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ABSTRACT Recently there has been a surge of interest in adopting deep neural networks (DNNs) for
solving the optimal power flow (OPF) problem in power systems. Computing optimal generation dispatch
decisions using a trained DNN takes significantly less time when compared to conventional optimization
solvers. However, a major drawback of existing work is that the machine learning models are trained for a
specific system topology. Hence, the DNN predictions are only useful as long as the system topology remains
unchanged. Changes to the system topology (initiated by the system operator) would require retraining
the DNN, which incurs significant training overhead and requires an extensive amount of training data
(corresponding to the new system topology). To overcome this drawback, we propose a DNN-based OPF
predictor that is trained using a meta-learning (MTL) approach. The key idea behind this approach is to find a
common initialization vector that enables fast training for any system topology. The developed OPF-predictor
is validated through simulations using benchmark IEEE bus systems. The results show that theMTL approach
achieves significant training speed-ups and requires only a few gradient steps with a few data samples to
achieve high OPF prediction accuracy and outperforms other pretraining techniques.

INDEX TERMS Deep neural networks, meta-learning, optimal power flow, topology reconfiguration.

I. INTRODUCTION

THE optimal power flow (OPF) problem involves the
computation of minimum cost generation dispatch sub-

ject to the power flow equations and the grid’s operational
constraints (e.g., voltage/power flow limits, etc.). Power grid
operators must solve the OPF problem repeatedly several
times a day in order to ensure economical operation. The
OPF problem under the generalized alternating current (AC)
power flow model is non-convex, and solving them using
conventional optimization solvers can be computationally
expensive. The growing integration of renewable energy and
the power demand uncertainty necessitates solving the OPF
problem repeatedly at a significantly faster time scale (in the
order to seconds) to respond to the changing system states,
leading to significant computational challenges [1].

To overcome this challenge, there has been a significant
interest in adopting machine learning (ML) techniques to

speed up the computation of the OPF problem. The ML
models can be trained offline, and the trained model can
be used online to support the computation of the optimal
generation dispatch. The main advantage of this approach is
that online computations are cheap, and hence, they can speed
up OPF computation significantly. ML has been applied in a
number of different ways to support OPF computation.

The most straightforward approach is to use ML models
(e.g., DNNs) to directly learn the mapping from the load
inputs to the OPF outputs. The real-time load demands are
fed as inputs to the trained ML model, and the corresponding
OPF solution is computed as outputs. This approach was used
to solve the direct-current optimal power flow (DC-OPF)
problem in [2], in which, the inputs to the DNN are the
active power demand at the load buses and the outputs are
the active generation power. This approach was shown to
provide up to 100 times speed-up as compared to using
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conventional optimization solvers. A similar approach was
used to solve the AC-OPF problem in [3], in which, the inputs
to the DNN are the active/reactive power demand at the load
buses and the outputs are the active power generations and
voltage magnitudes at the generator buses. This framework
was shown to achieve 20 times speed-up as compared to
conventional OPF solvers. A similar approach has been used
for other applications such as scheduling under outages [4].
During the training stage, the outage schedules are used as
inputs to the DNN, and the corresponding OPF costs are
obtained as the DNN outputs. This model can effectively
assess the impact of a given outage schedule on the OPF
solution. Furthermore, ML methods have been used to pro-
vide decentralized decision support for distributed energy
resources (DERs). For example, [5] designs a local controller
by training an ML model using the historical generation and
consumption data. The developed model is used for schedul-
ing generation that minimizes the cost of DER control and
network loss. In [6], ML methods are used to predict the
optimal inverter actions (DER control policy) based on local
measurements.

Different from this approach, ML can also be used indi-
rectly to speed up conventional optimization solvers. For
example, ML can be used to learn the set of active constraints
at optimality; this approach was used to solve the DC-OPF
problem in [7]–[9]. Alternatively, ML can also be used to
compute the so-called warm start points for optimization
solvers, an approach that is especially useful to solve the non-
linear ACOPF problem [10], [11]. Compared to these indirect
approaches [7]–[11], the direct approach can achieve greater
computational speed-up.

Other machine learning techniques have also been adopted
for the OPF problem. For instance, [12] proposes a stacked
extreme learning machine to speedup the parameter tuning
process and reduce the learning complexity. Reference [13]
builds a random forest model to calculate a near-optimal
OPF solution and to perform post-contingency analysis. Fur-
ther, [14] compares the performance of OPF solvers devel-
oped according to different ML methods (random forest,
multi-target decision tree, and extreme learning machine).
The results show that ML methods can significantly reduce
the OPF computation time with minimal constraint violations
and optimality loss.

Recent works have also provided feasibility guarantees,
i.e., provide theoretical results to show that the solutions
proposed by the ML models satisfy the power grid’s oper-
ational constraints (e.g., line/voltage limits, etc.). In partic-
ular, a preventive framework to ensure feasibility for the
DC OPF problem was proposed in [15] by calibrating the
transmission line capacity limits and the slack bus generation
limits to compensate for the inherent approximation errors
of DNNs. Similar ideas were extended for the AC OPF
problem in [3]. The worst-case guarantees with respect to
physical constraint violations for the DNN’s OPF solution
were derived in [16], [17], and the results were used to reduce
the worst-case error. Reference [18] combined DNNs with

robust optimization techniques to directly achieve feasible
solutions for the security-constrained OPF problem.

Despite the growing research literature on this topic,
a major drawback of existing work [2]–[16], [18] is that they
are designed for a specific system configuration. As such,
they remain effective only as long as the system topology
remains fixed. Nevertheless, topology reconfigurations by
transmission switching and impedance changes are essential
parts of grid operations that can improve the grid’s perfor-
mance from both operational efficiency and reliability point
of view [19]–[21]. These measures have gained increasing
attention recently. For instance, perturbation of transmission
line reactances (using distributed flexible alternating-current
transmission systems, D-FACTS devices [22]) is finding
increasing applications in power flow control to minimize the
transmission power losses [21] and cyber defense [23]–[25].
Similarly, grid operators also perform transmission switching
and topology control to ensure economic and reliable system
operations [19], [20].

Active topology control poses significant challenges in the
use of DNNs for OPF prediction. A DNN trained under a
specific system configuration might not be able to provide
correct OPF outputs under a different system configuration.
This is because the mapping between the load inputs and the
OPF outputs will change due to the changes in the system
topology. Indeed, our results show that DNNs trained on a
specific topology have a poor generalization performance
when the system topology changes. Complete retraining with
the new system configurationwill require significant amounts
of training data and time, thus negating the computational
speed-up achieved by DNN prediction.

To address these shortcomings, we propose a novel
approach in which we train the DNN-based OPF predictor
using ameta-learning (MTL) approach. Themain idea behind
MTL is to a find good initialization point that enables fast
retraining for different system configurations. Specifically,
we use the so-called model-agnostic MTL approach [26],
which finds the initialization point in such a way that a few
gradient steps with a few training samples from any system
configuration will lead to good prediction performance. This
is accomplished by appropriately tuning the loss function of
the offline training phase (that finds the initialization point),
such that the ML model (DNN in our case) learns internal
features that are broadly applicable to the different tasks
at hand (i.e., OPF prediction for different variants of the
power grid topology), rather than a specific task [26]. Then
during the online training phase, these features can be fine
tuned to achieve good OPF prediction performance using a
few data samples from that topology. Thus the method is
well suited to predict OPF solution under planned topology
re-configurations. To the best of our knowledge, this work is
the first to utilize MTL in a power grid context.

We conduct extensive simulations using benchmark IEEE
bus systems. We compare the performance of MTL against
several other approaches. They include (i) ‘‘Learn from
scratch’’: in which, there is no pretraining, i.e., when the
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system is reconfigured, we initialize the DNN weights ran-
domly and train them using theOPF data from the new system
reconfiguration. (ii) ‘‘Learn from a joint training model’’: in
which, during the offline phase, we train a DNNmodel from a
combined dataset consisting of OPF data from several differ-
ent topology configurations. Then during the online phase,
we initialize the weights of the DNN using this model and
fine-tune it using OPF data from the new system configura-
tion. (iii) ‘‘Learn from the closet model’’: in which, during the
offline phase, we train several DNN models separately using
OPF datasets from different topology configurations (i.e., one
DNN for each system configuration). Then, during the online
phase, when the topology is reconfigured, we choose the
model that achieves the best prediction performance on the
new configuration and choose its weight as the initial DNN’s
weights. Theweights are then fine-tuned usingOPF data from
the new configuration.

We verify the efficacy of the proposed approach by sim-
ulations conducted using IEEE bus systems. We generate
the OPF data using the MATPOWER simulator and imple-
ment the ML models using Pytorch. The results show that
the proposed MTL approach can achieve significant training
speed-ups and achieve high accuracy in predicting the OPF
outputs. For instance, for the IEEE-118 bus system, MTL can
achieve greater than 99%OPF generation prediction accuracy
for a new system configuration with less than 10 gradient
updates and 50 training samples. Furthermore, MTL can
achieve a much higher prediction accuracy as compared to
complete retraining (i.e., training from scratch), especially in
the limited data regime (i.e., when the number of training data
samples from a new system configuration are limited). MTL
also outperforms the other two pretraining methods in terms
of the OPF prediction accuracy and takes significantly less
time/storage in the pretraining phase. Thus the method is well
suited to predict the OPF solution under planned topology
reconfigurations.

We summarize our main contributions in the following:
• To address the shortcoming of existing works that
train DNNs under a fixed topology setting and require
complete retraining following topology reconfiguration,
we propose an MTL approach for computing the OPF
solution. Specifically, the MTL approach finds a good
initialization point during offline training that enables
fast retraining for different system configurations.

• We compare the performance of the MTL approach
against several other pretraining methods that are
designed to compute the OPF solution following topol-
ogy reconfigurations. To this end, we perform OPF
computation considering several benchmark IEEE bus
systems.

• Using simulation results, we quantify the performance
gain of the MTL approach as compared to other pre-
training methods in terms of the OPF prediction accu-
racy, feasibility, and computational speed. Our results
show that MTL outperforms other pretraining methods
on all these metrics, making it suitable for computing

OPF under real-world settings that include topology
reconfigurations.

The rest of this paper is organized as follows. Section II
introduces the power grid model, OPF problem and DNN
approach. Section III details the proposed MTL method.
Section IV presents the simulation setting. Section V anal-
yses the simulation results and prove the effectiveness of
MTL over other pretraining methods. The conclusions are
presented in Section VI. Some additional simulation results
are included in Appendix.

II. PRELIMINARIES
A. POWER GRID MODEL
We consider a power grid with N = {0, 1, . . . ,N − 1}
buses, where N is the total number of the buses and N ≥ 2.
Without the loss of generality, we assume bus 0 to be the slack
bus whose voltage is set to 1.06 0 pu. A subset of the buses
G ⊆ N are equipped with generators. Since the interest of
this paper is grid topology reconfigurations, we consider M
different grid topologies, where each topology differs with
respect to the bus-branch connectivity and transmission line
impedances. We assume that the nodes of the power grid
always remain connected (among all the considered topolo-
gies). We let L(m)

= {1, . . . ,L(m)} denote the set of transmis-
sion lines under topology m ∈ {1, 2, . . . ,M}. Further, we let
Y(m)
= G(m)

+ jB(m) denote the bus admittance matrix under
topology m, where G(m) and B(m) denote conductance and
susceptance respectively [27].

Under topology m, let P(m)Gi (P(m)Di ) and Q
(m)
Gi (Q(m)

Di ) denote
the active and reactive power generations (demands) at node
i ∈ N respectively. The complex voltage at node i ∈ N under
topology m is denoted by V (m)

i = |V (m)
i |
6 θ

(m)
i , where |V (m)

i |

is the voltage magnitude and θ (m)i is the voltage phase angle.
According to the AC power flow model, these quantities are
related as

P(m)Gi − P
(m)
Di = |V

(m)
i |

∑
j∈N

V (m)
j (G(m)

i,j cos(θ
(m)
i,j )

+B(m)i,j sin(θ
(m)
i,j )), (1)

Q(m)
Gi − Q

(m)
Di = |V

(m)
i |

∑
j∈N

V (m)
j (G(m)

i,j sin(θ
(m)
i,j )

−B(m)i,j cos(θ
(m)
i,j )), (2)

where θ (m)i,j = θ
(m)
i − θ

(m)
j .

Optimal Power Flow Problem: The OPF problem com-
putes the minimum cost generation dispatch for a given
load condition constrained to the power flow equations and
power generation/voltage constraints. Mathematically, the
OPF problem can be stated as follows:

min
P(m)G ,

Q(m)
G ,V (m)

∑
i∈G

Ci(P
(m)
Gi ) (3)

s.t. (1), (2),

Pmin
Gi ≤ P

(m)
Gi ≤ P

max
Gi , ∀i ∈ G (4)
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FIGURE 1. The online operation framework of DNN based OPF
predictor.

Qmin
Gi ≤ Q

(m)
Gi ≤ Q

max
Gi , ∀i ∈ G (5)

Vmin
i ≤ V (m)

i ≤ Vmax
i , ∀i ∈ N , (6)

where Ci(·) is the generation cost at bus i ∈ G. Further,
Pmax
Gi (Pmin

Gi ), Q
max
Gi (Qmin

Gi ) and V
max
i (Vmin

i ) denote the max-
imum (minimum) real/reactive power generations and nodal
voltage limits at node i respectively.

B. DNN APPROACH FOR THE OPF PROBLEM
We now summarize the approaches proposed by existing
works that use DNNs for the OPF problem [2], [3]. Fig. 1
shows an illustration of the overall methodology. The goal of
the DNN is to approximate the non-linear mapping between

the system load and the OPF solution. Let h(x(m)k ,w) denote
a parametric function, specifically a DNN under topology
m, in our case, that takes the system load as inputs and
produces the OPF outputs. Herein, w denotes the parameters
of the DNN. Further, let Tm = {x(m)k , y(m)k }

Km
k=1 denote the

input-output pair for the OPF problem under configuration
m. Herein, Km denotes the number of training samples and
subscript k denotes the training sample’s index. For the AC
OPF problem, the inputs correspond to the real and reactive
power demand at each nodes, i.e., x(m)k = [p(m)D,k ;q

(m)
D,k ], where

p(m)D,k and q
(m)
D,k are the vector of real/ reactive power demands,

i.e., p(m)D,k = [P(m)Di,k ]i∈N (and q(m)D,k follows a similar defini-
tion). The output corresponds to the real power generation
dispatch and the generation voltages, i.e., y(m)k = [p(m)G,k ; v

(m)
G,k ]

obtained by solving the AC OPF problem. Herein, p(m)G,k =

[P(m)Gi,k ]i∈G\{0} consists of a vector of power generation at all
buses except the slack bus (note that the generation at the
slack bus can be determined by solving the AC power flow
problem with the other generations specified) and v(m)G,k =

[V (m)
i,k ]i∈G . The parameters of the DNN under topology m are

trained to minimize the objective function given by

JTm (w) =
1
Km

Km∑
k=1

||y(m)k − h(x(m)k ,w)||2. (7)

This objective function is the mean square error between
DNN’s predicted value h(x(m)k ,w) and the corresponding real
value y(m)k generated by a traditional OPF solver. Follow-
ing offline training, the DNN is deployed online to predict

the generation outputs for given load inputs. We note that
once [p(m)G,k ; v

(m)
G,k ] are predicted by a trained DNN, the other

system parameters (such as the nodal voltages/power injec-
tions, etc. at the non-generator buses) can be recovered by
solving AC power flow problem as shown in Fig. 1. Note
that solving the AC power flow problem is computationally
extremely fast as compared to solving the AC OPF problem,
and hence, adds only a small computational overhead on the
DNN approach [3].
Drawbacks of Existing Work: The main drawback of exist-

ing works is that the DNN predictions remain effective
only as long as the topology of the system remains fixed.
As noted before, topology reconfigurations are increasingly
being adopted in power grids to ensure the economic oper-
ation and reliability [19]–[21]. While it is certainly possible
to retrain the model when the system topology is changed,
retraining from scratch will require significant amounts of
training data and time. Alternatively, the system operator
can train separate DNNs for each system configuration. But
this would require a significant amount of computational
resources. Moreover, the operator must know all possible
topology reconfigurations beforehand, which is not possible,
since unforeseen contingencies may arise during power sys-
tem operations.

III. A META LEARNING APPROACH FOR THE OPF
PROBLEM UNDER TOPOLOGY RECONFIGURATION
To overcome these challenges, in this work, we seek to build
anMLmodel for the OPF problem that can be rapidly adapted
to a new system configuration. MTL is ideally suited to tackle
this problem [26]. MTL is a training methodology that is
suited to learn a series of related tasks; when presented with
a new and related task, MTL can quickly learn this task
from a small amount of training data samples. MTL algo-
rithm consists of two phases, an offline training phase (also
called the meta-training phase) and an online training phase
(adaptation for the new task). During the offline training
phase, MTL finds a set of a good initialization parameters
for the series of related tasks. During the online phase, MTL
uses the initialization parameter to quickly adapt the model
parameters to a new task using a few gradient updates with a
few training samples.

A. MTL DESCRIPTION
We now present the details of the proposed MTL approach.
As noted in Section I, we consider M different grid topolo-
gies. Assume that during the offline training phase, the system
operator has access to OPF training data samples fromM∗ <
M topologies. We denote the offline training data set by
Toffline training phase = {T1, T2, . . . , TM∗}. During the offline
training phase, MTL uses Toffline training phase to find a set of
parameters wMTL that minimizes the loss function given by

JMTL =

M∗∑
m=1

JTm (w−∇JTm (w)), (8)
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where JTm is defined in (7). The objective function JMTL is the
sum of MSE loss for all the topologies in Toffline training phase
following a single-step gradient descent. The MTL param-
eters are given by wMTL = argminw JMTL. As evident
from (8), MTL aims to find an initialization point wMTL
from which a single gradient update on each topology in
{1, 2, . . . ,M∗} yields minimal loss on that topology. Since
the OPF prediction task under different topologies are related,
if we succeed to find a good initialization point for the tasks
in {1, 2, . . . ,M∗}, we can expect this point to be a good ini-
tialization point for any topology. Reference [26] proposed a
gradient based method to solve the optimization problem (8),
which we summarize in Algorithm 1.

Algorithm 1 Offline Training for MTL
Input: Training dataset Toffline training phase, Step sizes α,β
Output: wMTL: Optimal meta parameter

1: Randomly initialize wMTL
2: while not done do
3: Sample batch of tasks Tm ∈ Toffline training phase
4: for all Tm do
5: Evaluate ∇JTm (wMTL) using Tm
6: Compute adapted task model parameters with gra-

dient descent: w′m = wMTL − β∇JTm (wMTL)
7: end for
8: Update wMTL← wMTL − α∇

∑M
m=1 JTm (w

′
m)

9: end while
10: Return wMTL

In Algorithm 1, wMTL are the meta-weights (i.e., the ini-
tialization weights) for the related tasks, and w′m are the task-
specific weights for the training topology m (obtained from
a single gradient update on wMTL). The notation ∇JTm (w)
denotes the gradient of the loss function (defined in (7)
computed using the dataset Tm) with respect and weights w.
Finally α and β denote the step sizes for the gradient updates.
During the online training process, assume that the system

operator changes the power system topology to a new config-
uration that does not belong to the dataset in offline training
phase. Let T (new) /∈ Toffline training phase denote the training
dataset from the new system configuration. Note that T (new)

may consist of only a few data points K(new) as compared to
the offline training data. The objective function of the online
training is given by

JT (new) (w) =
1

K(new)

K(new)∑
k=1

||y(new)k − h(x(new)k ,w)||2. (9)

MTL finds the task-specific parameters for this new topology
by performing gradient update, which starts from the optimal
initialization point wMTL obtained in offline training phase.

wnew = wMTL − γ∇JT (new) (w).

The overall procedure for OPF using the MTL approach is
presented in Algorithm 2.

FIGURE 2. Schematic diagram of MTL implementation for OPF.

Algorithm 2MTL Procedure

Input: wMTL, T (new), γ
Output: wnew: Adapted parameters for new configuration

1: while system in operation do
2: Change system to new configuration
3: Obtain training samples from the dataset of new con-

figuration T (new)

4: Compute the adapted parameters with gradient
descent: wnew = wMTL − γ∇JT (new)(w)

5: end while

B. IMPLEMENTATION
A schematic diagram illustrating the proposed MTL imple-
mentation is shown in Fig. 2. In the offline phase, the system
operator uses a power grid simulator to generate the training
data set Toffline training phase. The data is subsequently used to
train a DNN as in Algorithm 1. During real-time operation,
assume that the system operator plans a topology reconfigu-
ration. During the online training phase, the system operator
takes the new system configuration as input to a power grid
simulator and generates a few new data samples for the online
training phase. Then, the new samples are used to quickly
fine-tune the machine learning model as in Algorithm 2.
Following retraining, the new model can be used to predict
the generator outputs. The online training procedure must be
repeated once the system topology is changed.

C. ENSURING FEASIBILITY
The OPF solution predicted by the DNN is feasible when it
satisfies the active power generation/ nodal voltage limits,
which are specified in (4), (5), (6). In order to ensure the
feasibility of DNN proposed solution, we take the following
approach proposed in [3], [15]. First, we perform a linear
transformation for the active power generation/ nodal voltage
magnitudes as follows:

PGi (ρi)= ρi(P
max
Gi −P

min
Gi )+P

min
Gi , ρi ∈ [0, 1], i ∈ G \ {0},

(10)
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Vi(σi)= σi(Vmax
i −Vmin

i )+Vmin
i , σi∈ [0, 1], i ∈ G.

(11)

Note that once we make these transformations, we must have
0 ≤ PGi (ρi) ≤ 1, 0 ≤ Vi(σi) ≤ 1. Then, we use the
DNN to predict these scaled versions of real power gener-
ation and voltages (PGi (ρi), Vi(σi)), rather than predicting
PGi and Vi directly. To this end, at the output layer of the
DNN, we use the sigmoid activation function. Recall that the
sigmoid function always outputs a number within the range
of [0, 1]. Thus, we can guarantee that the prediction of the
scaled versions PGi (ρi) and Vi(σi) predicted by the DNN lie
between [0, 1], and consequently, the predictions of PGi and
Vi will lie between their upper and lower limits. Note that
without the scaling and the use of the sigmoid function, the
DNN prediction cannot be guaranteed to output a feasible
solution (i.e., one that lies in between the permissible upper
and lower limits).

While the aforementioned transformation ensures the fea-
sibility of the variables directly predicted by the DNN,
i.e., PGi , i ∈ G \ {0} and Vi, i ∈ G, it does not ensure that
feasibility of all the system variables – specifically, those
recovered by solving the AC power flow problem (recall
Fig. 1). For this reason, we calibrate the voltage constraints
while generating the training dataset to avoid such viola-
tions [3]. Specifically, in topologymwe calibrate the voltage
constraints as

Vmin
i − λ ≤ V (m)

i ≤ Vmax
i + λ, ∀i ∈ N , (12)

where λ is a calibration parameter that is set to a small value.
This calibration ensures that the DNN is trained to predict
voltage magnitudes that lie strictly in the interior of feasible
region, and hence mitigates the infeasibility caused by the
approximation errors of theDNN. Finally, one can also ensure
the feasbility of reactive power generations using a similar
procedure. We omit and details here and refer the reader
to [3].

IV. SIMULATIONS
In this section, we verify the effectiveness of the proposed
MTL approach using simulations and present the results.

A. ALGORITHMS AND METRICS
Under MTL, the offline and online training are performed
according to Algorithm 1 and 2.We compare the performance
of MTL against three other training methods, namely, ‘‘learn
from scratch’’ and ‘‘learn from a joint training model’’ and
‘‘learn from closet model’’.
• In ‘‘Learn from scratch’’, there is no pretraining. During
the online phase, following topology reconfiguration,
a DNN’s weights are intialized to random values, and
trained using the OPF dataset from the new topology.

• The ‘‘Learn from joint training model’’ is described in
Algorithm 3. During the offline training phase, a DNN
is trained using the dataset Toffline training phase, which
combines the training data from topologies 1, . . . ,M∗.

During the online phase, following topology reconfigu-
ration, the DNN’s weights are fine-tuned (from the pre-
trained values) using OPF data from the new topology,
similar to the MTL online training phase.

• The ‘‘learn from closet model’’ is described in
Algorithms 5 and 6. During the offline training phase,
we train a separate DNN for each topology 1, . . . ,M∗.
During the online phase, we choose the DNN that
achieves the best prediction performance on the new
topology at hand (step 4 of Algorithm 6). Then, we fine-
tune its weights using OPF data from the new topology.

We henceforth refer to ‘‘Learn from joint training model’’
and ‘‘Learn from the closest model’’ as ‘‘Pretrain1’’ and
‘‘Pretrain2’’ respectively.

Algorithm 3 Offline Training for pretrain1
Input: Toffline training phase, α

Output: wpretrain1: The initial parameters (model) that
developed based on joint training

1: while not done do
2: Update w← w− α∇JToffline training phase(w)
3: end while

Algorithm 4 Offline Training for pretrain2
Input: Toffline training phase, α

Output: Wpretrain2 = {w1,w2, . . . ,wM∗}: The set of
parameters (model) for each task in offline training phase
Toffline training phase

1: for all T (m)
∈ Toffline training phase do

2: while not done do
3: Update wm← wm − α∇JTm (wm)
4: end while

Wpretrain2
append
⇐ wm

5: end for

Algorithm 5 Online Training for pretrain2

Input:Wpretrain2, T (new),γ
Output: wnew: Adapted parameters for new configuration

1: while system in operation do
2: Change system to new configuration
3: Obtain training samples from the dataset of new con-

figuration T (new)

4: Find the model that performs best on new task:wbest =

argminm JT (new)(wm)
5: Compute the adapted parameters with gradient

descent: wnew = wbest − γ∇JT (new)(w)
6: end while

The online operation framework of the two-step DNN
based OPF solver is presented in Fig 1 (used for the testing
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data). In the first step, given the active and reactive power
demand at the load buses, the trained DNN predicts the active
power generations (except that on the slack bus) and the volt-
age magnitudes at the generator buses. Then, all other system
state parameters (e.g. PG0 ,QG,VL , θ and branch power flow
pf ) can be reconstructed by solving simple AC power flow
equations.

The performance of the DNN based OPF solver is assessed
by three metrics. The first metric η1 is the DNN validation
loss, which is defined in (7). The second metric η2 is the
accuracy of the state parameters, defined in (13), where
2|G|−1 is the dimension of DNN output, ŷ(m)k,d is the predicted
state parameter and y(m)k,d is the corresponding real value. The
total generation cost is defined as cost =

∑
i∈G Ci(P

(m)
Gi ), and

introduced in (3). The third metric η3 is defined in (14), where
ˆcost (m)k is the predicted total generation cost and cost (m)k is the

corresponding real value.

η2 = 1−
1

K (m)

K (m)∑
k=1

1
2|G| − 1

2|G|−1∑
d=1

∣∣∣ ŷ(m)k,d − y
(m)
k,d

y(m)k,d

∣∣∣, (13)

η3 = 1−
1

K (m)

K (m)∑
k=1

∣∣∣ ˆcost (m)k − cost
(m)
k

cost (m)k

∣∣∣, (14)

B. DATA CREATION AND DNN SETTINGS
The power system models are based on MATPOWER’s
test cases [28]. The training and testing data are generated
using MATPOWER’s AC OPF solver (specifically, we use
MATPOWER’s interior point solver). We test the algorithms
using the IEEE-14, 30 and 118 bus systems. During the data
generation phase, we create different power grid topologies
by randomly disconnecting a subset of transmission lines
(e.g., each line is disconnected with a probability of 0.01)
and adding a random perturbation to the line reactance values
(subject to a maximum and minimum reactance limit). Some
of these topologies may not produce a feasible OPF solution,
e.g., if too many transmission lines are disconnected at once,
there may not be a feasible solution to the OPF problem
that can satisfy the load demand in that topology. Thus,
we exclude those topologies from the dataset, since a grid
operator will not change the system to those configurations
(thus, they dont represent real-world topologies). We keep
generating different topologies in the aforementionedmanner
until we can find sufficient number of ones that have resulted
in a feasible OPF solution. For instance, in the 118−bus
system, we generated 100 topologies with a feasible OPF
solution.

For each bus system, M = 100 different grid topologies
are generated. For each topology, we create a set of 1000 data
points, where each data point corresponds to a different load
value obtained by adding a random load perturbation to the
base values (that are obtained by the MATPOWER simula-
tor). The maximum load perturbation is restricted to 70%
of the original values. We consider the quadratic OPF cost,
and use the default generation cost values in MATPOWER.

TABLE 1. The neural network setting for each test case.

Changes to the system topology will lead to changes in the
power flows, leading to a different OPF solution. In our
simulations, we allocateM∗ = 70 tasks to the offline training
phase, and the rest 30 tasks (denoted as new tasks) to the
online training phase.

We implement the neural network model and the MTL
training based on PyTorch framework. We use the ReLu
activation function at the hidden layers, and the sigmoid
activation function at the output layer. The size of the input
and output layers are chosen to be consistent with the size
of the dataset. In our case, the input to the DNN is a vector
containing the active and reactive power demand at the load
buses. For instance, in the IEEE-118 bus system, the size
of the input vector is 198 (corresponding to the active and
reactive power demands of the 99 load buses), and the size
of the output vector is 107 (corresponding to the 2|G| − 1
generator buses). Thus, the number of neurons at the input
and output layers are 198 and 107 respectively. For the hidden
layers, we vary the number of neurons proportional to the
size of the input/output layers. In Table 2, we present the
prediction accuracy (η2) for different number of neurons in
the hidden layers considering the IEEE-118 bus system. The
setting labelled ‘‘Ref’’ provides the highest accuracy, which
is the DNN setting we use in the rest of the paper. Similarly,
for each test system, we vary the size of the hidden layers
and choose the setting that gives the best accuracy results.
The settings for each layer under different bus systems used
in our simulations are enlisted in Table 1.

In the offline training process, for each pretraining method,
we use the ‘‘Adam’’ optimizer with a learning rate of
0.001 and use 1000 training epochs. The L2 regularization
is applied to prevent over-fitting, and weight decay is 0.001.
For the online training phase, unless specified otherwise,
we use 50 training samples during for fine-tuning the weights.
Further, we use the stochastic gradient descent (SGD) opti-
mizier with a learning rate is 0.1, and the weight decay
is 0.001.

V. SIMULATION RESULTS
The simulation results are presented in Fig. 4,8,9 and
Tables 3, 4. For brevity, we only present the results from the
IEEE 118 bus system in Fig. 4. The results from the IEEE-14
and 30 bus systems are relegated to the Appendix. The results
in all the bus systems follow a similar trend.
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TABLE 2. Prediction performance with different neurons in the
hidden layers. This is an example based on IEEE-118 bus
system.

FIGURE 3. Comparison of real and predicted state parameters in
IEEE-30 bus system.

A. COMPARISON OF ACCURACY, FEASIBILITY AND
COMPUTATIONAL SPEED DURING ONLINE TRAINING
Fig. 4 and Table 3 present the accuracy results based on the
different metrics defined in Section IV. It can be observed
that MTL achieves a very high prediction accuracy of over
97% (η2) and over 99% (η3) with less than 10 training epochs.
This shows that MTL can rapidly adapt to the new system
configuration starting from the initialization point wMTL. In
contrast, training from scratch from a random initialization
takes a significantly greater number of gradient updates. For
the purpose of illustration, we choose one particular system
topology from the testing phase and present the results of the
true value and the prediction of PGi and Vi in Fig. 3 for the
IEEE-30 bus system, in which we can observe a close match
between the two quantities.

Furthermore, MTL also achieves the highest accuracy as
compared to the other pretraining methods (Pretrain 1 and 2)
and lower loss. More importantly, we also observe that online
training with a very number of data samples (i.e., 50 OPF

TABLE 3. The online training performance of each pretrain
method.

TABLE 4. Feasibility rate after 100 epochs for each method and
test case.

data samples from the new topology in our case) does not
significantly improve the performance of other pretraining
methods as observed in Table 3 (sometimes, we also observed
that for other pretraining methods, online training with only
a few data samples may result in worse performance due to
over-fitting). Thus, with the other pretraining methods, the
accuracy is limited to the performance achieved during the
offline training phase.

From Fig. 4 and Table 3, we observe that for MTL,
most of the performance improvement occurs within the
first few epochs. Thus, MTL is suitable for online train-
ing with a very few data samples and a very few training
epochs.

We also present the results for feasibility of the predicted
OPF solution in Table 4. The feasibility rate is calculated
as fr = nf

nt
, where nf denotes the number of testing sam-

ple that achieves feasible solution, and nt denotes the total
number of testing samples. The results show that the adjust-
ments made to the training process proposed in Section II
is able to ensure that MTL achieves very high feasibility
rate.
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FIGURE 4. Visualization of online training progress based on 50 training samples from the new task. Comparison of MTL with other
benchmarks using the different metrics for IEEE-118 bus system.

TABLE 5. Computational time for the pretraining methods during
the offline training phase.

FIGURE 5. MTL/ Learn from scratch, online training performance
under different learning rates γ .

B. COMPUTATIONAL TIME FOR THE OFFLINE TRAINING
PHASE

Besides the advantages of MTL in terms of accuracy,
another advantage is its ability to quickly produce an an
initialization model (i.e., the offline training). In Table 5,
we enlist the time required to produce the intialization model
of MTL and other pretraining methods for different bus sys-
tems. It can be observed that MTL takes significantly less
time than the other pretraining methods. Moreover, as com-
pared to the Pretrain2method, which requires a separate DNN
to be trained and stored for each power grid topology, MTL
requires a single DNN model to be stored. Thus, MTL also
significantly reduces the storage burden in comparison to the
Pretrain2 method.

C. MTL PERFORMANCE FOR DIFFERENT
OFFLINE/ONLINE TRAINING PARAMETERS

We investigate the performance ofMTL as a function of the
online/offline training parameters. To this end, first, we test
the online training performance of MTL/ learn from scratch
under different learning rates γ . The result of the IEEE-118
bus system is presented in Fig. 5. Increasing the learning
rate γ can accelerate the speed of online training. However,
it is not desirable to set a very high learning rate since it
may risk oscillations around the minimum (as in gradient
update algorithms). For instance, in the result presented in
Fig 5, we observe that the learning speed and the accu-
racy of MTL is enhanced as we increase γ from 0.001 to
0.1. However, when γ is increased beyond this value (for
instance γ = 0.2), the accuracy of the online learning starts
to decrease. For each test system, we similarly determine
the optimal learning rate by gradually adjusting the value
of γ .

Secondly, we investigate the prediction accuracy (mea-
sured according to the metric η2) as a function of the number
of training samples used in the online training progress and
present the results in Fig. 6. We observe that MTL achieves
good accuracy by fine-tuning with only 50 − 100 online
training samples. Increasing the number of online training
samples to 700 achieves a negligible improvement in the
accuracy. This implies that MTL is good for fine tuning with
a very few number of data samples, making it particularly
attractive for online training. Note that despite using only a
few data samples for during the online ‘‘training’’ process of
MTL, we have provided significant number of data samples
during the ‘‘testing’’ phase to ensure sufficient averaging and
that the results we present are unbiased. For instance, the
result in Fig. 6 is computed based on 300 data samples during
the testing phase.

Thirdly, we investigate the MTL prediction accuracy as
a function of the number of topologies used in the offline
training phase Toffline training phase. The results plotted in Fig. 7
indicate that the prediction accuracy goes down when the
number of topologies used in the offline training process is
reduced. This indicates that a sufficient number of toplogies
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TABLE 6. The online training performance base on operation time.

FIGURE 6. Test case under IEEE-118 bus system, the online
training performance of MTL based on {1, 10, 20, 50, 100, 700}
samples with 70 tasks in offline training phase. The assessment
is based on η2: accuracy of state parameter. Each model is
updated according to ’SGD’ optimization.The learning rate is
0.1 and weight decay is 0.001.

are required in the offline training phase to develop an effi-
cient MTL model.

D. COMPUTATIONAL GAIN COMPARED TO THE
TRADITIONAL OPF SOLVER
We further test the computational time forMTL’s online train-
ing and prediction time (following the retraining) and com-
pare it with the traditional MATPOWER-based OPF solver
in Table 6. We summarize the observations in the following.

1) ONLINE TRAINING TIME
It can be observed fromTable 6 that under theMTL approach,
the DNN can be retrained quickly to achieve high predic-
tion accuracy. In particular, recall that MTL’s online training
achieves a very high prediction accuracy within 10 retraining
epochs. For the IEEE-118 bus system, the computation time

FIGURE 7. Test case under IEEE-118 bus system, with
{5,20,45,70} tasks in offline training phase and training based
on 50 samples from new task. The assessment is based on η2:
accuracy of state parameter. Each model is updated according
to ‘SGD’ optimization.The learning rate is 0.1 and weight decay
is 0.001.

for the online training (corresponding to 10 epochs) is only
1.2 seconds. Thus, theMTL approachwill be scalable to large
OPF systems.

2) ONLINE PREDICTION TIME
The online prediction phase consists of two steps: (1) DNN
prediction (2) post-processing to ensure feasibility (as illus-
trated in Fig. 1 of the paper). We present the computational
time for both these operations in Table 6. We compare it
with the time required by the traditional MATPOWER-based
OPF solver. The results show that the proposed approach can
provide significant speed up in comparison to the traditional
solver. For instance, for the IEEE-118 bus system, we can
achieve a speed-up of 19 times (for every computation of
the OPF).

Finally, note that the online training operation is an addi-
tional computation burden incurred under the MTL approach
(that is not required by the traditional OPF solver). For the
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FIGURE 8. Visualization of online training progress based on 50 training samples from the new task. Comparison of MTL with other
benchmarks using the different metrics for IEEE-14 bus system. Learning rate = 0.001, Weight decay = 0.001.

FIGURE 9. Visualization of online training progress based on 50 training samples from the new task. Comparison of MTL with other
benchmarks using the different metrics for IEEE-30 bus system. Learning rate = 0.01, Weight decay = 0.001.

IEEE-118 bus system, we observe that the online training
time (≈ 1.2 s) for MTL is approximately 23 times that of
traditional OPF solver (≈ 52 ms). From this observation,
we can conclude that MTL will be useful for a power system
operator if the system topology remains unchanged for at-
least 23 OPF computations. If the system topology is changed
faster than this rate, then the computational burden of MTL is
greater than that of using the traditional OPF solver. However,
in most practical systems, this is reasonable, since changes
in the load/renewable energy fluctuations occur at a much
faster rate compared to the rate of topology reconfigurations.
Thus, MTL is suitable in practical power system operation
scenarios.

VI. CONCLUSION
In this work, we have proposed a DNN based approach to the
OPF problem that is trained using a novel MTL approach.
The proposed approach is particularly relevant for comput-
ing OPF generation dispatch decisions under power grid
topology reconfigurations. The MTL approach finds good
initialization points from which the DNNs can be quickly
trained to produce accurate predictions for different system
configurations. Simulation results show that the proposed
approach can significantly enhance the training speed and
achieve better prediction accuracy as well as feasible results
compared to several other pretraining methods. To the best
of our knowledge, this work is the first to adopt an MTL
approach in a power grid context.

APPENDIX: SIMULATION RESULTS FOR IEEE-14
AND 30 BUS SYSTEMS
See Figs. 8 and 9.
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