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~ Abstract—A problem of distributed state estimation at mul- (measurements at the other agent) aware Wyner-Ziv encoding
tiple agents that are physically connected and have compétie [2] at each agent achieves both the minimal rate and the

interests is mapped to a distributed source coding problem h  inimga) |eakage for every choice of fidelity (quantified via
additional privacy constraints. The agents interact to estmate . )
mean-squared distortion).

their own states to a desired fidelity from their (sensor) mesaure- . o ) .
ments which are functions of both the local state and the stas at ~ Even without additional privacy constraints, the probleim o
the other agents. For a Gaussian state and measurement mogdel determining the set of all rate-distortion tuples in a madfent
it is shown that the sum-rate achieved by a distributed proteol network is related to the distributed source coding problem
in which the agents broadcast to one another is a lower bound™ 131 r4] which remains open. Furthermore, for a relatively
that of a centralized protocol in which the agents broadcasss if - . . . :
to a virtual CEO converging only in the limit of a large number simpler setting obtained _by assuming th_at a central gntlty,
of agents. The sufficiency of encoding using local measurents  Often referred to as a chief executive officer (CEO), wishes
is also proved for both protocols. to estimate the statek,, for all k, from the transmissions of
all agents, we obtain a multi-variate (vector) Gaussian CEO
problem which also remains open except for specific cases [5]
We consider a network of{ distributed agents in which Circumventing these Cha”engesy we focus on the rate-
each agent observes sensor measurements from a diswi%rtion-leakage behavior in the limit of largk for a
part of a large interconnected physical network. Exampfes @istributed protocoin which each agent encodes its measure-
such networks include cyber-physical systems, specifita ments taking into account the prior broadcasts of the other
smart grid, in which an agent can be viewed as a regiongjents (henceforth referred tomm®gressive encodings well
operator whose power measurements are affected by thosggthe side-information at the other agents. We compare the
other agents due to the physical grid connectivity. Age&  performance of this protocol with aentralized protocoin
interested in estimating the state (defined as a set of syst@fich the agents broadcast their encoded messages as if to
parameters; for e.g., voltages and phases in the electdy g virtual CEO. We consider a noisy Gaussian measurement
of its local network from its measurements,, which are a model at each agent with the same level of interference from
function of both the local stat&, and the states(;, | # k, the states of the other agents. For this symmetric model, our
I,k €{1,2,..., K} of other agents in the network where thgesults demonstrate that the sum-rate achieved by ditdbu
statesX, are assumed to be independent of each other.  protocol outperforms that for the centralized schemes with
Estimating X, at agentk with high fidelity requires the asymptotic convergence withi. We also prove the sufficiency
agents to interact and share data amongst themselves. Wgflencoding local measurements for both protocols and ptese
the estimate fldellty is crucial to the control decisions ma(buter bounds for the per user rate and |eakage_
by the agents, in many distributed systems, for competitiveThe paper is organized as follows. We introduce the model
reasons, the agents wish to keep their state informatioateti snd communication protocols in Sectioh II. In Section 11l we
This leads to a problem @ompetitive privacyvhich captures develop the achievable rate-distortion-leakage tuplesth

the tradeoff between the utility to the agent (estimate figdel protocols as well as outer bounds. We conclude in SeEfion IV.
that can be achieved via cooperation and the resulting gyriva

leakage (quantified via mutual information). Il. PRELIMINARIES
Mapping utility to distortion and privacy to leakage quantiA. Model and Metrics

fied via mutual information, one can abstract the competitiv
privacy problem as a distributed source coding problem wi}
additional leakage constraints. The set of all achievate-r 12 K. is related to the stateX¥. - m —1.2. ... K. at
fidelity-leakage tuples determines the utility-privacgdeoff tf;evage’nts’ as follows: e Ty

region. In [1], we introduced and studied this problem for a
two-agent interactive system with Gaussian states and/ nois

Gaussian measurements. We proved that side-informatiofk.i = X#.i + Z \/EXz,iJrZ;“-, k=1,2,....K, (1)
1=1,1#k

I. INTRODUCTION

We consider a network ok agents such that, at any time
stanti, i = 1,2,...,n, the measurement, ; at agent, k =

K
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(i.i.d.) and are also independent of the i.i.d. noise vaesb Let M, denotes the size of;. The expected distortiop;, at
Zy.i ~ N(0,1). The coefficienth > 0 is assumed to be fixed the k*" agent is given by

for all time and known at all agents. We assume thatittfe . )

agent observes a sequenceroimeasurement¥ = [Yj1 Dy = lE [Z (X,“. _ X,“) }  k=1,2,...K, (5
Yi2 ... Y], forall k, prior to communications. no li=1

Utility: For the continuous Gaussian distributed state an(ij1 . ) )
measurements, a reasonable metric for utility atiteagent | N€ Privacy leakageL, ", about staté: at agent, [ # k, is
is the mean square errdd, between the original and the9'Ven by
estimated state sequenc&g and X,?, respectively.

Privacy. The measurements at each agent in conjunction
with the quantized data shared by the other agents while
enabling accurate estimation also leaks information abwat L 5 :
other agents’ states. We capture this leakage using mut-LIJ-QF communication rate of the" agent is denoted by

information. Ry =n"tlog, My, k=1,2,... K. @)

1
LY = ~I(Xfs T, T YY) forall k£ 1 (6)

B. Communication Protocol Definition 1: The utility-privacy tradeoff region is the set

We assume that each agent broadcasts a function of dfsall (Dl,...,Dk,L§2),...,LgK),...,L%),...,L%{_l)) for
measurementslistributed procotdl to all agents and they do which there exists a coding scheme given By [2)-(4) with pa-
so in a round-robin fashion. We assume that all agents encodmetersn, K, My, Ma, D1+e€,...,D+e, L1+e€,..., L+
in one of the following two ways: iJocal encodingn which ¢) for n sufficiently large such that — 0 asn — oc.
each agent quantizes only its measurements; @ragressive
encodingin which each agent encodes and transmits taking [1l. M AIN RESULTS
into account both its measurements and prior communicstion . - .
from other agents. In both cases, the agents transmit ata r tV_Ve_ use the following proposition, 'em”?"’" and functl_on
that takes into account the correlated measurements aod p Iefmmon in the sequel to compute the achievable distostio
communications of other agents. and rates_._

To better understand the advantage of the above distribute(lj:’ropOSItIOn 1: For (column)TvectorsATandﬁ, let K g4 =
procotol, we also consider the case where the agents brstad€d” 4) = E [(AT_ E [A]):QA —E[A"])] and Kap =
as if communicating with a virtual central operator, say CEG’ [(A-E [4]) (B - b B"])] denote the covariance and
henceforth referred to as theentralized protocol This may Cross-correlation matrices, respectively. The condétiorari-
be viewed as the case in which the computing power at tﬁ@ceE[_vl‘”(%@)] is then given astvar(A|B)] = Kaa —
agents is limited and the CEO shares with each agent fstB K pp KB . . .
received messages (which are then decoded at each agent). Fe8mma 1:For a K x K symmetric Toeplitz matrix whose
either protocol, the encoding can be either local or prazves diagonal entries are all, and off-dmg(o}pﬂ)entnes are dltthe
Let I, € {0,1} and I.,. € {0,1} be random variables determinantisia + (K —1)b) (a —b) -
that denote the choice of protocols and encodings such that Proof: The determinant is obtained by the following two
I, = 1 andI, = 0 for the distributed and centralized protocoloperations: i) add columns &-to column 1, and ii) subtract
respectively, and,,. = 1 and I.,,. = 0 for the progressive fow 1 from each of the remaining rows. u
and local encoding, respectively. Definition 2: For somen, 3 € R, the functionf; (k,c) =

Formally, the encoder at agehtmaps its measurements tox + (k — 2) 8 — (k — 1) ¢ varies overk € [1, K] andc € R*.

an index set7, where
A. Distortion
={1,2,...,Jx}, k=1,2,....K, 2 L
Je = {12, i (2) We assume that each agent has the same distortion con-
is the index set at the!” agent for mapping the measurementraint D. The distortionD at each agent ranges from a mini-

sequence, and the prior communications (progressive encB#/m achieved when it has perfect access to the measurements

ing), via the encodef, k = 1,2, ... K, defined as at all agents to a maximum achieved when it estimates using
i only its own measurements. From the symmetry of the model
Jr 2 V8 X dene - TTiZy Ti — Tk, (3) in @), the minimal (resp. maximal) distortion achieved atte

hth h 4 of the broad ; h agent is the same. LdD,,;, and D, denote the minimal
such that at the end ot t roadcasts, one from each agenty,y maximal distortions, respectively, at each agent. Rer t

. . oy )
the dec9d'”9 functiorty, a,t the &™ agent (or the CEO) is ussian model considered here with minimum mean square
a mapping from the received message sets (both protoc §or (MSE) constraints, we have

and the measurements (the distributed procotol) to thatef t
reconstructed sequence denoted as Dpin = E [var(X1|Y1Ys ... Yk)], and (8)

FotJix.. xTgx (VP -L)— &, k=1,2,...,K. (4) Dinax = E [var(X1[Y1)]. ©)



We now determind),,,;, and D,,..... Let U,? sequences are~generated via an i.i.d distributiorif]gt
for all 4 such thatl;; = Y1, + Q1 and for allk > 1

— 2y _ 2 _ - A Vi , , )
a=EY})=0%(1+h(K—-1)+1, foralll (10a) Oni = Vit 3 La Uit Qs whereay, € R, andQp.: ~
B=EYYy) =o0% (2\/ﬁ+ h(K — 2)) , l#k. (10b) N (0,03) is independent of}; for all k =1,2,..., K, and

i=1,2". ...

Note that £0f large K, a« — h(K—1)o%, and 8 —  The achievable distortioD at agentk as a result of
h(K —=2)ox. _ _ . estimating its state using both its measuremafjtsand the
Computation of Drmax: Expanding (D), we obtain received sequence;’, for all I # k, is such thatD ¢

) 0% [Dmin, Dimax] Where Dy, is achieved wher/;* = 0 for all
Diax = Evar(X1|V1)] = ok ( - j) : (11) jandD = Diin for aé = 0. On the other hand, for the
local encoding scheme, Iéf;, ; = Yy ; + Q. for all k£ and

For largek, _Dmax — 0% ] i, such that agenmt mapsonly its measurement sequences to
Computation of Dy Expanding[(8), we have one among a set af*®x U' sequences chosen to satisfy the
Dunin = E [var(X1|Y1Ya ... Yi)] (12) distortion constraints. . . .
|Ear(X1Ya. . Yi|V1)]] Theorem 1:The setsD of all achievable distortion® for

13) the local and progressive encoding schemes for the digtidbu
Eloar(Vs . Y] 4 prog 9

protocol are the same.
where the simplification in[(13) results from the assumption  proof: For Gaussian codebooks and Gaussian measure-
of jointly Gaussian random variables. Applying Lemida 1, fof,ents and from symmetry of the model, the distortibrat

o1 =0% —ok/a, e =o0% (\/ﬁ . ﬁ/a) 7 (14) each agent is given by

_ 2 _ 2 ~ o~ o~ ~
cs=a—p%/a, andey = B — % /a, (15) D:E[var (X1|Y1U1U2U3...UK)} 17)
we obtain the minimum distortio®,,;, as = E [var (X1|Y1U1UUs ... Uk)] € [Dumin, Dmax] (18)
(5 _ 1) B (YE-8/a)" )
(1-0% /a) where in [1¥) we have used that fact tHdat = U, and

7 (K, B (16)

conditioned ori/y it suffices to condition o/, and similarly
for the remainingUy, k > 2. [ |
) _ 1 2 Computation of D: Using the independence of the quanti-
Remark 1:For K — 00, Dinin = Dinax(1= (1= Vh)?/h). zation noiseQ;, for all k, as well as the independence @f;
B. Distributed Protocol and X, we haveFE [UU;| = E[Y;Y;] = g for all | # k and
27 _ 2 271 __ 2 H H

A general coding strategy for this distributed source cgdirf’ [UR] = E[Y?] + E[Q}] = a+ 0. Thus, D is obtained
problem needs to take into account: a) the order of agdfRt@ manner analogous t°2 the calculation of,s;, with the
broadcasts; b) multiple encoding possibilities at eachnagd€Placement ot; by c; + og,. Thus, we have
depending on whether the received data is used alongwith

local measurements in encoding; c) exploiting the coreelat (K —1) ok (Vh—B/a)’
measurements at other agents in broadcasting just sufficien D=D...|1- (1-0%/a) (19)
data for other agents to achieve their distortions; and dy mu e f (K, ﬁ_Q) +0 '

tiple rounds of interactions. We present a distributed dirgp
scheme with a single round of communication (for simplicity
of analysis) in which the agents broadcast in order (thecgour Rate ComputationWe consider a round-robin protocol in
permutation choice is irrelevant due to the symmetry of thehich agent 1 broadcasts a quantized function of its measure
model). The local and progressive coding schemes differ iments and prior communications at a rate which takes into
including the received data in encoding at each agent, whilecount all the side information at all other agents. Thius, t
the centralized and distributed protocols differ in whethey rate R, required is the maximal of the rates required to each
exploit the correlated measurements at the other agents. agent and is given by

The achievable distortiorD in general depends on the
encoding scheme chosen_. L&Y, anpl Ry, denote the rate_s Ry > I(U1;Y;) — min (1(01;%),---,1(01;3’1()) (20a)
for the local and progessive encoding schemes, respactivel
We first consider the progressive encoding scheme in which = 1(U1;Y1) — I(U1;Y2) = Ry (20b)
each agent broadcasts (to all other agents) a noisy func-
tion of both its measurements and prior communicationshere [20b) follows from the symmetry of the measurement
More precisely, agent maps its measurement and priomodel, the fact thal/; = U, and R; is the minimal rate
communication sequences to one among a se"&F U,? required at agent 1 for the local scheme. Next, agent 2
sequences chosen to satisfy the distortion constraints. Tdnalogously broadcasts a function of its measurements at a



rate R, given by

RQ > I(UQ,}/QUH) — min I(UQ,HUH) (21a)
1e{1,... K },1#2

= I(Uy; Ya|Uy) — i (U1 |U 21b

(Uz; Ya|Un) T (Ua; Y1|Ur)  (21b)

where [2Ik) follows fromh(Us|YiU1) — h(Us|YaU))
h(Us2|Y1) — h(U2]Y2) since Us — Yo — Uy form a Markov

chain and due to the symmetry of the model. It can be verifi

easily that the bound if_(ZlLc) is the minimal rake for the

where [25b) is obtained from[(25a) by determining
|E [var (Ug|Y1)]| where Uy, = [Us Us ... Ug]" de-
notes a column vector of length’k —1). By expanding
E [var (Ug_,|Y1)] using Propositiofi]1, one can verify that
|E [var (U x|Y1)]| simplifies to finding the determinant of the
(K —1) x (K —1) Toeplitz matrix with diagonal and off
diagonal entriesy+oé — %2 andg — %2, respectively, which

from Lemma[l is given by, (K, 5% /) (a 403 — 8)K 2.

&Qpe can similarly show tha [var (U1|Y2)] = a+0g -2/

In the limit of K — oo, (K —2)8— (K —1)Z — 0,

[e3

local encoding scheme. One can similarly show that the rate— 3/ — h, a — 8 — h, and therefore, the second and

at which agent 3 broadcasts is

Rg > I(Ug;}/gﬁlﬁg) — I(Ug;ylﬁlﬁg) (223)

min
le{1,...,K},1#3
ZI(U3,1/3) —I(U3;Y1U2) :Rg (22b)

where we have used the fact tHat — Y3 — U U andU; —

Y, — Us form Markov chains. Generalizing we have, for all

k>1,

Ry =Ry > I(Us;Ya) = I(Us iUy ... Ur—1),  (233)

third log terms in[(25b) scale dsg (K). Thus, in the limit,
the per agent rat® = RDist /K is given by

sum

+ 03—
lim R = %1og (W) . (26)

K—o0 UQ

C. Distributed vs. Centralized

We now compare the distributed protocol to a centralized
protocol in which each agent broadcasts at a rate intended
for a (virtual) CEO, and thus, is oblivious of the correlated

where the bound i {23a) is the minimal rate at which agemeasurements at the other agents. Here again, the agents

k is required to broadcast when it only encodégs.

Calculation of LeakageFor the proposed progressive en~

can use a progressive encoding scheme analogously to the
distributed protocol. As in the distributed protocol, héoe

coding, the leakage of the state of agérdt any other agent one can show that a local encoding scheme suffices, in which

j # k, for all suchk, j, is bounded as

LY = %I(X,:;yj"J1J2 dk), jEk (24a)
> I(X1; YUy ... Ug) = I(X1; YUy ... Uk)  (24b)
_1 afl (K,B2/CY)

“3ls <<a—a§>f1 (K. c5>> (249)

agentk generates a codebodK whose entriesU; are
generated in an i.i.d fashion such that; = Yi; + Q..
Qk,; is independent ot} ; and @ ;, for all [ # k, for all k,
and for alli. The compression rates are bounded as follows.
First, agentl transmits its quantized measurements at a rate
R; such that for error-free decoding bf* at the decoder, we
require

Ry >1(Up;Yh). (27)

where [24b) is a result of the model symmetry, the code

construction and typicality arguments and is omitted fdp

gent 2 takes into account the knowledgeldf at all agents

brevity. The bound in[{Z4c) follows from the relation of2Nd broadcasts at a rate

the code constructions for the two encoding schemes and

(a — 0926) + ho%.

cs = (B— \/503)2/

Ry > I (UyYa) — I (Us; Uy). (28)

Note that the agents broadcast taking into account the prior

Theorem 2:1t is sufficient to encode the local measuregansmissions (as if to a CEO) but not the side information at

ments at each agent in the distributed protocol.

the other agents. Continuing similarly, we have forfalp 2,

Theoren® follows directly from the fact that for Gaussian

encoding, from[(18),[(23a), anf (24c), we have that the set

of all rate-distortion-leakage tuples achieved by the llecel
progressive encoding schemes is the same.
The sum-rate of the distributed schet€s! = "% | R,
can be simplified as
. K
RPist — p(UaUs ... Uk|V1) + h(U1|Y2) — 5 log (2mead)

sum

(25a)
K. (a+ob-8) 1 (a+03-2)
=5 log| ———— | + 3 log | >—"——Z%
z )
(25b)

+ 3 Tog ((f1 (K, 5/a) +03)/ (a+0% ~ 5))

Ry > I(UQ;Yk;) — I (Uy; U Uy . --Uk—l)- (29)

The resulting sum rat&S20 = "% R, can be simplified
as

K K
ROEC =" IUsY) =Y~ I(UkUi...Up)

(30)

=h(Ug,Ug_1...Up) — glog (2mead) (31)
(0% 0'2 —
= glog <7( * ? B)) (32)
7Q
2 _
+110g (a—l—oQ—i—(K 1)) '
)



Thus, the rate on average per useri§¥°¢ = RCEO /K

sum

which converges in the limit of a large number of agehts

0.5

0.45

ShT S
1

T
— RDistributed
_____ R Centralized
R L Leakage ]

04

to
+05 —
lim RCEO — llog w ) (33)
K 2 2
—00 O'Q

0.35

0.3

Comparing [(25b) and (32), we can verify that for every
choice ofo3, and henceD, RSO > REIs!. Furthermore, one
can also show that the leakage at each agent for the ceattaliz
protocol is the same as the distributed protocolid (24) and i
the same for both the local and progressive encoding schemes
The following theorem summarizes our results.

Theorem 3:The average per user rate of the centralized

025}
i

Per-user Rate R and Leakage of Agent k (nats/sec)

protocol is strictly lower bounded by that for the distribdt ) % 10 50 0 = %0
protocol and converges to this lower bound only in the limit Hmer o Agents €
of large K. i

Fig. 1. Plot of per-user rat® and leakage., of any agentk vs. K.

D. Outer Bounds

From the symmetry of the model, it suffices to bound theymmetry), for allj, as
rate R; of agentl as 1
Ry > ~I(X™ YT Js. .. Jx)

(40)
1 1 n n n n " A~
Ry > EH(Jl) > EI(Yl s J1Y5' Y5 YR) (34) > h(X)) - %1og (27T€E [var (XIWQXZ)D (41)
1 .
_ 2 AR _ 1 2
>h(|Y2...Yk) n;h(ymxzzym ... Yk.) (35) ! log <q1/<(1 _o%ad) i — % (\/ﬁ B qz) ) >
Z h (Y1|}/2 e YK) — %log(2ﬂ'e2) (36) R 2

where g = E [(XQ—YQ) } = B*(K-1Da +

where [35) results from the fact thaty,... X7 can be esti- (K —1) (K —2)b3/2+ 0% 1),
mated fromJ;, Y5, ... Y2, and that conditioning on only one
of the estimates is a lower bound &3, and [36) results from
using the fact that a jointly Gaussian distribution maxiesiz
the differential entropy for a fixed variance, from the coriga

of the log function for® = E [var (Yﬂf(ﬂ@g .. .YK” .

¢ =a—gb*p* (K -1)°, and
0 = b (1+(K—2)\/E)5(K—1).

(42)
(43)

Remark 2:Due to the lack of a pre-log factdk, the per-
user rateR for the outer bound rapidly approach@svith K
(relative to the inner bounds).

The rateR and leakagd., (for any k) as a function ofK’
are illustrated in Figl]1 foh = 0.5 and agg =6.

For jointly Gaussiar(Yl, oL Yk, Xg) , we can write

Xo=Yo+ 3y 10V + Z (37)

IV. CONCLUDING REMARKS

We have introduced a distributed state estimation problem
amongK agents with fidelity and privacy constraints. We have
shown that the sum-rate and per user rate achieved from a
distributed protocol in which the agents directly interadting
into account the prior knowledge at all agents lower bounds

where Z ~ N (0,0%) is independent ofy;, for all &, and
from symmetry, we choose the same scaling cons$tan{37).

~ 2
Forg = E[(X2 Y- bYs... —bYK) ] =62/ (b2a+02),
¢ = B2g, andey = ¢1 + (8 — Bag)®/ (o — a?g) , we obtain

< 11 f1(K,B%/a) (a—B) 38 those achieved by a centralized protocol with convergence
Ry 2 508 f1(K —1,8%/a) (38) for very large K. Tighter outer bounds that account for the
1 f1 (K, e2) distributed coding are much needed.
— =~ log <7’ (o — azg)) (39)
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