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Phenology and Environmental Model Details
Germination Submodel
Temperature and moisture are major seasonal factors that determine germination timing in combination with the depth of
primary dormancy (Gutierrez et al. 2007; Holdsworth et al. 2008; Graeber et al. 2012). To project the timing of
germination, we used a hydrothermal germination submodel that incorporates both dormancy variation within cohorts
(Alvarado and Bradford 2002) and a function describing the rate of primary dormancy loss (Bair et al. 2006). In the
hydrothermal submodel, progress toward germination is a function of hourly soil temperature, moisture level, and
dormancy level that reduces germination progress (Finch-Savage and Leubner-Metzger 2006; Batlla and Benech-Arnold
2010). Each hour, cumulative progress toward germination is summed until the germination threshold is reached. In
general, germination progress is faster at higher temperatures and higher moisture levels (up to the optimum temperature
and saturation point, respectively). Hydrothermal models perform well in fiel conditions, particularly for the earliest 70%
of germinants (Hardegree and Van Vactor 1999; Meyer and Allen 2009).
A standard feature of many germination models, strongly supported by empirical studies of Arabidopsis thaliana, is

that genetically identical offspring start life with a distribution of initial dormancy levels (Bradford 2002; Finch-Savage
and Leubner-Metzger 2006; Hardegree 2006). We model the primary dormancy distribution of offspring as being
determined by maternal parameters (genotype) and insensitive to maternal environment. By explicitly modeling this
variation, we incorporate a ubiquitous phenomenon known to occur in A. thaliana and many other species. Traditional
germination models use the population of seeds as the unit of analysis. Our approach differs in that we track the behavior
of individual seeds. This formulation does little to change the quantitative results but has many practical advantages. For
instance, variation in initial primary seed dormancy may be def ned according to any state distribution. Most importantly,
it allows us to keep track of individual seed fates across generations.
Hydrothermal models are based on empirical observations that hold across many species: (1) in response to lower

moisture levels during imbibition, fewer seeds germinate and they do so at a slower rate; (2) seeds within a population do
not all respond to moisture conditions in the same way; and (3) germination rates increase up to an optimum temperature
and subsequently decline. These observations suggest that each seed has a base water potential (Wb), analogous to a base
temperature, below which it cannot make progress toward germination. During germination at suboptimal temperatures,
seeds generally maintain the same base moisture for germination (Wb) regardless of temperature; but at supraoptimal
germination conditions, the base moisture level (Wb) increases with increasing temperature, slowing germination rate. The
following equation formalizes these observations, allowing computation of the hydrothermal units accrued toward
germination each hour (HTUgerm(t); adapted from Alvarado and Bradford 2002):

(W(t)� W (t))# (T(t)� T ) when T ! T(t) ≤ T and W (t) ! W(t) andb b.g b.g o b

HTU (t) p (W(t)� mW (t))# (T � T ) when T(t) 1 T and mW (t) ! W(t) .germ b o b.g o b{0 otherwise

The firs function is used at suboptimal temperatures, and the second function is used at supraoptimal temperatures.
Values T and W are temperature (�C) and moisture (in MPa) during a given hour (t), respectively. Value To is the optimal
temperature for germination (that which maximizes the germination rate), and Tb.g is a constant parameter indicating the
temperature below which no progress toward germination occurs. Analogously, Wb is the base moisture level of a
particular seed below which no progress toward germination occurs.
At supraoptimal temperatures, the Wb of a seed is modifie based on how much the current temperature is above the

optimum temperature, according to

mW (t) p W (t)� k (T(t)� T ).b b T o

Here kT is an empirically derived scalar that def nes the shift in Wb for each degree the current temperature is above the
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optimal temperature. We estimated kT from a batch of afterripened Columbia seeds (L. T. Burghardt, unpublished data) by
measuring germination across a range of high temperatures.
Germination progress is summed together each hour from dispersal (tdispersal) to provide a cumulative measure of

germination progress (germsum). When the germination threshold (Vgerm) is reached, the germination transition occurs:
germsum(t )pVdispersal germ

germ (t ) p HTU (t).�sum dispersal germ
t p0dispersal

We compared the predictions of the standard hydrothermal germination model with parameters derived from the A.
thaliana literature to a batch of Columbia seeds that were 19 weeks old and matured at 20�C (fig A1). At this age, seeds
have lost most of their primary dormancy. In our model, there is a minimum dormancy level (Wmin, set to �1), and
therefore as primary dormancy is lost, Wb values in a seed cohort start to pile up at �1, leading to a skewed dormancy
distribution. Therefore, we used a Poisson distribution as an estimate of the dormancy distribution at this age (fig A1a).
Figure A1b shows our predictions superimposed on the experimentally measured germination times. Note that the current
model consistently overestimates time to germination for Columbia seeds at cool temperatures, but the standard model is
not flexibl enough to accommodate this pattern. Interestingly, these predictions at cold temperatures are a much better
match to the germination behavior of another German ecotype, Landsberg.
In A. thaliana and many other species, dormancy levels change with age via a process called afterripening (Carrera et

al. 2007; Finch-Savage et al. 2007; Iglesias-Fernández et al. 2011). This process is rarely incorporated in germination
models (for exceptions, see Batlla and Benech-Arnold 2003; Chantre et al. 2010). We combined the germination model
above with a primary dormancy loss function originally developed for Bromus tectorum (Bair et al. 2006; Meyer and
Allen 2009). In the hydrothermal germination model outlined above, the base water potential (Wb) of the seed modifie
the developmental rate and is therefore considered a measure of the dormancy level of the seed (Bradford 2002; Batlla
and Benech-Arnold 2010). If Wb is above 0, no progress toward germination can be made in any environmental condition.
Empirical data demonstrate that Wb values for a population of seeds decreases as primary dormancy is lost, and this is
also true in A. thaliana (Footitt et al. 2011; L. T. Burghardt, unpublished data).
Afterripening models describe mathematically how Wb changes over time after seeds are shed. We model the process of

afterripening (primary dormancy loss) as a gradual, unidirectional loss of dormancy, with the rate of dormancy loss
dependent on hourly soil surface temperature T(t) and moisture W(t) conditions. This model was created for Bromus
tectorum because there are little data available for A. thaliana. As described in the following equation, each hour the
amount of afterripening time accrued is calculated and added to the running sum of the afterripening (ARsum) experienced
since seed dispersal:

AR (t)� T(t)� T when W ≥ W(t) ≥ Wsum b.ar max u

W � W(t)lAR (t � 1) p AR (t)� (T(t)� T ) when W ! W(t) ! W .sum sum b.ar l u(W � W )l u{
AR (t) when W(t) ≤ W or W(t) ≤ Wsum max l

Here Wl is the lower moisture limit below which no afterripening occurs, and Wu is the moisture level at which
afterripening effectiveness levels off. In response to temperatures rising above the base temperature for afterripening
(Tb.ar), the afterripening rate increases linearly. In response to moisture, the afterripening rate follows a broken stick
model, such that at extremely low moisture, no afterripening occurs; above that, the rate increases linearly up until a
saturation point (Wu). High temperatures in moist conditions are the most effective at promoting afterripening.
Afterripening does not occur in extremely moist conditions (1Wmax). This model is taken directly from Bair et al. (2006)
and has not been fi directly for A. thaliana.
Next, we used the number of days (dsat) it takes seeds to go from 0 Wb to �1 Wb under lab storage—room temperature

(20�C) and dry (!�200 MPa)—conditions and the equation above to calculate the cumulative afterripening that occurred
over that time period. Because the model works in hours not days, dsat is multiplied by 24.
To determine the proportion of afterripening completed and the current seed dormancy level (Wb), the current

cumulative afterripening sum is divided by a cumulative afterripening sum that leads to a known amount of dormancy
loss in the lab:

AR (t)summax W � W ,W if W (t) 1 Wi scale min b min( )AR (lab conditions)# d # 24sum satW (t) p .b {
W if W (t) ≤ Wmin b min
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Seed dormancy Wb at time (t) is calculated by subtracting the amount of accumulated afterripening from the initial
dormancy level (Wi) of the seed and is incrementally modifie hourly until the seed reaches an empirically approximated
minimum dormant state (Wmin). We assume that all seeds can reach this minimum dormancy level after enough time.
Minimum dormant state Wmin was estimated for Columbia seeds stored in lab conditions by determining how long it took
for most seeds to germinate uniformly at a Wb value near the estimated Wmin.

Flowering Submodel
In Arabidopsis thaliana, high temperature and long photoperiods are the major environmental factors that promote
flowerin (Mitchell-Olds and Schmitt 2006; Kobayashi and Weigel 2007; Michaels 2009), and the expression of flora
repressors dampens responses to those cues delaying flower ng. We use a previously developed flowering-tim model that
predicted the flowerin behavior of multiple genotypes with 92% accuracy in diverse fiel conditions (Wilczek et al.
2009, 2010; Chew et al. 2012). We briefl outline this model and the equations below, but please see the above
references for a more in-depth treatment.
Developmental progress toward flowerin (MPTUfl wering) each hour (t) is a multiplicative function of three factors:

thermal(t), photoperiod(t), and flora repression(t). Warm temperatures and long photoperiod increase development,
whereas high f oral repression levels reduce the number of modifie photothermal units that accrue toward flowering
The thermal component is given by

(T(t)� T )# d when T(t) 1 Tb.f hours b.fthermal(t) p ,{0 otherwise

where T is temperature that hour, Tb.f is the base temperature for flowering and dhours is a f lter so that only thermal time
that occurs during the daytime is included. The filte dhours ranges in value from 0 (no light experienced that hour) to 1 (it
is light for the whole hour).
The photoperiod component describes a broken stick model where developmental rate is divided into three sections.

Rate is at a minimum (ps) when the day length (D) is less than the critical short day length (ds) and at a maximum (pl)
when D is above the critical long day length (dl). In between ds and dl, developmental rate increases linearly from ps to
pl:

p when D(t) ≤ ds s

(p � p )# (D(t)� d )l s sphotoperiod(t) p p � when d ! D(t) ! d .s s ld � dl s{
p when D(t) ≥ dl l

The flora repression component is given by a pair of nested equations. The f rst describes how winter chilling
accumulates (WCsum). Each hour, (t) cold temperatures experienced are translated into winter chilling units via a beta
function and are added to winter chilling accumulated in previous hours WCsum(t) until the requirement for winter chilling
units is satisfie (WCsat):

k q k ymin (WC (t)� e (T(t)� T ) e (T(t)� T ) , WC ) when T ≤ T(t) ≤ Tsum v.min v.max sat v.min v.maxWC (t � 1) p ,sum {WC (t) otherwisesum

where k, q, and y are f tted parameters determining the shape of the winter chilling–effectiveness function, and Tv.min and
Tv.max are the minimum and maximum temperatures for winter chilling, respectively.
The second equation describes how the WCsum state each hour is then used to determine flora repression levels. Here

Fi is the initial flora repression level, and Fu is the ultimate level of repression after the winter chilling requirement
(WCsat) is satisfied

WC (t)sum1� F � (F � F )# when WC (t) ! WCi i u sum sat( )WCsatf loral repression(t) p .{
1� F otherwiseu

These equations combine to determine the modifie photothermal units for f owering (MPTUfl wering) that accrue each
hour:

MPTU (t) p thermal(t)# photoperiod(t)# f loral repression(t).flowering
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Ultimately, development is summed up (flowerin sum) from the time of germination (tgerm) until the flowerin threshold
(Vf owering) is reached. The flowerin threshold is determined using methods in Wilczek et al. (2009):

flowering (t )pVsum germ flowering

f lowering (t ) p MPTU (t).�sum germ flowering
t p0germ

Seed Dispersal Submodel
As there were no published data on Arabidopsis thaliana reproduction dynamics, we developed a simple model of the
progress toward seed dispersal as a function of temperature. We chose a thermal function because the rate of grain
production is often related to temperature in crop studies (Lawlor and Mitchell 2000; Ainsworth and Ort 2010). Seeds are
released when they reach a developmental threshold that reflect the time it takes the f rst 10% of seeds to mature
(Vdispersal). We use this time point because measurements of complete plant senescence in chambers likely overestimate
reproductive period based on our experience with A. thaliana in the field In chambers, plants experience moderate
temperatures and permissive moisture conditions unlike plants in the field In practice, seasonal changes such as the
dryness of summer will interrupt reproduction.
The rate of progress toward seed dispersal was modeled as a function of temperature, such that the rate of progress is

proportional to the difference between the soil surface temperature (T) and a base temperature for dispersal (Tb.d). Rate of
thermal progress toward seed dispersal (TUseed dispersal) was modeled as a thermally dependent developmental accumulation
above a base temperature (Tb):

T(t)� T when T(t) 1 Tb.d b.dTU (t) p .seed dispersal {0 otherwise

The higher temperatures are above Tb.d, the faster development occurs. Development is summed each hour from flowerin
(tflo ering) until plants reach the threshold (Vdispersal):

seed dispersal (t )pVsum flowering dispersal

seed dispersal (t ) p TU (t).�sum flowering seed dispersal
t p0flowering

Our range of simulated average maturation lengths (fig B17) corresponds well to the range of average reproduction
lengths reported by Chiang et al. (2012) in a fiel experiment. Model parameters and threshold were determined based on
fit-to-see dispersal times measured in chamber conditions at 14�C, 20�C, and 25�C, respectively, with the Columbia
genotype at a neutral photoperiod (L. T. Burghardt, unpublished data).

Creation of Environmental Inputs
Because the phenology models use hourly environmental inputs, we converted the available environmental data to that
scale. We used temperature predictions from 20 years of a climate model to create temperature replicates that
encapsulated year-to-year climate variability. For moisture data, we used monthly contemporary moisture statistics from
WorldClim and created stochastic moisture profile driven by monthly precipitation amount and number of precipitation
events. We also calculated latitude-specifi photoperiods. Replicates of these environmental series were generated by (1)
randomly drawing temperature from the sample of years, (2) pairing those profile with site-specifi photoperiod, and (3)
combining those with stochastic moisture profiles

Photoperiod
Equations were used to calculate the time of dawn and dusk at each latitude and photoperiod length (Ham 2005).

Temperature
Twenty years (2001–2020) of daily maximum and minimum temperature data were extracted from the National Oceanic
and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory CM2.1 A1B X1 climate scenario from grid
cells over each of the four focal sites (NOAA GFDL 2004; Delworth et al. 2006). We then interpolated those maximum
and minimum daily temperatures to hourly measures and subsequently translated them from air to surface temperatures as
outlined below. Further details can be found in Wilczek et al. (2010). These 20 years of hourly data are assembled at
random with replacement when we create environments for model runs at each location.
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Converting Daily Maxima and Minima to Hourly Temperatures

Conversions were modifie from Cesaraccio et al. (2001):

a t � Hnc� cos p � p H ≤ t ≤ Hn m( )2 H � Hm n

T(t) p T � k log L H ≤ t ≤ H ,s j m s{
�T � b t � H H ≤ t ≤ Hs s s p

where t is the current hour and Hn, Hm, and Hs are the time of dawn, daily maximum, and dusk of that day, respectively.
The day’s minimum and maximum temperatures are Tn and Tm, respectively; and Tp is the next day’s minimum
temperature:

2p(w� y) T � Tp sH p H � x sin � z and b p .m n ( ) �365 H � Hp s

Additional intermediates included temperature at sunset (Ts), estimated as Ts p Tm – s(Tm – Tp); c is the arithmetic mean
of Tm and Tn; a is the amplitude of increase Tm � Tn; k is Tm � Ts; the logarithmic base j is 1 � Hs – Hm; and L p j –
(t � Hm). Final parameter values were set to x p 2.036391, y p 79.22015, z p 9.285504, and s p 0.227538 based on
fittin to hourly temperatures gathered at all four sites modeled here plus in Cologne, Germany.

Air to Ground Conversion

Surface temperature (Tg) in kelvins was simulated for each hour based on Kelvin air temperature (Ta) according to

2pt
T (t) p aW� cT � e sin � f � d,g a ( )365

where a, c, d, e, and f are parameters fi empirically using ground-level data from European weather stations at each of
the four sites studied here as well as one in Cologne, Germany (a p 0.004099, c p 0.920493, d p 22.466179, e p
21.861643, and f p 1.549941). Value W (hour, day of year) is clear-sky irradiance as calculated in Ham (2005), and t is
(fractional) time in days since midnight on January 1.

Moisture

Stochastic moisture profile were generated for each site. We obtained site-specifi monthly precipitation totals and rainy-
day totals derived from the Climate Research Unit in East Anglia. Each hour, the chance of a rain event occurring was
based on the number of rainy days given the site and month of the year. After each rain event, the soil dried hourly
according to the equation , where decay (d) is a constant parameter andW(t) p W(t � 1)� [W(t � 1)(d)/p ](m,s)

cumulative precipitation (p) is dependent on both site (s) and month (m). Therefore, the soil drying is scaled such that it
occurs more slowly after rain events in months and locations where the total amount of precipitation in a month was
higher.
While these precipitation inputs are qualitatively different between the sites in an arguably valid way, they are unlikely

to be quantitatively correct. For instance, to maintain generality, we held d constant across sites despite potential
differences in soil that may influe ce soil-drying rates. While we sacrific some accuracy with this simple method, it will
be nearly impossible to get accurate, long-term surface-water potential levels across Europe, particularly as such
parameters are soil type specific In any event, we are primarily interested in how landscape differences in moisture,
temperature, and photoperiod inputs interact. A sensitivity analysis of the decay parameter indicates that we get similar
site-specific-mode results up to a point, as the absolute moistness of the environment changes. Overall, germination takes
longer to occur in drier soils, and therefore the time in which seeds germinate given a dispersal day is pushed later in the
season as the decay parameter increases.
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Dormancy Level (Ψb)

Figure A1: a, Poisson distribution of dormancy levels (Wb used for germination model predictions). b, Germination model predictions
superimposed over 12 replicated experimental time courses at each of four germination temperatures (8�, 16�, 22�, and 31�C). Circles
show all replicates (note that these values are jittered on both the X- and Y-axes for visualization purposes). Solid lines show median
germination at each time point, and dashed lines show model predictions. These seeds were 19 weeks old and represent 12 maternal
replicate plants matured at 20�C in 12-h days.
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