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The experimental setup and basic parameters are already described in detail in the supplement of Ref. [1]. The
spatial light modulator calibration is also explained in the supplement of Ref [2].

Tilt potential calibration

To calibrate the gradient and characterize its homogeneity across the region of interest, we used the SLM to prepare
an initial state consisting of three thin stripes of width ∼ 1 alatt and a separation of ∼ 20 alatt, with their long direction
oriented orthogonal to the tilt direction. Each stripe consists of a spin-polarized gas of the lowest hyperfine ground
state of 6Li.

For weak tilts, we are able to directly measure Bloch oscillations of these non-interacting particles. We do so by
fitting a Gaussian profile to the density profile integrated along the direction perpendicular to the tilt which is used
to quantify the “breathing” oscillation of the width of the stripes. This is similar to what was done in [3]. From the
theory of Bloch oscillations, we expect the width of each stripe to oscillate with a maximal half-width of A = 4th/F
and a period of T = h/Falatt. Thus, by fitting a sinusoid to the evolution of the width of each stripe, we can extract
the tilt strength at their respective positions. Fig. S1(a) shows an example of such oscillations.

For stronger tilts, directly measuring the Bloch oscillations becomes challenging due to their small amplitude.
Instead we use a modulation technique analogous to what was done in [4]. We modulate the lattice potential at
frequencies on the order of the tilt strength. This brings lattice sites that were decoupled due to the tilt into resonance
which results in photon-assisted tunneling. We again measure the width of the thin stripes versus modulation frequency
and observe a broadening of the stripes at resonance. Fig. S1(b) shows an example of such a measurement.

We corroborated that for the same potential strength at intermediate tilts, the gradient extracted using the two
techniques agrees.
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FIG. S1. Tilt potential calibration. (a) Bloch oscillation method for characterization of tilt strengths. Each graph
corresponds to a measurement of the local gradient at the position of one of the three stripes. The measured tilt strength is
Falatt = h×1.64(3) kHz with a maximal difference of 4.6% between stripes. (b) Lattice modulation method for characterization
of tilt strengths. The measured tilt strength is Falatt = h× 3.19(7) kHz with a maximal difference of 7.5% between stripes.
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Linear response

Our hydrodynamic model assumes linearity in the amplitude of the initial inhomogeneities. In this experiment, we
worked with relatively large amplitude density modulations. In a previous study ([2]), we worked with very small
amplitude modulations and fit to a linear hydrodynamic model we developed. In the “tilted” system studied in this
work, we are no longer working close to a ground state, and as such, the strength of the modulation is not expected
to be as important.

Fig. S2 shows a comparison between the decay of strong and weak density modulations in a tilted potential. We
observe that when we normalize the sinusoid amplitude and look at its decay, there is no measurable difference between
the decays within the errorbars. This justifies working with strong modulations in this work to reduce the statistical
error in the measurements for a fixed number of repetitions.
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FIG. S2. Test of linear response. Decay of the amplitude of the density modulation vs. time for two different initial
amplitudes of the modulation. Here λ = 11.46(3)alatt, Falatt/th = 6.1(2) and U/th = 3.9(1). (a) Shows the amplitudes. (b)
Shows the amplitudes normalized to the baseline at t = 0.

Bulk shift

In the main text we focused on the late-time decay of the amplitude of initial density modulations and not on any
early-time average local heating due to a bulk shift (phase slip) of the system along the tilted direction. We argued
that the shift of the COM of the system cannot be more than ∼ (th +U)/F due to energy conservation and the finite
kinetic and interaction energy densities that are possible in the system. In Fig. S3 we show measurements of the bulk
shift of the COM as a function of time for a system with a relatively small tilt so that the bulk shift is appreciable.
On a timescale ∼ 5 ~/th the bulk shift reaches a steady state value and the system stops heating up.
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FIG. S3. Phase slip. The extracted phase slip (converted to units of lattice spacings) from the sinusoid fit to density profiles
(circles) versus time. For wavelengths 19.33(7) alatt (purple) and 23.3(2) alatt (pink) at a tilt of F/t = 0.99(3). The lines are
exponential fits intended to guide the eye. After the early-time phase slip, the phase of the sinusoidal fit remains constant
within error bars. Errorbars increase with time as the amplitude decays and the fit is less effective at determining the phase.

Complete hydrodynamic model

We write our hydrodynamic theory in terms of the particle number density n(x, t) and nontilt energy density e(x, t),
as well as their corresponding currents jn(x, t) and je(x, t). Total particle number and total energy are conserved,
and these conservation laws can be written as

ṅ+∇ · jn = 0 (S1)

ė+∇ · je − Fjn = 0. (S2)

The entropic “force” laws that describe how currents are driven in this system are of the form je = Meχe +Mneχn
and jn = Mnχn+Menχe, where χe and χn are the entropic forces determined by the profiles of e and n, and we insist
on writing the forces in a “canonical basis” for which Onsager’s reciprocal relations take the simple form Men = Mne.
The M coefficients are dynamical coefficients that are, in general, difficult to determine from the microscopic model.
The off-diagonal coefficient Mne is associated with thermopower-type effects in our system, thus this model is quite
general aside from its assumption of linearity, which is well-supported by our experimental measurements. In this
canonical basis, the force χe is determined by the local change of entropy when an infinitesimal current of nontilt
energy flows but no particle current flows. The force χn is determined in a similar fashion, with an infinitesimal
particle current and no nontilt energy current, but note that if an infinitesimal particle current flows, then due to
energy conservation there must be a production (or depletion) of nontilt energy. Thus the forces in this system take
the form

χe = ∇
(
∂s

∂e

)
(S3)

= −see∇e+ sne∇n (S4)

χn = ∇
(
∂s

∂n

)
+ F

(
∂s

∂e

)
(S5)

= −snn∇n+ sne∇e− seeF (e− ē(n̄)) + sneF (n− n̄), (S6)

where s is the entropy density of the Fermi-Hubbard model, and we have expanded this entropy density near infinite-
temperature equilibrium with n = n̄ and e = ē(n̄). The coefficients see, snn, and sne come from this high-temperature
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expansion:

s ≈ s(n̄, ē(n̄)) + sn(n− n̄)− 1

2
snn(n− n̄)2 + sne(n− n̄)(e− ē(n̄))− 1

2
see(e− ē(n̄))2, (S7)

and we emphasize that these coefficients are known functions of U , th and n̄ for the Fermi-Hubbard model.
Now that we have specified our model, we proceed in determining its eigenmodes and respective relaxation rates,

with a particular focus on the slowest mode, which is representative of the late-time behavior that we analyze in the
main text. To do this, we first organize our model into a matrix eigenvalue problem. The eigenmodes are functions
of definite wavelength λ, and they decay to equilibrium at a rate τ−1, i.e. e(x, t) − ē(n̄) = e−Γt(a cos kx + b sin kx)
and n(x, t) − n̄ = e−Γt(c cos kx + d sin kx), where k = 2π/λ and Γ = 1/τ . We therefore write the above deviations

of e and n from global equilibrium as ρ = (a b c d)
T

in the basis {e−Γt cos kx, e−Γt sin kx, e−Γt cos kx, e−Γt sin kx}. In

this language the currents are driven according to j = MUρ and the conservation laws are written as −Γρ = −∇̃j,
where

U =

 0 −seek 0 snek
seek 0 −snek 0
−seeF snek sneF −snnk
−snek −seeF snnk sneF

 , M =

Me 0 Mne 0
0 Me 0 Mne

Mne 0 Mn 0
0 Mne 0 Mn

 , ∇̃ =

 0 k −F 0
−k 0 0 −F
0 0 0 k
0 0 −k 0

 . (S8)

Thus our model is solved via the eigenvalue problem ΓρΓ = ∇̃MUρΓ. There are two solutions for Γ, each with a
multiplicity of two corresponding to pure cos and sin waves for n(x, t)− n̄. The only solution we need to consider at
late times is the slow mode with Γ = Γ− and n(x, t)− n̄ ∝ cos kx. This eigenmode is representative of the dynamics of
all monochromatic initial conditions at late times. In what follows we discuss some important features of the slowest
eigenmode.

In the limit of small F (and/or large k) the slowest mode is diffusive, i.e. Γ ∝ k2. In the limit of large F (and/or
small k) the slowest decay rate is

Γ− ≈
Dth

F 2

(
snn
see
− s2

ne

s2
ee

)
k4, (S9)

where Dth =
(
Me − (M2

ne/Mn)
)
see is the thermal diffusivity, and we will discuss why we identify it as such below.

Thus we see that our model crosses over from diffusive to subdiffusive with τ ∝ λ4 as 1/Fλ becomes small.

If we assume a scaling of the form Γ− ∝ kα we can estimate the exponent α by α = d log Γ−
d log k

∣∣∣
k=ke

evaluated at

some k in the experimental range k ∈ [2π/24, 2π/12] denoted ke. The general expression for α evaluated this way
depends on the dynamical coefficients M , but in the limit where Me

Mn
, Mne

Mn
� snn

see
this dependence drops out and we

get a parameter-free estimate of α as a function of F . In this limit

α(F ) = 2 +
2

1 + snn

see

k2e
F 2

, (S10)

and this is the theoretical estimate of α(F ) that we use to compare to experimental results in the main text (Fig. 3
of main text).

Now we examine the structure of the slowest eigenmode itself and explain why we identify Dth as mentioned above.
At small k/F , to leading order, the slowest eigenmode has

ρΓ−
=


sne

see(
snn

see
− s2ne

s2ee

)
k
F

1
0

 , jΓ−
=


−
(
Me − M2

ne

Mn

)
see

(
snn

see
− s2ne

s2ee

)
k2

F(
Me − M2

ne

Mn

)
sne

(
snn

see
− s2ne

s2ee

)
k3

F 2

0

−
(
Me − M2

ne

Mn

)
see

(
snn

see
− s2ne

s2ee

)
k3

F 2

 . (S11)

We see that in this mode a modulation of number density with amplitude O(1) comes with a slow subdiffusive number
density current jn ∝ k3 that is “out of phase” by a quarter wavelength. This number current converts tilt energy to
nontilt energy and this generates a small out of phase, nontilt energy profile with amplitude ∝ k/F . That nontilt
energy diffuses and we see that the ratio of amplitudes of the resulting “in phase” (with n(x, t)) energy current to the
energy profile it is depleting is |je|/|e| = Dthk with Dth =

(
Me − (M2

ne/Mn)
)
see as mentioned earlier. This is why

we identify Dth as such. The process of diffusing the nontilt energy that is generated by the particle current that is
relaxing the density profile is the bottleneck process and obeys a diffusion equation with diffusivity Dth. That is why
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this diffusivity shows up as the one unknown coefficient in Γ−, and thus we use our data to determine it in the regime
where τ ∝ λ4 where this mechanism is valid.

Now let’s address the β profile in this mode. The “in phase” component of e − ē(n̄) shown in Eqn. S11, which is
larger than the out of phase component by a factor of F/k, is due to the difference between ē(n̄) and ē(n), and not due
to a nonzero β component that is in phase. Since β is proportional to e− ē(n) at high temperatures, to leading order
in the high-temperature limit β(x, t) is set by the out of phase component of e− ē(n) which is the same as e− ē(n̄)
for that component because the out of phase component of n− n̄ is zero by definition (since “in phase” and “out of
phase” are defined relative to the n(x, t) profile here). Thus this model predicts an out of phase local β modulation
with amplitude

amp(β(x, t)) = −see

 snn

see − s2ne

s2ee

 k

F
(S12)

=
1

n̄
(
1− n̄

2

) k
F
, (S13)

where we have used the high temperature expressions for see, sne, and snn. Indeed in the main text we show
measurements of the local β that are consistent with this prediction (Fig. 5 of main text). We call the nontilt energy
current that results from this local β profile the “heat current” jh. Thus Dth is the diffusivity corresponding to the
heat current that is being driven by the nontilt energy that is generated by the relaxation of the particle number
distribution.

High temperature expansion

We compute the grand partition function of the Fermi-Hubbard model in the high temperature expansion to second
order in β and evaluate the second partial derivatives of the entropy density with respect to n, the particle number
density, and e, the energy density due to th and U terms, in order to compute the coefficients see, snn, sne, and sn.
The results are

sn = −βµ (S14)

see =
16

n̄(2− n̄)(32t2h + n̄(2− n̄)U2)
(S15)

snn =
64t2h + 2n̄(2 + n̄)U2

n̄(2− n̄)(32t2h + n̄(2− n̄)U2)
(S16)

sne =
8n̄U

n̄(2− n̄)(32t2h + n̄(2− n̄)U2)
. (S17)

For the experimental parameters n̄ = 0.6 and U/th = 3.9 these coefficients take the values snn ≈ 2.96, see ≈ 0.43,
sne ≈ 0.50 in units where th = 1.

Simultaneous fitting of the model

As explained in the previous sections, there is a fast and a slow exponential decay solution to our hydrodynamic
model. In the strong tilt regime, Eqn. S9 shows that the slow decay depends only on the thermal diffusivity Dth.

We perform a simultaneous fit to all wavelengths at a given tilt strength as explained in the supplement of [2]. The
fitting function is

A(t) = A0e
−Γ−(Dth,F,k)t, (S18)

and it is fitted only to the late-time decay. Here, A0 is a fitting parameter that can vary for each wavelength while
Dth is fitted globally to all wavelengths. The parameters F and k are fixed according to our experimentally measured
values. The results of fitting this model to measurements in the strong tilt regime are shown in Fig. S4.
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FIG. S4. Simultaneous fitting of hydrodynamic model. Fitted normalized relative amplitudes of the periodic density
modulation (circles) vs. time for wavelengths 7.69(3) alatt (yellow), 11.46(3) alatt (green), 15.16(5) alatt (orange), 19.33(7) alatt
(purple), and 23.3(2) alatt (pink) at different tilts. The lines are simultaneous fits of the hydrodynamic model to the long-time
decay after the initial average heating (phase change). We are able to extract the thermal diffusivity through this fitting
method.
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