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Abstract

Ensuring the usefulness of electronic data sources while providing necessary privacy guarantees is an

important unsolved problem. This problem drives the need for an analytical framework that can quantify

the privacy of personally identifiable information while still providing a quantifable benefit (utility) to

multiple legitimate information consumers. This paper presents an information-theoretic framework that

promises an analytical model guaranteeing tight bounds of how much utility is possible for a given level

of privacy and vice-versa. Specific contributions include:i) stochastic data models for both categorical

and numerical data; ii) utility-privacy tradeoff regions and the encoding (sanization) schemes achieving

them for both classes and their practical relevance; and iii) modeling of prior knowledge at the user

and/or data source and optimal encoding schemes for both cases.

Index Terms

utility, privacy, databases, rate-distortion theory, equivocation, side information.

I. INTRODUCTION

Just as information technology and electronic communications have been rapidly applied to almost every

sphere of human activity, including commerce, medicine andsocial networking, the risk of accidental or

intentional disclosure of sensitive private information has increased. The concomitant creation of large
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centralized searchable data repositories and deployment of applications that use them has made “leakage”

of private information such as medical data, credit card information, power consumption data, etc. highly

probable and thus an important and urgent societal problem.Unlike the secrecy problem, in theprivacy

problem, disclosing data provides informational utility while enabling possible loss of privacy at the

same time. Thus, as shown in Fig. 1, in the course of a legitimate transaction, a user learns some public

information (e.g. gender and weight), which is allowed and needs to be supported for the transaction to

be meaningful, and at the same time he can also learn/infer private information (e.g., cancer and income),

which needs to be prevented (or minimized). Thus, every useris (potentially) also an adversary.

The problem of privacy and information leakage has been studied for several decades by multiple

research communities; information-theoretic approachesto the problem are few and far in between and

have primarily focused on using information-theoretic metrics. However, a rigorous information-theoretic

treatment of the utility-privacy (U-P) tradeoff problem remains open and the following questions are yet

to be addressed: (i) the statistical assumptions on the datathat allow information-theoretic analysis, (ii)

the capability of revealing different levels of private information to different users, and (iii) modeling of

and accounting for prior knowledge. In this work, we seek to apply information theoretic tools to address

the open question of an analytical characterization that provides a tight U-P tradeoff. If one views public

and private attributes of data in a repository as random variables with a joint probability distribution, a

private attribute in a database remains private to the extent that revealing public attributes releases no

additional information about it – in other words, minimizing the risk of privacy loss implies thatthe

conditional entropy of the private attribute should be as high as possible after the disclosure. Thus, in

Fig. 1, keeping the cancer attribute private would mean that, given knowledge of the public attributes of

gender and weight, the predictability of the cancer attribute should remain unchanged. To achieve this,

the gender attribute in Entry 1 has been “sanitized.”

The utility of a data source lies in its ability to disclose data and privacy considerations have the

potential to hurt utility. Indeed, utility and privacy are competing goals in this context. For example, in

Fig. 1 one could sanitize all or most of the entries in the gender attribute to ‘M’ to obtain more privacy

but that could reduce the usefulness of the published data significantly. Any approach that considers only

the privacy aspect of information disclosure while ignoring the resultant reduction in utility is not likely to

be practically viable. To make a reasoned tradeoff, we need to know the maximum utility achievable for

a given level of privacy and vice versa, i.e. an analytical characterization of the set of all achievable U-P

tradeoff points. We show that this can be done using an elegant tool from information theory called rate

distortion theory: utility can be quantified via fidelity which, in turn, is related (inversely) todistortion.
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Fig. 1. An example database with public and private attributes and its sanitized version.

Rate distortion has to be augmented with privacy constraints quantified viaequivocation, which is related

to entropy.

Our Contributions:The central contribution of this work is a precise quantification of the tradeoff

between the privacy needs of the individuals represented bythe data and the utility of thesanitized

(published) data for any data source using the theory of ratedistortion with additional privacy constraints.

Utility is quantified (inversely) viadistortion (accuracy), and privacy viaequivocation(entropy).

We expose for the first time an essential dimension of information disclosure via an additional constraint

on the disclosure rate, a measure of the precision of the sanitized data. Any controlled disclosure of public

data needs to specify the accuracy and precision of the disclosure; while the two can be conflated using

additive noise for numerical data, additive noise is not an option for categorical data (social security

numbers, postal codes, disease status, etc.) and thus output precision becomes important to specify. For

example, in Fig. 1, the weight attribute is a numeric field that could either be distorted with random

additive noise or truncated (or quantized) into ranges suchas 90-100, 100-110, etc. The use of the digits

of the social security number to identify and protect the privacy of students in grade sheets is a familiar

non-numeric example. Sanitization (of the full SSN) is achieved by heuristically reducing precision to

typically the last four digits. A theoretical framework that formally specifies the output precision necessary

and sufficient to achieve the optimal U-P tradeoff would be desirable.

In [1] the rate-distortion-equivocation (RDE) tradeoff for a simple source model was presented. We

translate this formalism to the U-P problem and develop aframework that allows us to model generic data

sources, including multi-dimensional databases and data streams [2], develop abstract utility and privacy

metrics, and quantify the fundamental U-P tradeoff bounds.We then present asanitization scheme that
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achieves the U-P tradeoff regionand demonstrate the application of this scheme for both numerical and

categorical examples. Noting that correlation available to the user/adversary can be internal (i.e. between

variables within a database) or external (with variables that are outside the database but accessible to the

user/adversary), [3]–[5] have shown that external knowledge can be very powerful in the privacy context.

We address this challenge in our framework via amodel for side information. Our theorem in this context

reported previously in [6] is presented with the full proof here.

Finally, we demonstrate our framework with two crucial and practically relevant examples: categorical

and numerical databases. Our examples demonstrate two fundamental aspects of our framework: (i) how

statistical models for the data and U-P metrics reveals the appropriate distortion and suppression of

data to achieve both privacy and utility guarantees; and (ii) how knowledge of source statistics enables

determining the U-P optimal sanitization mechanism, and therefore, the largest U-P tradeoff region.

The paper is organized as follows. In Section II we briefly summarize the state of the art in database

privacy research. In Section III, we motivate the need for aninformation-theoretic analysis and present

the intuition behind our analytical framework. In Section IV, we present an abstract model and metrics

for structured data sources such as databases. We develop our primary analytical framework in Section

V and illustrate our results in Section VI. We close with concluding remarks in Section VII.

II. RELATED WORK

The problem of privacy in databases has a long and rich history dating back at least to the 1970s,

and space restrictions preclude any attempt to do full justice to the different approaches that have been

considered along the way. We divide the existing work into two categories, heuristic and theoretical

techniques, and outline the major milestones from these categories for comparison.

The earliest attempts at systematic privacy were in the areaof census data publication where data was

required to be made public but without leaking individuals’information. A number of ad hoc techniques

such as sub-sampling, aggregation, and suppression were explored (e.g., [7], [8] and the references

therein). The first formal definition of privacy wask-anonymity by Sweeney [3]. Howeverk-anonymity

was found to be inadequate as it only protects from identity disclosure but not attribute-based disclosure

and was extended witht-closeness [9] andl-diversity [10]. All these techniques have proved to be non-

universal as they were only robust against limited adversaries. Heuristic techniques for privacy in data

mining have focused on using a mutual information-based privacy metrics [11].

The first universal formalism was proposed in differential privacy (DP) [4] (see the survey in [12] for

a detailed history of the field). In this model, the privacy ofan individual in a database is defined as
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a bound on the ability of any adversary to accurately detect whether that individual’s data belongs to

the database or not. They also show that Laplacian distributed additive noise with appropriately chosen

parameters suffices to sanitize numerical data to achieve differential privacy. The concept of DP is strictly

stronger than our definition of privacy, which is based on Shannon entropy. However, our model seems

more intuitively accessible and suited to many applicationdomains where strict anonymity is not the

requirement. For example, in many wellness databases the presence of the record of an individual is not

a secret but that individual’s disease status is. Our sanitization approach applies to both numerical and

categorical data whereas DP, while being a very popular model for privacy, appears limited to numerical

data. Furthermore, the loss of utility from DP-based sanitization can be significant [13]. There has been

some work pointing out the loss of utility due to privacy mechanisms for specific applications [14].

More generally, a rigorous model for privacy-utility tradeoffs with a method to achieveall the optimal

points has remained open and is the subject of this paper. Theuse of information theoretic tools for

privacy and related problems is relatively sparse. [1] analyzed a simple two variable model using rate

distortion theory with equivocation constraints, which isthe prime motivation for this work. In addition,

there has been recent work comparing differential privacy guarantee with Renyi entropy [15] and Shannon

entropy [16].

III. M OTIVATION AND BACKGROUND

The information-theoretic approach to database privacy involves two steps: the first is the data mod-

eling step and the second is deriving the mathematical formalism for sanitization. Before we introduce

our formal model and abstractions, we first present an intuitive understanding and motivation for our

approaches below.

A. Motivation: Statistical Model

Our work is based on the observation that large datasets (including databases) have a distributional

basis; i.e., there exists an underlying (sometimes implicit) statistical model for the data. Even in the case

of data mining where only one or a few instances of the datasetare ever available, the use of correlations

between attributes used an implicit distributional assumption about the dataset. We explicitly model the

data as being generated by a source with a finite or infinite alphabet and a known distribution. Each row

of the database is a collection of correlated attributes (ofan individual) that belongs to the alphabet of

the source and is generated according to the probability of occurrence of that letter (of the alphabet).
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Our statistical model for databases is also motivated by thefact that while the attributes of an individual

may be correlated (e.g. between the weight and cancer attributes in Fig. 1), the records of a large number

of individuals are generally independent or weakly correlated with each other. We thus model the database

as a collection ofn observations generated by a memoryless source whose outputs are independent and

identically distributed (i.i.d.).

Statistically, with a large numbern of i.i.d. samples collected from a source, the data collected can

be viewed astypical, i.e., it follows the strong law of large numbers (SLLN) [17,Ch. 11]. The SLLN

implies that the absolute difference between the empiricaldistribution (obtained from the observations)

and the actual distribution of each letter of the source alphabet decreases withn, i.e., the samples (letters

from the source alphabet) in the database will be represented proportional to their actual probabilities.

This implies that for all practical purposes the empirical distribution obtained from a large dataset can

be assumed to be the statistical distribution of the idealized source for our model and the approximation

gets better asn grows.

Our measures for utility and privacy capture this statistical model. In particular, we quantify privacy

using conditional entropywhere the conditioning on the published (revealed) data captures the average

uncertainty about the source (specifically, the private attributes of the source) post-sanitization. Our utility

measure similarly is averaged over the source distribution.

Intuitively, privacy is about maintaining uncertainty about information that is not explicitly disclosed.

The common notion of a person being undetectable in a group asin [3] or an individual record remaining

undetectable in a dataset [4] captures one flavor of such uncertainty. More generally, the uncertainty about

a piece of undisclosed information is related to its information content. Our approach focuses on the

information content of every sample of the source and sanitizes it in proportion to its likelihood in the

database. This, in turn, ensures that low probability/highinformation samples (outliers) are suppressed

or heavily distorted whereas the high probability (frequent flier) samples are distorted only slightly.

Outlier data, if released without sanitization, can leak a lot of information to the adversary about those

individuals (e.g. individuals older than a hundred years);on the other hand, for individuals represented

by high probability samples either the adversary already has a lot of information about them or they are

sufficiently indistinct due to their high occurrence in the data, thereby allowing smaller distortion.

As we show formally in the sequel, our approach and solution for categorical databases captures a

critical aspect of the privacy challenge, namely, in suppressing the high information (low probability

outlier samples) and distorting all others (up to the desired utility/distortion level), the database provides

uncertainty (for that distortion level) forall samples of the data. Thus, our statistical privacy measure
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captures the characteristics of the underlying data model.

It is crucial to note that distortion does not only imply distance-based measures. The distortion measure

can be chosen to preserve any desired function, deterministic or probabilistic, of the attributes (e.g.,

aggregate statistics). Our aim is to ensure that sensitive data is protected by randomizing the public

(non-sensitive) data in a rigorous and well-defined manner such that: (a) it still preserves some measure

of the original public data (e.g., K-L divergence, Euclidean distance, Hamming distortion, etc.); and (b)

provides some measure of privacy for the sensitive data thatcan be inferred from the revealed data. In this

context, distortion is a term that makes precise a measure ofchange between the original non-sensitive

data and its revealed version; appropriate measures dependon the data type, statistics, and the application

as illustrated in the sequel.

At its crux, our proposed sanitization process is about determining the statistics of the output (database)

that achieve a desired level of utility and privacy and aboutdeciding which input values to perturb and

how to probabilistically perturb them. Since the output statistics depends on the sanitization process, for

the i.i.d. source model considered here, mathematically the problem reduces to finding the input to output

symbol-wise transition probability.

B. Background: Rate-distortion Theory

In addition to a statistical model for large data sets, we also introduce an abstract formulation for the

sanitization process, which is based on the theory of rate-distortion. We provide some intuition for the

two steps involved in information-theoretic sanitization, namely encoding at the database and decoding

at the data user.

For the purposes of privacy modeling the attributes about any individual in a database fall in two

categories: public attributes that can be revealed and private attributes that need to be kept hidden,

respectively. An attribute can be both public and private atthe same time. The attributes of any individual

are correlated; this implies that if the public attributes are revealed as is, information about the private

attributes can be inferred by the user using a correlation model. Thus, ensuring privacy of the private

attributes (also referred to as hidden attributes in the sequel) requires modifying/sanitizing/distorting the

public attributes. However, the public attributes have a utility constraint that limits the distortion, and

therefore, the privacy that can be guaranteed to the privateattributes.

Our approach is to determine the optimal sanitization, i.e., a mapping which guarantees the maximal

privacy for the private attributes for the desired level of utility for the public attributes, among the set

of all possible mappings that transform the public attributes of adatabase. We use the termsencoding
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anddecodingto denote this mapping at the data publisher end and the user end respectively. A database

instance is ann-realization of a random source (the source is a vector when the number of attributesK >

1) and can be viewed as a point in ann-dimensional space (see Fig. 2). The set of all possible databases

(n-length source sequences) that can be generated using the source statistics (probability distribution) lie

in this space.

Our choice of utility metric is a measure of average ‘closeness’ between the original and revealed

database public attributes via a distortion requirementD. Thus the output of sanitization will be another

database (another point in the samen-dimensional space) within a ball of ‘distance’nD. We seek to

determine a set of someM = 2nR output databases that ‘cover’ the space, i.e., given any input database

instance there exists at least one sanitized database within bounded ‘distance’nD as shown in Fig. 2.

Note that the sanitized database may be in a subspace of the entire space because only the public attributes

are sanitized and the utility requirement is only in this subspace.

In information theory such a distortion-constrained encoding is referred to as quantization or com-

pression. Furthermore, the mapping is referred to as vectorquantization because the compression is

of an n-dimensional space and can be achieved in practice using clustering algorithms. In addition to

a distortion (utility) constraint, our privacy constraintalso requires that the “leakage” (i.e. the loss of

uncertainty) about the private attributes via correlationfrom the sanitized database is bounded. The set

of M source-sanitized database pairs is chosen to satisfy both distortion and leakage constraints. The

database user that receives the sanitized database may haveother side-information (s.i.) about which the

encoder is eitherstatistically informed(i.e., only the statistics of s.i. known) orinformed (knows s.i.a

priori ). The decoder can combine the sanitized database publishedby the encoder and the s.i. to recreate

the final reconstructed database.

Obtaining the U-P tradeoff region involves two parts: the first is a proof of existence of a mapping,

called aconverseor outer bounds in information theory, and the second is anachievable scheme(inner

bounds) that involves constructing a mapping (called a code). Mathematically, the converse bounds the

maximal privacy that can be achieved for a desired utility over the space of all feasible mappings, and the

achievable scheme determines the input to output probabilistic mapping and reveals the minimal privacy

achievable for a desired distortion. When the inner and outer bounds meet, the constructive scheme is

tight and achieves the entire U-P tradeoff, often the case for tractable distributions such as Gaussian,

Laplacian, and arbitrary discrete sources.

It is important to note that our assumption of knowledge of the source statistics at all involved

parties does not limit the applicability of the framework for the following reasons: (a) the statistics
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Fig. 2. Space of all database realizations and the quantizeddatabases.

for large data can often be sampled reliably from the data collected; (ii) knowledge of statistics alone is

insufficient to generate the actual database at the user; and(iii) most importantly, the statistical knowledge

enables us to find the optimal input to output probabilistic mapping (i.e., a perturbation matched to the

source statistics) that satisfy specific utility and privacy measures. The power of our approach is that

it completely eliminates signal-perturbation mismatch problems as observed in privacy-preserving data

mining solutions by Kargupta et al [18]; furthermore, the irreversibility of the quantization process implies

that the suppressed or distorted data cannot be reversed despite knowledge of the actual statistics. In the

following Section, we formalize these notions and present arigorous analysis.

IV. M ODEL AND METRICS

A. Model for Databases

A databaseD is a matrix whose rows and columns represent the individual entries and their attributes,

respectively. For example, the attributes of a healthcare database can include name, address, SSN, gender,

and a collection of possible medical information. The attributes that directly give away information such

as name and SSN are typically considered private data.

Model: Our proposed model focuses on large databases withK attributes per entry. LetXk, for all

k ∈ K = {1, 2, , . . . ,K}, andZ be finite sets. LetXk ∈ Xk be a random variable denoting thekth

attribute,k = 1, 2, . . . ,K, and letXK ≡ (X1,X2, . . . ,XK). A databased with n rows is a sequence of

n independent observations from the distribution having a probability distribution

pXK
(xK) = pX1X2...XK

(x1, x2, . . . , xK) (1)
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which is assumed to be known to both the designers and users ofthe database. Our simplifying assumption

of row independence holds generally in large databases (butnot always) as correlation typically arises

across attributes and can be ignored across entries given the size of the database. We writeXn
K =

(Xn
1 ,X

n
2 , . . . ,X

n
K) to denote then independent and identically distributed (i.i.d.) observations ofXn

K.

The joint distribution in (1) models the fact that the attributes corresponding to an individual entry are

correlated in general and consequently can reveal information about one another.

Public and private attributes: We consider a general model in which some attributes need tobe kept

private while the source can reveal a function of some or all of the attributes. We writeKr andKh to

denote sets of private (subscripth for hidden) and public (subscriptr for revealed) attributes, respectively,

such thatKr ∪ Kh = K ≡{1, 2, . . . ,K}. We further denote the corresponding collections of publicand

private attributes byXKr
≡ {Xk}k∈Kr

andXKh
≡ {Xk}k∈Kh

, respectively. More generally, we write

XSh
≡ {Xk : k ∈ Sh ⊆ Kh} and XSr

≡ {Xk : k ∈ Sr ⊆ Kr} to denote subsets of private and public

attributes, respectively.

Our notation allows for an attribute to be both public and private; this is to account for the fact that

a database may need to reveal a function of an attribute whilekeeping the attribute itself private. In

general, a database can choose to keep public (or private) one or more attributes (K > 1). Irrespective of

the number of private attributes, a non-zero utility results only when the database reveals an appropriate

function of some or all of its attributes.

Revealed attributes and side information: As discussed in the previous section, the public attributes

are in general sanitized/distorted prior to being revealedin order to reduce possible inferences about

the private attributes. We denote the resultingrevealed attributesas X̂Kr
≡ {X̂k}k∈Kr

. In addition to

the revealed information, a user of a database can have access to correlated side information from other

information sources. We model the side information (s.i.) as ann-length sequenceZn = (Z1, Z2, . . . , Zn),

Zi ∈ Z for all i, which is correlated with the database entries via a joint distribution pXKZ (xK,z).

Reconstructed database: The final reconstructed databaseat the user will be either a database of

revealed public attributes (when no s.i. is available) or a database generated from a combination of the

revealed public attributes and the side information (when s.i. is available).

B. Metrics: The Privacy and Utility Principle

Even though utility and privacy measures tend to be specific to the application, there is a fundamental

principle that unifies all these measures in the abstract domain. A user perceives the utility of a perturbed

database to be high as long as the response is similar to the response of the unperturbed database;
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thus, the utility is highest of an unperturbed database and goes to zero when the perturbed database is

completely unrelated to the original database. Accordingly, our utility metric is an appropriately chosen

average ‘distance’ function between the original and the perturbed databases.

Privacy, on the other hand, is maximized when the perturbed response is completely independent of the

data. Our privacy metric measures the difficulty of extracting any private information from the response,

i.e., the amount of uncertainty orequivocationabout the private attributes given the response. One could

alternately quantify theprivacy lossfrom revealing data as themutual informationbetween the private

attributes and the response; mutual information is typically used to quantify leakage (or secrecy) for

continuous valued data.

C. Utility and Privacy Aware Encoding

Since database sanitization is traditionally the process of distorting the data to achieve some measure

of privacy, it is a problem of mapping a database to a different one subject to specific utility and privacy

requirements.

Mapping: Our notation below relies on this abstraction. LetXk, k ∈ K, andZ, be as above and let

X̂j be additional finite sets for allj ∈ Kr. Recall that a databased with n rows is an instantiation of

Xn
K. Thus, we will henceforth refer to a real databased as aninput databaseand to the corresponding

sanitized database (SDB)ds as anoutput database. When the user has access to side information, the

reconstructed databased′ at the user will in general be different from the output database.

Our coding scheme consists of an encoderFE which is a mapping from the set of all input databases

(i.e., all databasesd allowable by the underlying distribution) to a set of indicesJ ≡ {1, 2, . . . ,M} and

an associated table of output databases (each of which is ads) given by

FE : (X n
1 × . . .× X n

k )k∈Kenc
→ J ≡ {SDBk}

M
k=1 (2)

whereKr ⊆ Kenc ⊆ K andM is the number of output (sanitized) databases created from the set of all

input databases. To allow for the case where an attribute canbe both public and private, we allow the

encodingFE in (2) to include both public and private attributes. A user with a view of the SDB (i.e.,

an indexj ∈ J ) and with access to side informationZn, whose entriesZi, i = 1, 2, . . . , n, take values

in the alphabetZ, reconstructs the databased′ via the mapping

FD : J × Zn →
(

∏

k∈Kr
X̂ n
k

)

. (3)

The encoding and decoding are assumed known at both parties.
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Utility : Relying on a distance based utility principle, we model theutility u via the requirement that

the averagedistortion of the public variables is upper bounded, for eachǫ > 0 and all sufficiently large

n, as

u ≡ E

[

1

n

∑n
i=1ρ

(

XKr,i, X̂Kr ,i

)

]

≤ D + ǫ, (4)

whereρ (·, ·) denotes a distortion function,E is the expectation over the joint distribution of(XKr
, X̂Kr

),

and the subscripti denotes theith entry of the database. Examples of distortion functions include the

Euclidean distance for Gaussian distributions, the Hamming distance for binary input and output databases,

and the Kullback-Leibler (K-L) divergence. We assume thatD takes values in a closed compact set to

ensure that the maximal and minimal distortions are finite and all possible distortion values between

these extremes can be achieved.

Privacy: We quantify the equivocatione of all the private variables using entropy as

e ≡
1

n
H
(

Xn
Kh

|J,Zn
)

≥ E − ǫ. (5)

Analogous to (5), we can quantify the privacy leakagel using mutual information as

l ≡
1

n
I
(

Xn
Kh

;J,Zn
)

≤ L+ ǫ. (6)

Remark 1:The case in which side information is not available at the user is obtained by simply setting

Zn = ∅ in (3) and (5).

We shall henceforth focus on using equivocation as a privacymetric except for the case where the

source is modeled as continuous valued data since unlike differential entropy, mutual information is

strictly non-negative. From (5), we haveH(XKh
|XKr, Z) ≤ E ≤ H(XKh

|Z) ≤ H(XKh
), where the

upper bound on the equivocation results when the private andpublic attributes (and side information) are

uncorrelated and the lower bound results when the public attributes (and side information) completely

preserve the correlation between the public and private attributes. Note that the leakage can be analogously

bound as0 ≤ I(XKh
;Z) ≤ L ≤ I(XKh

;XKr, Z).

The mappings in (2) and (3) ensure thatd is mapped tod′ such that the U-P constraints in (4) and (5)

are met. The formalism in (1)-(6) is analogous to lossy compression in that a source database is mapped

to one ofM quantized databases that are designeda priori. For a chosen encoding, a database realization

is mapped to the appropriate quantized database, subject to(4) and (5). It suffices to communicate the

index J of the resulting quantized database as formalized in (2) to the user. This index, in conjunction

with side information, if any, enables a reconstruction at the user as in (3).Note that the mappings in (2)
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and (3), i.e., lossy compression with privacy guarantees, ensure that for anyD > 0, the user can only

reconstruct the databased
′

= X̂n
Kr

, formally a functionf (J,Zn), and notd = Xn
K itself.

The utility and privacy metrics in (4) and (5) capture the statistical nature of the problem, i.e., the

fact that the entries of the database statistically mirror the distribution (1). Thus, both metrics represent

averages across all database instantiationsd, and hence, (assuming stationarity and largen) over the

sample space ofXK thereby quantifying the average distortion (utility) and equivocation (privacy)

achievable per entry.

Remark 2: In general, a database may need to satisfy utility constraints for any collection of subsets

S
(l)
r ⊆ Kr of attributes and privacy constraints on all possible subsets of private attributesS(m)

h , m =

1, 2, . . . , Lp, 1 ≤ Lp ≤ 2|Kh|− 1 where|Kh| is the cardinality ofKh. For ease of exposition and without

loss of generality, we develop the results for the case of utility and privacy constraints on the set of all

public and private attributes. The results can be generalized in a straightforward manner to constraints

on arbitrary subsets.

V. UTILITY -PRIVACY TRADEOFFS

Mapping utility to distortion and privacy to information uncertainty via entropy (or leakage via mutual

information) leads to the following definition of the U-P tradeoff region.

Definition 1: The U-P tradeoff regionT is the set of all feasible U-P tuples(D,E) for which there

exists a coding scheme(FE , FD) given by (2) and (3), respectively, with parameters(n,M, u, e) satisfying

the constraints in (4) and (5).

While the U-P tradeoff region in Definition 1 can be determined for specific database examples, one

has to, in general, resort to numerical techniques to solve the optimization problem [19]. To obtain closed

form solutions that define the set of all tradeoff points and identify the optimal encoding schemes, we

exploit the rich set of techniques from rate distortion theory with and without equivocation constraints.

To this end, we study a more general problem of RDE by introducing an additional rate constraint

M ≤ 2n(R+ǫ) which bounds the number of quantized SDBs in (2). Besides enabling the use of known

rate-distortion techniques, the rate constraint also has an operational significance. For a desired level of

accuracy (utility)D, the rateR is the precision required on average (overXK) to achieve it. We now

define the achievable RDE region as follows.

Definition 2: The RDE regionRRDE is the set of all tuples(R,D,E) for which there exists a coding

scheme given by (2) and (3) with parameters(n,M, u, e) satisfying the constraints in (4), (5), and on
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Fig. 3. (a) Rate Distortion Equivocation Region [1]; (b) Utility-Privacy Tradeoff Region.

the rate. In this region,RD−E , the set of all feasible distortion-equivocation tuples(D,E) is defined as

RD−E ≡ {(D,E) : (R,D,E) ∈ RRDE , R ≥ 0} . (7)

The RDE problem differs from the distortion-equivocation problem in including a constraint on the

precision of the public variables in addition to the equivocation constraint on the private data in both

problems. Thus, in the RDE problem, for a desired utilityD, one obtains the set of all rate-equivocation

tradeoff points(R,E) , and therefore, over all distortion choices, the resulting region contains the set of

all (D,E) pairs. From Definitions 1 and 2, we thus have the following proposition.

Proposition 1: T = RD−E.

Proposition 1 is captured pictorially in Fig. 3(b). The functionsR (D,E) andΓ(D) in Fig. 3 capture

the rate and privacy boundaries of the region and are the minimal rate and maximal privacy achievable,

respectively, for a given distortionD.

The power of Proposition 1 is that it allows us to study the larger problem of database U-P tradeoffs

in terms of a relatively familiar problem of source coding with additional privacy constraints. Our result

shows the tradeoff between utility (distortion), privacy (equivocation), and precision (rate) – fixing the

value of any one determines the set of operating points for the other two; for example, fixing the utility

(distortionD) quantifies the set of all achievable privacy-precision tuples (E,R).

For the case of no side information, i.e., for the problem in (2)-(5) with Zn = ∅, the RDE region

was obtained by Yamamoto [1] forKr = Kh = 1 andKr ∩ Kh = ∅. We henceforth refer to this as
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an uninformed case, since neither the encoder (database) nor the decoder (user) have access to external

information sources. We summarize the result below in the context of a utility-privacy tradeoff region.

We first summarize the intuition behind the results and the encoding scheme achieving it.

In general, to obtain the set of all achievable RDE tuples, one follows two steps: the first is to obtain

(outer) boundsfor a (n,M, u, e) code on the rate and equivocation required to decode reliably with a

distortionD (vanishing error probability in decoding for a bounded distortion D); the second step is a

constructive coding scheme for which one determines theinner boundson rate and equivocation. The

set of all (R,D,E) tuples is achievable when the two bounds meet. The achievable RDE region was

developed in [1, Appendix] for the problem in 2. Focusing on the set of all RDE tradeoff points, we

restate the results in [1, Appendix] as follows.

Proposition 2: Given a database with public, private, and reconstructed variablesXKr
, XKh

, andX̂Kr

respectively, andZ = ∅, for a fixed target distortionD, the set of achievable(R,E) tuples satisfy

R ≥ RU (D) ≡ I(XKr
XKh

; X̂Kr
) (8a)

E ≤ EU (D) ≡ H(XKh
|X̂Kr

) (8b)

for somep(xKh
, xKr

, x̂Kr
) such thatE(d(XKr

, X̂Kr
)) ≤ D.

Remark 3:The distributionp(xKh
, xKr

, x̂Kr
) allows for two cases, one in which both the public and

private attributes are used to encode (e.g., medical) and the other in which only the public (e.g., census)

attributes are used. For the latter case in which the privateattributes are only implicitly used (via the

correlation), the distribution simplifies asp(xKh
, xKr

)p(x̂Kr
|xKh

), i.e., the variables satisfy the Markov

chainXKh
−XKr

− X̂Kr
.

Theorem 1:The U-P tradeoff region for a database problem defined by (1)-(5) and withZn = ∅ is

the set of all(E,D) such that for every choice of distortionD ∈ D that is achievable by quantization

scheme with a distributionp(xKh
, xKr

x̂Kr
), the privacy achievable is given byEU (D) in (8b) (for which

a rate ofRU (D) in (8a) is required).

The set of all RDE tuples in (8) define the regionR∗
RDE . The functions in Fig. 3 specifying the

boundaries of this region are given as follows:R (D,E) which is the minimal rate required for any

choice of distortionD is given by

R (D,E) = R (D,E∗) = min
p(xKh

,xKr ,x̂Kr )
RU (D) , (9)
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whereE∗ = EU (D)|p∗ is evaluated atp∗ is the argument of the optimization in (9) andΓ(D) which is

the maximal equivocation achievable for a desired distortion D is given by

Γ(D) = max
minp(xKh

,xKr
,x̂Kr

)

EU (D) . (10)

Remark 4: In general, the functionsR (D,E) andΓ (D) may not be optimized by the same distribution

p(xKh
, xKr

, x̂Kr
), i.e., R (D,E) may be minimal for aE = E∗ < Γ(D). This implies that in general

the minimal rate encoding scheme is not necessarily the sameas the encoding scheme that maximizes

equivocation (privacy) for a given distortionD. This is because a compression scheme that only satisfies

a fidelity constraint onXKr
, i.e., source coding without additional privacy constraints, is oblivious of the

resulting leakage ofXKh
whereas a compression scheme which minimizes the leakage ofXKh

while

revealingXKr
will first reveal that part ofXKr

that is orthogonal toXKh
and only revealXKh

when

the fidelity requirements are high enough to encode it. Thus,maximal privacy may require additional

precision (of the component ofXKr
orthogonal toXKh

) relative to the fidelity-only case. The additional

rate constraint enables us to intuitively understand the nature of the lossy compression scheme required

when privacy need to be guaranteed.

We now focus on the case in which the user has access to correlated side information. The resulting

RDE tradeoff theorems generalize the results in [1]; furthermore, we present a new relatively easier

proof for the achievable equivocation while introducing a class of encoding schemes that we refer to as

quantize-and-bin coding(see also [20]).

A. Capturing the Effects of Side-Information

In general, a user can have access to auxiliary information either from prior interactions with the

database or from a correlated external source. We cast this problem in information-theoretic terms as

a database encoding problem with side information at the user. Two cases arise in this context: i) the

database has knowledge of the side information due to prior interactions with the user and is sharing

a related but differently sanitized view in the current interaction, i.e., aninformed encoder; and ii) the

database does not know the exact side information but has some statistical knowledge, i.e., anstatistically

informed encoder. We develop the RDE regions for both cases below.

1) U-P Tradeoffs: Statistically Informed Encoder:We first focus on the case with side information

at the user and knowledge of its statistics at the encoder, i.e., at the database. The following theorem

quantifies the RDE region, and hence, the utility-privacy tradeoff region for this case.
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Theorem 2:For a target distortionD, the set of achievable(R,E) tuples when the database has access

to the statistics of the side information is given as

R ≥ RSI (D) ≡ I(XKr
XKh

;U |Z) (11a)

E ≤ ESI (D) ≡ H(XKh
|UZ) (11b)

for some distributionp(xKh
, xKr

, z)p (u|xKh
, xKr

) such that there exists a function̂XKr
= f(U,Z) for

which E

[

d(XKr
, X̂Kr

)
]

≤ D, and |U| = |XK|+ 1.

Remark 5:For the case in which only the public variables are used in encoding, i.e.,XKh
−XKr

−U,

|U| = |XKr
|+ 1.

We prove Theorem 2 in the Appendix. Here, we present a sketch of the achievability proof. The main

idea is to show that a quantize-and-bin encoding scheme achieves the RDE tradeoff.

The intuition behind the quantize-and-bin coding scheme isas follows: the source
(

Xn
Kr

,Xn
Kh

)

is

first quantized toUn at a rate ofI(XK̇r
Xn

Kh
;U). For the uninformed case, the encoder would have

simply sent the index forUn (≡ X̂n
Kr

) to the decoder. However, since the encoder has statistical

knowledge of the decoder’s side information, the encoder further binsUn to reduce the transmission

rate toI(XKr
XKh

;U) − I(Z;U) whereI(Z;U) is a measure of the correlation betweenZn andUn.

The encoder then transmits this bin indexJ so that usingJ andZn, the user can losslessly reconstruct

Un, and hence,X̂n
Kr

= f (Un, Zn) via a deterministic functionf to the desiredD.

The outer bounds follow along the lines of the Wyner-Ziv converse as well as outer bounds on the

equivocation (see the Appendix). The key result here is the inner bound on the equivocation, i.e., for a

fixed distortionD, the quantize-and-bin encoding scheme can guarantee a lowerbound on the equivocation

asH(XKh
|U,Z) which primarily relies on the fact that using the bin indexJ and side informationZn,

the quantized databaseUn can be losslessly reconstructed at the user.

Uninformed case: Here, we haveZ = 0 andU = X̂Kr
, i.e., the reconstructed and sanitized databases

are the same. Note that in this case, the quantize-and-bin scheme simplifies to a simple quantize scheme

(as required to achieve Proposition 2).

Remark 6:For a desiredD, minimizing RSI(D) yields the Wyner-Ziv rate-distortion function. How-

ever, we focus here on the tradeoff region, and hence, the setof all (R,D,E) tuples.

2) U-P Tradeoffs: Informed Encoder:We now consider the case in which the encoder also has perfect

knowledge of the side information. Such a case can arise in practice if the encoder has shared some prior

information related to the database earlier. The followingtheorem summarizes the RDE tradeoff region

for this case.
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Theorem 3:For a target distortionD, the set of achievable(R,E) tuples when the encoder has perfect

knowledge of the side information is given as

R ≥ RI (D) ≡ I(XKr
,XKh

; X̂Kr
|Z) (12a)

E ≤ EI (D) ≡ H(XKh
|X̂Kr

Z) (12b)

for some distributionp(xKh
, xKr

, z)p (x̂Kr
|xKh

, xKr
, z) for which E

[

d(XKr
, X̂Kr

)
]

≤ D.

Remark 7:For Zn = ∅, Theorem 3 simplifies to Proposition 2.

We prove Theorem 3 in the Appendix. The main idea is to show that an informed quantize-and-bin

encoding scheme for the informed case in whichboth (Xn
K, Z

n) are available at the encoder achieves

the RDE tradeoff. The encoder jointly compresses them to a databaseX̂n
Kr

which it further bins and

reveals the bin index to the decoder such that the rate of transmission reduces toI(XKZ; X̂Kr
) −

I(Z; X̂Kr
) = I(XK; X̂Kr

|Z). Using the bin index and side informationZn, the databasêXn
Kr

can be

losslessly reconstructed. The outer bounds follow from standard results on conditional rate-distortion

converse (see the Appendix). The key result is the inner bound on the equivocation, i.e., for a fixed

D, the quantize-and-forward scheme is shown to guarantee a minimal equivocation ofH(XKh
|X̂Kr

, Z)

using the fact that fromJ andZn, X̂n
Kr

can be losslessly reconstructed at the user.

VI. I LLUSTRATION OF RESULTS

In this Section, we apply the utility-privacy framework we have introduced to model two fundamental

types of databases and illustrate the corresponding optimal coding schemes that achieve the set of

all utility-privacy tradeoff points. More importantly, wedemonstrate how the optimal input to output

probabilistic mapping (coding scheme) in each case sheds light on practical privacy-preserving techniques.

We note that for the i.i.d. source model considered, vector quantization (to determine the set ofM output

databases) simplifies to finding the probabilities of mapping the letters of the source to letters of the

output (database) alphabet as formally shown in the previous Section.

We model two broad classes of databases:categoricaland numerical. Categorical data are typically

discrete data sets comprising information such as gender, social security numbers and zip codes that

provide (meaningful) utility only if they are mapped withintheir own set. On the other hand, without

loss of generality, numerical data can be assumed to belong to the set of real numbers or integers as

appropriate. In general, a database will have a mixture of categorical and numerical attributes, but for the

purpose of illustration, we assume that the database is of one type or the other, i.e., every attribute is of
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the same kind. In both cases, we assume a single utility (distortion) function. We discuss each example

in detail below.

Recall that the abstract mapping in (2) is a lossy compression of the database. The underlying principle

of optimal lossy compression is that the number of bits required to represent a samplex of X ∼ pX is

inversely proportional tolog (p(x)), and thus, for a desiredD, preserving the events in descending order

of pX requires the least number of bits on average. The intuitive notion of privacy as being unidentifiable

in a crowd is captured in this information-theoretic formulation since the low probability entries, the

outliers, that convey the most information, are the least represented. It is this fundamental notion that is

captured in both examples.

Example 1:Consider a categorical database withK ≥ 1 attributes. In general, thekth attributeXk

takes values in a discrete setXk of cardinalityMk. For our example,we assume that all attributes need

to be revealed, and therefore, it suffices to view each entry (a row of allK attributes) of the database as

generated from a discrete scalar sourceX of cardinalityM , i.e.,X ∼ p(x), x ∈ {1, 2, . . . ,M}. Taking

into account the fact that sanitizing categorical data requires mapping within the same set, for this arbitrary

discrete source model, we assume that the output sample space X̂ = X . Since changing a sample of the

categorical data can significantly change the utility of thedata, we account for this via a utility function

that penalizes such changes. We thus model the utility function as a generalized Hamming distortion

which captures this cost model (averaged over all samples ofX) such that the average distortionD is

given by

D = Pr
{

X 6= X̂
}

. (13)

Focusing on the problem of revealing the entire databased = Xn (a n-sequence realization ofX) as

X̂n, we define the equivocation as
1

n
H(Xn|X̂n) ≥ E. (14)

Thus, the utility-privacy problem is that of finding the set of all (D,E) pairs such that for every choice

of p(x̂|x) achieving a desiredD, the equivocation is bounded as in (14). Applying Proposition 2 (and

also Theorem 3 withZn = ∅), we have that for a target distortionD, the set of achievable(R,E) tuples

satisfy

R ≥ RU (D) ≡ I(X; X̂); E ≤ EU (D) ≡ H(X|X̂) (15a)

for some distributionp(x)p (x̂|x) for which E

[

d(X, X̂)
]

≤ D. Note that the rateRU (D) = H(X) −

EU (D), and thus, minimizingRU (D) for a desiredD maximizesEU (D) . Thus, while (15) defines the
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set of all (R,D,E) tuples, we focus on the(D,E) pairs for which maximal equivocation (privacy) is

achieved.

The problem of minimizingRU (D) for an arbitrary source with a generalized Hamming distortion

has been studied in [21] who showed thatR(D) is achieved by reverse waterfilling solution such that

p(x̂) =
(p(x)− λ)+

∑

x∈X (p(x)− λ)+
(16)

and the ‘test channel’ (mapping from̂X to X) is given by

p(x|x̂) =



















D, x = x̂

λ, x 6= x̂, x ∈ X̂supp

pk, x = k 6∈ X̂supp

(17)

where D = 1 − D, λ is chosen such that
∑

x̂ p(x̂)p(x|x̂) = p(x), pk = p (x = k), and X̂supp =

{x : p(x)− λ > 0} . Let S =
∣

∣

∣
X̂supp

∣

∣

∣
− 1. The maximal achievable equivocation, and hence, the largest

utility-privacy tradeoff region is

Γ(D) = −D logD − Sλ log λ−
∑

k 6∈X̂supp

pk log pk. (18)

The waterlevelλ is the Lagrangian for the distortion constraint in minimizingRU (D). The distribution of

entries ind
′

in (16) demonstrates that the source samples with low probabilities relative to the water level

are not preserved, leading to a ‘flattening’ of the output distribution. Thus, we see that the commonly used

heuristics of outlier suppression, aggregation, and imputation [7], [8] on census and related databases can

be formally shown to minimize privacy leakage for the appropriate model. We illustrate our results in

Fig. 4 for pX (x) = [0.25 0.25 0.15 0.1 0.04 0.005 0.003 0.002] in which the first subplot demonstrates

increased suppression of the outliers with increasingD, and the second shows the entire U-P region.

Interpretation:The probabilityp(x) is the assumed probability of occurrence of each unique sample

(e.g., names such as Smith, Johnson, Poor, Sankar, etc.) in the database. For categorical data, the attribute

space for the input and output databases are assumed to be thesame (e.g., names mapped to names).

The Hamming distortion measure we have chosen quantifies theaverage probability of a true sample of

the source being mapped to a different sample in the output database (e.g., probability that a name in the

input database is mapped to a different name in the output database averaged over all names). The output

distribution in (16) implies that for a desired utility (quantified via a Hamming distortionD), all the input

samples with probabilities below a certainλ (e.g., say ‘Sankar,’ a very low probability name) willnot

be present in the output database. The water-levelλ is chosen such that the input and output database

samples satisfyD in (13). Thus, the probability of guessing that Sankar was inthe original database given
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Fig. 4. a) Reverse WF distributions for D=0.1,0.25,0.5; b) U-P tradeoff region.

one only sees Smith, Johnson, and Poor is given by (17) and is the same as the probability of Sankar

in the original database, i.e., there is no reduction in uncertainty about Sankar given the published data!

Furthermore, given that the name Smith is published, the probability that Smith resulted from others such

as Johnson, Poor, and Sankar as well as from Smith is also given by (17). This shows that every sample

in the output database contains some uncertainty about the actual sample with maximal uncertainty for

those suppressed.Our mapping not only mathematically minimizes the leakage of the original samples

but also does so to provide privacy to all and maximally to those who are viewed as outliers (relative

to the utility measure). For simplicity, we have chosen a single private attribute,name, in this example.

In general, there could be several correlated attributes (e.g. name and last four digits of the SSN) that

will be changed together. This is captured by our joint distribution. This eliminates the possibility that

the adversary uses his knowledge of the distribution to tellwhich individual entries have been changed.

The use of Hamming distortion measure in this example illustrates another aspect of the power of our

model. Sanitization of non-numeric data attributes in a utility-preserving way is hard to do, especially

because distance metrics for non-numeric data tend to be application-specific. Hamming distortion is an

example of an extreme measure that penalizes every change uniformly, no matter how small the change.

It may be appropriate to use this measure for applications that are especially sensitive to utility loss.

Example 2: In this example we model a numerical (e.g. medical) databasein which the attributes such

as weight and blood pressure are often assumed to be normally(Gaussian) distributed. Specifically, we
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consider aK = 2 database with a publicX (≡ Xr) and a privateY (≡ Xh) attribute such thatX andY

are jointly Gaussian with zero means and variancesσ2
X andσ2

Y , respectively, and a correlation coefficient

ρXY = E [XY ] / (σXσY ). We assume that onlyX is encoded such thatY −X − X̂ holds. We consider

three cases: (i) no side information, (ii) side informationZn at user, and (iii)Zn at both. For the cases

with Zn, we assume thatZ is i.i.d. zero mean with varianceσ2
Z and is jointly Gaussian with(X,Y )

such thatY −X −Z forms a Markov chain and has a correlation coefficientρXZ = E [XZ] / (σXσZ).

We use the leakageL in (6) as the privacy metric.

Case (i): No side information: The(R,D,L) region for this case can be obtained directly from

Proposition 2 in (8) withX̂Kr
≡ X̂ andEU (D) replaced byLU (D) ≡ I(Y ; X̂). For a Gaussian(X,Y ) ,

one can easily verify that, for a desiredD, both RU (D) andLU (D) are minimized by a Gaussian̂X

[17, Chap. 10], i.e.,for normally distributed databases, the privacy-maximizing revealed database is

also normally distributed. Furthermore, due toY − X − X̂ , the minimization ofI(X; X̂) is strictly

over p(x̂|x), and thus, simplifies to the familiar R-D problem for a Gaussian source that is achieved by

choosingX̂ = X + N , where the noiseN ∼ N
(

0, σ2
N

)

is independent ofX and its varianceσ2
N is

chosen such thatD = Evar
(

X|X̂
)

∈
[

0, σ2
X

]

wherevar denotes variance. The resulting minimal rate

and leakage achieved (in bits per entry) are, forD ∈
[

0, σ2
X

]

,

R∗
U (D) =

1

2
log

(

σ2
X

D

)

,

L∗
U (D) =

1

2
log

(

1
[(

1− ρ2XY

)

+ ρ2XY D
/

σ2
X

]

)

.

The largest U-P tradeoff region is thus the region enclosed by L(D).

Case (ii): For the statistically informed encoder, the(R,D,L) region is given by (11) withESI (D)

replaced byLSI (D) = I(Y ;UZ). One can show the optimality of Gaussian encoding in minimizing

both the rate and leakage in 11, and thus, we haveU = X+N, whereN ∼ N
(

0, σ2
N

)

is independent of

X and its varianceσ2
N is chosen such that the distortionD = Evar (X|UZ) ∈

[

0, σ2
X

]

. Computing the

minimal rateR∗
SI (D) (the Wyner-Ziv rate [22]) and leakageL∗

SI (D) for a jointly Gaussian distribution

achieving a distortionD, we obtain for allD ∈
[

0, σ2
X (1− ρXZ)

]

,

R∗
SI (D) = RWZ (D) =

1

2
log

(

σ2
X

(

1− ρ2XZ

)

D

)

L∗
SI(D) = L∗

U (D) ,

i.e., the minimal rate and leakage are independent ofρ2XY and ρ2XZ , respectively, and thus,user side

information does not degrade privacy when the minimal-rateencoding is used. The access to side
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Fig. 5. Plot of Rate and Leakage vs. D for Cases (i), (ii), and (iii).

information at the user implies that the maximal achievabledistortion is at most as large as the uninformed

case. Note that unlikeL∗
U (D) which goes to zero at the maximal distortion ofσ2

X , L∗
SI (D) > 0 for

D = σ2
X

(

1− ρ2XZ

)

as a result of the implicit correlation betweenY and Z. These observations are

clearly shown in Fig. 5 forσ2
X = 1 and different values ofρ2XY andρ2XZ .

Case (iii): Finally, for a Gaussian source model, the(R,D,L) region achievable for the informed

encoder-decoder pair is the same as that for Case (ii). This is because of the no rate-loss property of

Wyner-Ziv coding for a Gaussian source, i.e., knowledge of the side information statistics at the encoder

suffices to remove the correlation from each entry before sharing data with the user [23]. Furthermore,

since Gaussian outputs minimize the rate as well as the leakage, the minimalR∗
I (D) = R∗

SI (D) and

L∗
I (D) = L∗

SI (D) (see Fig. 5.

Interpretation: The RDL and U-P tradeoffs for the Gaussian models considered here reveal that the

privacy-maximal code requires that the reconstructed database is also Gaussian distributed. This in turn is a

direct result of the following fact: a Gaussian distribution has the maximal (conditional and unconditional)

entropy (uncertainty) for a fixed variance [17, Chap 8, Th. 8.6.5] (and hence, a fixed mean-squared

distortion between the input and output databases). Thus, if one wishes to preserve the most uncertainty

about the original input database from the output, the output must also be Gaussian distributed, i.e., it

suffices to add Gaussian noise, since the sum of two Gaussiansis a Gaussian. The power of our model

and the results are that not only can one find the privacy-optimal noise perturbation for the Gaussian
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case but that practical applications such as medical analytics that assume Gaussian-distributed data can

still work on sanitized data, albeit with modified parametervalues.

In [18], it was noted that Gaussian noise is often the easiestto filter and this observation may seem

to be in conflict with our result – if the added noise can be filtered out, the privacy protection afforded

by the added noise can be reduced by the adversary. However, what [18] actually shows is that when

the spectra of the noise and the data differ significantly thenoise can be filtered, thereby jeopardizing

privacy measures. For the i.i.d. source model (i.e., a source with no memory) considered here, the i.i.d.

Gaussian noise that is added to guarantee privacy has the same flat power spectral density as the source,

and thus, the perturbed data cannot be distinguished from the added noise. In fact, the quantization that

underlies the information-theoretic sanitization mechanism developed here is an irreversible process and

one cannot obtain the original data except forD = 0 (i.e., the case of no sanitization). As a point of

comparison, we note that in a separate work on privacy of streaming data (non-i.i.d time-series data

modeled as a colored Gaussian process, i.e. data that has non-flat spectrum), we have shown that the

privacy-optimal noise perturbation requires the spectrumof the added noise to be non-flat to match that

of the non-i.i.d. data [2].

Our example also reveals how finding the optimal santizationmechanism, i.e., the optimal mapping

from the original public to the revealed attributes dependsboth on the statistical model. In fact, it is for

this reason that adding Gaussian noise for any numerical database will not, in general, be optimal unless

the database statistics can be approximated by a Gaussian distribution.

VII. C ONCLUDING REMARKS

The ability to achieve the desired level of privacy while guaranteeing a minimal level of utility and

vice-versa for a general data source is paramount. Our work defines privacy and utility as fundamental

characteristics of data sources that may be in conflict and can be traded off. This is one of the earliest

attempts at systematically applying information theoretic techniques to this problem. Using rate-distortion

theory, we have developed a U-P tradeoff region for i.i.d. data sources with known distribution.

We have presented a theoretical treatment of a universal (i.e. not dependent on specific data features

or adversarial assumptions) theory for privacy and utilitythat addresses both numeric and categorical

(non-numeric) data. We have proposed a novel notion of privacy based on guarding existing uncertainty

about hidden data that is intuitive but also supported by rigorous theory. Prior to our work there was no

comparable model that applied to both data types, so no side-by-side comparisons can be made across the

board between different approaches. The examples developed here are the first step towards understanding
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practical approaches with precise guarantees. The next step would be to pick specific sample domains

(e.g., medical data, census data), devise the appropriate statistical distributions and U-P metrics, set

desirable levels of privacy and utility parameters, and then analyze on test data. These topics for future

research however require the theoretical framework proposed here as a crucial first step.

Several challenges remain in quantifying utility-privacytradeoffs for more general sources. For example,

our model needs to be generalized for non-i.i.d. data sources, sources with unknown distributions, and

sources lacking strong structural properties (such as Web searches). Results from rate-distortion theory

for sources-with-memory and universal lossy compression may help address these challenges. Farther

afield, our privacy guarantee is an average metric based on Shannon entropy which may be inadequate

for some applications where strong anonymity guarantees are required for every individual in a database

(such as an HIV database). Finally, we have recently extended this framework to privacy applications

with time-series sources [2] and organizational data disclosure [24].

APPENDIX

A. Proofs of Theorems 2 and 3

1) Statistically Informed Case: Proof of Theorem 2: Converse: We now formally develop lower and

upper bounds on the rate and equivocation, respectively, that is achievable for the statistically informed en-

coder case. We show that given a(n, 2n(R+ǫ),D+ǫ, E−ǫ) code there exists ap(xKr
, xKh

, z)p (u|xKr
, xKh

)

such that the rate and equivocation of the system are boundedas follows:

R+ ǫ ≥
1

n
logM ≥

1

n
H(J) ≥

1

n
I (J ;Xn

K|Z
n)

=
1

n
{H(Xn

K|Z
n)−H(Xn

K|JZ
n)} (19)

=
1

n

n
∑

i=1
H(XK,i|Zi) (20)

−
1

n

n
∑

i=1
H
(

XK,i|X
i−1
K Zi

(

JZi−1Zn
i+1

))

≥
1

n

n
∑

i=1
H(XK,i|Zi)−

1

n

n
∑

i=1
H (XK,i|ZiUi) (21)

=
1

n

n
∑

i=1
RSI (Di) (22)

≥ RSI (D) (23)
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whereXi−1
(·) = [X(·),1 X(·),2 . . . X(·),i−1], i ≥ 1, (20) follows from the assumption of an i.i.d. source,

(21) from the fact that conditioning does not increase entropy and by settingUi ≡
(

JZi−1Zn
i+1

)

such

thatUi −XK −Zi forms a Markov chain for alli, andX̂Kr,i = gi (J,Z
n) = fi (Ui, Zi) for somegi and

fi, (22) from definition (11a) for

Di ≡ E

[

d
(

XK,i, X̂K,i

)]

, andESI.i ≡ H(Yi|UiZi),

and (23) from the convexity of the functionRSI (D) defined in (11a) (see [17, Chap. 10], [22]).

For the same(n, 2n(R+ǫ),D,E− ǫ) code considered, we can upper bound the achievable equivocation

as

E − ǫ ≤
1

n
H
(

Xn
Kh

|JZn
)

=
1

n

n
∑

i=1
H
(

XKh,i|X
i−1
Kh

Zi

(

JZi−1Zn
i+1

))

≤
1

n

n
∑

i=1
H (XKh,i|ZiUi) (24)

=
1

n

n
∑

i=1
ESI (Di) (25)

≤ ESI (D) (26)

where (25) follows from (11b) and (26) follows from the concavity of the equivocation (logarithm)

functionESI .

Remark 8: If the private variablesXn
Kh

are not directly used in encoding, i.e.,Xn
Kh

−Xn
Kr

−Un form

a Markov chain, then from the i.i.d. assumption of the sourceand the resulting encoding, the Markov

chainXKh,i −XKr ,i − Ui holds for all i = 1, 2, . . . , n.

Achievability: We briefly summarize the quantize-and-bin coding scheme for the statistically informed

encoder case. Consider an input distributionp(u, xK, z):

p(u, xK, z) = p(u, xK)p(z|xK),

i.e., U − XK − Z forms a Markov chain. Fixp (u|xK). First generateM = 2n(I(U ;XK)+ǫ), Un (w)

databases,w = 1, 2, . . . ,M , i.i.d. according top (u). Let W denote the random variable for the index

w. Next, for ease of notation, denote the following:

S = 2nI(XK;U), R = 2nI(XK;U |Z), T = 2nI(U ;Z).

The encoder bins theun(w) sequences intoR bins as follows:

J(un(w)) = k, if w ∈ [(k − 1)T + 1, kT ].
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Upon observing a source sequencexnK, the encoder searches for aun (w) sequence such that(xnK, u
n (w)) ∈

TXKU (n, ǫ) (the choice ofM ensures that there exists at least one suchw). The encoder sendsJ (w)

whereJ (w) is the bin index ofun (w) sequence sent at a rateR = I(XK;U |Z) + ǫ.

This encoding scheme implies the decodability ofUn sequence as follows: upon receiving the bin

indexJ(un(w)) = j, the uncertainty at the decoder aboutun(w) is reduced. In particular, having the bin

index j, it knows that there are only2nI(U ;Z) possibleun sequences that could have resulted in the bin

index j. It then uses joint typical decoding usingZn to decode the correctun sequence (the probability

of decoding error goes to zero asn → ∞ by standard arguments as in the channel coding theorem). This

implies that using Fano’s inequality, the decoder having access to(J,Zn) can correctlyW , and hence,

decodeUn (W ) , with high probability, i.e.,

1

n
H(W |J,Zn) =

1

n
H(Un(W )|J,Zn) ≤ δ(n), (27)

whereδ(n) → 0 asn → ∞.

2) Proof of Equivocation:For the quantize-and-bin scheme presented above, we will show that

lim
n→∞

1

n
H(Xn

Kh
|J,Zn) ≥ H(XKh

|U,Z)− ǫ,

which is equivalent to showing that

lim
n→∞

1

n
I(Xn

Kh
;J,Zn) ≤ I(XKh

;U,Z) + ǫ.

Our proof is based on the fact that for the chosen quantize-and-bin coding scheme, at the decoder

given the bin index and side information, the uncertainty ofthe quantized sequencesUn approaches zero

for largen as shown in (27).

Consider the termI(Xn
Kh

;J,Un, Zn) which can be written as

I(Xn
Kh

;J,Zn) + I(Xn
Kh

;Un|J,Zn) (28a)

= I(Xn
Kh

;J,Zn) (28b)

= I(Xn
Kh

;Un, Zn) + I(Xn
Kh

;J |Un, Zn) (28c)

≤ I(Xn
Kh

;Un, Zn) (28d)

= nH(XKh
)−H

(

Xn
Kh

|Un, Zn
)

(28e)

≤ n (I(XKh
;U,Z) + δ (n)) (28f)

≤ n (I(XKh
;U,Z) + ǫ) (28g)
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where (28b) follows from (27), (28c) follows from (27) and the fact that the mutual information is strictly

non-negative, (28d) follows from the fact that there is no uncertainty in bin indexJ(W ) givenUn (W ),

(28e) follows from the i.i.d. assumption on the source and side information statistics, (28f) is proved in B

below such thatδ (n) → 0 asn → ∞, and finally (28g) follows from choosingǫ ≥ δ (n) that determines

the sizeM = 2n(R+ǫ) of the codebook arbitrarily small asn → ∞.

3) Informed Encoder Case: Proof of Theorem 3: Converse: We now formally develop lower and upper

bounds on the rate and equivocation, respectively, that is achievable for the informed encoder case. The

converse for the rate mirrors standard converse and we clarify the steps briefly. We show that given a

(n, 2n(R+ǫ),D + ǫ, E − ǫ) code there exists ap(xKr
, xKh

, z)p (x̂Kr
|xKr

, xKh
, z) such that the rate and

equivocation of the system are bounded as follows:

R+ ǫ ≥
1

n
H(J) ≥

1

n
I (J ;Xn

K, Z
n) ≥

1

n
I(Xn

K;J |Z
n)

≥
1

n

n
∑

i=1
H(XK,i|Zi)−

1

n

n
∑

i=1
H
(

XK,i|JZ
nX̂n

Kr

)

≥
1

n

n
∑

i=1
H(XK,i|Zi)−

1

n

n
∑

i=1
H
(

XK,i|ZiX̂Kr ,i

)

=
1

n

n
∑

i=1
RSI (Di) (29)

≥ RSI (D) (30)

where (30) follows from the convexity of the functionRI (D) defined in (11a) [17, Chap. 10] for

Di ≡ E

[

d
(

XK,i, X̂K,i

)]

, and (31a)

EI.i ≡ H(Yi|X̂K,i). (31b)

For the same(n, 2n(R+ǫ),D,E − ǫ) code considered, we can upper bound the achievable equivocation

as

E − ǫ ≤
1

n
H
(

Xn
Kh

|JZn
)

=
1

n

n
∑

i=1
H
(

XKh,i|X
i−1
Kh

ZnJX̂n
Kr

)

(32)

≤
1

n

n
∑

i=1
H
(

XKh,i|ZiX̂Kr,i

)

(33)

=
1

n

n
∑

i=1
EI (Di) (34)

≤ EI (D) (35)
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where (32) follows from the fact that the reconstructed databaseX̂n
Kr

is a function of theJ andZn,

(34) follows from the fact that conditioning does not increase entropy, (34) follows from (31b), and (26)

follows from the concavity of the equivocation (logarithm)functionEI .

Remark 9: If the hidden variablesXn
Kh

are not directly used in encoding, i.e.,Xn
Kh

−Xn
Kr

− X̂n
Kr

form

a Markov chain, then from the i.i.d. assumption of the sourceand the resulting encoding, the Markov

chainXKh,i −XKr ,i − X̂Kri holds for all i = 1, 2, . . . , n.

Achievability: We briefly summarize the quantize-and-bin coding scheme for the informed encoder

case. The encoding mirrors that for the statistically informed case and in the interest of space only the

differences are highlighted below. The primary differenceis that the database encoder now encodes both

(XK, Z) such that the input distributionp(xK, x̂Kr
, z) is

p(xK, x̂Kr
, z) = p(z, xK)p(x̂Kr

|xK, z).

i.e.,X̂Kr
is a function of bothXK andZ. This distribution is now used to generateM = 2n(I(X̂Kr ;XKZ)+ǫ),

X̂n
Kr

(w) sequences as before which are first quantized and then binnedat a rateR = 2nI(XK;X̂Kr |Z).

Decoding follows analogously to the previous case, i.e., the decoder usesZn and the bin indexJ to

decode the correct̂xnKr
sequence (the probability of decoding error goes to zero asn → ∞ by standard

arguments as in the channel coding theorem). This implies that using Fano’s inequality, the decoder

having access to(J,Zn) can correctly decodeW , and hence,̂Xn
Kr

(W ) , with high probability, i.e.,

1

n
H(W |J,Zn) =

1

n
H(X̂n

Kr
(W )|J,Zn) ≤ ǫ(n), (36)

whereǫ(n) → 0 asn → ∞.

Proof of equivocation:For the quantize-and-bin scheme presented above, we need toshow that

lim
n→∞

1

n
H(Xn

Kh
|J,Zn) ≥ H(XKh

|X̂Kr
, Z)− ǫ.

Our proof is based on the fact that for the chosen quantize-and-bin coding scheme, at the decoder given

the bin indexJ and side informationZn, the uncertainty of the quantized sequencesX̂Kr
approaches

zero for largen as shown in (36). The proof is the same as (28) withU = X̂Kr
along with (36) and is

omitted for brevity.

B. Proof of (28f)

Here, we prove the following inequality:

H(Xn
Kh

|Un, Zn) ≤ n(H(XKh
|U,Z) + ǫ(n)).
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For ease of exposition, letY n ≡ Xn
Kh

such thatH(Xn
Kh

|Un, Zn) = H(Y n|Un, Zn) can be expanded

and bounded as

=
∑

(u,z)

p(u, z)H(Y n|Un = u, Zn = z)

=
∑

(u,z)∈TUZ

p(u, z)H(Y n|Un = u, Zn = z)

+
∑

(u,z)/∈TUZ

p(u, z)H(Y n|Un = u, Zn = z)

≤
∑

(u,z)∈TUZ

p(u, z)H(Y n|Un = u, Zn = z)

+
∑

(u,z)/∈TUZ

p(u, z)nH(Y )

≤
∑

(u,z)∈TUZ

p(u, z)(Y n|Un = u, Zn = z)

+ nH(Y )δ(n)

=
∑

(u,z)∈TUZ

p(u, z)

[

−
∑

y

p(y|u, z) log(p(y|u, z))

]

+ nH(Y )δ(n)

=
∑

(u,z)∈TUZ

p(u, z)

[

−
∑

y∈TY |u,z

p(y|u, z) log(p(y|u, z))

−
∑

y/∈TY |u,z

p(y|u, z) log(p(y|u, z))

]

+ nH(Y )δ(n)

≤
∑

(u,z)∈TUZ

p(u, z)

[

−
∑

y∈TY |u,z

p(y|u, z) log(p(y|u, z))

]

+ nH(X)δ(n) + ǫ(n)

≤ n(H(Y |U,Z) + 2ǫ(n) +H(Y )δ(n))

= n(H(Y |U,Z) + ζ(n)),

whereζ(n) → 0 asn → ∞.
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