal. Finally, in region III with large U , the sys-
tem enters a metal phase with partial valley polarization.
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VI. NUMERICAL RESULTS AT FILLING
FACTOR ν = −1

In this section, we discuss the HF calculation results
for TSTG at filling factor ν = −1. We first recall that
the ground state at ν = −1 in nonchiral-nonflat TBG
systems carries a Chern number νC = ±1 and has two
intervalley coherent bands and one valley polarized band
occupied, as shown in Refs. [70, 107]. Similar to filling
ν = −3 and −2, we expect the ν = −1 TSTG ground
state at small w0/w1 and U = 0 to be the tensor product
of the TBG ground state at this filling and the half filled
Dirac fermion bands.

The intervalley coherence C of the TSTG HF ground
state at ν = −1 as a function of U and w0/w1 is repre-
sented by the color code in Fig. 5(a). Other HF quantities
at w0/w1 = 0.2 and w0/w1 = 0.8 are shown in Figs. 5(b)
and (c), respectively. Based on these quantities and the
HF band structures, we are able to identify four different
regions I, II, III and IV in w0/w1 and U parameter space
as shown in Fig. 5(a). We now describe the HF mean
field results in these regions.

Region I: this region encompasses the entire range of
w0/w1, and up to certain w0/w1-dependent U value, and
we find that C ≈ 0.5, Ch ≈ 1, Nv/NM ≈ 1, 2S+ ≈ 1 and
2S− ≈ 0. The value of intervalley coherence indicates
that among the three occupied TBG flat bands, two of
them are intervalley coherent. These values also imply
that the HF ground state at U = 0 is approximately
equal to the tensor product of a νTBG = −1 intervalley
coherent state [70, 107] and a half-filled Dirac semimetal.
Fig. 6(a) shows a typical HF band structure in region I
at w0/w1 = 0.8 and U = 0. Among the three occupied
flat bands in Fig. 6(a), two of them have zero valley po-
larization, while the other one is valley polarized, which
agrees with the expected ground state in the TBG sec-
tor. The U > 0 ground states of region I is adiabatically
connected to the U = 0 ground state. Therefore, region
I is a semimetal phase with partially intervalley coher-
ent flat bands. Similar to the ν = −3 case, the gapless
Dirac nodes at U > 0 are protected by the C2zT sym-
metry within an empty valley-spin flavor, as shown in
Appendix D.

Region II: the displacement field is intermediate in this
region (e.g. 80 meV . U . 150 meV at w0/w1 = 0.2, or
220 meV . U . 280 meV at w0/w1 = 0.8). We find
that the values of HF quantities Nv/NM , Ch and S± are
close to their values in region I. However, the intervalley
coherence C vanishes abruptly in this region. We present
a HF band structure at w0/w1 = 0.8 and U = 240 meV in
Fig. 6(b). The valley polarization of the three occupied
flat bands are vi(k) ≈ ±1. The band structure also shows
small electron pocket around K ′M point, and hole pocket
around ΓM point, which means the system is also almost
a semimetal without intervalley coherence.

Region III: the displacement field in this region (which
is 160 meV . U . 220 meV at w0/w1 = 0.2) is stronger
than that in the region II. We find the valley polariza-

tion Nv/NM drops to zero, and the intervalley coherence
slightly increases to C ≈ 0.2, as shown in Fig. 5(b). The
HF band structure in this region, which can be found in
Fig. 6(c), shows that there is a direct band gap around
the Fermi level. Therefore, we identify an insulating state
at ν = −1 filling with a non-zero displacement field in
region III. Such a phase does not occur at ν = −3 or
ν = −2 fillings.
Region IV: the displacement field is further increased

(e.g., U & 220 meV at w0/w1 = 0.2). Similar to the
strong field phase at ν = −3 and ν = −2, the in-
creased bandwidth of the non-interacting dispersion be-
comes comparable to or larger than the strength of the
Coulomb interaction. Therefore, the electrons will first
occupy the low energy states around KM and K ′M at
E − EF ≈ −90 meV which can be seen in Fig. 6(d). A
large Fermi surface can also be observed in the band
structure, which implies that region IV is a metallic
phase. Both the valley polarization Nv/NM and the in-
tervalley coherence C are nearly zero in this region.

In summary, there are four phases in the phase dia-
gram at filling factor ν = −1. When the displacement
field is close to zero, i.e., in region I, the ground state is
an intervalley coherent semimetal. As the displacement
field increases into region II, the ground state becomes a
semimetal without intervalley coherence. When the field
further increases into region III, the HF band structure
becomes gapped, and therefore the ground state is an
insulator. We note that this phase does not occur at
fillings ν = −3 and ν = −2. Finally in region IV with
the strongest displacement field, the system becomes a
metal, similar to the filling factors ν = −3 and ν = −2.

VII. NUMERICAL RESULTS AT FILLING
FACTOR ν = 0

Lastly, we present our HF calculation results for TSTG
at filling factor ν = 0. In comparison, in the TBG system
the ground state at ν = 0 is an insulator state with four
occupied intervalley coherent bands and zero total Chern
number [70, 107]. Similar to other integer fillings, we
expect the ground state of TSTG at ν = 0 and U = 0
to be the tensor product of a TBG intervalley coherent
insulator ground state and half filled Dirac semimetal.

In Fig. 7(a), we show the intervalley coherence C in the
w0/w1 and U parameter space at ν = 0. By using the
same method as the HF band structure along the high
symmetry lines, which is discussed in Appendix B 2, we
can estimate the HF Hamiltonian HHF (k) at any mo-
menta not included in the momentum lattice employed
in our HF iterations. Thus, the energy gap around the
Fermi level along the high symmetry lines as a function
of w0/w1 and U can be calculated, which is shown in
Fig. 7(b). We are able to identify three different regions
I, II and III in the w0/w1 and U parameter space, based
on the valley coherence C and the energy gap. Other HF
quantities at fixed w0/w1 = 0.2 and w0/w1 = 0.8 are also



11

FIG. 5. (a) The phase diagram at filling factor ν = −1 obtained on a 8× 8 momentum lattice in the (w0, U) parameter space.
The color represents the intervalley coherence C. (b) and (c) The displacement field dependence of physical quantities C, Nv,Ch
and S± on 8× 8 at fixed w0/w1 = 0.2 (b) and w0/w1 = 0.8 (c).

FIG. 6. The HF band structure at w0/w1 = 0.8 for U = 0 in region I (a), w0/w1 = 0.8 for U = 240 meV in region II (b),
w0/w1 = 0.2 for U = 180 meV in region III (c) and w0/w1 = 0.2 for U = 280 meV in region IV (d) on a 10× 10 lattice at filling
factor ν = −1. The color represents the valley polarization vi(k) of each single body state.

FIG. 7. Phase diagrams at filling factor ν = 0. (a) The two dimensional phase diagram on 8× 8 momentum lattice in (w0, U)
parameter space. It can be seen that in the weak U phase, the intervalley coherence C ≈ 1 shows that there are four occupied
intervalley coherent bands. (b) The energy gap along the high symmetry lines as a function of w0/w1 and U . Here we use the
method discussed in Appendix B 2 to obtain the Hartree-Fock Hamiltonian along the high symmetry lines, therefore we are
able to estimate the energy gap from the 8 × 8 lattice. (c) and (d) The displacement field dependence of several quantities
C, Nv, S± and Ch on 8× 8 lattice with w0/w1 = 0.2 (c) and w0/w1 = 0.8 (d).

shown in Figs. 7(c) and (d). We now use these quantities
to describe the HF ground states in these regions.

Region I: this region is in the low displacement field
regime, and we find the values of the HF quantities are
C ≈ 1, Nv/NM ≈ 0, Ch ≈ 0 and S± ≈ 0. The value
of the intervalley coherence C ≈ 1 shows that there are
four occupied intervalley coherent bands and have zero

total Chern number. Therefore, these values indicates
that the HF ground state at U = 0 can be well approxi-
mated by the tensor product of the insulating intervalley
coherent TBG ground state at νTBG = 0 predicted in
Refs. [70, 107], and the ground state at U > 0 in region
I is adiabatically connected to this tensor product state.
A typical HF band structure can be found in Fig. 8(a).
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FIG. 8. (a-c) The HF band structure on a 10 × 10 lattice at filling factor ν = 0 at w0/w1 = 0.8 for U = 50 meV in region I
(a), at w0/w1 = 0.8 for U = 200 meV in region II (b) and at w0/w1 = 0.2 for U = 250 meV in region III (c), respectively. The
color stands for the valley polarization vi(k) of each single body state. The zoom in band structures around KM , K′M and ΓM
points in the dashed boxes in subfigure (c) are also shown. It is visible that the HF band structure is discontinuous at these
points, and it is also gapless at KM and K′M points.

The occupied flat bands have zero valley polarization,
which agree with the intervalley coherent ground state.
Therefore, the ν = 0 TSTG ground state is an intervalley
coherent semimetal. As we show in Appendix D, the gap-
less Dirac nodes of this phase at U > 0 is protected by a
remaining anti-unitary symmetry Gγ (G2

γ = 1), which is
a combination of the C2zT and a relative phase rotation
between the two valleys.

Region II: the displacement field is intermediate, and
as seen in both Figs. 7(b) and (c), the intervalley coher-
ence C drops to zero in this region. Other HF parameters,
including Nv/NM , Ch and S± are equal to zero in region
II. We also notice that there is another state with non-
zero Ch values in region II, whose energy increment from
the state with Ch = 0 is within the machine precision
when the parameters are around the boundary between
regions II and III, showing a possible competing order.
A typical HF ground state band structure in region II is
shown in Fig. 8(b). The occupied flat bands have val-
ley polarization values vi(k) ≈ ±1, and there is a large
direct gap around the Fermi level. This result indicates
that region II is an insulating phase, akin to the region
III at ν = −1 filling.

Region III: here the interlayer potential U is stronger,
and the HF quantities C, Nv/NM , Ch and S± in this large
U region are the same as in region II. However, the band
structures undergo an abrupt transition. As discussed
in previous sections, the bandwidth of the low energy
bands become large when U is large, and therefore the
effect of the interaction will be suppressed by the kinetic
energy. A HF band structure in this region is shown in
Fig. 8(c). The HF mean field band structure is similar
to the non-interacting band dispersion, which has gapless
Dirac points at KM and K ′M points. The discontinuous
dispersions in Fig. 8(c) at KM and K ′M (see the zoom-
in plots in Fig. 8(c)) are due to neglecting of the higher
bands in the TSTG projected Hamiltonian, as explained
in Appendix A. From the HF band structure, we conclude

that the large displacement field phase in region III at
filling ν = 0 becomes a semimetal.

To summarize, there are three phases at filling factor
ν = 0, as shown in Fig. 7(b). Within the small U region I,
the HF ground state is an intervalley coherent semimetal.
In region II with an intermediate U , the ground state
is an insulator without intervalley coherence or valley
polarization. Finally, in region III with a large U , the
system becomes a semimetal with no valley polarization
or intervalley coherence.

VIII. CONCLUSION

Through projected Hartree-Fock mean field calcula-
tions, our work unveiled the close relationship between
TSTG at weak displacement field and TBG systems at
integer fillings ν = −3,−2,−1 and 0. We show that
at weak displacement fields, the TSTG ground states at
integer fillings are almost semimetal states which are in
the same phase as the tensor product of the TBG ground
states at the same filling and a Dirac semimetal. Beyond
the phases inherited from the TBG physics, the TSTG
undergoes transitions into large Fermi surface metals or
insulators as the displacement field increases. Besides,
we generically find that the displacement field destabi-
lizes the intervalley coherence of the flat bands.

For filling factor ν = −3, we found three regions of
different phases. At small displacement field, the TSTG
ground state is a semimetal with an occupied spin-valley
polarized flat band when w0/w1 . 0.6. At large dis-
placement fields, the TSTG undergoes a first order phase
transition into a metallic phase with large Fermi surfaces
and zero valley polarization, due to the enlarged band
width. When w0/w1 & 0.7 and U = 0, we observed
that the electrons transfer from the Dirac cones into the
TBG flat bands, which yields a metallic phase with com-
peting orders. Moreover, similar to pure TBG systems
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at ν = −3, it is possible to have translation symmetry
breaking, some evidence of which is shown in Appendix
C 1. We leave the study of translation breaking TSTG
phases in the future.

For filling factors ν = −2,−1 and 0, our HF numerical
results show that the TSTG ground states at weak dis-
placement fields are semimetals with intervalley coher-
ent flat bands occupied. At intermediate displacement
fields, the intervalley coherence drops abruptly to zero,
signaling a transition into phases without intervalley co-
herence, which are either semimetals (at ν = −2 and −1)
or insulators (at ν = −1 and ν = 0). With a stronger
displacement field, the dispersive energy bands will have
bandwidths exceeding the energy scale of Coulomb inter-
actions, which leads the system into a metallic state with
little valley polarization or intervalley coherence.

Our work reveals two roles of the displacement field
in TSTG with Coulomb interaction: destabilizing the in-
tervalley coherence (if any), and increasing the flat band
width and thus weakening the correlations due to interac-
tions. Our results may provide guidance to the analytical
studies of TSTG ground states in the future.
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[51] J. González and T. Stauber, Phys. Rev. Lett. 122,

026801 (2019).
[52] F. Guinea and N. R. Walet, PNAS 115, 13174 (2018).
[53] H. Guo, X. Zhu, S. Feng, and R. T. Scalettar, Phys.

Rev. B 97, 235453 (2018).
[54] K. Hejazi, C. Liu, H. Shapourian, X. Chen, and L. Ba-

lents, Phys. Rev. B 99, 035111 (2019).
[55] K. Hejazi, C. Liu, and L. Balents, Phys. Rev. B 100,

035115 (2019).
[56] T. Huang, L. Zhang, and T. Ma, Science Bulletin 64,

310 (2019).
[57] Y. Huang, P. Hosur, and H. K. Pal, Phys. Rev. B 102,

155429 (2020).
[58] H. Isobe, N. F. Q. Yuan, and L. Fu, Phys. Rev. X 8,

041041 (2018).
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Appendix A. PROJECTED HAMILTONIAN

In order to simplify the numerical calculation, we project the Hamiltonian into the low energy bands. We start
with solving the Hamiltonian in mirror symmetric (TBG fermions) and anti-symmetric (Dirac fermions) sectors in
the absence of external displacement field. By diagonalizing the TBG Hamiltonian h(η)(k) and the Dirac Hamiltonian

hD,η(k), we obtained the band structure εf̂m,η(k) and the single body wavefunctions uf̂Qα,mη(k), where f̂ = ĉ, b̂.

The single body wavefunction of TBG fermions can be gauge fixed as in Ref. [100], and thus the C2zT sewing
matrix in the symmetric sector is identity. Therefore, the electron operators in energy band basis can be defined as

ĉ†k,m,η,s =
∑

Qα u
ĉ
Qα,mη(k)c†k,Q,η,α,s. Moreover, by using this gauge fixing choice, we obtain the following electron

operators d̂†k,eY ,η,s and its corresponding single body wavefunction ud̂Qα,ηeY (k), which can form a band with Chern
number eY = ±1:

d̂†k,eY ,η,s =
1√
2

(
ĉ†k,1,η,s + ieY ĉ

†
k,−1,η,s

)
(S1)

ud̂Qα,eY η(k) =
1√
2

(
uĉQα,1η(k) + ieY u

ĉ
Qα,−1η(k)

)
, (S2)
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FIG. S1. (a) The high symmetry lines in MBZ. The Dirac cones in valley η = + are located on KM points, which are
represented by the sectors with colors. For the momentum along ΓM -K′M lines, we choose the wavefunction of the Dirac

fermion ub̂Qα,mη(k) 6= 0, only when Q is the KM point, which is labeled by the same color as momentum k. For example, the
point k2 along the red high symmetry line implies choosing for Q the red KM point. This wavefunction choice preserves C3z

symmetry. (b) and (c) The 9× 9 (b) and 10× 10 (c) momentum lattices in the first MBZ. Here we are using a parallelogram
as the reciprocal unit cell. The high symmetry points are also labeled in these figures. Note that only lattices 3m× 3m include
the Dirac points KM and K′M , such as Fig. S1(b).

Indeed, these states are eigenstates of Pauli y matrix ζy in energy band basis. For TBG fermions, we only keep the
two bands which are closest to the charge neutral point, which are equivalent to the two narrow bands in TBG per
spin and valley. The projected kinetic Hamiltonian for the TBG fermions is:

HTBG =
∑

k,m,η,s

εĉmη(k)ĉ†k,m,η,sĉk,m,η,s . (S3)

For Dirac fermions, we also keep the two bands which are closest to the charge neutrality per spin and valley. As
shown in Eq. (7), the Hamiltonian of the Dirac fermion is block diagonal in Q basis. Therefore, for a general point

in the MBZ, the wavefunction of a Dirac fermion state ub̂Qα,mη(k) 6= 0 for only one Q. Since the wavefunction in the
valley η = − can be obtained by performing a C2z transformation to the wavefunctions in the valley η = +, we only
discuss η = + here (the spin degree of freedom can also be dropped). As seen in Fig. S1(a), there are slices of Dirac
cones sitting on the three KM points [125], which are labeled by three different colors. For a given momentum k,
there are two states which are closest to the charge neutrality, one has positive energy +vF |k −KM | and the other

one has negative energy −vF |k−KM |. Both of the states’ wavefunction have non-zero components ub̂Qα,m+(k) when
Q is equal to its closest KM point. For example, the wavefunction of the Dirac fermion at momentum k1 shown in
Fig. S1 has only non-zero components when Q is the KM point labeled by blue.

However, the distances between a momentum point along the ΓM -K ′M lines and two KM points are the same. For
example, the k2 point in Fig. S1(a) is at equal distance from the red and green KM points. This leads to some

ambiguity in the choice of ub̂Qα,m+(k). As seen in Fig. S1, there are three ΓM -K ′M lines in the MBZ. We choose

the single body wavefunction, such that ub̂Qα,m+(k) 6= 0 only when Q is the KM point with the same color as the

corresponding ΓM -K ′M line. As an example, the Q index of the only non-zero components of ub̂Qα,m+(k2) is equal to
the KM point labeled by red. Thus, the wavefunctions along these high symmetry lines satisfy the C3z symmetry.
Moreover, at ΓM and K ′M points, these bands are three-fold degenerate. At these points, we choose the state whose
C3z eigenvalue is 1. Indeed, choosing real C3z eigenvalues at ΓM and K ′M leads to a more accurate approximation
by the projected Hamiltonian when U > 0 at these points as shown later in this appendix. Therefore, our choice of

ub̂Qα,mη(k) will satisfy the C3z symmetry. Similar to the TBG fermion, the kinetic Hamiltonian of Dirac fermions
after the projection can be written as:

HD =
∑

k,m=±1,η,s

εb̂mη(k)b̂†k,m,η,sb̂k,m,η,s , (S4)

in which b̂†k,m,η,s =
∑

Qα u
b̂
Qα,mη(k)b̂†k,Q,η,α,s, and the dispersion is given by εb̂mη(k) = mvF |k −KM |, where KM is

the closest to the k point.



18

Thus, the projected non-interacting Hamiltonian is given by:

H0

∣∣
U=0

= HTBG +HD =
∑
k

∑
f̂=ĉ,b̂

∑
m=±1

∑
η,s

εf̂mη(k)f̂†k,m,η,sf̂k,m,η,s , (S5)

in which f̂†k,m,η,s = uf̂Qα,mη(k)f̂†k,Q,η,α,s is the electron operator in energy band basis. Next, we project the displace-

ment field term ĤU into the Hilbert space spanned by the low energy states at U = 0:

HU =
U

2

∑
k,η,s

∑
m=±1

∑
n=±1

Nη
mn(k)

(
b̂†k,m,η,sĉk,n,η,s + h.c.

)
, (S6)

where the displacement field overlap matrices are defined by:

Nη
mn(k) =

∑
Q∈Qη,α

ub̂∗Qα,mη(k)uĉQα,nη . (S7)

The projected non-interacting Hamiltonian is then given by the summation of these terms:

H0 =
∑
k

∑
f̂=ĉ,b̂

∑
m=±1

∑
η,s

εf̂mη(k)f̂†k,m,η,sf̂k,m,η,s +
U

2

∑
k,η,s

∑
m=±1

∑
n=±1

Nη
mn(k)

(
b̂†k,m,η,sĉk,n,η,s + h.c.

)
. (S8)

For convenience, this quadratic Hamiltonian can also be written as the following form:

H0 =
∑

k,f̂ f̂ ′,ηη′,ss′

H(0)

f̂mηs,f̂ ′nη′s′
(k)f̂†k,m,η,sf̂

′
k,n,η′,s′ (S9)

H(0)

f̂mηs,f̂ ′nη′s′
(k) = εf̂m,η(k)δf̂ f̂ ′δmnδηη′δss′ +

U

2
(Nη

mn(k)δf̂ b̂δf̂ ′ĉ +Nη∗
mn(k)δf̂ ĉδf̂ ′b̂)δηη′δss′ . (S10)

FIG. S2. The dispersion of the projected kinetic Hamiltonian in Eq. (S10), represented by red dots. In these plots, only the
η = + valley bands are shown. The red dots represent the band structure of the projected Hamiltonian in Eq. (S8) and black
solid lines represent the dispersion of the BM model in Eq. (12).

The dispersion of the projected kinetic Hamiltonian H(0)(k) with different w0/w1 and U values are shown in Fig. S2.
In these non-interacting band structure plots, we find that the projected Hamiltonian can capture well the Dirac cone
shift with non-zero U around KM point. However, as shown in Fig. S2(d), we can also find that the energy of the
second bands of the TBG fermions, which are not included in the projected Hamiltonian, are comparable to the
shifted Dirac cones in the projected bands when w0/w1 and U are large. Thus, the HF results obtained in the large
w0/w1 and U region will be less reliable.

As shown in Fig. S3, the projected band structure is discontinuous at ΓM and K ′M when the displacement field is
strong (as shown in the blue dashed boxes). In particular, we see that the projected band energies at ΓM and K ′M
(red dots in the blue dashed boxes) agree quite well with the unprojected band energies (black lines). As discussed in
the paragraph above Eq. (S4) and Fig. S1(a), the single-body wavefunction of the Dirac fermion at ΓM and K ′M are
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FIG. S3. The dispersion of the projected kinetic Hamiltonian. The data is the same as in Fig. S2 but we provide a zoom close
the zero energy. The red dots represents the dispersion of the projected Hamiltonian, and the black solid line represents the
band structure of the BM model. There, we clearly see the discontinuities in the projected kinetic Hamiltonian at the ΓM and
K′M with isolated energies (dots in the blue boxes) for the active bands. Note that the discontinuities are barely visible for (c),
so we do not show any boxes there.

FIG. S4. (a) The flat band energy at MM point as a function of w0/w1 and U . This value measures the band width of the flat
bands. The value of the energy at MM point along black dashed line is equal to Uξ ≈ 24 meV, which measures the strength of
the Coulomb interaction. (b) The flat band energy at KM point as a function of w0/w1 and U . It describes the energy shift
of the Dirac cones at KM point, and it also captures the band width. (c) The energy jump of the flat bands at ΓM point. It
measures the discontinuity of the projected Hamiltonian at high symmetry points.

chosen such that the states are C3z symmetric. Selecting the linear combination with the C3z eigenvalue +1 provides
the most accurate energy for the projected Hamiltonian at U > 0. However, the Dirac fermion wavefunction of the
neighborhood of ΓM and K ′M points only has non-zero components on the nearest KM point, while the Dirac fermion
wavefunction at ΓM (or K ′M ) has an equal amplitude on the three nearest KM points. Therefore, the projected Dirac

wavefunction ub̂Qα,mη(k) is not continuous at ΓM and K ′M . The projected band energies are immediately different

from the dispersion of the BM model away from ΓM and K ′M points, because of the abrupt change of the projected

Dirac wavefunction ub̂Qα,mη(k) and neglecting of the higher Dirac bands. We note that in the HF bands where the
Hartree and Fock energies are comparable to the kinetic energies, the discontinuities in the HF band dispersions are
usually smeared out and barely noticeable, because of the summation over k′ in the HF mean field terms. However,
when the interacting effects are weak (i.e., the HF mean field terms are small), this spurious discontinuity will be
noticeable in the HF band dispersion (e.g., in Fig. 8(c)).

Finally, we give the energy value of the non-interacting projected Hamiltonian in Eq. (S8) at MM and KM points
as a function of w0/w1 and U , which are shown in Figs. S4(a) and (b). The energy value closest to zero energy at
MM point roughly captures the band width of the flat bands, and the energy shift of coupling with the Dirac cone
is inferred from the energy closest to zero at KM point. In Fig. S4(c), we also provide the energy value jump of the
non-interacting projected Hamiltonian at ΓM point, which describes the discontinuity of the projection.
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Appendix B. HARTREE-FOCK MEAN FIELD HAMILTONIAN

In this appendix, we give a short review of the HF mean field theory applied to the TSTG. We will also provide
the initial conditions for our HF calculation and we will discuss the methodology used to plot the HF band structures
along the high symmetry lines.

1. Self-Consistent Mean Field Hamiltonian

Assuming that there is no translation symmetry breaking, the HF order parameter can be defined as:

∆f̂mηs;f̂ ′nη′s′(k) =
〈
f̂†k,m,η,sf̂

′
k,n,η′,s′ −

1

2
δf̂ f̂ ′δmnδηη′δss′

〉
, (S11)

in which f̂ , f̂ ′ stand for Dirac and TBG fermion operators. Therefore, by using the Hartree Fock mean field approxi-
mation, the interacting Hamiltonian can be written in the following form:

H(H) =
∑

k,f̂ ,mn,η,s

H(H)

f̂mηs,f̂nηs
(k)

(
f̂†k,m,η,sf̂k,n,η,s −

1

2
δmn

)
(S12)

H(F ) =
∑

k,f̂ f̂ ′,mn,ηη′,ss′

H(F )

f̂mηs,f̂ ′nη′s′
(k)

(
f̂†k,m,η,sf̂

′
k,n,η′,s′ −

1

2
δf̂ f̂ ′δmnδηη′δss′

)
. (S13)

The matrices H(H)(k) and H(F )(k) are given by:

H(H)

f̂mηs,f̂ ′nη′s′
(k) =

1

Ωtot

∑
k′,f̂ ′′,m′n′,η′′,s′′

Ṽ
(f̂η;f̂ ′′η′′)
mn;m′n′ (0;k,k′)∆f̂ ′′m′η′′s′′;f̂ ′′n′η′′s′′(k

′)δf̂ f̂ ′δηη′δss′ (S14)

H(F )

f̂mηs,f̂ ′nη′s′
(k) =− 1

Ωtot

∑
k′,m′n′

Ṽ
(f̂ ′η′;f̂η)
m′n;mn′ (k′ − k;k,k′)∆f̂ ′m′η′s′;f̂n′ηs(k

′) (S15)

Therefore the full mean field Hamiltonian is given by HHF (k) = H(0)(k) + H(H)(k) + H(F )(k). The mean field
Hamiltonian HHF (k) is a 16×16 matrix for each momentum. We use φf̂mηs,i(k) and Ei(k) to represent its eigenstates

and eigenvalues, respectively: ∑
f̂ ′,n,η′,s′

HHF
f̂mηs,f̂ ′nη′s′

(k)φf̂ ′nη′s′,i(k) = Ei(k)φf̂mηs,i(k) . (S16)

The eigenvalues Ei(k) give us the Hartree Fock band structure, and the wavefunctions give us the self-consistent
condition for the order parameter:

∆f̂mηs;f̂ ′nη′s′(k) =
∑
i∈occ

(
φ∗
f̂mηs,i

(k)φf̂ ′nη′s′,i(k)− 1

2
δf̂ f̂ ′δmnδηη′δss′

)
, (S17)

in which the N = ν ×NM states with the lowest energies Ei(k) are occupied. For each given value of filling factor ν,
we start the numerical calculation by various initial conditions of the order parameter, and then solve the mean field
Hamiltonian HHF (k) for the new order parameter using Eq. (S17) until convergence. The total energy of a solution
is given by the following formula:

EHF =
〈
H0 +

1

2

(
H(H) +H(F )

)〉
. (S18)

And for each given parameter w0/w1 and U , we choose the state with the lowest energy.

Being an iterative method, the choice of the initial order parameter is crucial for the convergence of the HF
algorithm. The HF order parameter could depend on the choice of initial condition, thus some initial conditions
might lead to a local minimum. For that purpose, we have used several possible initial conditions for the each filling
factor. We build the initial order parameter from the initial many-body wavefunction |Ψ0〉. Defining the half filled
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Dirac cone wavefunction |φD〉 as

|φD〉 =
∏
k,η,s

b̂†k,−1,η,s|0〉 , (S19)

our initial many-body wavefunctions is built as the tensor product |Ψ(0)〉 = |φ(0)
TBG〉 ⊗ |φD〉. Here |φ(0)

TBG〉 is a single
Slater determinant many-body wavefunction with only the TBG electrons. As discussed in Sec. III, the Dirac fermion

density δρb̂ is small due to the large Fermi velocity, therefore we expect the ground state will be approximately given
by the tensor product of TBG ground state and half filled Dirac fermion. For each filling factor, we choose several
possible initial states |Ψ(0)〉, motivated by the possible physics that could emerge at a given ν, to build the initial
order parameter ∆(k). The full list of these specific initial states can be found in Table S1. In addition to this list,
we also tested a randomly generated HF order parameter ∆(k) for each HF calculation. The randomly generated
initial conditions are no longer the tensor product between a half filled Dirac fermions and TBG states. Random
initial condition is harder to converge which prevent its systematic usage. Nevertheless, we verified that random
initial condition is able to obtain the phase diagram at ν = −3. The resulting state with the lowest HF total energy
is identified as the HF ground state.

ν |Ψ(0)〉 description

−3
∏
k

d̂†k,1,+↑|φD〉 valley polarized Chern insulator

−3
∏
k

1√
2

(
d̂†k,1,+,↑ + d̂†k,1,−,↑

)
|φD〉 intervalley coherent Chern insulator

−2
∏

k,eY =±1

1√
2

(
d̂†k,eY ,+,↑ + eY d̂

†
k,eY ,+,↑

)
|φD〉 intervalley coherent state with zero Chern number

−2
∏
k

d̂†k,1,+,↑d̂
†
k,1,+,↓|φD〉 valley polarized Chern insulator with zero spin

−2
∏
k

d̂†k,1,+,↑d̂
†
k,−1,+,↓|φD〉 valley polarized state with zero Chern number and total spin

−2
∏

k,eY =±1

d̂†k,eY ,+,↑d̂
†
k,eY ,+,↑|φD〉 fully polarized state

−2
∏

k,η=±

d̂†k,1,η,↑|φD〉 Chern insulator state with Nv = 0

−2
∏
k

d̂†k,1,+,↑d̂
†
k,−1,−,↑|φD〉 spin polarized state with zero Chern number and Nv

−1
∏
k

d̂†k,1,+,↓

∏
eY =±1

(
d̂†k,eY ,+,↑ + eY d̂

†
k,eY ,−,↑

)
√

2
|φD〉 two occupied intervalley coherent bands and a valley polarized band

−1
∏
k

d̂†k,1,+,↑d̂
†
k,−1,+,↑d̂

†
k,1,+,↓|φD〉 valley polarized Chern insulator state with |νC | = 1

−1
∏
k

d̂†k,1,+,↑d̂
†
k,−1,+,↑d̂

†
k,1,−,↑|φD〉 spin polarized Chern insulator state with |νC | = 1

−1
∏
k

d̂†k,1,+,↑d̂
†
k,1,−,↑d̂

†
k,1,+,↓|φD〉 Chern insulator state with |νC | = 3

0
∏

k,eY =±1,s

1√
2

(
d̂†k,eY ,+,s + eY d̂

†
k,eY ,+,s

)
|φD〉 intervalley coherent state

0
∏
k,η,s

d̂†k,1,η,s|φD〉 spin valley unpolarized state with |νC | = 4

0
∏
k,η

d̂†k,1,η,↑d̂
†
k,−1,η,↓|φD〉 spin valley unpolarized state with νC = 0

TABLE S1. The initial many-body wavefunctions |Ψ(0)〉 that were used in the HF mean field calculations for each filling factor
ν. For the Dirac fermion sector, the initial states always assumed a half-filled Dirac cone given by |φD〉 of Eq. S19. Note that
in addition to these initial states, initial randomly generated HF order parameters were also considered for every filling factors.
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2. Hartree Fock band structure along high symmetry lines

Due to the difficulty of performing the numerical calculation (for example, it needs 1.7 s for one iteration of the
self-consistent calculation on a 10×10 momentum lattice with a single core 2.6 GHz Skylake CPU, and the convergence
typically require around 1000 iterations), the momentum lattice that we use to discretize the MBZ cannot be dense
enough to show a smooth dispersion of the Hartree Fock bands clearly along the high symmetry lines. As shown
in Fig. S5(a), a three dimensional dispersion plot in (kx, ky, E) space can be made easily for a given solution to the
Hartree Fock Hamiltonian. However, the amount of the momentum points are not enough to obtain a continuous
band structure plot along high symmetry lines.

In order to visualize the Hartree Fock band structure, we calculate the approximate mean field Hamiltonian at
an arbitrary momentum k along high symmetry line by using the order parameter ∆(k) obtained on the discrete
but rare MBZ lattice after the order parameter ∆(k) converges. The expressions for the Hartree and Fock terms
H(H)(k) and H(F )(k) are still given by Eqs. (S14) and (S15), but the momentum k′ which appear in the summations
is constrained on the loose discrete lattice, while the momentum k is a point on the high symmetry line. Therefore,

in order to obtain the interaction matrix elements Ṽ
(f̂η;f̂ ′′η′′)
mn;m′n′ (0;k,k′) and Ṽ

(f̂ ′η′;f̂η)
m′n;mn′ (k′ − k;k,k′) which are required

by the Hartree Fock terms H(H)(k) and H(F )(k), we only need the single-body wavefunctions on the rare discrete
momentum lattice and along the high symmetry line, instead of a dense mesh. By diagonalizing the mean field
Hamiltonian HHF (k) = H(0)(k) + H(H)(k) + H(F )(k), we can obtain the band structure along the high symmetry
line, as shown in Fig. S5(b).

FIG. S5. (a) The Hartree Fock band structure obtained from a 9 × 9 discrete momentum lattice, shown in a (kx, ky, E) 3-
dimensional space. (b) The Hartree Fock band structure plotted along the high symmetry lines in the moiré Brillouin zone.
Note that the band structure in (b) is obtained from the numerical results (the density order parameter and the Hartree Fock
Hamiltonians) obtained on the discrete lattice shown in (a). (c) Same as (b) but here we use the color scale to provide vi(k),
i.e., the valley polarization for each Hartree Fock band.

Several quantites can also be shown for each point in the band structure plots, for example, the valley polarization
of each single body state. By diagonalizing the Hartree Fock Hamiltonian H(HF )(k) at a given k along the high
symmetry line, we can also obtain the corresponding wavefunction φf̂mηs,i(k). For each given single body eigenstate

of the Hartree Fock Hamiltonian, the valley polarization can be defined as follows:

vi(k) =
∑

f̂ ,m,s,η,η′

φ∗
f̂mηs,i

(k)(τz)ηη′φf̂mη′s,i(k) , (S20)

in which τz is the Pauli matrix acting in valley space. This quantity measures the valley polarization, therefore
vi(k) = −1 or 1 if the state is valley polarized, and −1 < vi(k) < 1 if there is a superposition between the two
valleys. Fig. S5(c) shows the corresponding results of valley polarization for each state φf̂mηs,i(k) along the high

symmetry line, using the same order parameter ∆(k) as Figs. S5(a) and S5(b). In this example, and using the color
code visualization for vi(k), it can be seen clearly that the occupied flat bands are in intervalley coherent state at
ν = 0 filling, as predicted in Refs. [40, 70, 107].
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Appendix C. ADDITIONAL NUMERICAL RESULTS

1. Numerical results at filling factor ν = −3

In this appendix we provide additional HF results for various system sizes at filling factor ν = −3. First in Fig. S6
we give the phase diagrams in the (w0, U) plane with a color code representing valley polarization Nv/NM on several
momentum lattices: 6 × 6, 7 × 7 and 8 × 8. Note that Fig. S6(c) was already provided in Fig. 1(a) and was added
here for convenience. On the 7× 7 and 8× 8 momentum lattices, the HF calculation were performed at exact integer
filling ν = −3. For the 6× 6 momentum lattice (or any lattice of the size 3n× 3n where n is an integer), we removed
four electrons from the exact integer filling, which is denoted by ν = −3 − 4e−. Indeed, this lattice discretization
exactly hits the Dirac points KM and K ′M , which induces degeneracy in the non-interacting band structure, plaguing
the convergence of the HF self-consistent calculation. Removing four electrons improves the convergence by avoiding
filling these degenerate states at Dirac points. As seen in these three phase diagrams, the positions of the three regions
I, II and III do not strongly depend on the system size. We also notice that there is a small region with w0/w1 . 0.3
and around U ≈ 50 meV on 6× 6 momentum lattice located in region I, with small valley polarization, as opposed to
the expected full polarization of region I. Such region does not show up in the other lattice discretizations. To test
if this is a finite size effect or if this partially polarized region is induced by hitting exactly the KM and K ′M points,
we also provide the plot of the U dependence of several quantities for fixed w0/w1 = 0.2 on 9× 9 momentum lattice
at ν = −3 filling with four electrons removed in Fig. S6(d) (note that a full phase diagram is computationally out
of reach for this discretization). Similar to the 6 × 6 momentum lattice, the 9 × 9 momentum lattice also has KM

and K ′M . However, the valley polarization Nv shown in Fig. S6(d) does not drop around U ≈ 50 meV. This implies
the region with small Nv around U ≈ 50 meV on 6 × 6 lattice is most probably due to size effects. We also provide
the HF band structure obtained on 9 × 9 lattice at filling factor ν = −3 − 4e− in Fig. S7. Similar to the HF band
structures in Fig. 2, we obtain one occupied valley polarized flat band in region I as shown in Fig. S7(a), a gapless
metal state without valley polarization in region II shown in Fig. S7(b). We also obtained a state in region III shown
in Fig. S7(c) on 9 × 9 momentum lattice. When compared with Fig. 2(c) on 10× 10 momentum lattice in the main
text, the result on 9 × 9 lattice also have νD ≈ −1 and νTBG ≈ −2, although the occupied TBG flat bands have
different valley polarization.

To explain the regions I and III that are connected to the U = 0 physics, we also provide the plots of νD and
νTBG as a function of w0/w1 at zero displacement field for several momentum lattice sizes in Fig. S8. Similar to the
calculation on 6× 6 lattice, we also removed four electrons from the integer filling on 9× 9 lattice. It can be clearly
seen that the electrons are moving from Dirac bands into TBG flat bands, when w0/w1 gets larger. The transition
point and the shape of these plots are not exactly the same, while they share very similar trends.

We now focus on the transition between regions III, I and II at fixed w0/w1 = 0.8 [see Fig. 1(a) in the main text].
The displacement field dependence of several physical quantities, including Nv, C, Ch and S±, on different lattice
sizes are shown in Fig. S9. In all these four diagrams, the system is in a valley and spin polarized state with one
TBG flat band occupied when 60 meV . U . 250 meV (which is in region I), and the valley polarization Nv vanishes
when U > 250 meV (which is likely to be a metal state in region II). However, when the displacement is smaller than
50 meV (which corresponds to region III), these four plots strongly change from one momentum lattice to another.
Such a lattice size dependence could be related to the breakdown of the translation symmetry assumed for our HF
order parameters (see Sec. III) as we have already argued in Sec. IV.

Finally, we address the question of translation symmetry breaking in region III. Using density matrix renormalization
group, exact diagonalization, or HF, Refs. [62, 85, 100] found that a period-2 stripe phase in which translation
symmetry is broken at momentum MM (see Fig. S1(b) and (c)) becomes energetically competitive in ordinary magic-
angle TBG for w0/w1 & 0.8 and odd integer fillings. While a full-fledged HF calculation allowing for general translation
symmetry breaking is beyond the scope of this article, we compute a phase diagram of the system at ν = −3,
by allowing symmetry breaking with the wave vector corresponding to the MM point. Denoting qMM

the moiré
momentum at the MM point (see Fig. S1), we assume the HF order parameter of the system to be given by

∆f̂mηs;f̂ ′nη′s′(k1,k2) =
〈
f̂†k1,m,η,s

f̂ ′k2,n,η′,s′

(
δk1,k2 + δk1,k2+qMM

+ δk1,k2−qMM

)
− 1

2
δk1,k2

δf̂ f̂ ′δmnδηη′δss′
〉
. (S21)

Compared to Eq. (S11), Eq. (S21) additionally allows for non-vanishing correlation between fermions whose momenta
are separated by qMM

. To measure the degree of translation symmetry breaking, we define the quantity T which is
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FIG. S6. (a-c) Additional phase diagrams at filling factor ν = −3 on different lattice sizes. (d) The displacement field
dependence of the quantities Nv, C, Ch and S± with fixed w0/w1 = 0.2 on 9× 9 lattice at filling factor ν = −3− 4e−.

FIG. S7. Some typical HF band structures illustrating the three regions of the phase diagram at filling factor ν = −3 − 4e−

on 9× 9 momentum lattice. The color of each point represents the valley polarization vi(k) of each single body state, which is
defined in Eq. (35). The parameters are the same as in Fig. S7.

based on the norm of the off-diagonal (in momentum space) order parameter matrix elements

T =
1

2NM

∑
k1,k2∈MBZ

∑
f̂ f̂ ′,mn,
ss′,ηη′

(1− δk1,k2) |∆f̂mηs;f̂ ′nη′s′(k1,k2)|2 . (S22)
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FIG. S8. The filling factor of Dirac and TBG fermions as a function of w0/w1 when there is no displacement field (U = 0) at
filling factor ν = −3 on various momentum lattices. Here on the 6× 6 and 9× 9 lattice we removed 4 electrons from the exact
integer filling.

FIG. S9. The displacement field dependence of the quantities Nv, C and S± on various system sizes. Similar to Fig. S8, we
removed four electrons from integer filling on 6× 6 and 9× 9 lattices.
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FIG. S10. Propensity towards translation symmetry breaking in TSTG at ν = −3. (a) Value of the translation symmetry
breaking order parameter T as defined in Eq. (S22), in the (w0/w1, U) parameter space. As expected, the translation symmetry
is only broken in region III. (b) Valley polarization of the HF ground state in the (w0/w1, U) parameter space without assuming
the translation symmetry. In both panels, we consider a 8 × 8 momentum lattice, similar to Fig. 1. Note that the red lines
delimiting the three regions are those of Fig. 1(a).

FIG. S11. The phase diagrams at integer filling ν = −2− 4e− on 6× 6 lattice.

T ranges from zero, when there is no translation symmetry breaking, to a maximum value of T = 5/2 (the factor 5
is due to 5 projected bands at ν = −3 in our calculation), when the fermions at k and k + qMM

are fully coherent.
In Fig. S10, we provide the phase diagram of the system in the (w0/w1, U) plane for an 8 × 8 momentum lattice

similar to Fig. 1 in the main text, allowing for translation symmetry breaking as defined in Eq. (S11). The translation
symmetry breaking parameter T vanishes in regions I and II, but indicates that the HF ground-state breaks the
translation symmetry in region III. However, even in the presence of this translation symmetry breaking, the valley
polarization Nv/NM shows qualitatively the same features in region III as in the case where the translation symmetry
is enforced (see Fig. 1), namely electrons transfer from the Dirac valence bands into the TBG flat bands (as implied
by Nv/NM > 1).

We note that there are other possible translation symmetry breaking momenta (e.g., Kekulé order) which have been
discussed in ν = −3 TBG [100, 109], and the charge transfers between Dirac and flat bands in TSTG may further
allow the translation symmetry breaking momenta to shift to other values. Therefore, our results here allowing only
translation breaking at MM may not give the ground state, and a future study allowing more translation breaking
momenta is needed.

2. Numerical results at filling factor ν = −2

In this appendix we present numerical results obtained on several momentum lattice sizes at integer filling ν = −2.
We start with the phase diagrams at integer filling ν = −2. Figs. S11(a) and S12(a) show the intervalley coherence
C obtained on 6 × 6 and 7 × 7 momentum lattices. Other HF quantities on these system sizes at w0/w1 = 0.2 and
w0/w1 = 0.8 are also shown in Figs. S11(b-c) and S12(b-c). Clearly the phase diagrams on the 6× 6 lattice are noisy,
but the phase boundary where intervalley coherence C vanishes is approximately the same as that of the larger sizes.

We also provide additional band structure plots in the metallic phase, namely the region III at ν = −2. As shown
in Fig. 3(b), the intervalley coherence C can be a small but non-zero value in the metallic phase. We also observe that
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FIG. S12. The phase diagrams at integer filling ν = −2 on 7× 7 lattice.

FIG. S13. The HF band structure obtained at filling factor ν = −2 on 10 × 10 momentum lattice at w0/w1 = 0.2 for
U = 180 meV (a), U = 250 meV (b) and U = 300 meV (c). The intervalley coherence values for these three cases are C ≈ 0.10,
0.03 and 0.02, respectively. The color code represents the valley polarization vi(k).

the intervalley coherence will decrease when U becomes larger. This phenomenon can be observed in the HF band
structures clearly. As shown in Fig. S13, the HF bands at w0/w1 = 0.2 and U = 180, 250, 300 meV are intervalley
coherent around MM points indicated by the valley polarization vi(k) at each k. Numerically, we observe that the
intervalley coherence values are C ≈ 0.10, 0.03 and 0.02, respectively. The HF band structure also becomes more
similar to the non-interacting band structure when U becomes larger.

3. Numerical results at filling factor ν = −1

Next, we provide some additional phase diagrams at ν = −1 filling on 6× 6 and 7× 7 lattices, which can be found
in Figs. S14 and S15. Similar to other filling factors, the result obtained on smaller lattices, especially on 6×6 is more
noisy than the result on 8 × 8. However, the phase boundary where intervalley coherence disappears is not strongly
affected.

4. Numerical results at filling factor ν = 0

Similar to other fillings, we provide some phase diagrams obtained on 6× 6 and 7× 7 momentum lattices at filling
factor ν = 0. As shown in Figs. S16(a) and S17(a), these phase diagrams are similar to the results obtained on 8× 8
lattice, which has been discussed in the main text in Fig. 7(a). However, as shown in Fig. S16(b) and (c), the HF
parameter Ch value on 6× 6 lattice at filling ν = 0− 4e− is no longer zero, and the curves become noisy. The noisy
curves can also be observed in the results obtained on 9 × 9 momentum lattice at ν = 0 − 4e− filling in Fig. S18
at w0/w1 = 0.2 and U ≈ 150 meV and at w0/w1 = 0.8 and U ≈ 250 meV. This observation means that there is a
possible competing order with different Chern numbers in region II, as we mentioned in Sec.VII.

We also provide the Hartree-Fock band structure plots of two extra points in region III in Fig. S19. The discontinuous
band structures at KM , K ′M and ΓM points can also be seen. Similar to Fig. 8(c), the HF bands at KM and K ′M
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FIG. S14. Phase diagrams at filling factor ν = −1− 4e− on 6× 6 lattice.

FIG. S15. Phase diagrams at filling factor ν = −1 on 7× 7 lattice.

points are gapless, showing that region III is a semimetallic state at ν = 0 filling.

Appendix D. UNDERSTANDING OF THE GAPLESSNESS OF DIRAC SEMIMETAL PHASES AT ALL
INTEGER FILLINGS AT SMALL U

Our HF calculation shows that at each integer filling ν = 0,−1,−2,−3, there is a Dirac semimetal phase at small
U (region I of the phase diagram at each filling). Here we show that at even fillings ν = −2, 0, the gaplessness of the
Dirac point in this Dirac semimetal phase is protected by a combined symmetry of the ground state given by C2zT
combined with a valley ẑ rotation. At odd fillings ν = −1,−3, we show that the gapless Dirac point is protected by
the C2zT symmetry within a C2zT invariant spin-valley flavor.

FIG. S16. The phase diagrams obtained at filling factor ν = 0− 4e− on 6× 6 momentum lattice.
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FIG. S17. The phase diagrams obtained at filling factor ν = 0 on 7× 7 momentum lattice.

FIG. S18. The HF parameters obtained at filling factor ν = 0− 4e− and w0/w1 = 0.2 (a) and w0/w1 = 0.8 (b) on 9× 9 lattice.

1. U = 0 at all integer fillings

We first consider the U = 0 case within region I of the phase diagram at each integer filling. At U = 0, the Dirac
fermion sector and the TBG sector do not hop with each other, so the filling of electrons in each sector is conserved,
which we denote as νD and νTBG, and the total filling is ν = νD + νTBG. Therefore, the ground state at a given
filling ν is generically a tensor product of states within the two sectors:

|Ψν〉 = |ΨTBG,νTBG〉 ⊗ |ΨD,νD 〉 , (S23)

for certain νD = ν − νTBG.

We shall only discuss the case that the TSTG ground state has νD = 0 and νTBG = ν at a given integer filling

FIG. S19. The Hartree-Fock band structures at filling factor ν = 0 on 10× 10 lattice at w0/w1 = 0.2 for U = 300 meV (a) and
at w0/w1 = 0.6 for U = 300 meV (b).



30

ν = 0,−1,−2,−3, and |ΨTBG,ν〉 is given by the insulating ground state of TBG at filling ν (with no translation
symmetry breaking) studied in Refs. [29, 70]. Under this assumption, the ground state at filling ν takes the form

|Ψν〉 = |ΨTBG,ν〉 ⊗ |ΨD,0〉 . (S24)

Our HF calculations showed that this is true (i.e., νD = 0, νTBG = ν, and the TBG sector is gapped) at U = 0
for small enough w0/w1 in region I of all integer fillings. In particular, we have numerically checked that the HF
Hamiltonian HHF (k) at U = 0 has zero matrix elements hybridizing the Dirac fermions and TBG fermions, which
confirms the direct product state nature of the ground state. Note that νD = 0 assumed here is required for the
system to be strictly a Dirac semimetal with a point-like Fermi surface. At large w0/w1, small electron and hole
pockets may arise due to overlapping of the HF dispersions of the conduction and valence flat bands in the TBG
sector, in which case the system is a metal (thus gapless) and will not be considered here.

We now show that the Dirac sector state |ΨD,0〉 is a gapless Dirac semimetal. We first recall that the interaction
between the TBG sector and the Dirac sector is (see Eq. (24))

H b̂ĉ
I =

1

NMΩc

∑
q,G∈Q0

V (q + G)δρ
b̂

q+Gδρ
ĉ

−q−G , (S25)

where b̂ and ĉ stand for fermions in the Dirac and TBG sectors, respectively. As shown in Ref. [70], in the flat-band
limit at even fillings, or in the chiral-flat limit at any integer fillings ν, the insulating TBG ground state satisfies

δρ
ĉ

q+G|ΨTBG,ν〉 = NMAGδq,0|ΨTBG,ν〉 for some constants AG. Away from the flat-band limit or chiral-flat limit,
we do not have the above exact relation, but in the HF approximation (which is the subject of study of this paper),

δρ
ĉ

q+G provides a Hartree mean field 〈δρĉq+G〉 = NMAGδq,0 with some constants AG for the Dirac fermions, provided

that the translation symmetry is unbroken. Note that in the original sublattice basis is δρ
b̂

q =
∑

k b̂
†
k+q,η,sb̂k,η,s,

where b̂k,η,s = (b̂k,η,s,A, b̂k,η,s,B)T is the fermion basis in sublattices A and B (η, s stand for valley and spin), and k is
restricted within the first moiré BZ (since we project into the lowest 2 Dirac bands). Thus, the inter-sector interaction

in Eq. (S25) solely yields a chemical potential µH = V (0)A0

Ωc
to the Dirac fermion, which will not affect the Dirac

sector ground state |ΨD,0〉 at fixed filling 0.

Therefore, the Dirac fermion ground state |ΨD,0〉 is solely determined by interactions within the Dirac fermion
sector. Since the Dirac fermion sector alone is no different from the model of monolayer graphene, we expect the
Dirac ground state |ΨD,0〉 to be a gapless Dirac semimetal, in analogy to that of the monolayer graphene. Here we give
a heuristic understanding for the gaplessness of such a Dirac semimetal. Consider the Hartree-Fock approximation

for Dirac fermions with a single-particle Hamiltonian HD =
∑

k b̂
†
k,η,svFσ · kb̂k,η,s and interaction V (k). We now

examine the possibility of an HF mean field order parameter of the form
∑

kmHF (k)b̂†k,η,sσz b̂k,η,s around k = 0. At

the charge neutrality, the self-consistent HF equation then yields (for fixed spin s and valley η)

mHF (k) = −
∫

d2k′

(2π)2
V (k′ − k)〈b†k′,η,s

σz
2
bk′,η,s〉 =

∫
d2k′

(2π)2
V (k′ − k)

mHF (k′)

2
√
m2
HF + v2

Fk
′2
. (S26)

Assume the maximal value of |mHF (k)| among all k is mHF , and we take the interaction V (q) = πξ2Uξ
tanh(ξq/2)

ξq/2 ≥ 0

in Eq. (13), we have

|mHF (k)| ≤
∫

d2k′

(2π)2
V (k′ − k)

mHF

2vF |k′|
. mHF

Uξ

2vF
√
ξ−2 + k2

ln(1 +
Λk

2
√
ξ−2 + k2

) , (S27)

where Λk is the UV momentum cutoff. Note that the above bound is quite lose, with all mHF (k′) in the integral
relaxed to mHF , while in fact mHF (k′) decays at least as ln(|k′|)/|k′| at large |k′| according to Eq. (S27) above.
Nevertheless, this yields a loose bounding condition

0 ≤ mHF ≤ rcmHF , (S28)

where rc =
ξUξ
2vF

ln(1 + ξΛk
2 ). In this paper we have ξ = 10nm, Uξ = 24meV, and vF ≈ 610meV·nm. For monolayer

graphene, Λk ≈ 4π/3a0 ≈ 17nm−1 (a0 = 0.246nm is the graphene lattice constant), which yields rc ≈ 0.85. In
our practical calculation, we only keep the lowest two Dirac bands, which corresponds to Λk ≈ 0.5nm−1, and yields
rc ≈ 0.25. In either case, rc < 1, and we find the HF mass is bounded to mHF = 0. So the Dirac ground state |ΨD,0〉
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is gapless.
Therefore, we find the TSTG ground state is a gapless Dirac semimetal at ν = 0 and U = 0.

2. U > 0 at even integer fillings

In this case, the interlayer potential U yields a hopping term HU between the Dirac fermion sector and the TBG
sector as given in Eq. (20).

The TBG ground state at even fillings ν = 0 or −2 is a gapped intervalley coherent state given by the wavefunction
[29, 70]

|ΨTBG,ν〉 =
∏
k

∏
s∈Sν

∏
eY =±

e−iγ/2d̂†k,eY ,+,s + eiγ/2eY d̂
†
k,eY ,−,s√

2
|0〉 , (S29)

where d̂†k,eY ,η,s is the TBG Chern band basis defined in Eq. (19), γ is the intervalley coherent spontaneous sym-

metry breaking phase, and S0 = {↑, ↓}, S−2 = {↑} are the set for the spin index summation. Noting that

C2zT d̂
†
k,eY ,η,s

(C2zT )−1 = d̂†k,−eY ,η,s (under our C2zT gauge fixing), we see the TBG ground state has a remain-
ing antiunitary symmetry C2zT combined with valley z rotation:

Gγ = C2zTe
i(γ+π

2 )Sz0 , G2
γ = 1 , Gγ

(
d̂†k,eY ,η,s, b̂

†
k,η,s,α

)
G−1
γ = e−iη(γ+π

2 )
(
d̂†k,−eY ,η,s, b̂

†
k,η,s,−α

)
. (S30)

where Sz0 =
∑

k,η,s η
(∑

eY
d̂†k,eY ,η,sd̂k,eY ,η,s +

∑
α b̂
†
k,η,s,αb̂k,η,s,α

)
is the valley z rotation generator. Moreover, note

that the absence of a mass term mHF in the Dirac ground state |ΨD,0〉 in Appendix D 1 indicates that the Dirac
ground state |ΨD〉 also obeys the antiunitary symmetry Gγ in Eq. (S30). So the even filling TSTG ground state at
U = 0 (Eq. (S24)), which is a Dirac semimetal tensor producted with an intervalley coherent TBG ground state,
respects the Gγ symmetry.

When U > 0, since HU in Eq. (20) only contains intravalley hoppings and respect the C2zT symmetry, we know
that HU also respects the antiunitary symmetry Gγ in Eq. (S30). Therefore, provided U is small enough, we expect
the Gγ symmetry to remain respected by the TSTG ground state. The Gγ symmetry then protects the gaplessness
of Dirac points, similar to the protection by C2zT symmetry (see for example Ref. [87]). This is in agreement with
our findings in for region I of the ν = 0,−2 TSTG phase diagram, where the ground state is an intervalley coherent
Dirac semimetal.

3. U > 0 at odd integer fillings

At odd integer fillings ν = −1,−3, the TBG ground state is shown in Ref. [70] to be a Chern insulator of Chern
number ±1, which breaks the C2zT symmetry. However, the TBG ground state in this case always has at least one
valley-spin flavor fully empty (which is exact, since the number of electrons in each spin-valley flavor (η, s) in TBG or
TSTG is conserved). More concretely, the ν = −3 TBG ground state is valley polarized and has one band in flavor
(+, ↑) occupied and all the other bands empty; the ν = −1 TBG ground state occupies 2 intervalley coherent bands in
the spin ↓ sector, and one band in flavor (+, ↑). In both cases, the valley-spin flavor (−, ↑) is fully empty. Therefore,
the C2zT symmetry is preserved within the valley-spin flavor (−, ↑) of TBG.

On the other hand, at U = 0, the Dirac ground state |ΨD,0〉 of the TSTG also preserves the C2zT symmetry because
of the absence of a Dirac mass. Therefore, we conclude that the TSTG ground state in region I of the odd fillings
ν = −1,−3 at U = 0 preserves the C2zT symmetry in the sector of valley-spin flavor (−, ↑).

When U > 0, HU in Eq. (20) respects the C2zT symmetry and only contains hoppings within each spin-valley
flavor. Therefore, for small enough U > 0, we expect the C2zT symmetry within the valley-spin flavor (−, ↑) to remain
respected by the odd-filling TSTG ground state. The C2zT symmetry therefore at least protects the gapless Dirac
nodes in the empty valley-spin flavor (−, ↑), ensuring the TSTG ground state in region I of odd fillings at U > 0 to
be a gapless Dirac semimetal.
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