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SPRING: A Sparsity-Aware Reduced-Precision
Monolithic 3D CNN Accelerator

Architecture for Training and Inference
Ye Yu, and Niraj K. Jha, Fellow, IEEE

Abstract—Convolutional neural networks (CNNs) outperform traditional machine learning algorithms across a wide range of
applications, such as object recognition, image segmentation, and autonomous driving. However, their ever-growing computational
complexity makes it necessary to design efficient hardware accelerators. Most CNN accelerators focus on exploring various dataflow
styles and designs that exploit computational parallelism. However, potential performance improvement from sparsity (in activations
and weights) has not been adequately addressed. The computation and memory footprint of CNNs can be significantly reduced if
sparsity is exploited in network evaluations. Therefore, different pruning methods have been proposed to increase sparsity. To take
advantage of sparsity, some accelerator designs explore sparsity encoding and evaluation on CNN accelerators. However, sparsity
encoding is just performed on activation data or CNN weights and only used in inference. It has been shown that activations and
weights also have high sparsity levels during the network training phase. Hence, sparsity-aware computation should also be
considered in the training phase. To further improve performance and energy efficiency, some accelerators evaluate CNNs with limited
precision. However, this is limited to the inference phase since reduced precision sacrifices network accuracy if used in training. In
addition, CNN evaluation is usually memory-intensive, especially during training. The performance bottleneck arises from the fact that
the memory cannot feed the computational units enough data, resulting in idling of these computational units and thus low utilization
ratios. A 3D memory interface has been used on high-end GPUs to alleviate memory bandwidth shortage. In this article, we propose
SPRING, a SParsity-aware Reduced-precision Monolithic 3D CNN accelerator for trainING and inference. SPRING supports both CNN
training and inference. It uses a binary mask scheme to encode sparsities in activations and weights. It uses the stochastic rounding
algorithm to train CNNs with reduced precision without accuracy loss. To alleviate the memory bottleneck in CNN evaluation, especially
during training, SPRING uses an efficient monolithic 3D nonvolatile memory interface to increase memory bandwidth. Compared to
Nvidia GeForce GTX 1080 Ti, SPRING achieves 15.6×, 4.2×, and 66.0× improvements in performance, power reduction, and energy
efficiency, respectively, for CNN training, and 15.5×, 4.5×, and 69.1× improvements in performance, power reduction, and energy
efficiency, respectively, for inference.

Index Terms—Convolutional neural network, deep learning, hardware accelerator, inference, reduced precision, sparsity, stochastic
rounding, training.
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1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) excel at var-
ious important applications, e.g., image classification,

image segmentation, robotics control, and natural language
processing. However, their high computational complexity
necessitates specially-designed accelerators for efficient pro-
cessing. Training of CNNs requires an enormous amount of
computing power to automatically learn the weights based
on a large training dataset. Few ASIC-based CNN training
accelerators have been presented [1], [2], [3]. However,
graphical processing units (GPUs) typically play a dominant
in the training phase as CNN computation essentially maps
well to their single-instruction multiple-data (SIMD) units
and the large number of SIMD units present in GPUs
provide significant computational throughput for training
CNNs [4], [5]. In addition, the higher clock speed, band-
width, and power management capabilities of the Graphics
Double Data Rate (GDDR) memory relative to the regular
DDR memory make GPUs the de facto accelerator choice
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for CNN training. On the other hand, CNN inference is
more latency- and power-sensitive as an increasing number
of applications need real-time CNN evaluations on battery-
constrained edge devices. Hence, ASIC- and FPGA-based
accelerators have been widely explored for this purpose
[6], [7], [8], [9], [10]. However, they can only process low-
level CNN operations, such as convolution and matrix
multiplication, and lack the flexibility of a general-purpose
processor. Although CNN models have evolved rapidly
recently, their fundamental building blocks are common
and long-lasting. Therefore, the ASIC- and FPGA-based
accelerators can efficiently process new CNN models with
their domain-specific architectures. FPGA-based accelera-
tors achieve faster time-to-market and enable prototyping
of new accelerator designs. Microsoft has used customized
FPGA boards, called Catapult [11], in its data centers to
accelerate Bing ranking by 2×. An FPGA-based CNN accel-
erator that uses on-chip memory has been proposed in [12],
where a fixed-point representation is used to keep all the
weights stored in on-chip memory thus avoiding the need
to access external memory. To improve dynamic resource
utilization of FPGA-based CNN accelerators, multiple accel-
erators, each specialized for a specific CNN layer, have been
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constructed using the same FPGA hardware resource [13]. A
convolver design for both the convolutional (CONV) layer
and fully-connected (FC) layer has been proposed in [14]
to efficiently process CNNs on embedded FPGA platforms.
ASIC-based CNN accelerators have better energy efficiency
and can be fully customized for CNN applications. In [15],
CNNs are mapped entirely within the on-chip memory and
the ASIC accelerator is placed close to the image sensor so
that all the DRAM accesses are eliminated, leading to a 60×
energy efficiency improvement relative to previous works.
A 1D chain ASIC architecture is used in [16] to accelerate
the CONV layers since these layers are the most compute-
intensive [1]. To speed up the CONV layers, a Fast Fourier
Transform-based fast multiplication is used in [17]. This
accelerator encodes weights using block-circulant matrices
and converts convolutions into matrix multiplications to re-
duce the computational complexity fromO(n2) toO(nlogn)
and storage complexity from O(n2) to O(n). A 3D mem-
ory system is used in [18] to reduce memory bandwidth
pressure. This enables more chip area to be devoted to
processing elements (PEs), thus increasing performance and
energy efficiency.

To take advantage of the underlying parallel comput-
ing resources of CNN accelerators, an efficient dataflow is
necessary to minimize data movement between the on-chip
memory and PEs. Unlike the temporal architectures, like
SIMD or single-instruction multiple-thread, used in central
processing units (CPUs) and GPUs, the Google Tensorflow
processing unit (TPU) uses a spatial architecture, called the
systolic array [19]. Data flow into arithmetic logic units
(ALUs) in a wave and move through adjacent ALUs in order
to be reused. In [20], multiple CNN layers are fused and
processed so that intermediate data can be kept in on-chip
memory, thus obviating the need for external memory ac-
cess. A fine-grained dataflow accelerator is proposed in [21].
It converts convolution into data preprocessing and matrix
multiplication. Data are directly transferred among PEs,
without the need for redundant control logic, as opposed
to temporal architectures, such as DianNao [22]. In [23], a
flexible dataflow architecture is described for efficiently pro-
cessing different types of parallelism: feature map, neuron,
and synapse. A dataflow called row-stationary is used in
[24] to reuse data and minimize data movement on a spatial
architecture.

Although various dataflow styles and computational
parallelism designs have been explored in recent works,
the potential speedup from weight/activation sparsity is
still underexplored. The computation and memory foot-
print of CNNs can be significantly reduced if sparsity is
exploited during network evaluations. Some recent works
utilize sparsity to speed up CNN evaluations [25], [26], [27],
[28], [29], [30]. However, they only consider either activation
or weight sparsity, and only use sparsity during CNN
inference based on various pruning methods. It has been
shown that the average network-wide activation sparsity of
the well-known AlexNet CNN [31] during its entire training
process is 62% (a maximum of 93%) [32]. Therefore, the
training process can be significantly accelerated if sparsity
is exploited. Another CNN acceleration technique is to use
reduced precision to improve performance and energy effi-
ciency. For example, TPU and DianNao use 8-bit and 16-bit

fixed-point quantizations, respectively, in CNN evaluations.
However, low-precision accelerators are currently mainly
used in the inference phase, since CNN training involves
gradient computation and propagation that require high-
precision floating-point operations to achieve high accuracy.
Apart from improving the efficiency of the computational
resources employed in CNN accelerators, CNN training also
requires a large memory bandwidth to store activations and
weights. In the forward pass, activations must be retained in
the memory until the backward pass commences in order to
compute the error gradients and update weights. Besides,
in order to fill the SIMD units of GPUs, a large amount
of data is needed from the memory. Hence, 3D memory
systems, such as hybrid memory cube (HMC) [33] and high
bandwidth memory (HBM) [34], have been used in high-
end GPUs to provide significant memory bandwidth for
CNN training and to bring processing closer to computing.
There are many studies on accelerators with near-memory
processing (NMP) or processing in memory (PIM) that aim
to reduce the memory transfer overhead [35], [36], [37],
[38], [39], [40], [41]. In [42], an NMP-enhanced dual in-
line memory module is proposed to reduce the latency of
embedding fetching and gather/reduction operations used
in recommender deep neural networks (DNNs) that take
up 34% of the total execution time of DNN workloads in
Facebook datacenters [43]. A PIM accelerator, FloatPIM, is
proposed in [44]. It speeds up data movement by enabling
parallel data transfer between neighboring blocks.

In this article, we make the following contributions:
1) We propose a novel sparsity-aware CNN accelera-

tor architecture, called SPRING. It encodes activation and
weight sparsities with binary masks and uses efficient low-
overhead hardware implementations for CNN training and
inference.

2) SPRING uses reduced-precision fixed-point opera-
tions for both training and inference. A dedicated module
is used to implement the stochastic rounding algorithm [45]
to prevent accuracy loss during CNN training.

3) SPRING uses an efficient monolithic 3D nonvolatile
RAM (NVRAM) interface to provide significant memory
bandwidth for CNN processing. This alleviates the perfor-
mance bottleneck in CNN training since the training process
is usually memory-bound [46].

We test the proposed SPRING architecture on seven
well-known CNNs in the context of both training and
inference. Simulation results show that the average exe-
cution time, power dissipation, and energy consumption
are reduced by 15.6×, 4.2×, and 66.0×, respectively, for
CNN training, and 15.5×, 4.5×, and 69.1×, respectively, for
inference, relative to Nvidia GeForce GTX 1080 Ti.

The rest of the article is organized as follows. Section 2
discusses the background information required to under-
stand our sparsity-aware accelerator. Section 3 presents the
sparsity-aware reduced-precision accelerator architecture.
Section 4 describes our simulation setup and flow. Section 5
presents experimental results obtained on seven typical
CNNs. Section 6 discusses the limitations of our work.
Section 7 concludes the article.
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Input CONV + ACT POOL CONV + ACT POOL FC FC 

Fig. 1. CNN architecture illustration

2 BACKGROUND

In this section, we discuss the background material nec-
essary for understanding our proposed sparsity-aware
reduced-precision accelerator architecture. We first give a
primer on CNNs. We then discuss existing sparsity-aware
designs. Then, we discuss various CNN training algorithms
that use low numerical precision. Finally, we describe an
efficient on-chip memory interface that is used for CNN
acceleration.

2.1 CNN overview
Although different CNNs have different hyperparameters,
such as the number of layers and shapes, they share a
similar architecture, as shown in Fig. 1. CNNs are generally
composed of five building blocks: CONV layers, activation
(ACT) layers, pooling (POOL) layers, batch normalization
layers (not shown in Fig. 1), and FC layers. Among these
basic components, the CONV and FC layers are the most
compute-intensive [1]. We describe them next.

CONV layers: A batch of 3D input feature maps is
convolved with a set of 3D filter weights to generate a
batch of 3D output feature maps. The filter weights are
usually fetched from external memory once and stored in
on-chip memory as they are shared among multiple con-
volution windows. Therefore, CONV layers have relatively
low memory bandwidth pressure and are usually compute-
bound as they require a large number of convolution com-
putations. Given the input feature map I and filter weights
W, the output feature map O is computed as follows:

O[n][k][p][q] =
C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

I[n][c][p× u+ r][q × v + s]

×W[k][c][r][s]
(1)

where I ∈ RNCHW , W ∈ RKCRS , and O ∈ RNKPQ. N is
the number of images in a batch and K is the total number
of filters in the CONV layer. C represents the number of
channels in the input feature maps and filter weights.H and
W denote the height and width of the input feature maps,
respectively, whereas R and S denote the height and width
of filter weights, respectively. The vertical and horizontal
strides are given by u and v, respectively. The height and
width of the output feature maps are given by P and Q,
respectively.

FC layers: The neurons in an FC layer are fully connected
with neurons in the previous layer with a specific weight
associated with each connection. It is the most memory-
intensive layer in CNNs [14], [47] since no weight is reused.

The computation of the FC layer can be represented by a
matrix-vector multiplication as follows:

y = Wx + b (2)

where W ∈ Rm×n, y, b ∈ Rm, and x ∈ Rn. The output and
input neurons of the FC layer are represented in vector form
as y and x. W represents the weight matrix and b is the bias
vector associated with the output neurons.

2.2 Exploiting sparsity in CNN accelerators
It is known that the sparsity levels of CNN weights typically
range from 20% to 80% [48], [49], and when the rectified
linear unit (ReLU) activation function is employed, the acti-
vations are clamped to zeros in the 50% to 70% range [27].
The combination of weight and activation sparsities can re-
duce computations and memory accesses significantly if the
accelerator can support sparsity-aware operations. In order
to speed up CNN evaluation by utilizing weight/activation
sparsity, the first step is to encode the sparse data in a
compressed format that can be efficiently processed by
accelerators. EIE is an accelerator that encodes a sparse
weight matrix in a compressed sparse column (CSC) format
[50] and uses a second vector to encode the number of zeros
between adjacent non-zero elements [25]. However, it is only
used to speed up the FC layers and has no impact on the
CONV layers. Hence, a majority of CNN computations does
not benefit from sparsity-aware acceleration. A lightweight
run-time output sparsity predictor has been developed in
SparseNN, an architecture enhanced from EIE, to accelerate
CNN inference [26]. Activations in the CSC format are first
fed to the lightweight predictor to predict the non-zero
elements in the output neurons. Then, the activations asso-
ciated with non-zero outputs are sent to feedforward com-
putations to bypass computations that lead to zero outputs.
If the number of computations skipped is large enough, the
overhead of output predictions can be offset. However, since
the output sparsity predicted by the lightweight predictor
is an approximation of the real sparsity value, it incurs an
accuracy loss that makes it unsuitable for CNN training.
SCNN is another accelerator that uses a zero-step format
to encode weight/activation sparsity: an index vector is
used to indicate the number of non-zero data points and
the number of zeros before each non-zero data point. It
multiplies activation and weight vectors in a manner similar
to a Cartesian product using an input stationary dataflow
[27]. However, the Cartesian product does not automatically
align non-zero weights and activations in the FC layers since
the FC layer weights are not reused as in the case of CONV
layers. This leads to performance degradation for FC layers
and makes SCNN unattractive for CNNs dominated by FC
layers. Stitch-X [51], an improved version of SCNN, adopts
a hybrid dataflow by leveraging both spatial and temporal
partial-sum reduction to dynamically stitch together non-
zero activations and weights. Cnvlutin [29] enhances the
DaDianNao architecture to support zero-skipping in acti-
vations using a zero-step offset vector that is similar to
graphics processor proposals [52], [53], [54], [55]. The lim-
itation of this architecture is that the length of offset vectors
in different PEs may be different. Hence, they may require
different numbers of cycles to process the data. Thus, the
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PE with the longest offset vector becomes the performance
bottleneck while other PEs idle and wait for it. Cambricon-
X is an accelerator that also employs the zero-step sparsity
encoding method and uses a dedicated indexing module
to select and transfer needed neurons to PEs, with a re-
duced memory bandwidth requirement [30]. The PEs run
asynchronously to avoid the idling problem of Cnvlutin.
An enhanced version, Cambricon-S, is then proposed to
reduce the irregularity of weight sparsity using a software-
based coarse-grained pruning technique [56]. UCNN is an
accelerator that improves CNN inference performance by
exploiting weight repetition in the CONV layers [28]. It uses
a factorized dot product dataflow to reduce the number
of multiplications and a memorization method to reduce
weight memory access via weight repetition.

Both the CSC and zero-step encoding formats compress
data by eliminating zero-elements and the accelerators dis-
cussed above efficiently process the compressed data. How-
ever, weight/activation sparsity can not only be exploited
at the PE level but also at the bit level. Stripes, a bit-serial
hardware accelerator, avoids the processing of zero prefix
and suffix bits through serial-parallel multiplications on
CNNs [57]. Each bit of a neuron is processed at every cycle
and zero bits are skipped on the fly. Multiple neurons are
processed in parallel to mitigate performance loss from bit-
serial processing. Pragmatic, a CNN accelerator enhanced
from Stripes, supports zero-bit skipping regardless of its
position [58]. However, it needs to convert the input neuron
representation into a zero-bit-only format on the fly, which
leads to up to a 16-cycle latency.

2.3 Low-precision CNN training algorithms

The rapid evolution of CNNs in recent years has neces-
sitated the deployment of large-scale distributed training
using high-performance computing infrastructure [59], [60],
[61]. Even with such a powerful computing infrastructure,
training a CNN to convergence usually takes several days,
sometimes even a few weeks. Hence, to speed up the
CNN training process, various training algorithms with
low-precision computations have been proposed.

Single-precision floating-point (FP32) operation has
mainly been used as the training standard on GPUs. Mean-
while, efforts have been made to train CNNs with half-
precision floating-point (FP16) arithmetic since it can im-
prove training throughput by 2×, in theory, on the same
computing infrastructure. However, compared to FP32,
FP16 involves rounding off gradient values and quantizing
to a lower-precision representation. This introduces noise in
the training process and defers CNN convergence. To main-
tain a balance between the convergence rate and training
throughput, mixed-precision training algorithms that use a
combination of FP32 and FP16 have been proposed [62],
[63]. The FP16 representation is used in the most compute-
intensive multiplications and the results are accumulated
into FP32 outputs. Dynamic scaling is required to prevent
the vanishing gradient problem [64].

Compared to floating-point arithmetic, fixed-point oper-
ations are much faster and more energy-efficient on hard-
ware accelerators, but have a lower dynamic range. To over-
come the dynamic range limitation, the dynamic fixed-point

format [65] is used in CNN training [66], [67]. Unlike the reg-
ular fixed-point format, the dynamic fixed-point format uses
multiple scaling factors that are updated during training to
adjust the dynamic range of different groups of variables.
The CNN training convergence rate is highly sensitive to
the rounding scheme used in fixed-point arithmetic [45].
Instead of tuning the dynamic range used in the dynamic
fixed-point format, a stochastic rounding method has been
proposed to leverage the noise tolerance of CNN algorithms
[45]. CNNs are trained in a manner that the rounding
error is exposed to the network and weights are updated
accordingly to mitigate this error, without impacting the
convergence rate.

2.4 Efficient on-chip memory interface and emerging
NVRAM technologies

CNN training involves feeding vast input feature maps
and filter weights to the accelerator computing units to
compute the error gradients used to update CNN weights
in backpropagation. Besides the large memory size required
to store all the CNN weights, a high memory bandwidth
becomes indispensable to keep running the computing units
at full throughput. Hence, through-silicon via (TSV)-based
3D memory interfaces have been used on high-end GPUs
[5] and specialized CNN accelerators [3]. The most widely-
used TSV-based 3D memory interface is HBM. In each HBM
package, multiple DRAM dies and one memory controller
die are first fabricated and tested individually. Then, these
dies are aligned, thinned, and bonded using TSVs. The HBM
package is connected to the processor using an interposer
in a 2.5D manner. This shortens the interconnects within
the memory system and between the memory and proces-
sor, thus reducing memory access latency and improving
memory bandwidth. In addition, since more DRAM dies
are integrated within the same footprint area, HBM enables
smaller form factors: HBM-2 uses 94% less space relative to
GDDR5 for a 1GB memory [68].

Apart from improving the DRAM interface, the industry
has also been exploring various NVRAM technologies to
replace DRAM, such as ferroelectric RAM (FeRAM), spin-
transfer torque magnetic RAM (STT-MRAM), phase-change
memory (PCM), nanotube RAM (NRAM), and resistive
RAM (RRAM). It has been shown in [69], [70] that RRAM
can be used in an efficient 3D memory interface to deliver
high memory bandwidth and energy efficiency. Information
is represented by different resistance levels in an RRAM
cell. Compared to a DRAM, an RRAM cell needs a higher
current to change its resistance level. Therefore, the access
transistors of an RRAM are larger than those of a DRAM
[71]. However, DRAM is expected to reach the scaling limit
at 16nm [72] whereas RRAM is believed to be suitable for
sub-10nm nodes [73]. Hence, the smaller technology node
of an RRAM should offset the access transistor overhead.
Besides, the nonvolatility of RRAM eliminates the need for
a periodic refresh that a DRAM requires. This not only saves
energy and reduces latency, but also gets rid of the refresh
circuitry used in DRAM.
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Fig. 2. The SPRING architecture

3 SPARSITY-AWARE REDUCED-PRECISION AC-
CELERATOR ARCHITECTURE

In this section, we present the proposed architecture,
SPRING: a sparsity-aware reduced-precision CNN accel-
erator for both training and inference. We first discuss
accelerator architecture design and then dive into sparsity-
aware acceleration, reduced-precision processing, and the
monolithic 3D NVRAM interface.

Fig. 2 shows the high-level view of the architecture.
SPRING uses monolithic 3D integration to connect the ac-
celerator tier with an RRAM interface. Unlike TSV-based
3D integration, monolithic 3D integration only has one
substrate wafer, where devices are fabricated tier over tier.
Hence, the alignment, thinning, and bonding steps of TSV-
based 3D integration can be eliminated. In addition, tiers are
connected through monolithic inter-tier vias (MIVs), whose
diameter is the same as that of local vias and one-to-two
orders of magnitude smaller than that of TSVs. This enables
a much higher MIV density (108/mm2 at 14nm [74]), thus
leaving much more space for logic. The accelerator tier is put
at the bottom, on top of which is the memory controller tier.
Above the memory controller tier lie the multiple RRAM
tiers.

Fig. 3 shows the organization of the accelerator tier. The
control block handles the CNN configuration sent from the
CPU. It fetches the instruction stream and controls the rest of
the accelerator to perform acceleration. The activations and
filter weights are brought on-chip from the RRAM system
by a direct memory access (DMA) controller. Activations
and weights are stored in the activation buffer and weight
buffer, respectively, in a compressed format. Data compres-
sion relies on binary masks that are stored in a dedicated
mask buffer. The compression scheme is discussed in Sec-
tion 3.1. The compressed data and the associated masks are
used in the PEs for CNN evaluation. The PEs are designed
to operate in parallel to maximize overall throughput.

Fig. 4 shows the main components of a PE. The com-
pressed data are buffered by the activation FIFO and
weight FIFO. Then, they enter the pre-compute sparsity
module along with the binary masks. Multiple multiplier-

CPU	

DMA	
controller	

RRAM	
system	

Activation	
buffer	

Control	block	

Weight	
buffer	

Mask	
buffer	

PE	 …	 PE	

Fig. 3. Accelerator organization

MAC	lanes	 Pooling	module	

Batch	
normalization	

module	

Reshape	module	
Activation	FIFO	

Loss	module	

Pre-compute	
sparsity	module	 Scalar	module	

Post-compute	
sparsity	module	

Weight	FIFO	

Fig. 4. Internal components of a PE

accumulator (MAC) lanes are used to compute convolutions
or matrix-vector multiplications using zero-free activations
and weights after they are preprocessed by the pre-compute
sparsity module. The output results go through a post-
compute sparsity module to maintain the zero-free format.
Batch normalization operations [75] are used in modern
CNNs to reduce the covariance shift. They are executed in
the batch normalization module that supports both the for-
ward pass and backward pass of batch normalization. Three
pooling methods are supported by the pooling module:
max pooling, min pooling, and mean pooling. The reshape
module deals with matrix transpose and data reshaping.
Element-wise arithmetic, such as element-wise add and
subtract, is handled by the scalar module. Lastly, a dedicated
loss module is used to process various loss functions, such
as L1 loss, L2 loss, softmax, etc.
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Fig. 5. The binary mask scheme: An example

3.1 Sparsity-aware acceleration

Traditional accelerator designs can only process dense data
and do not support sparse-encoded computation. They treat
zero elements in the same manner as regular data and
thus perform operations that have no impact on the CNN
evaluation results. In this context, weight/activation spar-
sity cannot be used to speed up computation and reduce
the memory footprint. In order to utilize sparsity to skip
ineffectual activations and weights, and reduce the memory
footprint, SPRING uses a binary-mask scheme to encode
the sparse data and performs computations directly in the
encoded format.

Compared to the regular dense format, SPRING com-
presses data vectors by removing all the zero-elements. In
order to retain the shape of the uncompressed data, an extra
binary mask is used. The binary mask has the same shape
as that of the uncompressed data where each binary bit in
the mask is associated with one element in the original data
vector. Fig. 5 shows an example of the binary-mask scheme
that SPRING uses to compress activations and weights. The
original uncompressed data vector has 16 elements, and
if each element is represented using 16 bits, the total data
length is 256 bits. With the binary scheme, only the six non-
zero elements remain. The total length of the compressed
data vector and the binary mask is 112 bits, which leads to
a compression ratio of 2.3× for this example.

We implement the binary mask scheme using a low
overhead pre-compute sparsity module that preprocesses
the sparse-encoded activations and weights and provides
zero-free data to the MAC lanes. After output data traverse
the MAC lanes, another post-compute sparsity module is
used to remove all the zero-elements generated by the
activation function before storing them back to on-chip
memory. Fig. 6 shows the pre-compute sparsity module that
takes the zero-free data vectors and binary mask vectors
as inputs, and generates an output mask as well as zero-
free activations/weights for the MAC lanes. The output
binary mask indicates the common indexes of non-zero
elements in both the activation and weight vectors. After
being preprocessed by the pre-compute sparsity module, the
“dangling” non-zero elements in the activation and weight
data vectors are removed. The dangling non-zero activations
refer to the non-zero elements in the activation data vector
where their corresponding weights at the same index are
zeros, and vice versa.

Fig. 7(a) shows the mask generation process used by
the pre-compute sparsity module. The output mask is the
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Fig. 6. The pre-compute sparsity module

AND of the activation and weight masks. The output mask,
together with the activation and weight masks, is used by
two more XOR gates for filter mask generation. Fig. 7(b)
shows the dangling data filtering process using the three
masks obtained in the previous step. The sequential scan-
ning and filtering mechanism for one type of data used in
the filtering step is shown in Algorithm 1. The data vector,
as well as the two mask vectors, is scanned in sequence.
At each step, a 1 in the output mask implies a common
non-zero index. Hence, the corresponding element in the
data vector passes through the filter. On the other hand,
if a 0 appears in the mask filter and the corresponding
mask bit in the filter mask is 1, then a dangling non-zero
element is detected in the data vector and is blocked by
the filter. If both the output mask bit and filter mask bit
are zeros, it means that the data elements at this index in
both the activation and weight vectors are zeros and thus
already skipped. After filtering out the dangling elements
in activations and weights, a zero-collapsing shifter is used
to remove the zeros and keep the data vectors zero-free in a
similar sequential scanning manner, as shown in Fig. 7(c).
These zero-free activations and weights are then fed to
the MAC lanes for computation. Since only zero-free data
are used in the MAC lanes, ineffectual computations are
completely skipped, thus improving throughput and saving
energy.

3.2 Reduced-precision processing using stochastic
rounding
SPRING processes CNNs using fixed-point numbers with
reduced precision. Every time a new result is generated
by the CNN, it has to be first rounded to the nearest
discrete number, either in a floating-point representation or
a fixed-point representation. Since the gap between adjacent
numbers in the fixed-point representation is much larger
than in the floating-point representation, the resulting quan-
tization error in the former is much more pronounced. This
prevents the fixed-point representation from being used in
error-sensitive CNN training. In order to utilize the faster
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Fig. 7. The submodules of the pre-compute sparsity module: (a) mask generation, (b) dangling-data filter, and (c) zero-collapsing shifter

Algorithm 1 Sequential scanning and filtering mechanism
1: Inputs: in data, output mask, filter mask
2: output: out data
3: data pointer←0, mask pointer←0
4: while mask pointer < mask length do
5: if output mask[mask pointer] == 1 then
6: out data[data pointer] = in data[data pointer]
7: data pointer++
8: else if filter mask[mask pointer] == 1 then
9: out data[data pointer] = 0

10: data pointer++
11: mask pointer++

and more energy-efficient fixed-point arithmetic units, we
adopt the stochastic rounding method proposed in [45]. The
traditional deterministic rounding scheme always rounds
a real number to its nearest discrete number, as shown
in Eq. 3. We follow the definitions used in [45], where ε
denotes the smallest positive discrete number supported
in the fixed-point format and bxc is defined as the largest
integer multiple of ε less than or equal to x.

Round(x) =

bxc if x < bxc+ ε

2
bxc+ ε otherwise

(3)

In contrast, a real number x is rounded to bxc and bxc+ε
stochastically in the stochastic rounding scheme, as shown
in Eq. 4 [45]. It is shown in [45] that with the stochastic
rounding scheme, the CNN weights can be trained to toler-
ate the quantization noise without increasing the number of
cycles required for convergence.

Round(x) =


bxc with probability

bxc+ ε− x
ε

bxc+ ε with probability
x− bxc

ε

(4)

The stochastic rounding scheme is embedded in the
MAC lane, as shown in Fig. 8. Activations and weights
are represented using fixed-point numbers using IL+FL bits,
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Fig. 8. The MAC lane

where IL denotes the number of bits for the integer portion
and FL denotes the number of bits for the fraction part.
The zero-free activations and weights from the pre-compute
sparsity module are subject to multiplications in the MAC
lanes, where the products are represented with 2×IL integer
bits and 2×FL fractional bits to prevent overflow. Accumu-
lations over products are also performed using 2×(IL+FL)
bits. Then, a stochastic rounding module is used to reduce
the numerical precision before applying the activation func-
tion or storing the result back to on-chip memory. We use
a linear-feedback shift register to generate pseudo-random
numbers for stochastic rounding.

3.3 Monolithic 3D NVRAM interface
SPRING uses a monolithic 3D NVRAM interface previously
proposed in [69] and adapts it to its 3D architecture to
provide the accelerator tier with significant memory band-
width. As shown in Fig. 2, SPRING uses two memory
channels where each channel has its own memory controller
to control the associated two RRAM ranks. An ultra-wide



8

I/O	

Bank	

Subarray	 Row	buffer	

Rank	

Bank	

Chip	

M
C	

Write	bus	
Read	bus	

Rank	

Chip	

M
em

or
y	
co
nt
ro
lle
r	
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memory bus (1KB wide) is used in each channel, since
the interconnects between SPRING and memory controllers,
and between memory controllers and RRAM ranks, are
implemented using vertical MIVs. This on-chip memory
bus not only reduces the access latency relative to the
conventional off-chip memory bus, but also makes row-
wide granular memory accesses possible to enable energy
savings. In addition, the column decoder can be removed to
reduce the access latency and power dissipation in this row-
wide access granularity scheme. To reduce repeated accesses
to the same row, especially the energy-consuming write
accesses of RRAM, the row buffer is reused as the write
buffer. A dirty bit is used to indicate if the corresponding
row entry in the row buffer needs to be written back to
the RRAM array when flushed out. The read and write
accesses are decoupled by adding another set of vertical
interconnects, as shown in Fig. 9 [70]. Hence, the slower
write access does not block the faster read access and
thus a higher memory bandwidth is achieved. In addition,
RRAM nonvolatility not only enables the elimination of
bulky periodic refresh circuitry, but also allows the RRAM
arrays to be powered down in the idle intervals to reduce
leakage power. A rank-level adaptive power-down policy
is used to maintain a balance between performance and
energy saving: the power-down threshold for each RRAM
rank is adapted to its idling pattern so that a rank is only
powered down if it is expected to be idle for a long time.

4 SIMULATION METHODOLOGY

In this section, we present the simulation flow for SPRING
and the experimental setup.

Fig. 10 shows the simulation flow used to evaluate the
proposed SPRING accelerator architecture. We implement
components of SPRING at the register-transfer level (RTL)
with SystemVerilog to estimate delay, power, and area. The
RTL design is synthesized by Design Compiler [76] using a
14nm FinFET technology library [77]. Floorplanning is done
by Capo [78], an open-source floorplacer. On-chip buffers

Design 
Compiler 

RTL 
SystemVerilog 

FinCACTI 

Buffer 
parameters 

RRAM 
parameters 

NVMain NVSim 

TensorFlow .pb 

Cycle-accurate 
accelerator simulator Power, latency, 

area 

Access energy, 
latency, area 

Access energy, 
latency, area 

CNN model 

Power, energy, 
latency, area 

Capo 

Fig. 10. Simulation flow

are modeled using FinCACTI [79], a cache modeling tool en-
hanced from CACTI [80], to support deeply-scaled FinFETs
at the 14nm technology node. The monolithic 3D RRAM
system is modeled by NVSim [81], a circuit-level mem-
ory simulator for emerging NVRAMs, and NVMain [82],
an emerging NVRAM architecture simulator. The synthe-
sized results, together with buffer and RRAM estimations,
are then plugged into a customized cycle-accurate Python
simulator. This accelerator simulator takes CNNs in the
TensorFlow [83] Protocol Buffers format and estimates the
computation latency, power dissipation, energy consump-
tion, and area. SPRING treats the TensorFlow operations
like complex instruction set computer instructions where
each operation involves many low-level operations and the
CNNs are mapped to SPRING using an analytical model
similar to the one used in [84].

We compare our design with the Nvidia GeForce GTX
1080 Ti GPU, which uses the Pascal microarchitecture [4]
in a 16nm technology node. The die size of GTX 1080 Ti
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Fig. 11. Normalized training performance

is 471mm2 and the base operating frequency is 1.48 GHz,
which can be boosted to 1.58 GHz. GTX 1080 Ti uses an 11
GB GDDR5X memory with 484 GB/s memory bandwidth to
provide 10.16 TFLOPS peak single-precision performance.

We evaluate SPRING and GTX 1080 Ti on seven well-
known CNNs: Inception-Resnet V2 [85], Inception V3 [86],
MobileNet V2 [87], NASNet-mobile [88], PNASNet-mobile
[89], Resnet-152 V2 [90], and VGG-19 [91]. We evaluate
both the training and inference phases of these CNNs on
the ImageNet dataset [92]. The sparsity of the CNNs are
assumed to be 50%, as it is shown in [32] that the average
sparsity level of widely used CNNs, such as AlexNet [31],
VGG [91], and Inception [86], are over 50%. We use the
default batch sizes defined in the TensorFlow-Slim library
[93]: 32 for training and 100 for inference.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results for SPRING
and compare them with those for GTX 1080 Ti.

Table 1 shows the values of various design parameters
used in SPRING. They are obtained through the accelerator
design space exploration methodology proposed in [84]. It
is shown in [45] that with 16 FL bits, training CNNs using
the stochastic rounding scheme can converge in a similar
amount of time with a negligible accuracy loss relative
to when single-precision floating-point arithmetic is used.
Hence, we use 4 IL bits and 16 FL bits in the fixed-point
representation. The convolution loop order refers to the
execution order of the multiple for-loops in the CONV layer.
SPRING executes convolutions by first unrolling the for-
loops across multiple inputs in the batch. Then, it unrolls the
for-loops within the filter weights, followed by unrolling in
the activation channel dimension. In the next step, it unrolls
the for-loops with activation feature maps. Finally, it unrolls
for-loops across the output channels.

Fig. 11 and Fig. 12 show the normalized performance
of SPRING and GTX 1080 Ti over the seven CNNs in
the training and inference phases, respectively. All results
are normalized to those of GTX 1080 Ti. In the training
phase, SPRING achieves speedups ranging from 5.5× to
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Fig. 12. Normalized inference performance

TABLE 1
SPRING design parameters

Accelerator parameters Values
Clock rate 700 MHz

Number of PEs 64
Number of MAC lanes per PE 72

Number of multipliers per MAC lane 16
Weight buffer size 24 MB

Activation buffer size 12 MB
Mask buffer size 4 MB

Convolution loop order batch-weight-in channel-input-out channel
IL bits 4
FL bits 16

Technology 14nm FinFET
Area 151 mm2

Monolithic 3D RRAM 8 GB, 2 channels, 2 ranks, 16 banks,
1 KB bus, tBURST =0.5 ns, 2.0 GHz [71]

53.1× with a geometric mean of 15.6× on the seven CNNs.
In the inference phase, SPRING is faster than GTX 1080
Ti by 5.1× to 67.9× with a geometric mean of 15.5×. In
both cases, SPRING has better performance speedups on
relatively light-weight CNNs, i.e., MobileNet V2, NASNet-
mobile, and PNASNet-mobile. This is because these light-
weight CNNs do not require large volumes of activations
and weights to be transferred between the external memory
and on-chip buffers. Therefore, the memory bandwidth
bottleneck is alleviated and the speedup from sparsity-
aware computation becomes more noteworthy. On the other
hand, on large CNNs, such as Inception-Resnet V2 and
VGG-19, the sparsity-aware MAC lanes of SPRING idle and
wait for data fetch from the RRAM system, lowering the
performance speedup relative to GTX 1080 Ti.

Fig. 13 and Fig. 14 show the normalized reciprocal of
power of SPRING and GTX 1080 Ti in training and infer-
ence, respectively. All results are normalized to those of GTX
1080 Ti. On an average, SPRING reduces power dissipation
by 4.2× and 4.5× for training and inference, respectively.

Fig. 15 and Fig. 16 show the normalized energy efficiency
of SPRING and GTX 1080 Ti for training and inference,
respectively. All results are normalized to those of GTX
1080 Ti. Compared to the GTX 1080 Ti, SPRING achieves
an average of 66.0× and 69.1× energy efficiency improve-
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Fig. 13. Normalized reciprocal of power for training
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Fig. 14. Normalized reciprocal of power for inference

ments in training and inference, respectively. This makes
the GTX 1080 Ti columns invisible. We observe that, among
the seven CNNs, SPRING achieves the best normalized
energy efficiency on MobileNet V2, both in the training and
inference phases. Since MobileNet V2 has a much smaller
network size (97.6% parameter reduction compared to VGG-
19 [87]), most of the network weights can be retained in
on-chip buffers without accessing the external memory.
Hence, SPRING can reduce energy consumption signifi-
cantly through our sparsity-aware acceleration scheme. On
the other hand, energy reduction from sparsity-aware com-
putation is offset by energy-consuming memory accesses on
large CNNs, such as Inception-Resnet V2 and VGG-19. This
is consistent with the results reported in [30] that show that
over 80% of the total energy consumption is from memory
access.

6 DISCUSSIONS AND LIMITATIONS

In this section, we discuss the assumptions we made in this
work and the limitations of the SPRING architecture.
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Fig. 15. Normalized energy efficiency in training
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Fig. 16. Normalized energy efficiency in inference

The SPRING architecture is based on the assumption
that the monolithic 3D stacking technology is emerging in
the near future. One main disadvantage of monolithic 3D
integration, compared to the TSV-based 3D stacking, is that
the high-temperature process used for the top tiers may
damage the interconnects on the tiers below. To prevent or
minimize this damage, either low-temperature annealing is
used for the top tiers or Copper is replaced with Tungsten as
the interconnect material on the bottom tiers. However, low-
temperature annealing may degrade device performance
on the top tiers while the Tungsten interconnect is less
competitive with the Copper counterpart in terms of perfor-
mance on the bottom tiers. However, it is still not clear how
the low thermal budget process on the top tiers correlates
to the degree of top-tier device degradation for advanced
technology nodes [94]. Some previous works assume the
devices on the top tiers will be degraded to some extent
and evaluate the overall chip performance based on this
assumption [95], [96]. On the other hand, there are works
suggesting that the degradation is negligible when certain
monolithic 3D processes are used [97], [98]. For example, it
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is shown in [99] that using Tungsten for interconnects on the
bottom tiers for interconnect-dominant circuits has a limited
impact on overall performance and power consumption
(less than 2% degradation in both performance and power
consumption). Hence, we do not model the degradation
from the monolithic 3D integration process in this work.

The performance speedup, power reduction ratio, and
energy efficiency improvement reported in Section 5 are ob-
tained at the batch level. We use batch-level training results
since the CNN training results are based on the assumption
that with sufficient precision bits, fixed-point training using
stochastic rounding scheme can lead to convergence with
no worse number of cycles than the training process based
on single-precision floating-point arithmetic, as suggested
in [45], where 16 FL bits are used for fixed-point training
with stochastic rounding and the convergent epoch number
is similar to that of single-precision floating-point training.

A major limitation of the SPRING accelerator architec-
ture is that the sequential scanning and filtering mechanism
shown in Algorithm 1 needs multiple cycles to filter out
dangling non-zero elements and collapse the resulting zeros.
This may incur a long latency in data preprocessing, which
makes SPRING unsuitable for latency-sensitive edge infer-
ence applications. However, since this sequential scanning
and filtering scheme is pipelined, the overall throughput is
unaffected and therefore the total latency for one batch is
independent of the sequential scanning steps used by the
pre-compute sparsity module.

Our binary mask encoding method is similar to the dual
indexing encoding proposed in [100]. Although we both use
a binary mask to point to the index of non-zero elements
in the data vector, our binary mask encoding scheme has
several advantages. First, the index masks are kept in binary
form throughout the entire sparsity encoding and decoding
process. Hence, the storage overhead of the binary mask
is at most 5%, assuming 4 IL bits and 16 FL bits. The real
storage overhead is much lower than this value since most
of activations and weights are zeros. However, the binary
masks are converted to decimal masks in [100] to serve as
select signals of a MUX. This not only increases the storage
overhead of the masks, but also increases the computation
complexity of mask manipulation. Besides, their binary-to-
decimal mask transfer process is sequential, which incurs a
long processing latency that increases as the size of the mask
vector increases.

While preparing this article, we became aware of a
very recent work that shares our motivations but adopts
different approaches. Eager Pruning [101], an algorithm-
architecture co-design method, speeds up DNN training by
moving pruning to the training phase. It is observed in [101]
that the ranking of weight magnitudes is relatively stable
during the training process. Hence, insignificant weights
can be identified and pruned in the early training stage.
This reduced training computation is then transformed into
speedup through a dedicated accelerator architecture. The
sparse weights are distributed to multiple PEs using a
Dynamically Reconfigurable Add and Collect Tree (DRACT)
to support the dataflow of Eager Pruning. However, Eager
Pruning only supports speedup from weight sparsity but
lacks support for activation sparsity. The sparsity-aware
acceleration scheme discussed in this article can be com-

bined with the Eager Pruning dataflow through the help of
DRACT for the full use of data sparsity (both activations
and weights).

7 CONCLUSION

In this article, we proposed a sparsity-aware reduced-
precision CNN accelerator, named SPRING. A binary mask
scheme is used to encode weight/activation sparsity. It is
efficiently processed through a sequential scanning and fil-
tering mechanism. SPRING adopts the stochastic rounding
algorithm to train CNNs using reduced-precision fixed-
point numerical representation. An efficient monolithic 3D
NVRAM interface is used to provide significant mem-
ory bandwidth for CNN evaluation. Compared to Nvidia
GeForce GTX 1080 Ti, SPRING achieves 15.6×, 4.2×, and
66.0× improvements in performance, power reduction, and
energy efficiency, respectively, in the training phase, and
15.5×, 4.5×, and 69.1× improvements in performance,
power reduction, and energy efficiency, respectively, in the
inference phase.
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