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Abstract

We study the operators in the large N tensor models, focusing mostly on the fermionic
quantum mechanics with O(N)3 symmetry which may be either global or gauged. In the
model with global symmetry we study the spectra of bilinear operators, which are in either
the symmetric traceless or the antisymmetric representation of one of the O(N) groups. In
the symmetric traceless case, the spectrum of scaling dimensions is the same as in the SYK
model with real fermions; it includes the h = 2 zero-mode. For the operators anti-symmetric
in the two indices, the scaling dimensions are the same as in the additional sector found in the
complex tensor and SYK models; the lowest h = 0 eigenvalue corresponds to the conserved
O(N) charges. A class of singlet operators may be constructed from contracted combinations
of m symmetric traceless or antisymmetric two-particle operators. Their two-point functions
receive contributions from m melonic ladders. Such multiple ladders are a new phenomenon
in the tensor model, which does not seem to be present in the SYK model. The more
typical 2k-particle operators do not receive any ladder corrections and have quantized large
N scaling dimensions k/2. We construct pictorial representations of various singlet operators
with low k. For larger k we use available techniques to count the operators and show that
their number grows as 2kk!. As a consequence, the theory has a Hagedorn phase transition
at the temperature which approaches zero in the large N limit. We also study the large N
spectrum of low-lying operators in the Gurau-Witten model, which has O(N)6 symmetry.
We argue that it corresponds to one of the generalized SYK models constructed by Gross
and Rosenhaus. Our paper also includes studies of the invariants in large N tensor integrals
with various symmetries.
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1 Introduction and Summary

Models where the degrees of freedom are tensors of rank r > 2 offer the possibility of

large N limits dominated by the so-called melon diagrams, if the interactions are chosen

appropriately [1–11]. In models where the tensor indices are distinguishable, so that the

symmetry group is O(N)r for example, the proofs of melonic limits have been available for

several years.1 During the recent months, interest in the melonic large N tensor models has

been boosted by their connections [17, 18] with the Sachdev-Ye-Kitaev model [19–22] and

its generalizations [23], as well as by connections with the large N matrix models [24]. In

particular, the Schwinger-Dyson equations which determine the scaling dimensions of a class

1 There is recent evidence [12,13] that the melon dominance extends even to theories with a single O(N)
symmetry group, which are similar to the tensor models [14–16] considered in the early 90s.
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of bilinear operators [22, 23, 25–27] have been shown to be identical in the tensor and SYK

models [18].

In this paper we continue exploration of the large N tensor models, in particular the

O(N)3 symmetric model of [18], which appears to be the minimal quantum mechanical model

possessing the melonic limit. 2 This model has N3 anti-commuting degrees of freedom, ψabc,

where a, b, c = 1, . . . , N . In the model with global symmetry, the operators may be classified

according to the group representations. In section 3 we study the spectra of two-particle

operators, which are either symmetric traceless or antisymmetric under two indices belonging

to the same O(N) group. We find that the spectrum of symmetric traceless operators (3.5)

is the same as that in the SYK model with real fermions; in particular it includes the h = 2

zero-mode which plays an important role in the dual gravitational dynamics [28–30]. While

in the SYK model there is one h = 2 zero-mode, in the O(N)3 tensor model it appears

with multiplicity 1 + 3
2
(N − 1)(N + 2). For the operators anti-symmetric in the two indices,

(3.6), the spectrum is identical to the additional sector found in the complex tensor and

SYK models [18, 31–36]; it includes the h = 0 eigenvalue with multiplicity 3
2
N(N − 1)

corresponding to the conserved O(N)3 charges.

An attractive feature of the tensor models is that the global symmetry may be gauged [17,

18]; this restricts the operator spectrum to the invariant ones only. The “Regge trajectory”

of two-particle operators ψabc∂2n+1
t ψabc is clearly not the full set of O(N)3 invariant operators;

there are vastly more operators which may be constructed by multiplying an even number

of tensors and contracting all the indices [18]. In section 4 we explicitly construct and draw

pictorial representations of such operators (these pictures are analogous to the Feynman

diagrams in the theory of three scalar fields ϕi with interaction vertex ϕ1ϕ2ϕ3). Using the

techniques developed in [37–40] (see also [41]), we will calculate the number of (2k)-particle

operators and show that it grows asymptotically as 2kk!. As a consequence, the theory has a

Hagedorn phase transition at the temperature ∼ 1/ logN , which we discuss in section 9. Our

work is similar in spirit to the classification of invariants in the d = 0 tensor models [2,42–46],

but some of our specific results appear to be new. Working with the quantum mechanical

model of real 3-tensors introduces some subtleties and cancellations: for example, in the

O(N)3 fermionic model all the 6-particle operators vanish due to the Fermi statistics, while

the number of 10-particle operators is strongly reduced compared to the similar bosonic

model. In section 8 we also count the invariants in d = 0 bosonic models. In addition to

the real tensors with O(N)3 symmetry we study the complex tensor theories with U(N)3

2Our work may be generalized to similar models with higher rank tensors, but we won’t do this explicitly
here.
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and U(N)2 ×O(N) symmetries, as well as the symmetric traceless and fully antisymmetric

rank-3 tensors under a single O(N) group.

Beyond classifying the invariant operators, it is important to determine their infrared

scaling dimensions. We begin work on this in section 5 and point out that there is a large

class of 2k-particle operators whose large N scaling dimensions are simply additive, i.e. k/2.

This is because the melonic ladders contribute only to 1/N corrections. However, although

less generic, there are operators whose dimensions are not simply quantized. While the Regge

trajectory operators studied in [18,22,23,25–27] receive single ladder contributions, there are

operators whose two-point functions have multi-ladder contributions. Since a ladder may

contain an h = 2 zero-mode, the m-ladder diagram seems to produce a low-temperature

enhancement by (βJ)m. This may be an important physical effect in the melonic tensor

models, whose detailed analysis we leave for the future.

Besides our analysis of the spectra of O(N)3 symmetric models, we make some comments

about the O(N)6 symmetric Gurau-Witten model [17]. Some features of its spectrum are

identical to those in the q = 4, f = 4 Gross-Rosenhaus flavored generalization [23] of the

SYK model. The connections of the Gurau-Witten model with this Gross-Rosenhaus model

have been also noted using combinatorial analysis in [47].

After this paper was completed, we became aware of the interesting paper [48], which

has some overlap with our results.

2 Comments on the O(N)3 Symmetric Fermionic Ten-

sor Quantum Mechanics

Let us consider the quantum mechanical model of a real anticommuting 3-tensor ψabc with

the action [18]

S =

∫
dt
( i

2
ψabc∂tψ

abc +
1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1

)
. (2.1)

The three indices, each of which runs from 1 to N , are treated as distinguishable, and the

Majorana fermions satisfy the anti-commutation relations

{ψabc, ψa′b′c′} = δaa
′
δbb
′
δcc
′
. (2.2)
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This model is a somewhat simplified version of the O(N)6 symmetric Gurau-Witten model

[17]. Both are in the class of 3-tensor models which possess a “melonic” large N limit where

J = gN3/2 is held fixed [1–11]. The large N model is nearly conformal in the IR [19,22]; for

example, the two-point function is

〈T (ψabc(t1)ψa
′b′c′(t2))〉 = −δaa′δbb′δcc′

( 1

4πg2N3

)1/4 sgn(t1 − t2)

|t1 − t2|1/2
. (2.3)

The model (2.1) has the O(N)1 ×O(N)2 ×O(N)3 symmetry under the replacement3

ψabc →Maa′

1 M bb′

2 M cc′

3 ψa
′b′c′ , (2.4)

M1 ∈ O(N)1, M2 ∈ O(N)2, M3 ∈ O(N)3 . (2.5)

As far as the group O(N)1 is concerned, we may think of b and c as flavor indices; therefore

ψabc produces N2 flavors of real fermions in the fundamental of O(N)1. An analogous picture

applies to O(N)2 and O(N)3. The three sets of SO(N) symmetry charges are

Qa1a2
1 =

i

2
[ψa1bc, ψa2bc] , Qb1b2

2 =
i

2
[ψab1c, ψab2c] , Qc1c2

3 =
i

2
[ψabc1 , ψabc2 ] . (2.6)

The gauging of SO(N)1 × SO(N)2 × SO(N)3 sets these charges to zero; this restricts the

operators to the invariant ones, where all the indices are contracted. In the ungauged model

(2.1) a more general class of operators is allowed, and they can be classified according to

representations of the SO(N)1 × SO(N)2 × SO(N)3.

Each O(N) group includes parity transformations (axis reflections) Pa0 : for a given a0,

Pa0 sends ψa0bc → −ψa0bc for all b, c and leaves all ψa1bc, a1 6= a0 invariant. In a physical

language, these are “big” gauge transformations and operators should be invariant under

them. Therefore we can build operators using ψabc and the delta symbol δaa
′

only. In the

case of SO(N) gauge group one can use the fully antisymmetric tensor εa1...aN as well; it is

invariant under SO(N), but changes its sign under the parity transformations. Because of

this, there are additional “long” operators containing at least N fields, like

Olong = εa1...aN εb1...bN εc1...cN

N∏
j=1

ψajbjcj . (2.7)

3More generally, we could consider a model with O(N1)×O(N2)×O(N3) symmetry, where a runs from
1 to N1, b from 1 to N2, and c from 1 to N3. This may be thought of as a model of a large number N2 of
N1 ×N3 matrices [24].
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The difference between gauging O(N) and SO(N) becomes negligible in the large N limit.

Let us define three operations which permute pairs of the O(N) symmetry groups (and

thus interchange indices in the tensor field), while also reversing the direction of time,

sab : ψabc → ψbac, t→ −t; (2.8)

sbc : ψabc → ψacb, t→ −t; (2.9)

sac : ψabc → ψcba, t→ −t . (2.10)

Each of these transformations preserves the equations of motion for the ψabc field,

ψ̇abc = ig(ψ3)abc , (ψ3)abc ≡ ψab1c1ψa1bc1ψa1b1c . (2.11)

The Hamiltonian, including a quantum shift due to (2.2),

H = −1

4
gψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 +

gN4

16
= −1

4
g[ψa1b1c1 , ψa1b2c2 ][ψa2b1c2 , ψa2b2c1 ] , (2.12)

changes sign under each of the transformations sab, sbc, sac (this is discussed in section 4).

This means that these transformations are unitary: they preserve eiHt. In contrast, the usual

time reversal transformation is anti-unitary because it also requires complex conjugation

i→ −i.
The O(N)3 invariant operators form representations under the permutation group S3,

which acts on the three O(N) symmetry groups (it contains the elements sab, sbc and sac).

For example, H is in the degree 1 ”sign representation” of S3: it changes sign under any pair

interchange, but preserves its sign under a cyclic permutation.

It is also interesting to study the spectrum of eigenstates of the Hamiltonian for small

values of N ; first steps on this were made in [49–51]. When gauging the O(N)3 symmetry one

needs to worry about the Z2 anomaly, which affects the gauged O(N) quantum mechanics

with an odd number of flavors of real fermions in the fundamental representation [52, 53].

Since for each of the three O(N) groups we find N2 flavors of fundamental fermions, the

gauged model is consistent for even N , but is anomalous for odd N .4 This means that, for

odd N , the spectrum does not contain states which are invariant under O(N)3 (for N = 3

this can be seen via an explicit diagonalization of the Hamiltonian (2.12) [49]).

4We are grateful to E. Witten for pointing this out to us.
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3 Composite Operators and Schwinger-Dyson Equa-

tions

The scaling dimensions of a class of bilinear operators may be extracted from the 4-point

function [18]

〈ψa1b1c1(t1)ψa1b1c1(t2)ψa2b2c2(t3)ψa2b2c2(t4)〉 , (3.1)

and factorizing it in the channel where t1 → t2 and t3 → t4. A class of melonic ladder

graphs appears in this channel in the large N limit; it may be summed by means of a

Schwinger-Dyson equation. The singlet bilinear operators

On = ψabc∂2n+1
t ψabc , n = 0, 1, 2, . . . (3.2)

form a “Regge trajectory.” Their scaling dimensions are the same as in the SYK model

[19,22], and they have been extensively analyzed in the literature [23,25–27]. The dimensions

are determined by the equation

g(h) = −3

2

tan(π
2
(h− 1

2
))

h− 1/2
= 1 , (3.3)

and the first few solutions are h = 2, 3.77, 5.68, . . .. As pointed out in [18], the model

also contains a multitude of multi-particle singlet operators. As we will see, some special

combinations of the multi-particle operators are related by the equations of motion to the

operators (3.2), but most multi-particle operators are genuinely new.

Interestingly, there are also certain non-singlet operators which are renormalized by the

melonic ladder diagrams. This can be seen, for example, from the 4-point function

〈ψa1b1c1(t1)ψa2b1c1(t2)ψa1b2c2(t3)ψa2b2c2(t4)〉 (3.4)

factorized in the channel t1 → t2 and t3 → t4. As shown in figure 1, all the melonic ladders

again make non-vanishing contributions in the large N limit. Here we find two classes of

non-singlet bilinear operators: those symmetric and traceless in a1 and a2, and those anti-

symmetric. The 1
2
(N − 1)(N + 2) symmetric traceless operators under O(N)1,

O(a1a2)
n = ψa1bc∂2n+1

t ψa2bc + ψa2bc∂2n+1
t ψa1bc − 2

N
δa1a2ψabc∂2n+1

t ψabc , (3.5)
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where n = 0, 1, 2, . . ., have the same spectrum as the singlet bilinears (3.2) which is de-

termined by (3.3). Of course, there are analogous operators O(b1b2)
n and O(c1c2)

n that are

symmetric traceless under O(N)2 and O(N)3, respectively. Thus, the symmetric trace-

less operators present in the ungauged model contain the h = 2 zero-mode with multiplicity
3
2
(N−1)(N+2); this appears to imply a significant physical difference between the ungauged

O(N)3 model and the SYK model.5 While in the gauged model such bilinear operators are

projected out, we may form singlet combinations out of their products; such operators have

an interesting feature that they are renormalized by multiple ladders. For example, in section

5 we will encounter operators related by the equation of motion to O(a1a2)
0 O(a1a2)

0 , so they

are renormalized by double ladders. The pictorial representations of these operators may be

found in column 2 of figure 9.

Figure 1: A ladder contribution to the two-point function of a bilinear operator with two
pairs of indices contracted, Oc1c2 . It is not suppressed in the large N limit.

There are also the 1
2
N(N − 1) operators in the anti-symmetric two-index representation

of O(N)1,

O[a1a2]
n = ψa1bc∂2n

t ψ
a2bc − ψa2bc∂2n

t ψ
a1bc , (3.6)

and the analogous anti-symmetric operators under O(N)2 and O(N)3. The Schwinger-Dyson

equations for these operators are identical to the ”symmetric sector” of the complex tensor

model [18, 31–36]. Their scaling dimensions are determined by

g̃(h) = −1

2

tan(π
2
(h+ 1

2
))

h− 1/2
= 1 . (3.7)

The first few solutions of this equation are h = 0, 2.65, 4.58, . . ., and each one appears with

multiplicity 3
2
N(N − 1). The spectrum includes the special h = 0 mode corresponding here

to the n = 0 operators, which are the O(N)3 charges (2.6).

The 4-point function (3.4) may also be factorized in the channel t1 → t3 and t2 → t4.

5We are grateful to Shiraz Minwalla for very useful discussions on this; see the paper [48].
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This leads to the spectrum of operators

Ob1c1b2c2m = ψab1c1∂mt ψ
ab2c2 . (3.8)

We can see from figure 2 that the ladder contribution to this operator are subleading in 1/N :

the rightmost diagram is of ladder type and is ∼ g2N3, which is suppressed by a power of

N relative to the other two diagrams. Therefore the large N scaling dimensions of these

operators are 1/2 +m.

Figure 2: Different contributions to the two-point function of a bilinear operator with one
pair of indices contracted, Ob1c1b2c2m . The ladder diagrams, such as the rightmost figure, are
suppressed in the large N limit.

We will adopt a pictorial representation of the operators where the ψabc fields are shown

as the vertices. The a-indices which transform under O(N)1 are shown by red lines; the

b-indices which transform under O(N)2 are shown by blue lines; and the c-indices which

transform under O(N)3 are shown by green lines. For example, the three charges (2.6) are

shown in figure 3.

Qa1a2
1 Qb1b2

2 Qc1c2
3

Figure 3: The O(N)1, O(N)2 and O(N)3 charges.

4 Construction of O(N)3 invariant operators

In this section we study the spectrum of O(N)3 invariant operators. Since a time derivative

may be removed using the equations of motion (2.11), we may write the operators in a form

where no derivatives are present. The bilinear singlet operator, ψabcψabc, vanishes classically

by the Fermi statistics, while at the quantum level taking into account (2.2), it is a C-number.

The first non-trivial operators appear at the quartic level and are shown in figure 4 (from

here on we will not be careful about the quantum corrections to operators).
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c1 a1 c2 a2

b1

b2

O
(1)

pillow O
(2)

pillow O
(3)

pillow

a1

c1

b1

b2
c2

a2

Otetra

b1 c1 b2 c2

a1

a2

b1 a1 b2 a2

c1

c2

Figure 4: All the four-particle operators, the tetrahedron and the three pillows, with the
index contractions shown explicitly.

On the left is the “tetrahedron operator” Otetra, which is proportional to the Hamiltonian

(2.12):

Otetra = ψa1b1c1ψa1b2c2ψa2b1c2ψa2b2c1 . (4.1)

One can check that

sbcOtetra = ψa1c1b1ψa1c2b2ψa2c2b1ψa2c1b2

= ψa1b1c1ψa1b2c2ψa2b2c1ψa2b1c2 = −Otetra , (4.2)

and also that sabOtetra = −Otetra and sacOtetra = −Otetra. Thus, the tetrahedron opera-

tor Otetra is in the degree 1 ”sign representation” of S3: it changes sign under any pair

interchange, but preserves its sign under a cyclic permutation.

The three additional operators in figure 4, which we denote as O
(1)
pillow, O

(2)
pillow and O

(3)
pillow,

are the ”pillow” operators in the terminology of [6, 10]; they contain double lines between a

pair of vertices. For example, for O
(1)
pillow we have

O
(1)
pillow = −ψa1b1c1ψa2b1c1ψa1b2c2ψa2b2c2 = Qa1a2

1 Qa1a2
1 . (4.3)

Under the S3 the three pillow operators decompose into the trivial representation of degree

1 and the standard representation of degree 2. Since the charges (2.6) commute with the

Hamiltonian (2.12), so does each of the three pillow operators. This means that the scaling

dimensions of the pillow operators are unaffected by the interactions, i.e. they vanish. In

fact, the three pillow operators are simply the quadratic Casimir operators of the three

O(N) groups.6 The gauging of O(N)3 symmetry sets the charges (2.6) to zero, so the pillow

operators do not appear in the gauged model.

6We thank Dan Roberts and Douglas Stanford for discussions on this.
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Using the equations of motion (2.11) we see that the operator Otetra is related by the

equation of motion to the operator ψabc∂tψ
abc

Otetra = ψabc(ψ3)abc ∝ ψabc∂tψ
abc . (4.4)

If we iterate the use of the equation of motion (2.11), then all derivatives in an operator

may be traded for extra ψ-fields. Thus, a complete basis of operators may be constructed

by multiplying some number 2k of ψ-fields and contracting all indices. In this approach,

there is a unique operator with k = 2(n+ 1) which is equal to the Regge trajectory operator

ψabc∂2n+1
t ψabc. For n = 0 this operator is Otetra, which is proportional to the Hamiltonian;

for n = 1 it will be constructed explicitly in section 4.1.

Figure 5: All six-particle operators. They are present in the scalar model but vanish in the
fermionic model.

All the six-particle operators are represented in figure 5, but due to the Fermi statistics

all of them vanish. Even if this were not the case, the operators in the first three columns

would vanish in the gauged model because they contain insertions of the charges (2.6). Let

us demonstrate the vanishing of the two operators in the last column in detail. The first

operator

O
(1)
6 = ψa1b1c1ψa1b2c2ψa2b1c2ψa2b3c3ψa3b3c1ψa3b2c3 , (4.5)

may be written as

O
(1)
6 = (ψ3)a2b2c1(ψ3)a2b2c1 = 0 . (4.6)
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This may be seen by cutting the diagram for this operator in figure 5 along the vertical

symmetry axis. To show that

O
(2)
6 = ψa1b1c1ψa1b2c2ψa2b2c3ψa2b3c1ψa3b3c2ψa3b1c3 (4.7)

also vanishes, we may permute the first two ψ-fields to write it as

O
(2)
6 = −ψa1b2c2ψa1b1c1ψa2b2c3ψa2b3c1ψa3b3c2ψa3b1c3 . (4.8)

After relabeling b1 ↔ b2, c1 ↔ c2 and a2 ↔ a3, we observe that the RHS equals −O(2)
6 .

Therefore, O
(2)
6 = −O(2)

6 = 0.

Figure 6: Some ten-particle operators which vanish in the fermionic model.

One may wonder if the vanishing extends to the 10-particle operators. We have checked

that the operators shown in figure 6 all vanish; this is due to the reflection symmetry present

for these operators. For example, the left operator in figure 6 vanishes because it may

be written as (ψ5)abc(ψ5)abc, which may be seen by cutting the diagram along the vertical

symmetry axis. We note that

(ψ5)abc = g−2∂2
t ψ

abc . (4.9)

Similarly, by cutting the third diagram in figure 6 along its vertical symmetry axis, we see

that the corresponding operator may be written as (ψ5)ab1b2b3b4c(ψ5)ab1b2b3b4c which obviously

vanishes as well. This argument extends to all the reflection symmetric (4n + 2)-particle

diagrams.

However, not all 10-particle operators vanish. For example, the operators shown in figure

7 do not have a reflection symmetry, and we have checked that they do not vanish.

Let us note that each gauge invariant operator, where all the indices are contracted, cor-

responds to a vacuum Feynman diagram in the theory with three scalar fields and interaction

λϕ1ϕ2ϕ3 (the three different propagators correspond to the lines of three different colors in

our figures). In the theory of bosonic tensors φabc, the number of operators made out of 2k

11



Figure 7: Some non-vanishing ten-particle operators.

fields is precisely the number of distinct Feynman diagrams appearing at order λ2k, which

grows as k!2k. In the fermionic model, some of the operators vanish by the Fermi statistics,

while others due to the gauge constraint. Nevertheless, we will find that the factorial growth

holds also in the fermionic model.

4.1 Eight-particle operators

In this section we explicitly construct all the eight-particle operators without bubble (double

line) insertions and exhibit their pictorial representations. Having two vertices connected

by a double line corresponds to insertion of an O(N) charge which vanishes in the gauged

model. For this reason we will omit such operators and list only those where there are no

double lines. The possible topologically inequivalent eight-particle operators are shown in

figure 8; from these we can obtain other admissible operators by interchanging the colors.

In this way we find 17 inequivalent operators shown in figure 9.

Figure 8: Eight-particle operator topologies

Among the eight-particle operators there are three which may be obtained from the

tetrahedral vertex

O1 = ψa1b1c1ψa1b2c2ψa2b2c1ψa2b4c4ψa3b3c2ψa3b1c3ψa4b4c3ψa4b3c4 ,

O2 = ψa1b1c1ψa1b2c2ψa2b2c1ψa2b3c3ψa3b3c2ψa3b4c4ψa4b4c3ψa4b1c4 , (4.10)

O3 = ψa1b1c1ψa1b2c2ψa2b2c1ψa2b3c3ψa3b1c3ψa3b4c4ψa4b3c4ψa4b4c2 .

Their pictorial representations are shown in the first column of figure 9. Using the equations

12



of motion, we may write them as

O1 = ψ̇a1b1c1ψ̇a1b2c2ψa2b1c2ψa2b2c1 ,

O2 = ψ̇a1b1c1ψa1b2c2ψ̇a2b1c2ψa2b2c1 ,

O3 = ψ̇a1b1c1ψa1b2c2ψa2b1c2ψ̇a2b2c1 . (4.11)

It follows that

O1 +O2 +O3 ∼ ∂tψ
abc∂2

t ψ
abc , (4.12)

which up to a total derivative equals the Regge trajectory operator ψabc∂3
t ψ

abc.

Figure 9: All eight-particle operators in the fermionic model.

The transformation properties of operators O1, O2 and O3 under S3 are

sbcO3 = −O2, sbcO2 = −O3, sbcO1 = −O1 ,

sacO3 = −O1, sacO2 = −O2, sacO1 = −O3 ,

sabO3 = −O3, sabO2 = −O1, sabO1 = −O2 .

It follows that

(sab, sac, sbc) : (O1 +O2 +O3)→ −(O1 +O2 +O3) . (4.13)

Therefore, the operator ψabc∂3
t ψ

abc ∼ O1 + O2 + O3 is in the degree 1 sign representation of

13



S3. The other two linear combinations of operators (4.10), O1 − O2 and O2 − O3, form the

standard degree 2 representation of S3.

Similarly, we may write down the three operators which correspond to the second column

in figure 9 (the first of these operators, Õ1, was written down in [18]):

Õ1 = ψa1b1c1ψa1b2c2ψa2b3c3ψa2b4c4ψa3b1c3ψa3b3c1ψa4b2c4ψa4b4c2 ,

Õ2 = ψa1b1c1ψa2b1c2ψa3b2c3ψa4b2c4ψa1b3c3ψa3b3c1ψa2b4c4ψa4b4c2 , (4.14)

Õ3 = ψa1b1c1ψa2b2c1ψa3b3c2ψa4b4c2ψa3b1c3ψa1b3c3ψa4b2c4ψa2b4c4 .

Via the equations of motion, these operators are related to the bilinear operators defined in

(3.5):

Õ1 ∼ O(a1a2)
0 O(a1a2)

0 , Õ2 ∼ O(b1b2)
0 O(b1b2)

0 , Õ3 ∼ O(c1c2)
0 O(c1c2)

0 . (4.15)

These relations will be used in the next section.

The action of the discrete symmetries on the operators is

sbcÕ3 = Õ2, sbcÕ2 = Õ3, sbcÕ1 = Õ1 ,

sacÕ3 = Õ1, sacÕ2 = Õ2, sacÕ1 = Õ3 ,

sabÕ3 = Õ3, sabÕ2 = Õ1, sabÕ1 = Õ2 , (4.16)

so that

(sab, sbc, sac) : Õ1 + Õ2 + Õ3 → Õ1 + Õ2 + Õ3 . (4.17)

Therefore, this operator is in the trivial representation of S3. The other two linear combina-

tions of operators (4.14), Õ1 − Õ2 and Õ2 − Õ3, form the standard degree 2 representation

of S3. The operators corresponding to the other topologies in figure 8 may be written down

analogously.

5 Scaling Dimensions of Multi-Particle Operators

We have seen that the tensor models admit a variety of singlet operators. In this section

we discuss their scaling dimensions. Since operators Ob1c1b2c2m defined in (3.8) do not receive

ladder contributions in the large N limit, we expect a large class of m-particle operators to

14



O8 O8O8 O8

Figure 10: Diagrammatics for the “typical’ operators whose IR dimensions are quantized.
Each line denotes a dressed propagator. a) The melonic diagrams that contribute to the
operator two-point functions in the large N limit. b) The ladder diagrams which do not
contribute in the large N limit.

have the quantized dimensions:7

∆m =
m

4
+O (1/N) . (5.1)

This is the dimension of an operator which is not renormalized by ladder diagrams because

every pair of tensors have at most one index in common. This situation is illustrated in

figure 10: the dominant contribution comes from the two operators contracted using the IR

two-point function (2.3), and the ladder insertions are suppressed by 1/N . We find that

this applies to most of the 17 eight-particle operators shown in figure 9. The exceptions are

operators Oi and Õi, defined in (4.10), (4.14), and shown in columns 1 and 2. For example,

each of the operators Õi in column 2 is renormalized by two ladders, as we discuss below.

Thus, the m/4 rule does not apply to all operators: it is violated for the operators whose

two-point functions receive the melonic ladder contributions in the large N limit. One class

of such singlet operators is the Regge trajectory we have discussed before:

ψabc∂2n+1
t ψabc. (5.2)

After applying the equation of motion (2.11), which schematically may be represented as

∂t= =

(5.3)

we may represent the Regge trajectory operators in terms of multi-particle operators without

derivatives. For example, the n = 0 operator is equivalent to the 4-particle “tetrahedron”

7We are very grateful to E. Witten for pointing this out to us.

15



operator Otetra, while the n = 1 operator is equivalent to O1 +O2 +O3, as shown in (4.12).

The dimensions of such operators come from solving (3.3), so the operator O1 +O2 +O3 has

h ≈ 3.77.

Furthermore, using the equation of motion (5.3), we can relate many additional singlet

operators to operators containing derivatives. Let us denote a vertex with ∂tψ by a white

circle. By the equations of motion, we can relate the operators whose diagram contains

triangles with low-order operators containing derivatives. For example, some of the operators

which can be written as lower-order operators with derivatives are shown in figure 11.

= =

=

Figure 11: The operators which can be represented as lower-order operators with derivative
insertions shown by white dots.

As discussed in section 3, some of these operators are renormalized by multiple ladder di-

agrams. For example, the three 4-particle pillow operators, shown in figure 4, have dimension

h = 0 because they are squares of the symmetry charges. Similarly, operators O(a1a2)
0 O(a1a2)

0

related by the equation of motion to column 2 of figure 9, are renormalized by double ladders

as shown in figure 12. One can also see that the correlation function of this operator with

four fermionic fields receives a contribution from two ladders as shown in figure 13

More generally, we may use operators O(a1a2)
n defined in (3.5) to write down the singlet

operators

On1n2 = O(a1a2)
n1

O(a1a2)
n2

(5.4)

renormalized by double ladders,

On1n2n3 = O(a1a2)
n1

O(a2a3)
n2

O(a3a1)
n3

(5.5)

renormalized by triple ladders, and so on. It appears that in the large N limit their scaling
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Figure 12: An example of an operator renormalized by two ladder diagrams. The diagram
with two ladders inserted (right) is of the same order as the diagram with operators connected
directly (left). The black dots represent the tetrahedral coupling.

dimensions are additive, so that the spectrum of On1n2 is h1 + h2, the spectrum of On1n2n3

is h1 + h2 + h3, etc., but we postpone a detailed study of the relevant Schwinger-Dyson

equations. Here hi are the eigenvalues which appear in the SYK spectrum; they are the

solutions of (3.3). The picture of the 12-particle operator which is equivalent by the equation

of motion to O(a1a2)
0 O(a2a3)

0 O(a3a1)
0 , as well as the analogous operators O(b1b2)

0 O(b2b3)
0 O(b3b1)

0 and

O(c1c2)
0 O(c2c3)

0 O(c3c1)
0 , are shown in figure 15.

Figure 13: A diagram with two ladders contributing to the correlation function 〈O8ψψψψ〉.

Figure 14: Another representation for the same diagram.

We may construct additional operators renormalized by multiple ladders using the op-

erators O[a1a2]
n (see 3.6) in addition to O(a1a2)

n . For example, there is a class of operators

O[a1a2]
n1 O[a1a2]

n2 whose scaling dimensions appear to be h1 + h2, where hi are the solutions of

(3.7). Thus, the charges (2.6) and their products are not the only exceptions to the m/4

rule (since the charges are conserved, we a priori expect their scaling dimension to be zero).

In fact, any operator whose diagram contains a bubble subdiagram (i.e. two tensors with

a double index contraction) is renormalized by a ladder, and there are as many ladders as
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there are bubbles. For example, a pillow operator contains two bubbles and is renormalized

by two ladders.

Moreover, if we take an operator diagram renormalized by multiple ladders and change

one vertex in the diagram from ψ to ∂tψ (blue to white vertex), it will still be renormalized

by the same number of ladders. With derivatives we can convert a pillow operator into the

second operator in fig. 8. It is easy to check that this operator is renormalized by two

ladders. Since each of the ladders contains the h = 2 zero-mode in its spectrum, and a

zero-mode produces a low-temperature enhancement by a factor of βJ [26], we expect the

double-ladder to produce an effect of order (βJ)2. The multi-ladder enhancements by (βJ)n

seem to be a new effect in the tensor model, which clearly needs to be studied in more detail.

Figure 15: Three 12-particle operators of the same topology, which are renormalized by
three-ladder diagrams.

To summarize, we find that:

1. The operators containing bubble subgraphs are renormalized with as many ladder

diagrams as there are bubble insertions.

2. The operators obtained from operators with bubble subgraphs by inserting derivatives

are renormalized by as many ladders as there were bubble insertions in the original

diagram.

3. The dimensions of operators which are renormalized with a single ladder are given by

the solutions of the conformal kernel equation g (h) = 1.

4. The dimensions of the operators which are not renormalized by ladders are multiples

of 1/4.

These results are still far from providing the full information about the singlet spectrum of

the O(N)3 tensor quantum mechanics. In particular, we would like to have a more complete

understanding of the operators renormalized by multiple ladders and to study their low-

temperature contributions. We hope to address these questions elsewhere.
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6 Some Scaling Dimensions in the Gurau-Witten Model

Let us now consider the O(N)6 symmetric quantum mechanical model [17]. It contains

four fermionic rank-3 tensors ψA, A = 0, . . . 3, each one transforming in the tri-fundamental

representation under a different subset of the six O(N) groups. The four fermionic tensors

and the six O(N) gauge groups may be visualized as the vertices and edges of a tetrahedron

[17]. Thus, only two of the fermions transform under a given O(N) symmetry. The Gurau-

Witten Hamiltonian is

HGW = −1

4
gψabc0 ψade1 ψfbe2 ψfdc3 . (6.1)

The model contains bilinear operators of the form Oc1c2
A = ψabc1A ψabc2A . Let us focus on

the operators with A = 0 and 1, which transform in the antisymmetric representation of the

same O(N) group and can mix with each other:

Oc1c2
+ = ψabc10 ψabc20 + ψdec11 ψdec21 , (6.2)

Oc1c2
− = ψabc10 ψabc20 − ψdec11 ψdec21 . (6.3)

The operator Oc1c2
+ is the charge of one of the six O(N) symmetries; therefore, its scaling

dimension vanishes. The operator Oc1c2
− has another scaling dimension, h−. The ladder

diagrams contribute to the two-point function 〈Oc1c2
− (t1)Oc3c4

− (t2)〉 and we need to derive an

appropriate Schwinger-Dyson equation. If we use ψabc10 ψabc20 and ψdec11 ψdec21 as the basis, then

the kernel is a 2×2 symmetric matrix with zeros on the diagonal; hence, the two eigenvalues

are equal and opposite. To fix the normalization, we note that the two functions g±(h) are

proportional to g̃(h), which is given in (3.7). Therefore, g+(h) = g̃(h) and g−(h) = −g̃(h).

The spectrum of solutions to g+(h) = 1 indeed includes h = 0 corresponding to the conserved

charge. The lowest solution to g−(h) = 1 is h− ≈ 2.33; this is the scaling dimension of

operator Oc1c2
− . Thus, there are three quartic “pillow operators” made out of ψ0 and ψ1:

Oc1c2
+ Oc1c2

+ of dimension 0, Oc1c2
+ Oc1c2

− of dimension h−, and Oc1c2
− Oc1c2

− of dimension 2h−. The

third operator is the only pillow operator present in the gauged model where Oc1c2
+ is set to

zero. Its dimension 2h− ≈ 4.66 makes it very irrelevant; we find 6 pillow operators with this

dimension, corresponding to the presence of 6 different O(N) groups.

We may also study the bilinear singlet operators like

On
− = ψabc0 ∂2n+1

t ψabc0 − ψdec1 ∂2n+1
t ψdec1 . (6.4)
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For n = 0 this operator vanishes after the use of equations of motion, but it is non-trivial for

n = 1, 2, . . .. To calculate the scaling dimensions of these operators using the S-D equations

we note that the kernel is the SYK kernel,

KSYK(t1, t2; t3, t4) = − 3

4π

sgn(t1 − t3) sgn(t2 − t4)

|t1 − t3|1/2|t2 − t4|1/2|t3 − t4|
, (6.5)

times a 4 × 4 matrix with zeros on the diagonal, and all the off-diagonal elements equal to

the same value B. To determine B, we note that the kernel corresponding to the eigenvector

(1, 1, 1, 1) with eigenvalue 3B should exactly equal the SYK kernel. This means thatB = 1/3,

which gives the spectrum of the SYK model determined by g(h) = 1 (see 3.3). The three

eigenvectors (1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1) have eigenvalue −B = −1/3; thus, the

spectrum of corresponding operators is determined by

−1

3
g(h) = 1 . (6.6)

The solutions to this equation are shown in figure 16.8 There is a series of solutions that lie

slightly below 2n+ 3
2
, for n = 1, 2, 3, . . . and approach it at large n. In other words, they lie

slightly below the naive dimensions of operators On
−. For n = 1 the numerical value is 3.39,

which is close to 3.5. There is also an exact solution with h = 1, whose interpretation is not

completely clear.

y=g(h)

y=- 1
3
g(h)

y=1

h=1 h=2 h=3.39 h=3.77

1 2 3 4 5
h

-3

-2

-1

1

2

3

y

Figure 16: Plot of the IR dimensions of the bilinear singlet operators in the GW model.

The dimensions of operators On
− that we find are the same as in the Gross–Rosenhaus

8 We may decompose the O(N)6 invariant operators into irreducible representations of the symmetry
group of the tetrahedron, which is isomorphic to S4. Each solution to (6.6) corresponds to 3 operators
belonging to a degree 3 representation of S4.
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“generalized SYK model” [23] for q = 4. In particular, the h = 1 solution is present in that

case as well, and the corresponding operator decouples. The Gross-Rosenhaus model that

corresponds to the colored tensor model has f = 4, i.e. it contains four flavors of Majorana

fields, χia, a = 1, . . . , 4. Its Hamiltonian may be written as

H = Jijklχ
1
iχ

2
jχ

3
kχ

4
l , (6.7)

where Jijkl are random couplings. The operators which are analogous to On
− are χ1

i∂
n+1
t χ1

i −
χ2
j∂

n+1
t χ2

j . The n = 0 operator vanishes by the equation of motion for any value of Jijkl,

which appears to explain the decoupling of the h = 1 mode.

7 Counting singlet operators in d = 1

In this section we proceed to do the singlet operator counting in the O(N)3 quantum me-

chanics more systematically. We employ the technique used in [39, 40] to find the partition

function and free energy of gauge theory. In our case, we will see that the free energy di-

verges wildly, but nevertheless this procedure allows to count the operators in the gauged or

ungauged fermionic and scalar theories.

We work in the one-dimensional spacetime with fields living in the tri-fundamental rep-

resentation of O(N)1×O(N)2×O(N)3, in the limit of N →∞. We will mainly address the

case of the free tensor model, which describes the UV fixed point, but also make comments

about the IR theory. The partition function may be written in the form:

Z =
∑
Oi

xhi , x ≡ e−β, (7.1)

where Oi are all operators in the theory which are singlets under O(N)3. Here hi are the

conformal dimensions, so in the UV this partition function is

Z =
∑
k

nkx
khUV , (7.2)

where k is the number of fields comprising an operator and nk is the number of admissible

operators for each k. In what follows we call k the order of an operator. For the fermionic

model hUV = (d− 1)/2, and for bosonic it is (d− 2)/2.

The partition function counts all operators including the disconnected ones. To restrict

ourselves exclusively to the connected operators, we have to compute the single-sum partition

21



function defined as:

logZ(x) =
∞∑
m=1

1

m
Zs.s. (xm) . (7.3)

To find Zs.s. explicitly, we use an elegant formula from [40]:

Zs.s. (x) = logZ(x) +
∑
m∈Ω

(−1)νm
1

m
logZ (xm) . (7.4)

Here m belongs to the set of square-free integers Ω = {2, 3, 5, 6, 7, 10, 11, 13, . . . }:

m =
νm∏
i=1

pi, pi prime . (7.5)

Our goal in this section is to find the single-sum partition function for the scalar and

fermionic tensor models. The partition function for the scalar theory in the UV with one

group can be found as [37–39]:

ZS =

∫
dM exp

(
∞∑
m=1

1

m
zS,d(x

m)χ(Mm)

)
, (7.6)

and for the fermionic theory it is:

ZF =

∫
dM exp

(
∞∑
m=1

(−1)m+1

m
zF,d(x

m)χ(Mm)

)
, (7.7)

with M in the symmetry group and χ(M) being the character of the desired representation.

In our case, we substitute:

M →M1M2M3, χ(M)→ χ(M1)χ(M2)χ(M3), Mi ∈ O(N)i (7.8)

and take χ(M) = trM .

The single-letter partition functions for scalars and (Majorana) fermions correspondingly

are as follows:

zS,d(x) =
x

d
2
−1(1 + x)

(1− x)d−1
, (7.9)

zF,d(x) =
2b

d
2
cx

d−1
2

(1− x)d−1
. (7.10)
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To find Z, we will need the integrals of characters of O(N) [40]:

∫
dM

∏
l

(
trM l

)al =
∏
l

[
l odd, al even (2l)al/2 1√

π
Γ
(
al
2

+ 1
2

)
,

l even
∑al/2

k=0

(
al
2k

)
(2l)k 1√

π
Γ
(
k + 1

2

)
.

(7.11)

In the next chapter, we first find partition functions for both the fermionic and scalar

d = 1 models without the constraint that the charges (2.6) vanish. Then, to find the

partition function for the operators in the gauged model, we subtract the contribution from

the operators containing O(N) charge, or a “bubble” subdiagram (2.6) (see fig. 3). Such

operators should vanish in the gauged version of quantum mechanics.

7.1 Fermions

The single-letter partition function for real fermions zF,d is not well defined in one dimension.

This reflects the divergence of the partition function (and hence free energy). To regularize

it, we formally proceed in (1 + 2ε) dimension and neglect all the terms proportional to ε in

the single-letter partition function; in other words, we simply take:

zF,1+2ε = xε . (7.12)

We can justify this choice as follows. The single-letter partition function counts all local

operators containing one field ψabc with any number of derivatives. In our case, the only

such operator is ψabc: since ∂tψ
abc vanishes by equations of motion in the free theory, all the

operators with higher derivatives will vanish too.

In other words, in the fermionic case we are counting only the operators made of fermions

without derivatives. We can think of this as operator counting in a d = 0 model (for a review

see [2]), but with the Fermi statistics imposed.

Computing Z and using (7.7), (7.11), we find to first several orders in x:

ZF = 1 + 4x4ε + 70x8ε + 116x10ε + 3062x12ε + 24788x14ε + 409869x16ε + . . . . (7.13)

From this we can find the single-sum partition function, which counts connected operators:

ZFs.s. = 4x4ε + 60x8ε + 116x10ε + 2802x12ε + 24324x14ε + 396196x16ε + . . . . (7.14)

The order 2k in x2kε gives the number of fermions in the operator. So we see there are four

four-fermion operators: one tetrahedron and three differently colored pillows (see figure 4).
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Figure 17: Logarithm of the number of allowed (2k)-particle fermionic operators as a function
of k. We see that the number of operators grows like ∼ k!2k.

Note that, although we employed a gauged theory to count these operators, the pillows and

other operators containing O(N) charges are still present. At the sixth order, there are no

operators because of the Fermi statistics as we noticed before, but at order 8 there are 60

operators.

The number of 2k-particle operators grows roughly as (see fig. 17):

n2k ∼ 2kk! (7.15)

To count operators in the gauged model where the vanishing of O(N) charges (2.6) is

imposed, we have to disregard the operators containing their insertions, i.e. the “bubble”

subgraphs. In order to do that, we subtract the operators having the same quantum numbers

as a bubble in the exponent of (7.7). Each O(N) charge (2.6) is antisymmetric in its two

indices, which means that it lives in the representation (N ⊗N)antisym with the character:

χA (M) ≡ χ(N⊗N)antisym
(M) =

1

2

(
(trM)2 − trM2

)
. (7.16)

The bubble is a bosonic operator and its conformal dimension in the UV is 2ε. Bringing it
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Figure 18: Left: The logarithm of the number of (2k)-particle operators n2k in the model
where O(N)3 symmetry is gauged. The asymptotic of the number of operators is roughly
the same as in the ungauged theory. Right: the ratio n2k+2/n2k plotted against k. The linear
behaviour clearly indicates ∼ 2kk! growth.

all together, we find that the partition function for operators in the gauge theory is:

ZF (gauge) =

∫
dM1dM2dM3 exp

( ∞∑
m=1

1

m

(
(−1)m+1xmεχ(M1)χ

(
M2

)
χ
(
M3

)
− x2mε

(
χA
(
M1

)
+ χA

(
M2

)
+ χA

(
M3

))))
. (7.17)

The single-sum partition function for the gauge theory then is as follows:

ZF (gauge)
s.s. = x4ε + 17x8ε + 24x10ε + 617x12ε + 4887x14ε + 82466x16ε + . . . . (7.18)

We see that at the fourth order we are left with one operator; namely, the tetrahedron. At the

eighth order we see 17 operators, as we already found in section 4.1 via explicit construction

(see fig. 9) We have computed the single-sum partition function up to order 30, and the

result matches the same factorial growth as in the model where the O(N)3 symmetry is not

gauged (see fig. 18).

Finally, let us comment on the IR theory, where we believe there is similarly rapid growth

of the number of operators as a function of the conformal dimension. Since for the majority

of 2k-particle operators the large N IR dimension is h = k/2, in view of the result (7.15)

we expect that the number of operators of dimension h to grow as Γ(2h + 1), up to an

exponential prefactor.
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7.2 Bosons

We can also count the allowed operators in the scalar theory. Proceeding in the same fashion,

we define single-letter partition function in (1 + 2ε) dimensions as follows:

zS,1+2ε = x−
1
2

+ε(1 + x) , (7.19)

where −1
2

+ ε is the dimension of the scalar field. The partition function is:

ZS = 1 + x2ε
(
x−1 + 1 + x

)
+ x4ε

(
5x−2 + 5x−1 + 14 + 5x+ 5x2

)
+ x6ε

(
16x−3 + 34x−2 + 101x−1 + 108 + 101x+ 34x2 + 16x3

)
+ . . . . (7.20)

The single-sum partition function, which includes the operators with bubble insertions, is:

ZSs.s. = x2ε
(
x−1 + 1 + x

)
+ x4ε

(
4x−2 + 4x−1 + 12 + 4x+ 4x2

)
+ x6ε

(
11x−3 + 25x−2 + 79x−1 + 86 + 79x+ 25x2 + 11x3

)
+ . . . . (7.21)

In the second order we have operators φabcφabc, φabc∂tφ
abc, and ∂tφ

abc∂tφ
abc. In the fourth

order, we find the pillows and tetrahedra with various insertions of ∂t. This partition function

also diverges at ε → 0 and displays the factorial growth of the number of operators with

their order.

To count operators in the gauged theory, we once again have to take care of the subgraphs

corresponding to the gauge group charge. For a scalar theory, the gauge charge operator is:

Qa1a2 = φa1bc
↔
∂tφ

a2bc . (7.22)

This operator lives in the adjoint representation, just like the gauge field. Its dimension is

2ε =
(
−1

2
+ ε
)

+
(

1
2

+ ε
)
. The character of the adjoint representation is:

χadj (M) =
1

2

(
(trM)2 − trM2

)
. (7.23)

Taking all this into account, we write the partition function as:

ZS(gauge) =

∫
dM1dM2dM3 exp

(
∞∑
m=1

1

m

((
x−

m
2

+εm + x
m
2

+εm
)
χ (M1)χ (M2)χ (M3)

−χadj (M1)x2mε − χadj (M2)x2mε − χadj (M3)x2mε
))
. (7.24)
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To the first six orders, the partition function reads as:

ZS(gauge) = 1 + x2ε
(
x−1 + 1 + x

)
+ x4ε

(
5x−2 + 5x−1 + 11 + 5x+ 5x2

)
+ x6ε

(
16x−3 + 34x−2 + 77x−1 + 84 + 77x+ 34x2 + 16x3

)
+ . . . . (7.25)

The single-sum partition function, which counts only the operators with connected diagrams,

is as follows:

ZS(gauge)
s.s. = x2ε

(
x−1 + 1 + x

)
+ x4ε

(
4x−2 + 4x−1 + 9 + 4x+ 4x2

)
+ x6ε

(
11x−3 + 25x−2 + 58x−1 + 65 + 58x+ 25x2 + 11x3

)
+ . . . . (7.26)

The first term in this expression corresponds to the operators φabcφabc, φabc∂tφ
abc, and

∂tφ
abc∂tφ

abc (the second of these operators is a total derivative; such descendant opera-

tors are included in the counting). The number 11 in the third term corresponds to all the

six-particle graphs discussed in Section 4. Now the number of operators containing a string

of 2k scalars is approximately

n2k ∼ 22k × 2kk! (7.27)

Compared to the fermionic case 7.15 we have an additional factor of 22k. As we will see in

the next section, for d = 0 the leading asymptotic for the number of operators is the same for

scalars and fermions. Therefore, the factor 22k comes from distributing the time derivatives

∂t among 2k fields. Since in the free theory ∂2
t φ

abc = 0, each of the 2k fields may be acted

on by one or no derivatives. This indeed contributes a factor of 22k.

8 Counting the Invariants in d = 0

Here we use methods similar to those in the previous section to discuss the counting of

invariants in the d = 0 model which is simply an integral over the tensor. The construction

and counting of such invariants, which are made out of products of tensors with all indices

contracted, has been addressed in [2, 42–46]. These papers primarily discuss the complex

bosonic rank-r tensor models which possess U(N)r symmetry. We will first consider the

bosonic rank-3 tensor model with O(N)3 symmetry and perform the counting using the

methods developed in [39, 40]. The model of a real fermionic tensor ψabc does not work in

d = 0: since the O(N)3 invariant ψabcψabc vanishes, it is impossible to write down a Gaussian

integral. One can write down models of complex fermionic tensors in d = 0, but we won’t
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study them here. We will address the bosonic rank-3 symmetric traceless and antisymmetric

tensors in subsection 8.1, and the bosonic complex tensors with U(N)3 and U(N)2 × O(N)

symmetries in subsection 8.2.

The single-letter partition function counts all the invariants containing one field. In our

case the only such operator is φabc, so the single-letter partition function is:

zS,0(x) = x . (8.1)

The invariants in this case are given by the diagrams with 2k vertices and three edges of

different colors meeting at each vertex. Thus, the invariants are isomorphic to the Feynman

diagrams in the theory of three scalar fields with interaction ϕ1ϕ2ϕ3. Every edge of the

diagram is assigned one of the three colors, and every vertex joins the edges of three different

colors. This is a non-trivial condition; for example, one-particle reducible graphs cannot be

colored in this way. We consider different colorings of the diagrams as different invariants,

so each topology can enter multiple times if there are several distinct ways to color it.

Using (7.7), we find the full partition function:

Z0 =

∫
dM1dM2dM3 exp

(
∞∑
m=1

1

m
xmχ(Mm

1 )χ (Mm
2 )χ (Mm

3 )

)
, (8.2)

where we have used the character of a tri-fundamental representation (7.8). Taking this

integral and using (7.11), we find in the first several orders:

Z0 = 1 + x2 + 5x4 + 16x6 + 86x8 + 448x10 + 3580x12 + 34981x14 + . . . . (8.3)

This partition function counts all the invariants, including the disconnected ones. To remove

the latter, we compute the single-sum partition function using (7.4):

Z0
s.s. = x2 + 4x4 + 11x6 + 60x8 + 318x10 + 2806x12 + 29359x14 + . . . . (8.4)

The only two-scalar invariant is φabcφabc. The four four-scalar invariants are the three in-

equivalent pillows and the tetrahedron, shown in figure 4. The eleven six-scalar invariants

are the ones shown in fig. 5.

The number of invariants made out of 2k fields grows asymptotically as (see fig.19):

n2k ∼ 2kk! (8.5)
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Figure 19: Logarithm of the number of invariants with 2k scalars as a function of k. The
number grows as ∼ k!2k.

We can find this asymptotic from an analytic estimate. The key observation is that the

integral (7.11) grows factorially as (al/2)! for large al, while only as a power lal/2 for large

l. Besides, for large al there is no difference in the leading order between odd and even l.

Therefore, the leading contribution to x2k will come simply from the m = 1 term:

n2k ∼
1

(2k)!

∫
dM1dM2dM3 (χ(M1)χ(M2)χ(M3))2k =

1

(2k)!

(
2kΓ (k + 1/2)

)3 ∼ 2kk! (8.6)

Since the dominant term originates only from m = 1 term, the same estimate is valid for the

fermions.

8.1 Symmetric traceless and antisymmetric tensors

Let us also discuss the counting of invariants in models with a single O(N) symmetry, where

we will consider the tensors which are either symmetric traceless or fully antisymmetric.

Such models with the tetrahedral interactions were recently studied in [12], where evidence

was provided that they have melonic large N limits. The full partition function is

Z =

∫
dM exp

(
∞∑
m=1

1

m
xmχ(Mm)

)
, (8.7)
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where for the 3-index symmetric traceless representation the character in the large N limit

is 9

χ+(M) =
1

6
(trM)3 +

1

2
trM trM2 +

1

3
trM3 − trM . (8.8)

For the fully antisymmetric representation the character is

χ−(M) =
1

6
(trM)3 − 1

2
trM trM2 +

1

3
trM3 . (8.9)

In the symmetric traceless case, the partition function is found to be

Z+ = 1 + x2 + 3x4 + 9x6 + 32x8 + 135x10 + 709x12 + . . . . (8.10)

Extracting the single-sum expression, we find

Z+
s.s. = x2 + 2x4 + 6x6 + 20x8 + 91x10 + 509x12 + . . . . (8.11)

The numbers of O(N) invariants made of 2k fields are the same as the numbers of connected

tadpole-free vacuum diagrams in the φ3 theory (here the edges have only one color). They

are smaller than the corresponding numbers in (8.4) referring to the O(N)3 theory. For

example, at order 4 we now have only 2 distinct invariants: in addition to the tetrahedron

there is only one pillow, since there are no distinct colorings of it. For large k the number

of invariants can be estimated similarly to the tri-fundamental case (8.6). Once again, the

term with m = 1 dominates. Moreover, out of the four terms in (8.8), (trM)3/6 gives the

biggest contribution. Therefore,

n±2k ∼
1

(2k)!62k

∫
dM(trM)6k ∼

(
3

2

)k
k! (8.12)

where we used the integrals (7.11).

Since (trM)3/6 dominates, the same asymptotic formula is valid for the 3-index anti-

symmetric case. Here the partition function is found to be

Z− = 1 + x2 + 3x4 + 7x6 + 24x8 + 86x10 + 426x12 + . . . , (8.13)

9The more complicated expression at finite N may be extracted from eq. (2.4) of [12].
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and the single-sum partition function is

Z−s.s. = x2 + 2x4 + 4x6 + 14x8 + 54x10 + 298x12 + . . . . (8.14)

8.2 Complex 3-Tensors

Let us now consider the complex 3-tensors with U(N)3 or U(N)2 ×O(N) symmetries. The

latter symmetry is particularly interesting because it is preserved by the tetrahedral interac-

tion φa1b1c1φ̄a1b2c2φa2b1c2φ̄a2b2c1 . This means that there are interacting melonic theories with

the U(N)2 ×O(N) symmetry [6, 9, 18].

In the U(N)3 case we have the fields φabc and φ̄abc, which are in the tri-fundamental

representations N ×N ×N and N̄ × N̄ × N̄ respectively. The partition function reads:

ZU(N)3

=

∫
dM1dM2dM3 exp

( ∞∑
m=1

z(xm)

m
(χ(Mm

1 )χ(Mm
2 )χ(Mm

3 ) + χ̄(Mm
1 )χ̄(Mm

2 )χ̄(Mm
3 ))

)
.

(8.15)

It is straightforward to compute it using the following large N result [40]:∫
dM

∏
l≥1

(trM l)al(tr M̄ l)bl =
∏
l≥1

lalal!δal,bl . (8.16)

For the scalar we take zS,0(x) = x and find

ZU(N)3

= 1 + x2 + 4x4 + 11x6 + 43x8 + 161x10 + . . . . (8.17)

This expansion matches the results obtained in [46] using group-theoretic methods. Extract-

ing from Z the single-sum partition function, we find

ZU(N)3

s.s. = x2 + 3x4 + 7x6 + 26x8 + 97x10 + . . . . (8.18)

The coefficient 3 of x4 is in agreement with the fact that the tetrahedron invariant is not

allowed by the U(N)3 symmetry. Only the 3 pillow invariants are allowed, and their form is

φa1b1c1φ̄a1b1c2φa2b2c2φ̄a2b2c1 , φa1b1c1φ̄a1b2c1φa2b2c2φ̄a2b1c2 , φa1b1c1φ̄a2b1c1φa2b2c2φ̄a1b2c2 .

(8.19)

The asymptotic number of operators can be estimated as follows. As in the O(N) case, the

integral (8.16) grows factorially in al and only as a power in l. It means that the term with
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m = 1 again dominates. Besides, to get a non-zero answer we need to extract the term with

an equal number of χ(Mi) and χ̄(Mi). Therefore,

n
U(N)3

2k ∼
(

2k

k

)
1

(2k)!

∫
dM1dM2dM3

3∏
i=1

χ(Mi)
kχ̄(Mi)

k ∼ k! (8.20)

In the U(N)2×O(N) case we have representations N ×N ×N and N̄ × N̄ ×N , so that

ZU(N)2×O(N) =

∫
dM1dM2dM3 exp

( ∞∑
m=1

z(xm)

m

(
χ(Mm

1 )χ(Mm
2 ) + χ̄(Mm

1 )χ̄(Mm
2 )
)
χ(Mm

3 )

)
,

(8.21)

where the matrices M1,M2 belong to U(N), while M3 belongs to O(N). The scalar partition

function has the following expansion:

ZU(N)2×O(N) = 1 + x2 + 6x4 + 21x6 + 147x8 + 1043x10 + . . . . (8.22)

Extracting the single-sum partition function, we find

ZU(N)2×O(N)
s.s. = x2 + 5x4 + 15x6 + 111x8 + 821x10 + . . . . (8.23)

The coefficient 5 of x4 is in agreement with the fact that, addition to the tetrahedron invari-

ant, there are 4 pillow invariants allowed by the U(N)2 ×O(N) symmetry:

φa1b1c1φ̄a1b1c2φa2b2c1φ̄a2b2c2 , φa1b1c1φ̄a1b1c2φa2b2c2φ̄a2b2c1 ,

φa1b1c1φ̄a1b2c1φa2b2c2φ̄a2b1c2 , φa1b1c1φ̄a2b1c1φa2b2c2φ̄a1b2c2 . (8.24)

Using the same method as in the U(N)3 case, the asymptotic growth can be found to be

n
U(N)2×O(N)
2k ∼ 2kk! (8.25)

9 The Hagedorn Transition

The special features of the thermodynamics of free theories where the fields are tensors of

rank r ≥ 3 under some global symmetry group were recently studied in [40]. It was found

that the Hagedorn temperature vanishes in the large N limit as ∼ 1/ logN [40]. In this

section we show that this also applies to the models with O(N)3 symmetry studied in this
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paper.

An essential feature of the large N tensor models is that the low temperature expansion of

the partition function has the approximate structure
∑

k 2kk!x2k, where − lnx is proportional

to β. This power series is divergent and non-Borel summable; therefore, strictly speaking the

partition function is not defined for any finite temperature. To illustrate the basic points, we

study the large N behavior of the integral (8.2) in a standard fashion (it will be convenient

to assume that N is even). First of all, for large N there should be no difference between

SO(N) and O(N). An SO(N) matrix can always be put in the block-diagonal form with

2 × 2 blocks corresponding to a rotation by an angle αi in 2d plane. Including the SO(N)

measure [54], the partition function (8.2) can be rewritten as:

Z =

∫ 3∏
r=1

dαir

N/2∏
i<j

sin2
αir − αjr

2
sin2

αir + αjr

2
exp

(
8
∞∑
m=1

z(xm)

m

3∏
r=1

N/2∑
i=1

cos(mαir)

)
=

∫
[dα]e−Seff .

(9.1)

Index r labels different SO(N)r groups and i, j = 1, . . . , N/2 go over rotation angles. Also

we have introduced a single-letter partition function z(x) to work in more generality. The

above equation is valid for scalars, while for fermions we need to include the factor (−1)m+1

in front of z(xm). However, we will see in a moment that for the Hagedorn transition only

m = 1 term is relevant. Therefore, our main results will be applicable for both cases.

The effective action Seff reads

Seff = −
1

2

3∑
r=1

N/2∑
i 6=j

(
log sin2 α

i
r − αjr

2
+ log sin2 α

i
r + αjr

2

)
− 8

∞∑
m=1

z(xm)

m

3∏
r=1

N/2∑
i=1

cos(mαir) .

(9.2)

There are three saddle-point equations. One of them is:

N/2∑
j=1

(
cot

αi1 − α
j
1

2
+cot

αi1 + αj1

2

)
−8

∞∑
m=1

z(xm) sin(mαi1)
∑
j2,j3

cos(mαj22 ) cos(mαj33 ) = 0 . (9.3)

The other two can be obtained by cyclic permutations of αi1, α
i
2, α

i
3. Introducing density

functions:

ρr(α) =
2

N

N/2∑
i=1

δ(α− αir) . (9.4)
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The saddle-point equation can be rewritten as:

∫ π

−π
dα′1ρ1(α′1)

(
cot

α1 − α′1
2

+ cot
α1 + α′1

2

)
− 4N

∞∑
m=1

z(xm) sin(mα1)ρm2 ρ
m
3 = 0 , (9.5)

where

ρmr =

∫ π

−π
dαρr(α) cos(mα) . (9.6)

It is natural to assume that because of the cyclic symmetry ρ1 = ρ2 = ρ3 = ρ(α). Moreover,

we will assume that ρ is an even function: ρ(α) = ρ(−α). With these assumptions the

saddle-point equation reads as:

2

∫ π

−π
dα′ρ(α′) cot

α− α′

2
− 4N

∞∑
m=1

z(xm) sin(mα)(ρm)2 = 0 . (9.7)

This is exactly the saddle-point equation studied in [40], with their 6N replaced by our 2N .

They have found that there is Hagedorn transition: for low temperatures when Nz(x) <

27/16 the partition function is dominated by the uniform saddle

ρ(α) =
1

2π
, α ∈ [−π, π] . (9.8)

And so all ρm are zero for m > 0. For higher temperatures, the density ρ is not a constant and

takes non-zero values only within a smaller interval [−α0, α0]. Moreover, the transition point

itself can be found by assuming that only ρ1 becomes non-zero. Therefore, the transition

takes place at Nz(x) = 27/16 for both bosons and fermions as we have advertised above.

More details can be found in [40] and [39].

For example, we can study the fermions in d = 1 + 2ε. According to eq. (7.12), in the

UV the transition happens at

zF,1+2ε = xε = exp(−βε) =
27

16N
. (9.9)

In the IR the fermions have dimension 1/4 for d = 1. Assuming that most 2k−fermion

operators have dimension k/2, we conclude that the transition takes place at:

zF,IR = x1/4 = exp(−β/4) =
27

16N
. (9.10)

34



Acknowledgments

We are very grateful to E. Witten for important input into many aspects of this paper. We are

also grateful to S. Minwalla for important discussions and for sharing a draft of the paper [48]

prior to publication. We also thank I. Danilenko, A. Jevicki, C. Krishnan, J. Maldacena, C.

Peng, F. Popov, D. Roberts, S. Shenker and D. Stanford for useful discussions. The work

of IRK and GT was supported in part by the US NSF under Grant No. PHY-1620059. GT

acknowledges the support of a Myhrvold-Havranek Innovative Thinking Fellowship.

References

[1] R. Gurau, “Colored Group Field Theory,” Commun. Math. Phys. 304 (2011) 69–93,

0907.2582.

[2] R. Gurau and J. P. Ryan, “Colored Tensor Models - a review,” SIGMA 8 (2012) 020,

1109.4812.

[3] R. Gurau and V. Rivasseau, “The 1/N expansion of colored tensor models in arbitrary

dimension,” Europhys. Lett. 95 (2011) 50004, 1101.4182.

[4] R. Gurau, “The complete 1/N expansion of colored tensor models in arbitrary

dimension,” Annales Henri Poincare 13 (2012) 399–423, 1102.5759.

[5] V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, “Critical behavior of colored

tensor models in the large N limit,” Nucl. Phys. B853 (2011) 174–195, 1105.3122.

[6] A. Tanasa, “Multi-orientable Group Field Theory,” J. Phys. A45 (2012) 165401,

1109.0694.

[7] V. Bonzom, R. Gurau, and V. Rivasseau, “Random tensor models in the large N limit:

Uncoloring the colored tensor models,” Phys. Rev. D85 (2012) 084037, 1202.3637.

[8] S. Dartois, V. Rivasseau, and A. Tanasa, “The 1/N expansion of multi-orientable

random tensor models,” Annales Henri Poincare 15 (2014) 965–984, 1301.1535.

[9] A. Tanasa, “The Multi-Orientable Random Tensor Model, a Review,” SIGMA 12

(2016) 056, 1512.02087.

[10] S. Carrozza and A. Tanasa, “O(N) Random Tensor Models,” Lett. Math. Phys. 106

(2016), no. 11 1531–1559, 1512.06718.

35

http://xxx.lanl.gov/abs/0907.2582
http://xxx.lanl.gov/abs/1109.4812
http://xxx.lanl.gov/abs/1101.4182
http://xxx.lanl.gov/abs/1102.5759
http://xxx.lanl.gov/abs/1105.3122
http://xxx.lanl.gov/abs/1109.0694
http://xxx.lanl.gov/abs/1202.3637
http://xxx.lanl.gov/abs/1301.1535
http://xxx.lanl.gov/abs/1512.02087
http://xxx.lanl.gov/abs/1512.06718


[11] R. Gurau, “The complete 1/N expansion of a SYKlike tensor model,” Nucl. Phys.

B916 (2017) 386–401, 1611.04032.

[12] I. R. Klebanov and G. Tarnopolsky, “On Large N Limit of Symmetric Traceless

Tensor Models,” JHEP 10 (2017) 037, 1706.00839.

[13] R. Gurau, “The 1/N expansion of tensor models with two symmetric tensors,”

1706.05328.

[14] J. Ambjorn, B. Durhuus, and T. Jonsson, “Three-dimensional simplicial quantum

gravity and generalized matrix models,” Mod. Phys. Lett. A6 (1991) 1133–1146.

[15] N. Sasakura, “Tensor model for gravity and orientability of manifold,” Mod. Phys.

Lett. A6 (1991) 2613–2624.

[16] M. Gross, “Tensor models and simplicial quantum gravity in ¿ 2-D,” Nucl. Phys. Proc.

Suppl. 25A (1992) 144–149.

[17] E. Witten, “An SYK-Like Model Without Disorder,” 1610.09758.

[18] I. R. Klebanov and G. Tarnopolsky, “Uncolored random tensors, melon diagrams, and

the Sachdev-Ye-Kitaev models,” Phys. Rev. D95 (2017), no. 4 046004, 1611.08915.

[19] S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum

Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339, cond-mat/9212030.

[20] O. Parcollet and A. Georges, “Non-Fermi-liquid regime of a doped Mott insulator,”

Physical Review B 59 (Feb., 1999) 5341–5360, cond-mat/9806119.

[21] A. Georges, O. Parcollet, and S. Sachdev, “Mean Field Theory of a Quantum

Heisenberg Spin Glass,” Physical Review Letters 85 (July, 2000) 840–843,

cond-mat/9909239.

[22] A. Kitaev, “A simple model of quantum holography,”.

http://online.kitp.ucsb.edu/online/entangled15/kitaev/,http:

//online.kitp.ucsb.edu/online/entangled15/kitaev2/. Talks at KITP, April 7,

2015 and May 27, 2015.

[23] D. J. Gross and V. Rosenhaus, “A Generalization of Sachdev-Ye-Kitaev,” 1610.01569.

[24] F. Ferrari, “The Large D Limit of Planar Diagrams,” 1701.01171.

36

http://xxx.lanl.gov/abs/1611.04032
http://xxx.lanl.gov/abs/1706.00839
http://xxx.lanl.gov/abs/1706.05328
http://xxx.lanl.gov/abs/1610.09758
http://xxx.lanl.gov/abs/1611.08915
http://xxx.lanl.gov/abs/cond-mat/9212030
http://xxx.lanl.gov/abs/cond-mat/9806119
http://xxx.lanl.gov/abs/cond-mat/9909239
http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://online.kitp.ucsb.edu/online/entangled15/kitaev2/
http://xxx.lanl.gov/abs/1610.01569
http://xxx.lanl.gov/abs/1701.01171


[25] J. Polchinski and V. Rosenhaus, “The Spectrum in the Sachdev-Ye-Kitaev Model,”

JHEP 04 (2016) 001, 1601.06768.

[26] J. Maldacena and D. Stanford, “Comments on the Sachdev-Ye-Kitaev model,” Phys.

Rev. D94 (2016), no. 10 106002, 1604.07818.

[27] A. Jevicki, K. Suzuki, and J. Yoon, “Bi-Local Holography in the SYK Model,” JHEP

07 (2016) 007, 1603.06246.

[28] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in

two dimensional Nearly Anti-de-Sitter space,” 1606.01857.

[29] J. Engelsoy, T. G. Mertens, and H. Verlinde, “An investigation of AdS2 backreaction

and holography,” JHEP 07 (2016) 139, 1606.03438.

[30] K. Jensen, “Chaos in AdS2 Holography,” Phys. Rev. Lett. 117 (2016), no. 11 111601,

1605.06098.

[31] W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, “Supersymmetric SYK models,”

1610.08917.

[32] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, “Thermoelectric

transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models

and holography,” Phys. Rev. B95 (2017), no. 15 155131, 1612.00849.

[33] J. Murugan, D. Stanford, and E. Witten, “More on Supersymmetric and 2d Analogs

of the SYK Model,” 1706.05362.

[34] C. Peng, M. Spradlin, and A. Volovich, “Correlators in the N = 2 Supersymmetric

SYK Model,” 1706.06078.

[35] K. Bulycheva, “A note on the SYK model with complex fermions,” JHEP 12 (2017)

069, 1706.07411.

[36] J. Yoon, “SYK Models and SYK-like Tensor Models with Global Symmetry,”

1707.01740.

[37] B. Sundborg, “The Hagedorn transition, deconfinement and N=4 SYM theory,” Nucl.

Phys. B573 (2000) 349–363, hep-th/9908001.

37

http://xxx.lanl.gov/abs/1601.06768
http://xxx.lanl.gov/abs/1604.07818
http://xxx.lanl.gov/abs/1603.06246
http://xxx.lanl.gov/abs/1606.01857
http://xxx.lanl.gov/abs/1606.03438
http://xxx.lanl.gov/abs/1605.06098
http://xxx.lanl.gov/abs/1610.08917
http://xxx.lanl.gov/abs/1612.00849
http://xxx.lanl.gov/abs/1706.05362
http://xxx.lanl.gov/abs/1706.06078
http://xxx.lanl.gov/abs/1706.07411
http://xxx.lanl.gov/abs/1707.01740
http://xxx.lanl.gov/abs/hep-th/9908001


[38] A. M. Polyakov, “Gauge fields and space-time,” Int. J. Mod. Phys. A17S1 (2002)

119–136, hep-th/0110196.

[39] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. Van Raamsdonk,

“The Hagedorn - deconfinement phase transition in weakly coupled large N gauge

theories,” Adv. Theor. Math. Phys. 8 (2004) 603–696, hep-th/0310285. [,161(2003)].

[40] M. Beccaria and A. A. Tseytlin, “Partition function of free conformal fields in 3-plet

representation,” JHEP 05 (2017) 053, 1703.04460.

[41] D. Boulatov and V. Kazakov, “One-dimensional string theory with vortices as the

upside down matrix oscillator,” Int. J. Mod. Phys. A8 (1993) 809–852,

hep-th/0012228.

[42] J. Ben Geloun and S. Ramgoolam, “Counting Tensor Model Observables and

Branched Covers of the 2-Sphere,” 1307.6490.

[43] H. Itoyama, A. Mironov, and A. Morozov, “Ward identities and combinatorics of

rainbow tensor models,” JHEP 06 (2017) 115, 1704.08648.

[44] A. Mironov and A. Morozov, “Correlators in tensor models from character calculus,”

1706.03667.

[45] P. Diaz and S.-J. Rey, “Orthogonal Bases of Invariants in Tensor Models,”

1706.02667.

[46] R. de Mello Koch, D. Gossman, and L. Tribelhorn, “Gauge Invariants, Correlators and

Holography in Bosonic and Fermionic Tensor Models,” 1707.01455.

[47] V. Bonzom, L. Lionni, and A. Tanasa, “Diagrammatics of a colored SYK model and of

an SYK-like tensor model, leading and next-to-leading orders,” J. Math. Phys. 58

(2017), no. 5 052301, 1702.06944.

[48] S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla, and R. Poojary, “Notes on

Melonic O(N)q−1 Tensor Models,” 1707.09352.

[49] I. Klebanov, D. Roberts, D. Stanford, and G. Tarnopolsky, “unpublished,”.

[50] C. Krishnan, K. V. P. Kumar, and S. Sanyal, “Random Matrices and Holographic

Tensor Models,” JHEP 06 (2017) 036, 1703.08155.

38

http://xxx.lanl.gov/abs/hep-th/0110196
http://xxx.lanl.gov/abs/hep-th/0310285
http://xxx.lanl.gov/abs/1703.04460
http://xxx.lanl.gov/abs/hep-th/0012228
http://xxx.lanl.gov/abs/1307.6490
http://xxx.lanl.gov/abs/1704.08648
http://xxx.lanl.gov/abs/1706.03667
http://xxx.lanl.gov/abs/1706.02667
http://xxx.lanl.gov/abs/1707.01455
http://xxx.lanl.gov/abs/1702.06944
http://xxx.lanl.gov/abs/1707.09352
http://xxx.lanl.gov/abs/1703.08155


[51] C. Krishnan and K. V. P. Kumar, “Towards a Finite-N Hologram,” 1706.05364.

[52] E. Witten, “Global Anomalies in String Theory,” in Symposium on Anomalies,

Geometry, Topology Argonne, Illinois, March 28-30, 1985, 1985.

[53] S. Elitzur, Y. Frishman, E. Rabinovici, and A. Schwimmer, “Origins of Global

Anomalies in Quantum Mechanics,” Nucl. Phys. B273 (1986) 93–108.

[54] W. Krauth and M. Staudacher, “Yang-Mills integrals for orthogonal, symplectic and

exceptional groups,” Nucl. Phys. B584 (2000) 641–655, hep-th/0004076.

39

http://xxx.lanl.gov/abs/1706.05364
http://xxx.lanl.gov/abs/hep-th/0004076

	1 Introduction and Summary
	2 Comments on the O(N)3 Symmetric Fermionic Tensor Quantum Mechanics 
	3 Composite Operators and Schwinger-Dyson Equations
	4 Construction of O(N)3 invariant operators
	4.1 Eight-particle operators

	5 Scaling Dimensions of Multi-Particle Operators
	6 Some Scaling Dimensions in the Gurau-Witten Model
	7 Counting singlet operators in d=1
	7.1 Fermions
	7.2 Bosons

	8 Counting the Invariants in d=0
	8.1 Symmetric traceless and antisymmetric tensors
	8.2 Complex 3-Tensors

	9 The Hagedorn Transition

