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SUPPLEMENTAL MATERIAL

Here we address some technical aspects of the matrix
product states (MPS) for non-Abelian quasiholes derived
from conformal field theory (CFT) correlators. Similar
to the treatment in the main text, we will leave the com-
pactified U(1) boson implicit in the CFT description.

Fusion rules for the Z3 Read-Rezayi state

The Z3 Read-Rezayi state can be described by
the Z3 parafermion conformal field theory [S1], also
known as the minimal model M(5, 6) [S2], with cen-
tral charge c = 4

5 . The primary fields of this
CFT are (1, ψ1, ψ2, ε, σ1, σ2), with scaling dimensions
(0, 2

3 ,
2
3 ,

2
5 ,

1
15 ,

1
15 ). The ψ1 (resp. σ1) field represents an

electron (resp. a quasihole). The fusion rules of these
fields are

1 ψ1 ψ2 ε σ1 σ2

ψ1 ψ1 ψ2 1 σ2 ε σ1

σ1 σ1 ε σ2 ψ2 + σ1 ψ1 + σ2 1 + ε

Fusion rules for the Gaffnian state

The Gaffnian wave function is described [S3] by the
non-unitary CFT minimal model M(3, 5), with central
charge c = − 3

5 . The primary fields of this CFT are
(1, ψ, σ, ϕ), with scaling dimensions (0, 3

4 ,− 1
20 ,

1
5 ). The ψ

(resp. σ) field represents an electron (resp. a quasihole),
with fusion rules

1 ψ σ ϕ

ψ ψ 1 ϕ σ

σ σ ϕ 1 + ϕ ψ + σ

The MPS transfer matrix

Following the notation of Ref. [S4], we consider the

transfer matrix E =
∑0,1
m (Bm)∗ ⊗ Bm, where the Bm

matrix is associated with an empty (m = 0) or occupied
(m = 1) Landau orbital in the MPS. The transfer matrix
is the basic building block of any generic wave function
overlap 〈Ψ|Ψ′〉. It acts on a direct product of two copies
of the truncated conformal Hilbert space, one copy for
〈Ψ|, and the other for |Ψ′〉. From the fusion rules, we
find that the CFT Hilbert space can be naturally split
into two sectors, each being closed under fusion with the
electron (although they are connected by fusion with the
quasihole). We refer to them as the “vac” and the “qh”

sectors:

vac qh

Moore-Read 1, ψ σ

Z3 Read-Rezayi 1, ψ1, ψ2 ε, σ1, σ2

Gaffnian 1, ψ σ, ϕ

The Bm matrices are block-diagonal in the sector index,
Bm =

⊕
αB

m
α , with α summed over {vac, qh}. There-

fore, the transfer matrix is also block-diagonal,

E =
⊕
α,β

Eα,β , with Eα,β =
∑
m

(Bmα )∗ ⊗Bmβ . (S1)

We denote by λ
(i)
α,β the i-th largest eigenvalue of Eα,β .

The MPS auxiliary space is constructed from the trun-
cated conformal Hilbert space, and the truncation is con-
strained by the entanglement area law. In our calcula-
tions, we have to deal with transfer matrix blocks (after
various reductions [S4]) with dimensions as large as

(vac, vac) (vac, qh) (qh, qh)

Moore-Read 1.1× 107 1.5× 107 2.0× 107

Z3 Read-Rezayi 3.6× 107 5.5× 107 8.4× 107

Gaffnian 1.3× 107 2.0× 107 3.0× 107

Incidentally, for the braiding and the overlap calcula-
tions, we have to work on the full direct product space
without symmetry reduction, the dimension of which can
be up to 25 times as large as the sizes mentioned in the
previous table.

Overlap calculation

As explained in the main text, the central object in our
braiding study is the overlap matrix 〈abc|ab′c〉, and we
are particularly interested in its exponential convergence

〈abc|ab′c〉 = Cabcδbb′ +O(e−|∆η|/ξ〈abc|ab′c〉). (S2)

In the following we outline the calculation of the overlap
matrix using the MPS technique, and also discuss the
determination of the correlation lengths. Recall from the
main text that the state

|abc〉 ≡
b

σ

c

a σ
(S3)

involves two localized quasiholes at a finite separation
∆η, and the topological charges a and c represent extra
quasiholes pushed to the ends of the infinite cylinder.
Diagrammatically, the MPS for |abc〉 is given by [S4, S5]

· · · · · · · · ·.
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Here, the orbital Bm matrices are represented by the
green circles, with the occupation number m = 0, 1 car-
ried by the upward-pointing leg, and the quasihole ma-
trices are represented by the purple squares. Each quasi-
hole matrix depends on both the quasihole position and
the fusion channel context, i.e. the topological charges
before and after the σ field insertion in the fusion tree,
and it is inserted into the matrix product at the correct
time-ordered positions [S5]. Technical details of the con-
struction of the quasihole matrix will be addressed in a
forthcoming paper [S6]. The overlap 〈abc|ab′c〉 is com-
puted by contracting

· · · · · · · · ·

· · · · · · · · ·

.

Here, the upper (lower) chain represents the 〈abc| (|ab′c〉)
state, respectively, and in the ladder-like structure, each
rung corresponds to the transfer matrix E over a sin-
gle orbital [Eq. (S1)]. Although not marked explicitly
in the above diagrams, the fusion channel dependence
enters through the quasihole insertions (purple squares)
as well as the boundary conditions. The contraction of
the above tensor network can be significantly simplified
on an infinite cylinder, as detailed in Ref. S4. Essen-
tially, an infinitely repeated action of the transfer matrix
can be accurately represented by its projection into the
subspace of its largest eigenvalue in the relevant sector.
For the overlap 〈abc|ab′c〉 with a finite quasihole separa-
tion ∆η, as shown in Fig. 4 of the main text, this sim-
plification applies only to the peripheral regions outside
of the two quasihole insertions. Between the two quasi-
holes, we have to contract the transfer matrices by brute
force. However, in the limit of large ∆η, asymptotically
the overlap is still controlled by the leading few eigen-
modes of the transfer matrix, and the associated correla-
tion lengths can be simply determined from the spectral
gaps of the transfer matrix, without resorting to curve
fitting.

We now explain this using three representative ex-
amples. First, consider the off-diagonal element
〈σ1ψ1ε|σ1σ2ε〉 for the Z3 Read-Rezayi state. In this case,
the action of the transfer matrix over the ∆η interval is
confined to the (vac, qh) sector of the product space,
while its action outside of the ∆η interval is purely in
the (qh, qh) sector. At large ∆η, we must have

〈σ1ψ1ε|σ1σ2ε〉 ∼
(
λ

(1)
vac,qh

λ
(1)
qh,qh

)∆η/γ

. (S4)

Here γ = 2π`20/Ly is the separation between adjacent

Landau orbitals, while λ
(1)
vac,qh and λ

(1)
qh,qh are the largest

eigenvalues of the transfer matrix in sectors (vac,qh) and
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FIG. S1. Asymptotic repulsion f between two plasma charges
representing pinned quasiholes. The Gaffnian curve is fitted

by the zero-intercept quadratic formula f`0 = u
`20
L2

y
+ v `0

Ly
.

The best fit has u = −8.6(2) and v = 2.66(1), with the stan-
dard error in the last digit given in parentheses.

(qh, qh), resp. The correlation length is then given by

ξortho =

[
Ly

2π`20
log

(
λ

(1)
qh,qh

λ
(1)
vac,qh

)]−1

. (S5)

As the second example, we consider the norm ||1σψ||2 for
the Moore-Read state. To the leading order, we have

||1σψ||2 ∼
(
λ

(1)
qh,qh

λ
(1)
vac,vac

)∆η/γ

, (S6)

while λ
(1)
vac,vac and λ

(1)
qh,qh are the largest eigenvalues of the

transfer matrix in sectors (vac,vac) and (qh, qh), resp.
For ||1σψ||2 to approach a non-zero constant value when

∆η →∞ as in Eq. (S2), we need to have λ
(1)
vac,vac = λ

(1)
qh,qh.

This turns out to be true for the Zk=2,3 Read-Rezayi
states, up to small finite-size corrections (see below). To
characterize the exponential convergence of the norm,
we have to consider the second largest eigenvalue in

the (qh,qh) channel, λ
(2)
qh,qh. The associated correlation

length is given by

ξqh =

[
Ly

2π`20
log

(
λ

(1)
qh,qh

λ
(2)
qh,qh

)]−1

. (S7)

Finally, the correlation length associated with the norm
||σψσ||2 for the Moore-Read state is similarly given by

ξvac =

[
Ly

2π`20
log

(
λ

(1)
vac,vac

λ
(2)
vac,vac

)]−1

. (S8)

The numerical calculations of ξvac and ξqh are more chal-
lenging than ξortho, since they depend on subleading
eigenvalues of the transfer matrix. A detailed numeri-
cal study will be reported in a future paper [S7].

We now examine the λ
(1)
vac,vac = λ

(1)
qh,qh condition more

carefully. To have a physical understanding of its impli-
cation, we adopt the plasma analogy and reinterpret the
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FIG. S2. Electron density around a single Gaffnian e
5

quasi-
hole in the |1σ〉 (left panel) and the |σϕ〉 (right panel) chan-
nels, on an infinitely long cylinder with perimeter Ly = 20`0.

overlap in Eq. (S6) as the partition function e−F (∆η) with
two pinned charges representing the two quasiholes at a
separation ∆η. The derivative of the free energy F (∆η)
with respect to ∆η gives an effective force between the
plasma charges

f = − dF

d∆η
∼ Ly

2π`20
log

(
λ

(1)
qh,qh

λ
(1)
vac,vac

)
. (S9)

Therefore, if λ
(1)
vac,vac 6= λ

(1)
qh,qh, the two plasma charges

representing quasiholes are subject to an asymptotically
constant confining (if f < 0) or anti-confining (if f > 0)
force that persists even in the limit of infinite separa-
tion. The numerical data are shown in Fig. S1. For the

Moore-Read and the Z3 Read-Rezayi states, λ
(1)
vac,vac and

λ
(1)
qh,qh quickly converge as Ly increases. In contrast, the

Gaffnian state features an asymptotic repulsion between
infinitely separated plasma charges at a finite cylinder
perimeter Ly, although it seems to die off in the planar
limit Ly → ∞. This makes it very hard to extract a
meaningful correlation length for the diagonal elements
of the overlap matrix similar to Eq. (S7). Fortunately,
we can still analyze the correlation length associated with
the asymptotic orthogonality of conformal blocks, as dis-
cussed in the main text.

Electron density profile around Gaffnian quasiholes

Here we show more details of the peculiarities in the
electron density profile of the Gaffnian quasiholes. As
noted in the main text, conformal blocks in different fu-
sion channels are locally distinguishable despite the clear
separation between quasiholes. This effect persists even
when we push the quasihole separations to infinity, leav-
ing only a single fully isolated quasihole. In this limit, the
conformal blocks can be labeled by fusion tree segments

|ab〉 ≡
b

σa
.

(S10)

We only need to consider |ab〉 = |1σ〉 and |σϕ〉, since all
the other possibilities can be obtained by either fusing
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FIG. S3. Radii of Gaffnian quasiholes in |1σ〉 and |σϕ〉 chan-
nels, as a function of the cylinder perimeter Ly.

(trivially) with ψ, or flipping the cylinder axis x → −x.
Fig. S2 shows the electron density profile for each case.
The anisotropic dipole structure is clearly visible for |1σ〉,
in contrast to the isotropic |σϕ〉.

Similar to the Zk≤3 Read-Rezayi quasiholes analyzed
in the main text, we estimate the quasihole radius from
the second moment of the charge excess distribution
[Fig. S3]. We have also examined the Abelian charge
2e
5 quasihole obtained by fusing two e

5 quasiholes in the
1 channel. We find a localized and isotropic density re-
duction around each Abelian quasihole, but this calcula-
tion turns out to be rather susceptible to the conformal
Hilbert space truncation, and we have trouble reaching
convergence in the radius calculation. As a final com-
ment, we note that the peculiarities observed in the den-
sity profile are likely related to the leading eigenvalue
mismatch discussed in the previous section, and are pos-
sibly artifacts at finite cylinder perimeter Ly. Unfor-
tunately, we cannot resolve this issue using the current
MPS approach, due to the fundamental constraint on Ly
from the area law of quantum entanglement.
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