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We present a framework for understanding the recently observed cascade transitions and the Lan-
dau level degeneracies at every integer filling of twisted bilayer graphene. The Coulomb interaction
projected onto narrow bands causes the charged excitations at an integer filling to disperse, forming
new bands. If the excitation moves the filling away from the charge neutrality point, then it has a
band minimum at the moire Brillouin zone center with a small mass that compares well with the
experiment; if towards the charge neutrality point, then it has a much larger mass and a higher
degeneracy. At a non-zero density away from an integer filling the excitations interact. The system
on the small mass side has a large bandwidth and forms a Fermi liquid. On the large mass side the
bandwidth is narrow, the compressibility is negative and the Fermi liquid is likely unstable. This
explains the observed sawtooth features in compressibility, the Landau fans pointing away from
charge neutrality as well as their degeneracies. By providing a description of the charge itineracy in
the normal state this framework sets the stage for superconductivity at lower temperatures.

The discovery of the correlated insulating phases and
superconductivity in the magic-angle twisted bilayer
graphene has generated a flurry of research activity [1–
76]. This remarkable system exhibits correlated insulat-
ing phases at integer fillings of narrow bands [2–6, 8], a
hallmark of strong coupling physics. Away from (certain)
integer fillings, the same system becomes superconduct-
ing below a sufficiently low temperature, descending from
a normal state exhibiting Fermi liquid-like quantum os-
cillations, both hallmarks of charge itineracy.

Recent observations of the cascade transitions in the
compressibility and scanning tunneling microscopy stud-
ies at temperatures above the full onset of insulation or
superconductivity [14, 15, 19] have further sharpened this
dichotomy. On the one hand, clear features associated
with an integer filling of the moire unit cell were observed
as expected in strong coupling [7, 9]. On the other hand,
the electron system appears highly compressible when
integer filling is approached from the charge neutrality
point (CNP) side – even with negative compressibility –
and much less compressible when approached from the
remote bands side, producing sawtooth features in the
inverse compressibility vs filling plots [15, 19–21, 23].
This led the authors of Ref. [15] to propose a simple
“Dirac revival” picture based on the strictly interme-
diate coupling of a simplified model in which the non-
interacting Bistritzer-MacDonald (BM) [1] bands are se-
quentially filled. In this picture, starting from the CNP
the BM bands are filled equally until a critical filling af-
ter which one of the flavors is nearly fully populated,
while the densities of the remaining flavors are reset to
somewhat below the CNP. The key source of itineracy for
such a proposal is the dispersion of the BM bands. Un-
fortunately, the BM bands also feature two Dirac nodes
per spin and valley, doubling the Landau level degener-

acy away from each integer filling to 8, 6, 4, 2 sequence,
and making this proposal inconsistent with the observed
4, 3, 2, 1 sequence.

Here we show that the non-trivial narrow band topol-
ogy/geometry [29, 33, 36, 37, 39], neglected in the sim-
plified model of Ref. [15], combined with Coulomb in-
teraction can drive the itineracy of the single particle
charge excitations near the integer fillings even in strong
coupling, i.e. when the BM kinetic energy is neglected.
In addition to insulating phases belonging to spin-valley
U(4) or U(4)×U(4) manifold [42, 55, 63], the interplay
of band topology/geometry and strong Coulomb inter-
actions was shown to make the strong coupling nematic
phases, which are semi-metallic, energetically competi-
tive [46, 58]. The nematic phase was recently shown to
be further stabilized by strain [75]. Absence of gaps is
therefore not at variance with the strong coupling pic-
ture.

Interestingly, in all of these phases, whether insulating
or semi-metallic, the band minimum of the single par-
ticle charge excitations appears at Γ, the center of the
moire Brillouin zone (mBZ), naturally producing the ex-
perimentally observed sequence of weak magnetic field
Landau level degeneracies. Here we provide an explana-
tion of this observation and find that the strong coupling
band degeneracies are a consequence of a novel action of
the combination of the unitary particle-hole [37] and the
C2T symmetries. We find that the band dispersion of a
single particle or a single hole added to the strong cou-
pling phases at a non-zero integer filling is highly asym-
metric (see Fig. 1). If the excitation moves the filling
closer to (away from) the CNP it is heavy with a nar-
row bandwidth (light with a large bandwidth). The light
mass excitations have a minimum at Γ and a smaller de-
generacy than the heavy ones, whose minima are away

ar
X

iv
:2

10
4.

01
14

5v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

 A
pr

 2
02

1



2

-0.5
0.0
0.5
1.0
1.5
2.0

-0.5
0.0
0.5
1.0
1.5
2.0

-0.5
0.0
0.5
1.0
1.5
2.0

-0.5
0.0
0.5
1.0
1.5
2.0

FIG. 1. Evolution of the quasiparticle bands upon the change of the filling factor ν for the trial state in Eqn. 7 at w0/w1 = 0.7
when the C2T symmetry is allowed to be broken (top two panels) and when C2T is enforced (bottom two panels). The
hexagonal insets show the occupied k states for each of the bands.

from a high symmetry k-point. At a finite density away
from an integer filling, the single particle excitations repel
each other [64]. By estimating the ratio of the residual
interaction to the kinetic energy obtained by filling the
new (non-rigid) bands, the system on the small mass side
is effectively in the Fermi liquid phase. We find that the
value of the mass here compares favorably with the exist-
ing experiments without adjustable parameters[77]. On
the heavy mass side, we found several nearly degener-
ate states that are related by many particle-hole excita-

tions, suggesting that there, the residual interactions may
lead to additional instabilities of a heavy Fermi liquid.
This explains the observed Landau fans pointing away
from the CNP as well as their degeneracies. The com-
puted chemical potential µ displays features similar to
experimental observations. This includes negative com-
pressibilities and the overall magnitude of its difference
between fully occupied and empty eight narrow bands,
regardless of whether the strong coupling states at odd
integer filling are gapped or gapless (see Fig. 2).

Our starting Hamiltonian includes only the momen-
tum conserving Coulomb interactions (renormalized by
the remote bands) projected onto the BM narrow bands

H =
1

2A

∑

q 6=0

V (q)δρqδρ−q. (1)

Here A is the area of the system, V (q) = (εq/(2πe2) +
Π(q))−1, for the encapsulating hexagonal boron-nitrite
ε = 4.4, and the static polarization function Π(q) origi-
nates from the remote bands [77]. δρq = ρq − ρ̄q is the
difference between the projected density operator and the
background charge density, and q is not restricted to the

first mBZ (unlike the sum over k below). Specifically,

ρq =
∑

τ=K,K′

s=↑↓

∑

k∈mBZ
n,n′=±

Λτnn′(k,k + q)d†τ,n,s,kdτ,n′,s,k+q (2)

ρ̄q = 2
∑

G,n=±
δq,G

∑

k∈mBZ

ΛK
nn(k,k +G) , (3)

where the projected density operator ρq is expressed in
the Chern basis Φτ,±,k(r) that carries the indices of the
valley τ = K or K ′, the Chern n = ±, the spin s =↑↓,
and the k, with the corresponding creation and anni-
hilation operators d† and d. The Chern states are the
sublattice polarized states of the BM model for narrow
bands [55, 58] at the magic angle i.e. w1/(vF kθ) = 0.586
and w0/w1 = 0.7, where w0 and w1 are the two inter-
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FIG. 2. Evolution of the chemical potential µ as the filling ν
varies between −4 and 4 when C2T symmetry is allowed to
be broken (top panel) and when C2T symmetry is enforced
(bottom panel).

layer couplings [28, 29, 41], vF is the Fermi velocity for
the monolayer graphene, kθ = 8π/(3Lm) sin(θ/2) and Lm
is the moire lattice constant. Spinless time reversal sym-
metry relates the valleys K and K ′ [27–29]. The form
factor matrix

Λτmn(k,k + q) =

∫

uc

dr e−iq·rΦ∗τ,m,k(r)Φτ,n,k+q(r)

contains the information about the non-trivial topol-
ogy/geometry of the narrow bands and plays an impor-
tant role in the physics we describe; it has been neglected
in Ref. [15].

Previous analytical and numerical works have estab-
lished that over a large range of parameters the ground
states |ΨGS〉 of the Hamiltonian H in Eqn. 1 are Slater
determinants [42, 55, 58, 63, 65]. At even integer fillings
they consist of all states that satisfy [55, 59, 63]

δρq|ΨGS〉 =
ν

4

∑

G

δq,Gρ̄G|ΨGS〉 , (4)

with the eigenenergy Eν = 1
2A

∑
G6=0 V (G)

∣∣ν
4 ρ̄G

∣∣2. The
exact excited states can also be obtained [59, 64]. Indeed,
acting with H on the state X̂|ΨGS〉, where X̂ is some
combination of d†s and ds, and using (4), we find an

eigenequation

(H − Eν)X̂|ΨGS〉 =
1

2A

∑

q

V (q)
(

[δρ−q, [δρq, X̂]]+

[δρq, X̂]δρ−q + [δρ−q, X̂]δρq

)
|ΨGS〉 . (5)

The last two terms can be further simplified by applying
Eqn. 4. Because each commutator has the same number
of d†s and ds as the ones in X̂, we can readily match
the coefficients. This was used to find the charge neutral
collective modes[59, 64] and to show that the spectrum
of charge-2 elementary excitations for a purely repulsive
V (q) does not have a bound state [64]. For X̂+ = d†τ,n,s,k
and X̂− = dτ,n,s,k, Eqn.(5) reduces to solving for eigen-
values of the 2×2 matrix

Eτn′n,±(k) =
1

2A

(∑

q

V (q)
∑

m

Λτmn(k − q,k)Λτn′m(k,k − q)

±ν
2

∑

G

V (G)ρ̄GΛτn′n(k +G,k)

)
, (6)

that leads to 2 different bands for both electron and hole
excitations for each spin s. To illustrate the main ef-
fect, let us first consider the chiral limit [41, 78, 79],
w0/w1 = 0. In this case the Chern states are perfectly
sublattice polarized. Therefore, Λτmn(k,k+q) is diagonal
in m,n and Slater determinant states obtained by filling
Chern bands satisfy (4) also at odd filling; they have been
shown to be the ground states in exact diagonalization
(ED) studies in Ref. [65]. Consequently, the spectrum
of the single particle excitations can be solved with the
Eqn. 6 at any integer filling. Interestingly, the eigen-
states of Eτn′n,+(k) are exactly degenerate over the whole
mBZ, as are the eigenstates of Eτn′n,−(k). This is due
to the combination of the 2-fold rotation about the axis
normal to the plane, spinless time reversal and the chi-
ral particle-hole symmetries [41, 55, 60, 62], K′ = C2T C.
Because K′ preserves k and K′2 = −1, Eτn′n,±(k) must be
proportional to δmn for each k.

Moving away from the chiral limit, i.e. w0/w1 6= 0, we
see that the particle and hole dispersions are the same at
the CNP, as can be understood from Eqn. 6 for ν = 0. In
addition, the two bands are now degenerate only at high
symmetry points Γ, M , K and K ′ (see Fig. 1). The de-
generacies at Γ and M are protected by the combination
of C2T and particle-hole symmetry P that is discussed in
Ref. [37, 59, 77]. Moreover, combined with C3 symmetry,
the winding numbers at Γ and M can be shown to be
3 and −1 respectively. The degeneracy at K (and K ′)
is protected by C3 with the winding number of 1 (see
Ref. [77]).

Although such degeneracy and winding numbers are
also seen at other even integer fillings, ν = ±2,±4, ex-
citation spectra are markedly different. The bands away
from CNP have the minimum at Γ and the bandwidth
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of the order of the Coulomb scale e2/(εLm). However,
the bands towards CNP are rather flat and have their
minima away from high symmetry k points. To under-
stand the origin of this effect, we return to the chiral
limit (w0/w1 = 0) and analyze the first (exchange) and
the second (direct) terms in the Eqn. 6. Both of these
terms can be well approximated by a nearest neighbor
(NN) tight-binding model on a triangular lattice with a

negative NN hopping amplitudes tE = −0.0551 e2

εLm
and

tD = −0.0544 e2

εLm
, and with onsite terms εE = 1.731 e2

εLm

and εD = 0.326 e2

εLm
for exchange and direct terms re-

spectively [80]. This, as well as our k · p analysis based
on the model in Ref. [61, 77], show that the minimum of
the dispersion is at Γ when the two terms add. When
they subtract, the bandwidth is reduced. Note that the
magnitudes of the NN hoppings tE and tD are such that
at ν = ±1 the cancellation is nearly complete, leading
to the narrow band of heavy holes at ν = 1 and heavy
particles at ν = −1. Accordingly, for |ν| ≥ 2, the disper-
sions towards CNP reverse compared to ν = 0, also with
heavy excitations. Because for excitations at ν 6= 0 that
are moving the filling away from the CNP the direct and
the exchange terms add (in absolute value), the resulting
bands are more dispersive with a minimum at Γ. These
are the light fermions. As seen in Fig.1, the effect persists
away from the chiral limit w0/w1 6= 0.

At a finite density away from an integer filling the ex-
citations interact[59, 64] with each other as can be seen
from Eq. 5. Nevertheless, the steep dispersion observed
for a single electron (hole) added to the exact eigenstates
at the positive (negative) integer fillings and at CNP sug-
gests that at a finite density close to the integer filling
– and in the direction away from CNP – the kinetic en-
ergy of such excitations is sufficient to stabilize a Fermi
liquid. This is broadly consistent with the ED results of
Ref. [81], where emergent Fermi liquids were also found
in different, albeit related, models of moire heterostruc-
tures. We therefore approximate the ground state by the
trial state

|ΨGS〉 =
∏

s,k

P̂s,k|ΨCNP 〉, (7)

where |ΨCNP 〉 is a ground state at CNP which, without
loss of generality, is taken to be completely K ′ valley po-
larized with all four K bands empty. At each s, k there
are two bands at K whose occupation number is denoted
by νs,k; when empty (νs,k = 0) P̂s,k = 1 and when

doubly occupied (νs,k = 2) P̂s,k = d†K,+,s,kd
†
K,−,s,k.

When singly occupied (νs,k = 1), we have P̂s,k =

us,kd
†
K,+,s,k + vs,kd

†
K,−,s,k with variational parameters

satisfying |us,k|2 + |vs,k|2 = 1. The integer parameters
νs,k are also determined variationally and satisfy the con-
straint

∑
s,k νs,k = νNuc, where Nuc is the total num-

ber of moire unit cells. Minimizing E = 〈ΨGS |H|ΨGS〉

subject to the mentioned constraints yields the self-
consistent eigen-equations for us,k and vs,k

Heff (s,k)

(
us,k
vs,k

)
= Eα(s,k)

(
us,k
vs,k

)
. (8)

The effective Hamiltonian Heff is discussed in detail in
SM [77]. Eα(s,k) specifies the band structure shown in
Fig. 1. Fig. 2 shows the filling dependence of chemical
potential µ, calculated from the constraint

∑
α,s,k Θ(µ−

Eα(s,k)) = νNuc. The following discussion focuses on
ν ≥ 0, the states with ν < 0 can be obtained using the
many-body particle-hole symmetry [62].

At ν = 2, our variational method results in |Ψν=2
GS 〉 =∏

n=±,k d
†
K,n,s,k|ΨCNP 〉 where the spin s =↑ or ↓. Al-

though this exact (gapped) eigen-state breaks the time
reversal symmetry (spinfull and spinless), it does not
break C2T . Thus it carries zero Chern number. It was
also numerically shown to be the ground state [65]. Its
single particle excitation spectrum produced by Eqn. 8
is the same as the ones obtained in Eqn. 6. At odd in-
teger fillings with w0/w1 = 0.7 this method results in
the quantum anomalous Hall (QAH) state with spon-
taneously broken C2T symmetry if no additional con-
straints are applied as shown in the upper two panels
of Fig. 1. This result is consistent with the exact solu-
tion obtained in the chiral limit (w0/w1 = 0), the re-
cent DMRG calculation [58, 70] and the ED [65] for a
range of w0/w1 6= 0. For comparison, applying the C2T
symmetric constraint to the odd filling trial state |ΨGS〉
leads to a semi-metallic nematic state as shown in the
lower two panels of Fig. 1. Both the C2T broken Chern
insulators and C2T symmetric gapless states are nearly
degenerate, as also demonstrated by DMRG and ED cal-
culations [58, 65, 70].

At non-integer fillings |ΨGS〉 leads to gapless compress-
ible phases. The details of the band evolution with filling
are shown in Fig. 1. At fillings just above the positive
integers the gapless excitation spectrum can be seen to
be strongly dispersive, with the bandwidth of the or-
der of the Coulomb interaction. As discussed below,
we expect such low compressibility phases to be stable
when the residual interaction that scatters among differ-
ent trial states is included, resulting in Fermi liquids at
these fillings. The ultimate instability of the Fermi liq-
uids upon approaching a positive integer filling from be-
low stems from the mentioned residual interactions and
the fact that the band structure is not rigid, with the
partially filled band(s) flattening as ν approaches an in-
teger (see Fig. 1). Even within this simple variational
method, which does not account for the residual inter-
actions, there are several Stoner-like phase transitions as
the integer filling is approached from below. Such sponta-
neous breaking of C2T , particle-hole, or C3 symmetries,
furthers the instabilities of the Fermi liquid. We found
the transition occurring between ν = 0 and ν = 1 to
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be first order, becoming a second order between higher
integers fillings.

As illustrated in Fig. 2, at each non-negative integer ν,
the chemical potential µ increases as ν moves away from
the CNP. Before ν gets to the next integer, µ reaches
its local maximum at a fractional filling and then de-
creases, resulting in the negative compressibilty dµ

dν . The
net increase of µ is ∼ 40meV which compares well with
∼ 50meV found in experiments [10, 14, 15, 19, 23].

Because the dominant residual interaction is repul-
sive [59, 64], we estimate its importance over dispersion
in two different ways. First, we consider rs, defined

as the ratio of U(r̄) =
∫

d2q
(2π)2V (q)eiq·r̄, i.e. the resid-

ual Coulomb potential energy of two excitations sepa-
rated by r̄ = 1/

√
δn, and the average kinetic energy EK ;

here δn is the density deviation from the closest inte-
ger filling. For an electron excitation of a partially filled

band we define EeK =
∫
filled

d2k
(2π)2 (E(k)− Emin) where

Emin is the band minimum, while for hole excitations,

EhK =
∫
unfilled

d2k
(2π)2 (Emax − E(k)) where Emax is the

band maximum. Then, EK is set to be the smaller of
EeK and EhK . As ν approaches an integer, δn → 0 and

rs = U(r̄)/EK diverges because U(r̄) ∼ O(
√
δn) and

EK ∼ O(δn). For m < ν . m + 0.017 where m is a
non-negative integer, we find rs ≥ 35, i.e. rs is above the
critical value for the Wigner crystallization [82, 83]. If we
include additional screening due to the nearby metallic
gates, U(r) is modified from 1/r at long distances and de-
cays faster when r is larger than the distance to gates lg.
Therefore U(r̄)� EK at small δn, eliminating a possible
Wigner crystal if δn < l−2

g . For a typical gate distance
lg ∼ 40nm, the screened Coulomb interaction eliminates
the Wigner crystal if m < ν . m + 0.09. Therefore, no
Wigner crystal should exist close to an integer filling on
the side away from the CNP.

Second, we calculate the ratio between U(r̄) and W ,
the bandwidth of the excitations. If m < ν . m + 0.3,
then U(r̄)/W . 0.3, suggesting that the system is in the
weak coupling regime. Together with the above analysis
of rs, we conclude that the system is in the Fermi liquid
phase if the filling is in this interval. Moreover, as illus-
trated in Fig. 1, in this filling interval the 4−m partially
occupied bands are filled equally near Γ, resulting in the
experimentally observed Landau fan degeneracy of 4−m
when pointing away from the CNP [2–4, 8].

On the other hand, for m+0.4 . ν < m+1, the varia-
tional calculation resulted in the band reconstruction and
several nearly degenerate states. These states are related
by many particle-hole excitations, implying that the ob-
tained ground state, as well as the associated excitation
spectrum, may be unstable upon including the residual
interactions between the quasi-particles. Moreover, as
discussed, the bands are narrow at every integer filling
for excitations towards the CNP. This naturally explains
the absence of the Landau fans towards the CNP [2–4, 8].

The framework presented here provides a strong cou-
pling description of the itinerant carriers, whose residual
interactions and dispersion both depend on the Coulomb
interaction. The description of the charge itineracy pre-
sented here is in quantitative agreement with experi-
ments, and builds a framework within which supercon-
ductivity, emerging at lower temperatures at some fill-
ings, should be understood.
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Supplemental Material for “Cascades between light and heavy fermions in magic
angle twisted bilayer graphene”

Appendix A: Renormalized Coulomb interaction

In this section, we derive the formula of the renormalized Coulomb interaction. As discussed in the main text, the
interaction can be written as V (q)−1 = εq/(2πe2) + Π(q), where Π(q) is the static polarization function originated
from the states at the remote bands. For states with the energy of |E| much larger than the interlayer coupling w0

and w1, the dispersion can be approximated as that of a Dirac cone, and thus the Green function is

G(iω,k) ≈
1
2 (1 + σ · k̂)

−iω + vF k
+

1
2 (1− σ · k̂)

−iω − vF k
.

By the random phase approximation, the polarization function Π0(q) for these states on a single Dirac cone can be
written as

Π0(q) = −
∫

d2k

(2π)2

∫
dω

2π
Tr (G(iω,k−)G(iω,k+)) Θ(vF k− − E∗c )Θ(vF k+ − E∗c ) (A1)

where k± = k ± 1
2q, E∗c = 0.15vF kθ is the low energy cutoff for the states on the remote bands, and Θ(vF k± − E∗c )

is the step function. Note that the terms containing ω are

∫
dω

2π

1

(−iω ± vF k−)(−iω ± vF k+)

The integral vanishes if the two poles ±ivF k− and ±ivF k+ are on the same side of the real axis. Thus, we found

Π0(q) =
1

4vF

∫
d2k

(2π)2

Θ(vF k− − E∗c )Θ(vF k+ − E∗c )

k+ + k−
Tr
(

(1 + σ · k̂+)(1− σ · k̂−) + (1 + σ · k̂−)(1− σ · k̂+)
)

=
1

vF

∫
d2k

(2π)2

Θ(vF k− − E∗c )Θ(vF k+ − E∗c )

k+ + k−

(
1− k̂+ · k̂−

)
(A2)

With q = 0, k+ = k− = k, and thus 1− k̂+ · k̂− = 0. Therefore, the polarization function Π0(0) also vanishes.
To further simplify the integral with non-zero q, we introduce two variables y ∈ [1,∞) and ψ ∈ [0, 2π) so that

k‖ =
q

2
y cosψ , k⊥ =

q

2

√
y2 − 1 sinψ ,

∫
d2k =

∫
dk‖ dk⊥ =

∫ ∞

1

dy

∫ 2π

0

dψ
q2

4

y2 − cos2 ψ√
y2 − 1

,

where k‖ and k⊥ are the components of k parallel and perpendicular to q. After the change of integral variables, we
find

Π0(q) =
2q

vF

∫ π
2

0

dψ

2π
sin2 ψ

∫ ∞

max(1,
2E∗c
vF q

+cosψ)

dy

2π

1

y
√
y2 − 1

Then, we introduce y = sec θ to obtain the analytic expression of the integral over y. For notation convenience, define
z = 2E∗c /(vF q). The static polarization function Π0(q) is found to be

Π0(q) =





2q

πvF

∫ cos−1(1−z)

0

dψ

2π
sin2 ψ

(
tan−1

√
z + cosψ + 1

z + cosψ − 1
− π

4

)
+

q

2vF

∫ π
2

cos−1(1−z)

dψ

2π
sin2 ψ If 0 < z < 1

2q

vF

∫ π
2

0

dψ

2π
sin2 ψ

(
tan−1

√
z + cosψ + 1

z + cosψ − 1
− π

4

)
If z > 1

.

In the above calculation, we considered the contribution of only one Dirac cone. Due to the spin, valley, and layer
degree of freedom in the twisted bilayer graphene, the states of the remote bands are located on 8 Dirac cones with
the same vF . Therefore, the polarization function originated from the states on the remote bands are Π(q) = 8Π0(q).
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Appendix B: Variational Method

In this section, we discuss the variational method to obtain the ground states at the generic fillings. As discussed
in the main text, the ground state is approximated as |ΨGS〉 =

∏
s,k P̂s,k|ΨCNP 〉, where |ΨCNP 〉 is the ground state

at ν = 0. At each s, k, the operator P̂s,k is 1 if the occupation number νs,k = 0, and d†K,+,s,kd
†
K,−,s,k if νs,k = 2, and

us,kd
†
K,+,s,k + vs,kd

†
K,−,s,k if νs,k = 1. Therefore,

〈d†K,m,s,kdK,n,s,k〉 =

( |us,k| us,kv
∗
s,k

u∗s,kvs,k |vs,k|2
)

nm

= (M(s,k))nm

where we introduce a 2× 2 matrix M(s,k) at each s and k to simplify the notation. Note that the momentum k in
the matrix M(s,k) is not restricted to the first mBZ, and M(s,k) = M(s,k +G) is a periodic function of k. Now,
we consider the total energy E = 〈ΨGS |H|ΨGS〉 and obtain

E =
1

2A

∑

G 6=0



∑

k∈mBZ
m,n

ΛK
mn(k,k +G)

∑

s

Mnm(s,k)







∑

k′∈mBZ
m′,n′

ΛK
m′n′(k

′,k′ −G)
∑

s′

Mn′m′(s
′,k′)




+
1

2A

∑

q 6=0

∑

k∈mBZ

∑

m,n
m′,n′

ΛK
mn(k,k + q)(δnm′ −Mnm′(s,k + q))ΛK

m′n′(k + q,k)Mn′m(s,k) (B1)

The ground state is obtained by minimizing E with respect to us,k, vs,k under the constraint |us,k|2 + |vs,k|2 = 1, as
well as the occupation numbers νs,k that satisfy the constraint

∑
s,k νs,k = νNuc.

In addition, we introduce the energies of the pseudo bands by solving the equations

1

A

∑

G6=0

V (G)




∑

k′∈mBZ
m′,n′

ΛK
m′n′(k

′,k′ −G)
∑

s′

Mn′m′(s
′,k′)



∑

n

ΛK
mn(k,k +G)

(
us,k
vs,k

)

n

+

1

2A

∑

q 6=0

V (q)
∑

n,m′,n′

ΛK
mn(k,k + q)(δnm′ − 2Mnm′(s,k + q))ΛK

m′n′(k + q,k)

(
us,k
vs,k

)

n′

=Eα(s,k)

(
us,k
vs,k

)

m

, (B2)

where α = 1 or 2 for two bands. It is obvious that the equation above can be written as

Heff (s,k)

(
us,k
vs,k

)
= Eα(s,k)

(
us,k
vs,k

)
,

where Heff (s,k) is a 2 × 2 matrix. The two eigenvalues E1(s,k) and E2(s,k) plotted in Fig. 1 for different filling
ν. Also, the chemical potential µ is obtained from the formula

∑
α,s,k Θ(µ − Eα(s,k)) = νNuc and the occupation

number νs,k =
∑
α Θ(µ− Eα(s,k)).

Appendix C: Mass of Quasiparticles

In this section, we calculate the quasiparticle mass m. For this purpose, we first introduce the filling νs,α for the
spin s and the band α. With the chemical potential µ and the energies of the pseudo-bands Eα(s,k) obtained in the
previous section, we define νs,α = 1

Nuc

∑
k Θ(µ − Eα(s,k)). As a consequence, the mass ms,α for the spin s and the

band α is ms,α =
2π~2

Suc

dνs,α
dµ

, where Suc =

√
3

2
|Lm|2 is the area of the moire unit cell.

Fig. S1 illustrates the mass v.s. the filling ν when n < ν < n+ 0.4 for the non-negative integer n. As discussed in
the main text, when n+ 0.4 < ν < n+ 1, the ground state and the excitations obtained from the trial state in Eqn. 7
may be unstable upon the residual interactions.
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FIG. S1. The mass of the quasiparticles ms,α for the spin s =↑ or ↓ and the band α = 1, or 2 as a function of the filling factor
ν for the trial state in Eqn. 7 at w0/w1 = 0.7 when the C2T symmetry is allowed to be broken (top two panels) and when C2T
is enforced (bottom two panels).

Appendix D: Symmetry Analysis of the Charge-1 Excitation Band Structure at the Γ point

Numerically, we observe that the minimum of the electron band structure of the states at positive filling is at the
Γ- point. With particle-hole and C2T symmetries, we observe a double-degeneracy at this point, and a splitting of
the bands away from this point. However, the splitting does not take the Rashba form, i.e. the energy minimum
remains at Γ and not at a small but finite momentum away from Γ as Rashba couplings would suggest. The apparent
absence of a linear in k term has an important consequence on the Landau-Level spectrum, which is then dominated
by the k2 dispersion and not by the zero-mode of the Rashba dispersion.

In this Appendix we prove, by symmetry, that the particle-hole and C2T symmetries stabilize Kramers-like degen-
eracies at the Γ and M -points. We further prove that the C3 symmetry then forbids the existence of a linear Rashba
splitting away from the Γ point, but allows the presence of a cubic splitting, giving rise to a 3-vortex at Γ. The
absence of the linear term renders the dispersion and Landau Level structure dominated by the the quadratic term.
A C ′′2 = C2x rotation by π around the x-axis symmetry then establishes a relation between the coefficients of the
cubic terms.

We note that the charged excitations above the insulating states satisfy a different set of symmetries than the TBG
single-particle bands. In particular, the latter do not exhibit double degenearcies at the Γ and M points. In [59, 64],
the expression for the charge 1 excitation above the insulating ground-state at filling ν is given as the diagonalization
of the 2× 2 matrix:

Eτn′n,±(k) =
1

2A

(∑

q

V (q)
∑

m

Λτmn(k − q,k)Λτn′m(k,k − q)± ν

2

∑

G

V (G)ρ̄GΛτn′n(k +G,k)

)
, (D1)

where k is in the first mBZ while the summation over q is over all possible momenta. The form factors Λτn′m(k,k−q)
are given by their expression in terms of the TBG eigenstates:

Λτnn′(k,k − q) =
∑

Q

∑

α=1,2

u?Q,n,α,τ (k)uQ,n′,α,τ (k − q) (D2)
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where uQ,m,α,τ (k) is the eigenstate of the active band m = ± (i.e. not the Chern basis used in the main text),
sublattice α = A,B ≡ 1, 2, in valley τ = ± at momentum k in the mBZ and plane-wave index Q of the Bistritzer
MacDonald model. The dispersion relation is the same in either valley [64] hence we suppress the valley index in
Eτn′n,±(k). We can easily show that En′n,±(k) is Hermitian, and serves as a single particle Hamiltonian for the charge-1
excitation. The eigenstates satisfy several important symmetries which then become symmetries of the form factors.
Using the gauge-fixing of [62] we have:

C2T : uQ,m,α,τ (k) = σxαβu
?
Q,m,β,τ (k) =⇒ Λτnn′(k,k − q) = Λτ?nn′(k,k − q)

P : u−Q,−m,α,τ (−k) = −mτζQuQ,m,α,τ (k) =⇒ Λτnn′(k,k − q) = nn′Λτ−n−n′(−k,−k + q) (D3)

where ζQ is ±1 depending on whether the plane-wave Q is associated to the top or lower layer. We expand the charge
±1 single-particle Hamiltonian En′n,±(k) in Pauli matrices

E(k) = d0(k)σ0 +

3∑

i=1

di(k)σi (D4)

Using these symmetries for the BM eigenstates, we find the following properties of the charge 1 single-particle Hamil-
tonian En′n,±(k):

C2T : En′n,±(k) = E?n′n,±(k) =⇒ dy(k) = 0, ∀k
P : En′n,±(k) = n′nE−n′−n,±(−k) =⇒ d0(k) = d0(−k), dx,z(k) = −dx,z(−k) (D5)

We hence see that for k = −k mod G we find double degeneracies since dx,z vanish. The Kramers degeneracy is
enforced by the operator product of C2T and particle-hole P: PC2T , with the property (PC2T )2 = −1, due to
P2 = −1. C2T and P would then allow for a linear k term away from the Γ point.

We now impose C3 symmetry on the Hamiltonian. One complication is that the sewing matrix for C3, BC3(k)
cannot be chosen independently of k over the entire mBZ as the BM wavefunctions are topological [37]. The properties
of the C3 sewing matrix are [37]

BC3
mn(k)uC3Q,n,α,τ (C3k) = ei

2π
3 τσ

z
αβuQ,m,β,τ (k)

BC3†(k)BC3(k) = BC3(k)BC3†(k) = BC3(C2
3k)BC3(C3k)BC3(k) = 1,

mBC3
−mr(k) = −rBC3

m,−r(−k) (D6)

where the last property is due to the commutation with the P operator. Implementing these properties, the C3 sewing
matrix can be parametrized as:

BC3(k) = ζ0(k) + iσyζy(k), ζ0(k) = ζ0(−k), ζy(k) = ζy(−k); BC3(Γ) = I (D7)

The last equation originates from the fact that at the Γ point the BM eigenstates have the same eigenvalue 1 under
C3 symmetry [37]. The charge 1 single-particle Hamiltonian Emn(k) satisfies

E(k) = BC3†(k)E(C3k)BC3(k) (D8)

which can be expanded around the Γ point E(Γ + δk) = BC3†(Γ + δk)E(C3(Γ + δk))BC3(Γ + δk). Implementing the
symmetries we obtain:

E(Γ + δk) = (d0(Γ) +m(δk2
x + δk2

y))σ0 + (a1f1(δk) + a2f2(δk))σx + (b1f1(δk) + b2f2(δk))σz

f1(δk) = δky(3δk2
x − δk2

y), f2(δk) = δkx(3δk2
y − δk2

x) (D9)

where d0(Γ),m, a1, a2, b1, b2 are constants not determined by symmetry. At Γ we hence find a vortex of order 3,
and the band splitting is cubic. Further addition of C ′′2 symmetry (upon gauge-fixing) gives a2 = b1 = 0, giving the
expression in polar coordinates δk = δk(cos θ, sin θ):

E(Γ + δk) = (d0(Γ) +m+ δk2)σ0 + a1δk
3 cos(3θ)σx + b2δk

3 sin(3θ)σz (D10)

Appendix E: k · p analysis of the direct (Hartree) term

A further understanding of the quasielectron and quasihole energies can be obtained by using k ·p expansions of the
BM Hamiltonian. In this way, we can obtain analytic expressions for the form factors Λ(k +G,k) of the dispersion.
While the entire form factors Λ(k + q +G,k) and hence the entire excitation dispersion in TBG can in principle be
obtained by using the k · p-type expansions of [61], we here concentrate on the q = 0 term Λ(k+G,k) and leave the
full analytic dispersion for a future publication.
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1. General Properties of the Dispersion Equation

a. Chiral Limit

We first concentrate on the chiral limit; the generalization away from the chiral limit is tedious but straightforward
in the present formalism. In the C2T and chiral symmetry C gauge fixing of [62] we re-write explicitly

E(k) =
1

2A

∑

G

(
∑

q∈mBZ

V (G+ q)Tr[Λ(k−q−G,k)Λ†(k−q−G,k)]±νV (G)(
∑

k1∈mBZ

Tr[Λ(k1−G,k1)]Tr[Λ(k+G,k)])

(E1)
where k ∈ mBZ, ν ≥ 0 is the filling away from charge neutrality, and ± stands for electrons and holes, respectively.
Negative fillings ν ≤ 0 can be treated by many-body particle-hole conjugation. We have dropped the τ valley indices
as the dispersion is identical irrespective of the valleys, and we have explicitly separated the summation over all q in
a summation over the first mBZ and over subsequent mBZs determined by G.

In the chiral limit, and in the C2T , C gauges [62] this matrix is diagonal and independent of the valley index τ .
Crucially, the expression is also obtained in the periodic gauge, for which uQ,m,τ (k +G) = uQ−G,m,τ (k). We notice
the following facts

• Due to the decay of the eigenstates of the lowest bands with the momentum away from the Γ point [61], only
|G| = 0,

√
3 vectors need be taken into account. There are 6 G (|G| =

√
3) vectors G = ±G1,2,3. Higher G

values give negligible contributions.

• Due to C3, C ′′2 symmetries, the term
∑

k1∈mBZ Λ(k1 −G,k1) only depends on |G|.
• The chiral limit dispersion is a sum of two k functions. By taking the difference of electrons and holes dispersion

at the same filling, or by taking the difference of the hole (or electron) dispersions at different fillings, one can
obtain Λ(k −G,k).

2. KM -centered Ten-Site Model

For the physics around the KM point, we first consider the tripod model which contains only the sites 0, 1, 2, 3 in
Fig[S2]. From this model, we find Tr[Λ(k +G,k)] for |G| =

√
3 (contributed by the overlaps of the wavefunctions

〈i|j〉 on sites i 6= j = 1, 2, 3 to be roughly 1/2 of the numerical value, in agreement with the order-of magnitude
estimates in [61] and showing the need to include more sites. The next shell, containing the 6 momentum site |ij〉,
i 6= j can also be solved analytically, and produces a much better approximation for the Hartree term Tr[Λ(k+G,k)]
for |G| =

√
3. The Hamiltonian, in the basis of sites in Fig. S2 ordered as

(|0〉, |1〉, |2〉, |3〉, |12〉, |13〉, |23〉, |21〉, |31〉, |32〉) (E2)

where each is a two-component spinor, reads

H10 site =




h0 T1 T2 T3 0 0 0 0 0 0
T1 h1 0 0 T2 T3 0 0 0 0
T2 0 h2 0 0 0 T3 T1 0 0
T3 0 0 h3 0 0 0 0 T1 T2

0 T2 0 0 h12 0 0 0 0 0
0 T3 0 0 0 h13 0 0 0 0
0 0 T3 0 0 0 h23 0 0 0
0 0 T1 0 0 0 0 h21 0 0
0 0 0 T1 0 0 0 0 h31 0
0 0 0 T2 0 0 0 0 0 h32




(E3)

where h0 = k · σ; hi = (k − qi) · σ; hij = (k − (qi − qj)) · σ and k is measured from the KM point. Due to the
graph form of the Hamiltonian, the 10-site model is easy to solve, giving the eigenstates:

|i, j〉 = (E − hij)−1Tj |i〉, |i〉 = (E − hi −
∑

j 6=i
Tj(E − hij)−1Tj)

−1Ti|0〉 (E4)
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=
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perturbatively 
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remaining sites, 
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even further

KM-centered model with 10 sites, 
radius of convergence 0.7 q, 
error 2.4-5% 

G vectors included in the 10 site 
mode calculation of M(k,G)

Gamma-centered Hexagon model 
with 6 sites, radius of convergence 
0.7 q, error 2.4-5% 

G1

G3G2

Option of further inclusion of G 
vectors perturbatively for lower error 

FIG. S2. Ten site model used to compute the form factor Λ(k + G,k) around the KM Dirac points produces a remarkably
large radius of convergence, which includes the MM point, with an error of 2.5- 5%. The form factor around the ΓM point
will be computed using the hexagon model of [61]. The option to include remaining sites 124, 132, 213 perturbatively is also
available.

We make two approximations: (1) keep only up to linear term in E, as we are interested in the flat band energies (2)
keep only small momentum k away from the KM point. We obtain the (Dirac) equation for |0〉

vFk · σ|0〉 = E|0〉, vF =
(1−w2

0)2+w4
0+w4

1+4w2
0w

2
1−3w2

1

(1−w2
0)2+3(w2

0+w2
1)+2(w2

0+w2
1+4w2

0w
2
1)

|i, j〉 = h−1
ij Tj |i〉, |i〉 = (−hi +

∑
j 6=i Tjh

−1
ij Tj)

−1Ti|0〉, vFk · σ|0〉 = E|0〉 (E5)

We have two eigenstates at low energy |0±〉 with energy ±vF k. We gauge fix C2T and C symmetries [62] by choosing
|0〉+ (σx|0〉)?. We can impose the C2T gauge on |0〉, and then use the new gauge fixed |0〉 in the Eq[E5] to obtain the
full gauge fixing. In the chiral limit, we also have to fix the chiral gauge. This is fixed by picking an energy eigenstate
|0〉 and then making the energy eigenstate of opposite energy equal σz|0〉. The Hartree form factor is

∑
G,|G|=

√
3 Tr[Λ(k +G,k)] = 1

N

(∑
i6=j(〈i|j〉+ 〈ij|0〉+ 〈0|ij〉) +

∑
i,j,l;j 6=i,l 6=i,j 6=l(〈ij|il〉+ 〈ij|lj〉)

)

N = 〈0|0〉+
∑
i〈i|i〉+

∑
i6=j〈ij|ij〉 (E6)

The terms correspond to, in succession, the light blue arrows, the dark blue arrows, the green arrows and the red
arrows in upper center Fig[S2] G vectors. Using the analytic eigenstates the expression for Tr[Λ(k +G,k)] could be
solved analytically.

3. KM -Centered 16 and 19 Site Model

One can expand further in the plane wave basis of the BM model. The 16 site model corresponds to all sites
connected by the blue and yellow hoppings in Fig[S3]. A further expansion introduces 3 more sites (the purple sites in
the Fig[S2] and is the first number of plane-waves that cannot be solved exactly, since the tree structure of the graph
is broken. The form factor Tr[Λ(k +G,k)] picks up contributions that correspond to the light blue arrows, the dark
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FIG. S3. Nineteen site model used to compute (approximately) the form factor Λ(k + G,k) around the KM Dirac points
produces a remarkably large radius of convergence, which includes the MM point, with an error of 0.5- 2%. The form factor
around the ΓM point will be computed using the hexagon model of [61]. The option to include further tree models is available.

blue arrows, the green arrows and the red arrows, the yellow arrows and the black arrows in upper center Fig[S3] G
vectors. While the expressions for the overlaps are too large to be reproduced here, they can be obtained analytically.

4. k · p expansions

The 10, 16 and 19 site models give expressions for the form factor Tr[Λ(KM + k + G,KM + k)] which can be
analytically obtained. We present these expressions for the 10-site model, while for the 16 and 19 site models we only
present the comparison with the exact numerical expression, due to the length of the analytic expressions.

a. KM -centered 10-site model, Chiral limit expansion

The 10-site model above gives a great fit to the numerical Tr[Λ(k + G,k)] around the KM point. At the KM

point, the error is less than 2.45%. The form factor Tr[Λ(KM + k+G,KM + k)] then has the expression, up to 5th
order in k = k(cos θ, sin θ) with k measured from the KM point:
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giving

hij| lj|i + hlj| ili =
w2

1

|k�qij |2|k�qlj |2 [(k � qij) · (k � qlj)(hi|li + hl|ii) +

+
2w2

1

NiNl
(k � qij) ⇥ (k � qlj)((h

0
i � hi) · (h0

l � hl) sin( 2⇡
3 (l � i)) � (h0

i � hi) ⇥ (h0
l � hl) cos( 2⇡

3 (l � i)))] (15)

where (h0
i � hi) · (h0

l � hl) means the scalar product of (h0
i � hi) and (h0

l � hl) taken as vectors with components
1
2Tr[�x,y(h0

i � hi)].

We have that the form factor is

X

G,|G|=
p

3

Tr[Mk,G] =
1

Norm

0
@X

i 6=j

(hi|ji + hij|0i + h0|iji) +
X

i,j,l;j 6=i,l 6=i,j 6=l

(hij|ili + hij| lji)

1
A (16)

The terms correspond to, in succession, the light blue arrows, the dark blue arrows, the green arrows and the red
arrows in upper center Fig[1] G vectors.

IV. k · p EXPANSIONS

The above gives a fantastic fit to the numerical M(k, G) around the KM point. At the KM point, the error is less
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The radius of convergence is incredibly large, more than 0.5, going all the way to the M point. I find the radius of
convergence to be of about 0.7q1, with small error. At k = 0, i.e. at the KM point, the value is 19/5.

• The coe�cient of k2 is negative, implying that the maximum is at the KM point. To Do: Link this to the
Dirac dispersion of the problem;

• Along the KM � MM line ✓ = �⇡/6 the �C(w1) coe�cient of the k3 term is positive. Along the KM � �M

line ✓ = �⇡/2 the coe�cient Cw1
of the k3 term is negative. Hence the dispersion on KM � �M is downward

steeper than that on the KM � MM .
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The radius of convergence is incredibly large, more than 0.5, going all the way to the M point. I find the radius of
convergence to be of about 0.7q1, with small error. At k = 0, i.e. at the KM point, the value is 19/5.

• The coe�cient of k2 is negative, implying that the maximum is at the KM point. To Do: Link this to the
Dirac dispersion of the problem;

• Along the KM � MM line ✓ = �⇡/6 the �C(w1) coe�cient of the k3 term is positive. Along the KM � �M

line ✓ = �⇡/2 the coe�cient Cw1
of the k3 term is negative. Hence the dispersion on KM � �M is downward

steeper than that on the KM � MM .
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where (h0
i � hi) · (h0

l � hl) means the scalar product of (h0
i � hi) and (h0

l � hl) taken as vectors with components
1
2Tr[�x,y(h0
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We have that the form factor is
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The terms correspond to, in succession, the light blue arrows, the dark blue arrows, the green arrows and the red
arrows in upper center Fig[1] G vectors.
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FIG. S4. The exact numerical Tr[Λ(KM + k + G,KM + k)] and the approximate k · p approximations of the several models.
Upper left: 10-site k · p model of Eq[E7]. While providing a good approximation (within 2.5% of the exact value) for both the
value and the second derivative at the K point and for |k| ≤ 0.1, it fails close to the M point: while the absolute value at the
M point of Eq[E7] is within 6 percent of the exact value, the second derivative has the wrong sign.
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The radius of convergence is large, more than 0.3. I find the radius of convergence to be of about 0.7q1, with 6% error
on the Γ−K line, smaller on the K −M line.

This expression points to two generic features of the Hartree term. First, we notice that the coefficient of k2 is
negative, implying that the maximum is at the KM point. Second, along the KM −MM line θ = −π/6 the −C(w1)
coefficient of the k3 term is positive. Along the KM − ΓM line θ = −π/2 the coefficient Cw1

of the k3 term is
negative. Hence the dispersion on KM − ΓM is downward steeper than that on the KM −MM , another feature
observed in the numerical plots. The plot of the 10-site k ·p expansion can be seen in Fig. S4 upper left. It is a rather
good approximation (2.5%) around the K point, and indeed around the M point (5%) in absolute value, but fails to
describe the second derivative (mass) around the M point. To solve this, we look at the expansions of the 16 and 19
site model.
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b. KM -centered 16 Site model, Chiral Limit Expansion

The 16-site model, whose analytic expressions are too long to write down, gives a good fit to the numerical
Tr[Λ(KM + k + G,KM + k)] around the KM point. At the KM point, the error is less than 0.45%. The form
factor Tr[Λ(KM + k +G,KM + k)] expression, up to 5th order in k measured from the KM point can be obtained
analytically but is too long to be reproduced here. We plot the k ·p dispersion in FigS4] upper right. It is a fantastic
approximation (<0.5%) around the K point, and indeed around the M point (3%) in absolute value, but again fails
to describe the second derivative (mass) around the M point. To solve this, we need to add the shells denoted in
purple in Fig[S2 ]

c. KM -centered 19 Site model, Chiral Limit Expansion

The 19-site model, whose analytic expressions are too large to provide, gives a good fit to the numerical Tr[Λ(MM+
k+G,MM +k)] around the M point. At the KM point, the error is however, larger than that of the 15 site model,
due to the approximations used in obtaining the analytic form of the model, which is no longer a tree. The form
factor Tr[Λ(KM +k+G,KM +k)] can be analytically obtained up to 5th order in k measured from the KM point.
The plot of the k · p dispersion can be seen in Fig[S4] lower left. It gives the correct mass (<0.5%) around the M
point but is shifted from the exact numerical plot vertically, due to the error induced by treating the 3 new added
sites perturbatively.

d. Best Fit Model

We now try the ”best fit mode”, which corresponds to taking the k0 and k2 terms from the 16 site exact model,
and the k3,4,5 from the 19 site model. The plot can be seen in FigS4] lower left. It gives the correct mass (¡0.5%)
around the M point and the correct (less than 0.5% error) value at the KM point.

e. Fitting to a nearest neighbor model

We now ask if there exist an energy fit to a triangular lattice nearest neighbor model:

∑

G,|G|=
√

3

Tr[Λ(k+G,k)] = 3c1+2c2
∑

j=1,2,3

cos(k·aj), a1 =
4π

3kθ
(0, 1), a2 =

4π

3kθ
(

√
3

2
,

1

2
), a3 =

4π

3kθ
(−
√

3

2
,

1

2
) (E8)

Since we have the expansion of Λ(k +G,k) around the K = 1
3 (G2 +G3) point, we can check the fitting with the

above dispersion. In particular, performing an expansion of the above we have

∑

G,|G|=
√

3

Tr[Λ(KM +k+G,KM +k)] = 3c1− 3c2 +
4

3
π2c2k

2 +
8π3c2k

3 sin(3θ)

9
√

3
− 4

27
π4c2k

4− 8π5c2k
5 sin(3θ)

81
√

3
(E9)

for ~k = k(cos θ, sin θ). We now note that:

• In a NN expansion, the sign of the k2 and k3 terms are identical. The sign of the k4 and k5 term are also
identical, and opposite to that of the k2 and k3

• In a NN expansion, the ratio of the k3, k4, k5 coefficients to the k2 coefficient is universal
{

2π
3
√

3
,−π2

9 ,− 2π3

27
√

3

}
≈

{1.2092,−1.09662,−1.32604}

• Using Eq[E7] of the 10-site model, these ratios are {0.846515, 0.0100919,−0.344459}; Hence they differ from the
NN triangular model.

• Using the 19 site approximate model, we obtain for these ratios {1.14121,−0.203833,−0.352002} which is much
closer to the triangular NN model, including the value of the k3 term and the sign of the k4 and k5 terms (if
not their values)
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• Using the 16 site exact model, we obtain for these ratios {0.957131, 0.044555,−0.83897} which again is relatively
to the triangular NN model,

• Using the 12 site approximate model, we obtain for these ratios {1.05389,−0.115228, 0.164263} which again has
the k3/k2 ratio within 15% of the NN triangular model.

• Using the best fit model(16 site model around K, 19 site model around M), we obtain for these ratios
{1.20719,−0.215618,−0.372354}. This is in perfect agreement with the NN approximation for the ratio of
the k3/k2 term, with error less than 0.2%. The sign of the k4 and k5 terms is correct. By fitting our analytic
form for Λ(k +G,k) to the dispersion Eq[E8] we obtain c2 = −0.23445c1.

5. Away from the Chiral Limit

Away from the chiral Limit, the two degenerate bands will split. We can obtain the non-chiral limit form of the
Λ(k+G,k) matrix easily, at least for the 10-site model. The form factor matrix is, with Λ(k+G,k) = vD1

kσx+O(k2),
where the Dirac velocity around the K point can be obtained as

vD1
=

2w0w1

(
4w2

0 + 11w2
1

)

(w0 − 1)(w0 + 1) (8w2
0w

2
1 + 3w4

0 + w2
0 + 2w4

1 + 3w2
1 + 1)

(E10)

The dispersion around the K point becomes ”Rashba”-like away from the chiral limit with the velocity given above.


	Cascades between light and heavy fermions in the normal state of magic angle twisted bilayer graphene
	Abstract
	 Acknowledgments
	 References
	A Renormalized Coulomb interaction
	B Variational Method
	C Mass of Quasiparticles
	D Symmetry Analysis of the Charge-1 Excitation Band Structure at the bold0mu mumu – point
	E bold0mu mumu kk–kkkk bold0mu mumu pp–pppp analysis of the direct (Hartree) term
	1 General Properties of the Dispersion Equation
	a Chiral Limit

	2 bold0mu mumu KK–KKKKM -centered Ten-Site Model
	3 bold0mu mumu KK–KKKKM -Centered 16 and 19 Site Model
	4 bold0mu mumu kk–kkkkbold0mu mumu pp–pppp expansions
	a bold0mu mumu KK–KKKKM -centered 10-site model, Chiral limit expansion
	b bold0mu mumu KK–KKKKM -centered 16 Site model, Chiral Limit Expansion
	c bold0mu mumu KK–KKKKM -centered 19 Site model, Chiral Limit Expansion
	d Best Fit Model
	e Fitting to a nearest neighbor model

	5 Away from the Chiral Limit



