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Abstract

Computer vision models learn to perform a task by cap-

turing relevant statistics from training data. It has been

shown that models learn spurious age, gender, and race

correlations when trained for seemingly unrelated tasks like

activity recognition or image captioning. Various mitigation

techniques have been presented to prevent models from uti-

lizing or learning such biases. However, there has been little

systematic comparison between these techniques. We design

a simple but surprisingly effective visual recognition bench-

mark for studying bias mitigation. Using this benchmark, we

provide a thorough analysis of a wide range of techniques.

We highlight the shortcomings of popular adversarial train-

ing approaches for bias mitigation, propose a simple but

similarly effective alternative to the inference-time Reduc-

ing Bias Amplification method of Zhao et al., and design

a domain-independent training technique that outperforms

all other methods. Finally, we validate our findings on the

attribute classification task in the CelebA dataset, where

attribute presence is known to be correlated with the gender

of people in the image, and demonstrate that the proposed

technique is effective at mitigating real-world gender bias.

1. Introduction

Computer vision models learn to perform a task by cap-

turing relevant statistics from training data. These statistics

range from low-level information about color or composition

(zebras are black-and-white, chairs have legs) to contextual

or societal cues (basketball players often wear jerseys, pro-

grammers are often male). Capturing these statistical corre-

lations is helpful for the task at hand: chairs without legs are

rare and programmers who are not male are rare, so captur-

ing these dominant features will yield high accuracy on the

target task of recognizing chairs or programmers. However,

as computer vision systems are deployed at scale and in a

variety of settings, especially where the initial training data

and the final end task may be mismatched, it becomes in-

creasingly important to both identify and develop strategies

for manipulating the information learned by the model.

Societal Context. To motivate the work of this paper, con-

sider one such example of social bias propagation: AI

models that have learned to correlate activities with gen-

der [4, 7, 52, 2]. Some real-world activities are more com-

monly performed by women and others by men. This real-

world gender distribution skew becomes part of the data that

trains models to recognize or reason about these activities.1

Naturally, these models then learn discriminative cues which

include the gender of the actors. In fact, the gender corre-

lation may even become amplified in the model, as Zhao et

al. [52] demonstrates. We refer the reader to e.g., [34] for a

deeper look at these issues and their impact.

Study Objectives and Contributions. In this work,

we set out to provide an in-depth look at this prob-

lem of training visual classifiers in the presence of

spurious correlations. We are inspired by prior work

on machine learning fairness [51, 52, 41, 1] and aim

to build a unified understanding of the proposed tech-

niques. Code is available at https://github.com/

princetonvisualai/DomainBiasMitigation.

We begin by proposing a simple but surprisingly effective

benchmark for studying the effect of data bias on visual

recognition tasks. Classical literature on mitigating bias

generally operates on simpler (often linear) models [11, 50,

28], which are easier to understand and control; only recently

have researchers begun looking at mitigating bias in end-to-

end trained deep learning models [16, 2, 40, 18, 48, 25,

30, 36, 47, 17]. Our work helps bridge the gap, proposing

an avenue for exploring mitigating bias in Convolutional

Neural Network (CNN) models within a simpler and easier-

to-analyze setting than with a fully-fledged black-box system.

By utilizing dataset augmentation to introduce controlled

biases, we provide simple and precise targets for model

evaluation (Sec. 3).

Using this benchmark, we demonstrate that the presence

1Buolamwini and Gebru [6] note that collecting a more representative

training dataset should be the first step of the solution. That is true in

the cases they consider (where people with darker skin tones are dramati-

cally and unreasonably undersampled in datasets) but may not be a viable

approach to cases where the datasets accurately reflect the real-world skew.
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of spurious bias in the training data severely degrades the

accuracy of current models, even when the biased dataset

contains strictly more information than an unbiased dataset.

We then provide a thorough comparison of existing meth-

ods for bias mitigation, including domain adversarial train-

ing [46, 41, 1], Reducing Bias Amplification [52], and do-

main conditional training similar to [40]. To the best of our

knowledge, no such comparison exists currently as these

methods have been evaluated on different benchmarks un-

der varying conditions and have not been compared directly.

We conclude that a domain-independent approach inspired

by [11] outperforms more complex competitors (Sec. 4).

Finally, we validate our findings in more realistic settings.

We evaluate on the CelebA [32] benchmark for attribute

recognition in the presence of gender bias (Sec. 5). We

demonstrate that our domain-independent training model

successfully mitigates real-world gender bias.

2. Related Work

Mitigating Spurious Correlation. Recent work on the ef-

fects of human bias on machine learning models investi-

gates two challenging problems: identifying and quanti-

fying bias in datasets, and mitigating its harmful effects.

In relation to the former, [5, 31] study the effect of class-

imbalance on learning, while [52] reveal the surprising phe-

nomenon of bias amplification. Additionally, recent works

have shown that ML models possess bias towards legally

protected classes [29, 6, 4, 7, 33, 8]. Our work complements

these by presenting a dataset that allows us to isolate and

control bias precisely, alleviating the usual difficulties of

quantifying bias.

On the bias mitigation side, early works investigate tech-

niques for simpler linear models [23, 50]. Our constructed

dataset allows us to isolate bias while not simplifying our ar-

chitecture. More recently, works have begun looking at more

sophisticated models. For example, [52] propose an infer-

ence update scheme to match a target distribution, which can

remove bias. [40] introduce InclusiveFaceNet for improved

attribute detection across gender and race subgroups; our dis-

criminative architecture is inspired by this work. Conversely,

[12] propose a scheme for decoupling classifiers, which we

use to create our domain independent architecture. The last

relevant approach to bias mitigation for us is adversarial mit-

igation [1, 51, 13, 16]. Our work uses our novel dataset to

explicitly highlight the drawbacks, and offers a comparison

between these mitigation strategies that would be impossible

without access to a bias-controlled environment.

Fairness Criterion. Pinning down an exact and generally

applicable notion of fairness is an inherently difficult and

important task. Various fairness criteria have been intro-

duced and analyzed, including demographic parity [24, 51],

predictive parity [15], error-rate balance [19], equality-of-

odds and equality-of-opportunity [19], and fairness-through-

unawareness [35] to try to quantify bias. Recent work has

shown that such criteria must be selected carefully; [19]

prove minimizing error disparity across populations, even un-

der relaxed assumptions, is equivalent to randomized predic-

tions; [19] introduce and explain the limitations of an ‘obliv-

ious’ discrimination criterion through a non-identifiability

result; [35] demonstrate that ignoring protected attributes is

ineffective due to redundant encoding; [11] show that demo-

graphic parity does not ensure fairness. We define our tasks

such that test accuracy directly represents model bias.

Surveying Evaluations. We are inspired by previous work

which aggregate ideas, methods and findings to provide a

unify survey of a subfield of computer vision [22, 38, 43, 21].

For example, [45] surveys relative dataset biases present in

computer vision datasets, including selection bias (datasets

favoring certain types of images), capture bias (photogra-

phers take similar photos), category bias (inconsistent or

imprecise category definitions), and negative set bias (unrep-

resentative or unbalanced negative instances). We continue

this line of work for bias mitigation methods for modern

visual recognition systems, introducing a benchmark for

evaluation which isolates bias, and showing that our analysis

generalizes to other, more complex, biased datasets.

3. A Simple Setting for Studying Bias

We begin by constructing a novel benchmark for studying

bias mitigation in visual recognition models. This setting

makes it possible to demonstrate that the presence of spuri-

ous correlations in training data severely degrades the per-

formance of current models, even if learning such spurious

correlations is sub-optimal for the target task.

CIFAR-10S Setup. To do so, we design a benchmark that

erroneously correlates target classification decisions (what

object category is depicted in the image) with an auxiliary

attribute (whether the image is color or grayscale).

We introduce CIFAR-10 Skewed (CIFAR-10S), based on

CIFAR-10 [27], a dataset with 50,000 32×32 images evenly

distributed between 10 object classes. In CIFAR-10S, each

of the 10 original classes is subdivided into two new domain

subclasses, corresponding to color and grayscale domains

within that class. Per class, the 5,000 training images are

split 95% to 5% between the two domains; five classes are

95% color and five classes are 95% grayscale. The total

number of images allocated to each domain is thus balanced.

For testing, we create two copies of the standard CIFAR-10

test set: one in color (COLOR) and one in grayscale (GRAY).

These two datasets are considered separately, and only the

10-way classification decision boundary is relevant.

Discussion. We point out upfront that the analogy between

color/grayscale and gender domains here wears thin: (1) we

consider the two color/grayscale domains as purely binary

and disjoint whereas the concept of gender is more fluid;

(2) a color/grayscale domain classifier is significantly sim-
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pler to construct than a gender recognition model; (3) the

transformation between color and grayscale images is linear

whereas the manifestation of gender is much more complex.

Nevertheless, we adopt this simple framework to distill

down the core algorithmic exploration before diving into the

more complex setups in Sec. 5. This formulation has several

compelling properties: (1) we can control the correlation

synthetically by changing images from color to grayscale,

maintaining control over the distribution, (2) we can guaran-

tee that color images contain strictly more information than

grayscale images, maintaining control over the discrimina-

tive cues in the images, and (3) unlike other datasets, there is

no fairness/accuracy trade off since both are complementary.

Furthermore, despite its simplicity, this setup still allows us

to study the behavior of modern CNN architectures.

Key Issue. We ground the discussion by presenting one

key result that is counter-intuitive and illustrates why this

very simple setting is reflective of a much deeper problem.

We train a standard ResNet-18 [20] architecture with a soft-

max and cross-entropy loss for 10-way object classification.

Training on the skewed CIFAR-10S dataset and testing on

COLOR images yields 89.0 ± 0.5% accuracy.2 This may

seem like a reasonable result until we examine that a model

trained on an all-grayscale training set (so never having seen

a single color image!) yields a significantly higher 93.0%
accuracy when tested out-of-domain on COLOR images.

This disparity occurs because the model trained on

CIFAR-10S learned to correlate the presence of color and

the object classes. When faced with an all-color test set,

it infers that it is likely that these images come from one

of the five classes that were predominantly colored during

training (Fig. 1). In a real world bias setting where the two

domains correspond to gender and the classification targets

correspond to activities, this may manifest itself as the model

making overly confident predictions of activities traditionally

associated with female roles on images of women [52].

4. Benchmarking Bias Mitigation Methods

Grounded with the task at hand (training recognition mod-

els in the presence of spurious correlations) we perform a

thorough benchmark evaluation of bias mitigation methods.

Many of these techniques have been proposed in the liter-

ature for this task; notable exceptions include prior shift

inference for bias mitigation (Sec. 4.3), the distinction be-

tween discriminative and conditional training in this context

(Sec. 4.4), and the different inference methods for condi-

tional training from biased data (Sec. 4.4). Our findings are

summarized in Table 1. In Sec. 5 we demonstrate how our

findings on CIFAR10S generalize to real world settings.

Setup. To perform this analysis, we utilize the CIFAR-10S

domain correlation benchmark of Sec. 3. We assume that

2We report the mean across 5 training runs (except for CelebA in

Sec. 5.2). Error bars are 2 standard deviations (95% confidence interval).

Figure 1. Confusion matrix of a ResNet-18 [20] classifier trained on

the skewed CIFAR-10S dataset. The model has learned to correlate

the presence of color with the five object classes (in bold) and

predominantly predicts those classes on the all-color test set.

at training time the domain labels are available (e.g., we

know which images are color and which are grayscale in

CIFAR-10S, or which images correspond to pictures of men

or women in the real-world setting). All experiments in

this section build on the ResNet-18 [20] architecture trained

on the CIFAR-10S dataset, with N = 10 object classes

and D = {color, grayscale}. The models are trained from

scratch on the target data, removing any potential effects

from pretraining. Unless otherwise noted the models are

tarined for 200 epochs, with SGD at a learning rate of 10−1

with a factor of 10 drop-off every 50 epochs, a weight decay

of 5e−4, and a momentum of 0.9. During training, the image

is padded with 4 pixels on each side and then a 32× 32 crop

is randomly sampled from the image or its horizontal flip.

Evaluation. We consider two metrics: mean per-class per-

domain accuracy (primary) and bias amplification of [52].

The test set is fully balanced across domains, so mean ac-

curacy directly correlates with the model’s ability to avoid

learning the domain correlation during training. We include

the mean bias metric for completeness with the literature, as

1

|C|

∑

c∈C

max(Grc,Colc)

Grc +Colc
− 0.5. (1)

where Grc is the number of grayscale test set examples

predicted to be of class c, while Colc is the same for color.

4.1. Strategic Sampling

The simplest approach is to strategically sample with re-

placement to make the training data ‘look’ balanced with

respect to the class-domain frequencies. That is, we sample

rare examples more often during training, or, equivalently,

utilize non-uniform misclassification cost [14, 3]. How-

ever, as detailed in [49], there are significant drawbacks to

oversampling: (1) seeing exact copies of the same example

during training makes overfitting likely, (2) oversampling in-

creases the number of training examples without increasing

the amount of information, which increases learning time.

Experimental Evaluation. The baseline model first pre-

sented in Sec. 3 is a ResNet-18 CNN with a softmax clas-
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ACCURACY (%, ↑)

MODEL NAME MODEL TEST INFERENCE BIAS (↓) COLOR GRAY MEAN

BASELINE N-way softmax argmaxy P(y|x) 0.074 89.0 88.0 88.5± 0.3
OVERSAMPLING N-way softmax, resampled argmaxy P(y|x) 0.066 89.2 89.1 89.1± 0.4

ADVERSARIAL
w/ uniform confusion [1, 46] argmaxy P(y|x) 0.101 83.8 83.9 83.8± 1.1
w/ ∇ reversal, proj. [51] argmaxy P(y|x) 0.094 84.6 83.5 84.1± 1.0

DOMAINDISCRIM
joint ND-way softmax

argmaxy
∑

d Ptr(y, d|x) 0.844 88.3 86.4 87.3± 0.3
argmaxy maxd Pte(y, d|x) 0.040 91.3 89.3 90.3± 0.5
argmaxy

∑
d Pte(y, d|x) 0.040 91.2 89.4 90.3± 0.5

RBA [52] y = L(
∑

d Ptr(y, d|x)) 0.054 89.2 88.0 88.6± 0.4

DOMAININDEPEND N-way classifier per domain
argmaxy Pte(y|d∗, x) 0.069 89.2 88.7 88.9± 0.4
argmaxy

∑
d s(y, d, x) 0.004 92.4 91.7 92.0± 0.1

Table 1. Performance comparison of algorithms on CIFAR-10S. All architectures are based on ResNet-18 [20]. We investigate multiple bias

mitigation strategies, and demonstrate that a domain-independent classifier outperforms all baselines on this benchmark.

sication layer, which achieves 88.5 ± 0.3% accuracy. The

same model with oversampling improves to 89.1 ± 0.4%
accuracy. Both models drive the training loss to zero. Note

that data augmentation is critical for this result: without

data augmentation the oversampling model achieves only

79.2± 0.8% accuracy, overfitting to the data.

4.2. Adversarial Training

Another approach to bias mitigation commonly suggested

in the literature is fairness through blindness. That is, if a

model does not look at, or specifically encode, information

about a protected variable, then it cannot be biased. To

this end, adversarial training is set up through the minimax

objective: maximize the classifier’s ability to predict the

class, while minimizing the adversary’s ability to predict the

protected variable based on the underlying learned features.

This intuitive approach, however, has a major drawback.

Suppose we aim to have equivalent feature representations

across domains. Even if a particular protected attribute does

not exist in the feature representation of a classifier, com-

binations of other attributes can be used as a proxy. This

phenomenon is termed redundant encoding in the literature

[19, 11]. For an illustrative example, consider a real-world

task of a bank evaluating a loan application, irrespective of

the applicant’s gender. Suppose that the applicant’s employ-

ment history lists ‘nurse’. It can thus, by proxy, be inferred

with high probability that the applicant is also a woman.

However, employment history is crucial to the evaluation of

a loan application, and thus the removal of this redundant

encoding will degrade its ability to perform the evaluation.

Experimental Evaluation. We apply adversarial learning

to de-bias the object classifier. We consider both the uniform

confusion loss −(1/|D|)
∑

d log qd of [1] (inspired by [46]),

and the loss reversal
∑

d 1[d̂ = d] log qd with gradient pro-

jection of [51].3 These methods achieve only 83.4% and

3We apply the adversarial classifiers on the penultimate layer for [1, 46]

84.1% accuracy, respectively. As Fig. 2 visually demon-

strates, although the adversarial classifier enforces domain

confusion it additionally creates undesirable class confusion.

We run one additional experiment to validate the findings.

We test whether models encode the domain (color/grayscale)

information even when not exposed to a biased training distri-

bution; if so, this would help explain why minimizing this ad-

versarial objective would lead to a worse underlying feature

representation and thus reduced classification accuracy. We

take the feature representation of a 10-way classifier trained

on all color images (so not exposed to color/grayscale skew)

and train a linear SVM adversary on this feature representa-

tion to predict the color/grayscale domain of a new image.

This yields an impressive 82% accuracy; since the ability

to discriminate between the two domains emerges naturally

even without biased training, it would make sense that re-

quiring that the model not be able to distinguish between the

two domains would harm its overall classification ability.

4.3. Domain Discriminative Training

The alternative to fairness through blindness is fairness

through awareness [11] where the domain information is

first explicitly encoded and then explicitly mitigated. The

simplest approach is training a ND-way discriminative clas-

sifier where N is the number of target classes and D is

the number of domains. The correlation between domains

and classes can then be removed during inference in one of

several ways.

model, and on the final classification layer for [51] as recommended by the

authors. We experimented with other combinations of layers and losses,

including applying the projection method of [51] onto the confusion loss

of [1, 46], and achieved similar results. The models are trained for 500
epochs using Adam with learning rates 3e-4 and weight decay 1e-4. We

hold out 10,000 images to tune the hyperparameters before retraining the

network on the entire training set. To verify training efficacy, we train SVM

domain classifiers on the learned features: the accuracy is 99.0% before

and 78.2% after adversarial training, verifying training effectiveness.
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w/o adversary w/ adversary

domains classes domains classes

Figure 2. Adversarial training [51] enforces domain confusion but

also introduces unwanted class boundary confusion (t-SNE plots).

4.3.1 Prior Shift Inference

If the outputs of the ND-way classifier can be interpreted

as probabilities, a test-time domain solution to removing

class-domain correlation was introduced in [42] and applied

in [37] to visual recognition. Let the classifier output a joint

probability P(y, d|x) for target class y, domain d and image

x. We can assume that Ptr(x|y, d) = Pte(x|y, d), i.e., the

distribution of image appearance within a particular class and

domain is the same between training and test time. However,

Ptr(d, y) 6= Pte(d, y), i.e., the correlation between target

classes and domains may have changed. This suggests that

the test-time probability Pte(y, d|x) should be computed as:

Pte(y, d|x) ∝ Pte(x|y, d)Pte(y, d) (2)

= Ptr(x|y, d)Pte(y, d) (3)

∝ Ptr(y, d|x)
Pte(y, d)

Ptr(y, d)
(4)

In theory, this requires access to the test label distribution

Pte(y, d); however, assuming uncorrelated d and y at test

time (unbiased Pte(d|y)) and mean per-class accuracy eval-

uation (uniform Pte(y)), Pte(y, d) = Pte(d|y)Pte(y) ∝ 1.

Eqn. 4 then simplifies to Ptr(y, d|x)/Ptr(y, d), removing

the test distribution requirement. With this assumption, the

target class predictions can be computed directly as

ŷ = argmax
y

max
d

Pte(y, d|x) (5)

or, using the Law of Total Probability,

ŷ = argmax
y

Pte(y|x) = argmax
y

∑

d

Pte(y, d|x). (6)

Experimental Evaluation. We train a ND-way classifier

(20-way softmax in our setting) to discriminate between

(class, domain) pairs. This discriminative model with infer-

ence prior shift towards a uniform test distribution (Eqn. 4)

followed by sum of outputs (Eqn. 6) achieves 90.3% accu-

racy, significantly outperforming the 88.5± 0.3% accuracy

of the N -way softmax baseline. To quantify the effects of the

two steps of inference: taking the highest output predictor

rather than summing across domains (Eqn. 5) has no effect

on accuracy because the two domains are easily distinguish-

able in this case; however, summing the outputs without first

applying prior shift drops accuracy from 90.3% to 87.3%.

Finally, we verify that the increase in accuracy is not just

the result of the increased number of parameters in the classi-

fier layer. We train an ensemble of baseline models, averag-

ing their softmax predictions: one baseline achieves 88.5%
accuracy, two models achieve 89.6%, and only an ensemble

of five baseline models (with 55.9M trainable parameters)

achieve 90.0% accuracy on par with 90.3% accuracy of the

discriminative model (with 11.2M parameters).

4.3.2 Reducing Bias Amplification

An alternative inference approach is Reducing Bias Amplifi-

cation (“RBA”) of Zhao et al. [52]. RBA uses corpus-level

constraints to ensure inference predictions follow a partic-

ular distribution. They propose a Lagrangian relaxation it-

erative solver since the combinatorial optimization problem

is challenging to solve exactly at large scale. This method

effectively matches the desired inference distribution and

reduces bias; however, the expensive optimization must be

run on all test samples before a single inference is possible.

Experimental Evaluation. In the original setting of [52],

training and test time biases are equal. However, RBA is

flexible enough to optimize for any target distribution. On

CIFAR-10S, we thus set the optimization target bias to 0 and

the constraint epsilon to 5%. To make the optimization as

effective as possible, we substitute in the known test-time

domain (because it can be perfectly predicted) so that the

optimization only updates the class predictions.

Applying RBA on the
∑

d Ptr(y, d|x) scores results in

88.6% accuracy, a 1.3% improvement over the simpler

argmaxy
∑

d Ptr(y, d|x) inference but an insignificant im-

provement over 88.5% of the BASELINE model. Interest-

ingly, we also observe that the benefits of RBA optimiza-

tion are significantly lessened when prior shift is applied

beforehand. For example, when using the
∑

d Pte(y, d|x)
post-prior shift scores, accuracy only improves negligibly

from 90.3% using argmax inference to 90.4% using RBA.

Therefore, we conclude that applying RBA after prior shift

is extraneous. However, the converse is not true as the best

accuracy achieved by RBA without prior shift is significantly

lower than the accuracy achieved with prior shift inference.

4.4. Domain Independent Training

One concern with the discriminative model is that it learns

to distinguish between the ND class-domain case; in partic-

ular, it explicitly learns the boundary between the same class

across different domains (e.g., cat in grayscale versus cat

in color, or a woman programming versus a man program-

ming). This may be wasteful, as the N -way class decision

boundaries may in fact be similar across domains and the

additional distinction between the same class in different

domains may not be necessary. Furthermore, the model is

necessarily penalized in cases where the domain prediction

is challenging but the target class prediction is unambiguous.
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This suggests training separate classifiers per domain.

Doing this naively, however, as an ensemble, will yield poor

performance as each model will only see a fraction of the

data. We thus consider a shared feature representation with

an ensemble of classifiers. This alleviates the data reduction

problem for the representation though not for the classifiers.

Given the predictions P(y|d, x), multiple inference meth-

ods are possible. If the domain d∗ is known at test time,

ŷ = argmaxy P(y|d
∗, x) is reasonable yet entirely ignores

the learned class boundaries in the other domains d 6= d∗,

and may suffer if some classes y were poorly represented

within d∗ during training. If a probabilistic interpretation is

possible, then two inference methods are reasonable:

ŷ = argmax
y

max
d

P(y|d, x), or (7)

ŷ = argmax
y

∑

d

P(y|d, x)P(d|x) (8)

However, Eqn. 7 again ignores the learned class bound-

aries across domains, and Eqn. 8 requires inferring P(d|x)
(which may either be trivial, as in CIFAR-10S, reducing to

a single-domain model, or complicated to learn and implic-

itly encoding the correlations between y and d that we are

trying to avoid). Further, in practice, while the probabilistic

interpretation of a single model may be a reasonable approxi-

mation, the probabilistic outputs of the multiple independent

models are frequently miscalibrated with respect to each

other.

A natural option is to instead reason directly on class

boundaries of the D domains, and perform inference as4

ŷ = argmax
y

∑

d

s(y, d, x), (9)

where s(y, d, x) are the network activations at the classi-

fier layer. For linear classifiers with a shared feature repre-

sentation this corresponds to averaging the class decision

boundaries. We demonstrate that this technique works well

in practice across both single and multi-label target classifi-

cation tasks at removing class-domain correlations.

Experimental Evaluation. We train a model for perform-

ing object classification on the two domains independently.

This is implemented as two 10-way independent softmax

classifiers sharing the same underlying network. At train-

ing time we use knowledge of the image domain to only

update one of the classifiers. At test time we apply prior

shift to adjust the output probabilities of both classifiers to-

wards a uniform distribution, and consider two inference

methods. First, we use only the classifier corresponding to

the test domain, yielding a low 88.9% accuracy as expected

because it is not able to integrate information across the two

4Interestingly, under a softmax probabilistic model this inference cor-

responds to the geometric mean between {P(y|d, x)}d, which is a stable

method for combining independent models with different output ranges.

domains (despite requiring specialized knowledge of the im-

age domain). Instead, we combine the decision boundaries

following Eqn. 9 and achieve 92.0% accuracy, significantly

outperforming the baseline of 88.5± 0.3%.

4.5. Summary of Findings

So far we illustrated that the CIFAR-10S setup is an effec-

tive benchmark for studying bias mitigation, and provided

a thorough evaluation of multiple techniques. We demon-

strated the shortcomings of strategic resampling and of ad-

versarial approaches for bias mitigation. We showed that

the prior shift inference adjustment of output probabilities

is a simpler, more efficient, and more effective alternative

to the RBA technique [52]. Finally, we concluded that the

domain-conditional model with explicit combination of per-

domain class predictions significantly outperforms all other

techniques. Table 1 lays out the findings.

Recall our original goal of Sec. 3 to train a model that

mitigates the domain correlation bias in CIFAR-10S enough

to classify color images of objects as well as a model trained

on only grayscale images would. We have partially achieved

that goal. The DOMAININDEPENDENT model trained on

CIFAR-10S achieves 92.4% accuracy on color images, sig-

nificantly better than 89.0 ± 0.5% of BASELINE and ap-

proaching 93.0 ± 0.2% of the model trained entirely on

grayscale images. However, much still remains to be done.

We would expect that a model trained on CIFAR-10S would

take advantage of the available color cues and perform even

better than 93.0%, ideally approaching 95.1% accuracy of a

model trained on all color images. The correlation bias is a

much deeper problem for visual classifiers and much more

difficult to mitigate than it appears at first glance.

5. Real World Experiments

While CIFAR-10S proves to be a useful landscape for

bias isolation studies, there remains the implicit assumption

throughout that such findings will generalize to other settings.

Indeed, it is possible that they may not due to the synthetic

nature of the proposed bias generation. We thus investigate

our findings in three alternative scenarios. First, in Sec. 5.1

we consider two modifications to CIFAR-10S: varying the

level of skew beyond the 95%-5% studied in Sec. 4, and

replacing the color/grayscale domains with more realistic

non-linear transformations. After verifying all our findings

still hold, in Sec. 5.2 we consider face attribute recognition

on the CelebA dataset [32] where the presence of attributes,

e.g., “smiling” is correlated with gender.

5.1. CIFAR Extensions

There are two key distinctions between the CIFAR-10S

dataset studied in Sec. 4 and the real world scenarios where

gender or race are correlated with the target outputs.
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Figure 3. (Left) The DOMAININDEP model outperforms the BASE-

LINE on CIFAR-10S for varying levels of skew. (Right) To investi-

gate more real-world domains instead of color-grayscale, we con-

sider the subtle shift between CIFAR and 32x32 ImageNet [10, 39].

Varying Degrees of Domain Distribution. The first dis-

tinction is in the level of skew, where domain balance may

be more subtle than the 95%-5% breakdown studied above.

To simulate this setting, we validated on CIFAR with differ-

ent levels of color/grayscale skew, using the setup of Sec. 4

in Fig. 3 (Left). The DOMAININDEP model consistently out-

performs the BASELINE, although the effect is significantly

more pronounced at higher skew levels. For reference, the

average gender skew on the CelebA dataset [32] for face

attribute recognition described in Sec. 5.2 is 80.0%5.

Other Non-Linear Transformations. The second distinc-

tion is that real-world protected attributes differ from each

other in more than just a linear color-grayscale transfor-

mation (e.g., men and women performing the same task

look significantly more different than the same image in

color or grayscale). To approximate this in a simple set-

ting, we followed the CIFAR protocol of Sec. 4, but instead

of converting images to grayscale, we consider alternative

domain options in Table 2. Arguably the most interesting

shift corresponds to taking images of similar classes from

ImageNet [39, 10], and we focus our discussion on that one.

The domain shift here is subtle (shown in Fig. 3 Right) but

the conclusions hold: mean per-class per-domain accuracy is

BASELINE 79.4±0.4%, ADVERSARIAL 74.1±0.6% [1, 46]

and 73.1± 3.0% [51] (not shown in Table 2), DOMAINDIS-

CRIMINATIVE 81.5 ± 0.7%, and our DOMAININDEPEN-

DENT model 83.5 ± 0.3%. One interesting change is that

OVERSAMPLING yields 78.6 ± 0.4%, significantly lower

than the baseline of 79.4%, so we investigate further. The

drop can be explained by the five classes which were heavily

skewed towards CIFAR images at training time: the model

overfit to the small handful of ImageNet images which got

oversampled, highlighting the concerns with oversampling

particularly in situations where the two domains are differ-

ent from each other and the level of imbalance is high. We

observe similar results in the high-to-low-resolution domain

shift (third and fourth columns of Table 2), where the two

domains are again very different from each other. To coun-

5In this multi-label setting the gender skew is computed on the dev set

as the mean across 39 attributes of
min(|attr=1,woman|,|attr=1,man|)

|attr=1|
.

MODEL 28x28crop 1/2 res. 1/4 res. ImageNet

BASELINE 89.2 85.6 73.7 79.4

OVERSAMP 90.1 85.4 72.7 78.6

DOMDISCR 91.6 88.5 77.3 81.5

DOMINDEP 93.0 90.2 79.9 83.5

Table 2. On CIFAR-10S, we consider other transformations instead

of the grayscale domain: (1) cropping the center of the image, (2,3)

reducing the image resolution [44], followed by upsampling or

(4) replacing with 32x32 ImageNet images of the same class [10].

We use the inference of Eqn. 6 for DOMDISCR and Eqn. 9 for

DOMINDEP, and report mean per-class per-domain accuracy (in

%). Our conclusions from Sec. 4 hold across all domain shifts.

teract this effect we instead applied the class-balanced loss

method Cui et al. [9], cross-validating the hyperparameter on

a validation set to β = 0.9, and achieved a more reasonable

result of 79.2%, on par with 79.4± 0.4% of BASELINE but

still behind 83.5± 0.3% of DOMAININDEPENDENT.

5.2. CelebA Attribute Recognition

Finally, we verified our findings on the real-world CelebA

dataset [32], used in [41] to study face attribute recognition

when the presence of attributes, e.g., “smiling,” is correlated

with gender. We trained models to recognize the 39 attributes

(all except the “Male” attribute). Out of the 39 attributes, 21

occur more frequently with women and 18 with men, with an

average gender skew of 80.0% when an attribute is present.

During evaluation we consider the 34 attributes that have

sufficient validation and test images.6

Task and Metric. The target task is multi-label classifica-

tion, evaluated using mean average precision (mAP) across

attributes. We remove the gender bias in the test set by using

a weighted mAP metric: for an attribute that appears with

Nm men and Nw women images, we weight every posi-

tive man image by (Nm +Nw)/(2Nm) and every positive

woman image by (Nm +Nw)/(2Nw) when computing the

true positive predictions. This simulates the setting where

the total weight of positive examples within the class remains

constant but is now equally distributed between the genders.

We also evaluate the bias amplification (BA) of each at-

tribute [52]. For an attribute that appears more frequently

with women, this is Pw/(Pm+Pw)−Nw/(Nm+Nw) where

Pw, Pm are the number of women and men images respec-

tively classified as positive for this attribute. For attributes

that appear more frequently with men, the numerators are

Pm and Nm. To determine the binary classifier decision we

compute a score threshold for each attribute which maxi-

mizes the classifier’s F-score on the validation set. Since

our methods aim to de-correlate gender with the attribute

we expect that bias amplification will be negative as the

6The removed attributes did not contain at least 1 positive male, positive

female, negative male, and negative female image. They are: 5 o’clock

shadow, goatee, mustache, sideburns and wearing necktie.
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MODEL MODEL MAP BA

BASE N sigmoids 74.7 0.010

ADVER w/uniform conf. [1, 46] 71.9 0.019

DOMDIS 2N sigm,
∑

d Ptr(y, d|x) 73.8 0.007

DOMIND

2N sigmoids, Ptr(y|d∗, x) 73.8 0.009

2N sigm, maxd Ptr(y|d, x) 75.4 -0.039

2N sigm,
∑

d Ptr(y|d, x) 76.0 -0.037

2N sigmoids,
∑

d s(y, d, x) 76.3 -0.035

Table 3. Attribute classification accuracy evaluated using mAP

(in %, ↑) weighted to ensure an equal distribution of men and

women appearing with each attribute, and Bias Amplification (↓).

Evaluation is on the CelebA test set, across 34 attributes that have

sufficient validation data; details in Sec. 5.2.

predictions approach a uniform distribution across genders.

Training Setup. The images are the Aligned&Cropped sub-

set of CelebA [32]. We use a ResNet-50 [20] base archi-

tecture pre-trained on ImageNet [39]. The FC layer of the

ResNet model is replaced with two consecutive fully con-

nected layers. Dropout and relu is applied to the output

between the two fully connected layers, which has size 2048.

It is trained with a binary cross entropy loss with logits

using a batch size of 32, for 50 epochs with the Adam op-

timizer [26] (learning rate 1e-4). The best model over all

epochs is selected per inference method on the validation

set. For adversarial training, we run an extensive hyperpa-

rameter search over the relative weights of the losses and

the number of epochs of the adversary. We select the model

with the highest weighted mAP on the validation set among

all models that successfully train a de-biased representation

(accuracy of the gender classifier drops by at least 1%; oth-

erwise it’s essentially the BASELINE model with the same

mAP). The models are evaluated on the test set.

Results. Table 3 summarizes the results. The overall conclu-

sions from Sec. 4 hold despite the transition to the multi-label

setting and to real-world gender bias. ADVERSARIAL train-

ing as before de-biases the representation but also harms the

mAP (71.9% compared to 74.7% for BASELINE). In this

multi-label setting we do not consider a probabilistic inter-

pretation of the output as the classifier models are trained

independently instead of jointly in a softmax. Without this

interpretation and prior shift the DOMAINDISCRMINATIVE

model achieves less competitive results than the baseline at

73.8%. RBA inference of [52] towards a uniform distribution

performs similarly at 73.6%. The DOMAININDEPENDENT

model successfully mitigates gender bias and outperforms

the domain-unaware BASELINE on this task, increasing the

weighted mAP from 74.7% to 76.3%. Alternative inference

methods, such as selecting the known domain, computing

the max output over the domains, or summing the outputs of

the probabilities directly achieve similar bias amplification

results but perform between 0.3− 2.5% mAP worse.

Analysis. We take a deeper look at the per-class results on

the validation set to understand the factors that contribute

Figure 4. Per-attribute improvement of the DOMAININDEPENDENT

model over the BASELINE model on the CelebA validation set, as a

function of the level of gender imbalance in the attribute. Attributes

with high skew (such as “bald”) benefit most significantly.

to the improvement. Overall the DOMAININDEPENDENT

model improves over BASELINE on 24 of the 34 attributes.

Fig. 4 demonstrates that the level of gender skew in the at-

tribute is highly correlated with the amount of improvement

(ρ = 0.709). Attributes that have skew greater than 80%
(out of the positive training images for this attribute at least

80% belong to one of the genders) always benefit from the

DOMAININDEPENDENT model. This is consistent with the

findings from CIFAR-10S in Fig. 3(Left). When the level

of skew is insufficiently high the harm from using fewer

examples when training the DOMAININDEPENDENT model

outweighs the benefit of decomposing the representation.

Oversampling. Finally, we note that the OVERSAMPLING

model in this case achieves high mAP of 77.6% and bias

amplification of -0.061, outperforming the other techniques.

This is expected as we know from prior experiments in Sec. 4

and 5.1 that oversampling performs better in settings where

the two domains are more similar (color/grayscale, 28x28

vs 32x32 crop) and where the skew is low while the dataset

size is large so it wouldn’t suffer from overfitting.

6. Conclusions

We provide a benchmark and a thorough analysis of bias

mitigation techniques in visual recognition models. We

draw several important algorithmic conclusions, while also

acknowledging that this work does not attempt to tackle

many of the underlying ethical fairness questions. What

happens if the domain (gender in this case) is non-discrete?

What happens if the imbalanced domain distribution is not

known at training time – for example, if the researchers failed

to identify the undesired correlation with gender? What

happens in downstream tasks where these models may be

used to make prediction decisions? We leave these and many

other questions to future work.
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