
ar
X

iv
:1

91
1.

00
22

2v
2

 [
cs

.L
G

]
 8

 N
ov

 2
01

9
1

Federated Learning with Differential Privacy:

Algorithms and Performance Analysis
Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farokhi Farhad,

Shi Jin, Tony Q. S. Quek, H. Vincent Poor

Abstract—Federated learning (FL), as a manner of distributed
machine learning, is capable of significantly preserving clients’
private data from being exposed to external adversaries. Never-
theless, private information can still be divulged by analyzing on
the differences of uploaded parameters from clients, e.g., weights
trained in deep neural networks. In this paper, to effectively
prevent information leakage, we propose a novel framework
based on the concept of differential privacy (DP), in which
artificial noises are added to the parameters at the clients side
before aggregating, namely, noising before model aggregation
FL (NbAFL). First, we prove that the NbAFL can satisfy DP
under distinct protection levels by properly adapting different
variances of artificial noises. Then we develop a theoretical
convergence bound of the loss function of the trained FL model
in the NbAFL. Specifically, the theoretical bound reveals the
following three key properties: 1) There is a tradeoff between
the convergence performance and privacy protection levels, i.e.,
a better convergence performance leads to a lower protection
level; 2) Given a fixed privacy protection level, increasing the
number N of overall clients participating in FL can improve
the convergence performance; 3) There is an optimal number of
maximum aggregation times (communication rounds) in terms of
convergence performance for a given protection level. Further-
more, we propose a K-random scheduling strategy, where K

(1 < K < N) clients are randomly selected from the N overall
clients to participate in each aggregation. We also develop the
corresponding convergence bound of the loss function in this case
and the K-random scheduling strategy can also retain the above
three properties. Moreover, we find that there is an optimal K

that achieves the best convergence performance at a fixed privacy
level. Evaluations demonstrate that our theoretical results are
consistent with simulations, thereby facilitating the designs on
various privacy-preserving FL algorithms with different tradeoff
requirements on convergence performance and privacy levels.

Index Terms—Federated learning, differential privacy, conver-
gence performance, information leakage, client selection

I. INTRODUCTION

With AlphaGo’s glorious success, it is expected that the

big data-driven artificial intelligence (AI) will soon be applied

in all aspects of our daily life, including medical care, food

and agriculture, intelligent transportation systems, etc. At the

Kang Wei, Jun Li, and Chuan Ma are with School of Electrical and Optical
Engineering, Nanjing University of Science and Technology, Nanjing 210094,
China (e-mail:{wei.kang, jun.li, chuan.ma}@njust.edu.cn).

Ming Ding and Farokhi Farhad are with Data61, CSIRO, Sydney, NSW
2015, Australia (e-mail:{ming.ding, Farhad.Farokhi}@data61.csiro.au).

Howard Hao Yang and Tony Q. S. Quek are with the Information System
Technology and Design Pillar, Singapore University of Technology and
Design, Singapore (e-mail:{howard yang, tonyquek}@sutd.edu.sg).

Shi Jin is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 210096, China (e-mail: jinshi@seu.edu.cn).

H. Vincent Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: poor@princeton.edu).

same time, the rapid proliferations of Internet of Things (IoTs)

call for data mining and learning securely and reliably in

distributed systems [1]–[3]. When integrating AI in a variety

of IoT applications, distributed machine learning (ML) are

remarkably effective for many data processing tasks by defin-

ing parameterized functions from inputs to outputs as com-

positions of basic building blocks [4], [5]. Federated learning

(FL), as a recent advance of distributed ML, was proposed, in

which data are acquired and processed locally at the clients

side, and then the updated ML parameters are transmitted

to a central server for aggregating, i.e., averaging on these

parameters [6]–[8]. Typically, clients in FL are distributed

devices such as sensors, wearable devices, or mobile phones.

The goal of FL is to fit a model generated by an empirical

risk minimization (ERM) objective. However, FL also poses

several key challenges, such as private information leakage,

expensive communication costs between servers and clients,

and device variability [9]–[14].

Generally, distributed stochastic gradient descent (SGD) is

adopted in FL for training ML models. In [15], [16], bounds

for FL convergence performance were developed based on

distributed SGD, with a one-step local update before global

aggregations. The work in [17] considered partially global

aggregations, where after each local update step, parameter

aggregation is performed over a non-empty subset of the

clients set. In order to analyze the convergence more effec-

tively, federated proximal (FedProx) was proposed [18] by

adding regularization on each local loss function. The work

in [19] obtained the convergence bound of SGD based FL

that incorporates non-independent-and-identically-distributed

(non-i.i.d.) data distributions among clients.

At the same time, with the ever increasing awareness of

data security of personal information, privacy preservation has

become a worldwide and significant issue, especially for the

big data applications and distributed learning systems. One

prominent advantage of FL is that it enables local training

without personal data exchange between the server and clients,

thereby protecting clients’ data from being eavesdropped by

hidden adversaries. Nevertheless, private information can still

be divulged to some extent from adversaries’ analyzing on the

differences of related parameters trained and uploaded by the

clients, e.g., weights trained in neural networks [20]–[22].

A natural approach to preventing information leakage is

to add artificial noises, known as differentially private (DP)

techniques [23], [24]. Existing works on DP based learning

algorithms include local DP (LDP) [25]–[27], DP based dis-

tributed SGD [28], [29] and DP meta learning [30]. In the

http://arxiv.org/abs/1911.00222v2

2

LDP, each client perturbs its information locally and only

sends a randomized version to a server, thereby protecting

both the clients and server against private information leakage.

The work in [26] proposed solutions to building up a LDP-

compliant SGD, which powers a variety of important ML

tasks. The work in [27] considered the distribution estimation

at the server over uploaded data from clients while providing

protections on these data with LDP. The work in [28] improved

the computational efficiency of DP based SGD by tracking

detailed information of the privacy loss, and obtained accurate

estimates on the overall privacy loss. The work in [29]

proposed novel DP based SGD algorithms and analyzed their

performance bounds which are shown to be related to privacy

levels and the sizes of datasets. Also, the work in [30] focused

on the class of gradient-based parameter-transfer methods and

developed a DP based meta learning algorithm that not only

satisfies the privacy requirement but also retains provable

learning performance in convex settings.

More specifically, DP based FL approaches are usually

devoted to capturing the tradeoff between privacy and conver-

gence performance in the training process. The work in [31]

proposed a FL algorithm with the consideration on preserving

clients’ privacy. This algorithm can achieve a good training

performance at a given privacy level, especially when there

is a sufficiently large number of participating clients. The

work in [32] presented an alternative approach that utilizes

both DP and secure multiparty computation (SMC) to prevent

differential attacks. However, the above two works on DP-

based FL design have not taken into account the privacy pro-

tection during the parameter uploading stage, i.e., the clients’

private information can be potentially intercepted by hidden

adversaries when uploading the training results to the server.

Moreover, these two works only showed empirical results by

simulations, but lacked theoretical analysis on the FL system,

such as tradeoff between privacy, convergence performance,

and convergence rate. Up to now, the theoretical analysis

on convergence behavior of FL with privacy-preserving noise

perturbations has not yet been detailed in existing literatures,

which will be the major focus of our work in this paper.

In this paper, to effectively prevent information leakage, we

propose a novel framework based on the concept of differential

privacy (DP), in which each client perturbs its trained parame-

ters locally by purposely adding noises before uploading them

to the server for aggregation, namely, noising before model

aggregation FL (NbAFL). To the best of authors’ knowledge,

this is the first piece of work of its kind that theoretically

analyzes the convergence property of differentially private

FL algorithms. First, we prove that the proposed NbAFL

scheme satisfies the requirement of DP in terms of global

data under a certain noise perturbation level with Gaussian

noises by properly adapting their variances. Then, we develop

theoretically a convergence bound of the loss function of

the trained FL model in the NbAFL with artificial Gaussian

noises. Our developed bound reveals the following three key

properties: 1) There is a tradeoff between the convergence

performance and privacy protection levels, i.e., a better con-

vergence performance leads to a lower protection level; 2)

Increasing the number N of overall clients participating in

FL can improve the convergence performance, given a fixed

privacy protection level; 3) There is an optimal number of

maximum aggregation times in terms of convergence perfor-

mance for a given protection level. Furthermore, we propose a

K-random scheduling strategy, where K (1 < K < N) clients

are randomly selected from the N overall clients to partici-

pate in each aggregation. We also develop the corresponding

convergence bound of the loss function in this case. From

our analysis, the K-random scheduling strategy can retain

the above three properties. Also, we find that there exists

an optimal value of K that achieves the best convergence

performance at a fixed privacy level. Evaluations demonstrate

that our theoretical results are consistent with simulations.

Therefore, our analytical results are helpful for the design

on privacy-preserving FL architectures with different tradeoff

requirements on convergence performance and privacy levels.

The remainder of this paper is organized as follows. In

Section II, we introduce backgrounds on FL, DP and a

conventional DP-based FL algorithm. In Section III, we detail

the proposed NbAFL and analyze the privacy performance

based on DP. In Section IV, we analyze the convergence bound

of NbAFL and reveal the relationship between privacy levels,

convergence performance, the number of clients, and the

number of global aggregations. In Section V, we propose the

K-random scheduling scheme and develop the convergence

bound. We show the analytical results and simulations in

Section VI. We conclude the paper in Section VII. A summary

of basic concepts and notations is provided in Tab. I.

Table I: Summary of Main Notations

M A randomized mechanism for DP
x, x′ Adjacent databases
ǫ, δ The parameters related to DP
Ci The i-th client
Di The database held by the owner Ci
D The database held by all the clients
| · | The cardinality of a set
N Total number of all clients
K The number of chosen clients (1 < K < N)
t The index of the t-th aggregation
T The number of aggregation times
w The vector of model parameters
F (w) Global loss function
Fi(w) Local loss function from the i-th client
µ A presetting constant of the proximal term

w
(t)
i

Local uploading parameters of the i-th client

w(0) Initial parameters of the global model

w
(t) Global parameters generated from all local parameters

at the t-th aggregation

v(t) Global parameters generated from K clients’ parameters
at the t-th aggregation

w
∗ True optimal model parameters that minimize F (w)

W̃ The set of all local parameters with pertubation

II. PRELIMINARIES

In this section, we will present preliminaries and related

background knowledge on FL and DP. Also, we introduce a

conventional DP-based FL algorithm that will be discussed in

our following analysis as a benchmark.

3

Server

Database N

Adversary

Uploading Transmission:

Broadcasting Transmission:

Database 1 Database 2

w2w1 wNww w w

w1 wN

C1 C2 CN

Figure 1: A FL training model with hidden adversaries who can eavesdrop trained

parameters from both the clients and the server.

A. Federated Learning

Let us consider a general FL system consisting of one server

and N clients, as depicted in Fig. 1. Let Di denote the local

database held by the client Ci, where i ∈ {1, 2, . . . , N}. At the

server, the goal is to learn a model over data that resides at the

N associated clients. An active client, participating in the local

training, needs to find a vector w of an AI model to minimize

a certain loss function. Formally, the server aggregates the

weights sent from the N clients as

w =

N∑

i=1

piwi, (1)

where wi is the parameter vector trained at the i-th client, w

is the parameter vector after aggregating at the server, N is

the number of clients, pi =
|Di|
|D| ≥ 0 with

∑N
i=1 pi = 1, and

|D| =∑N
i=1 |Di| is the total size of all data samples. Such an

optimization problem can be formulated as

w
∗ = argmin

w

N∑

i=1

piFi(w), (2)

where Fi(·) is the local loss function of the i-th client.

Generally, the local loss function Fi(·) is given by local

empirical risks. The training process of such a FL system

usually contains the following four steps:

• Step 1: Local training: All active clients locally compute

training gradients or parameters and send locally

trained ML parameters to the server;

• Step 2: Model aggregating: The server performs secure

aggregation over the uploaded parameters from N
clients without learning local information;

• Step 3: Parameters broadcasting: The server broadcasts

the aggregated parameters to the N clients;

• Step 4: Model updating: All clients update their respective

models with the aggregated parameters and test the

performance of the updated models.

In the FL process, the N clients with the same data structure

collaboratively learn a ML model with the help of a cloud

server. After a sufficient number of local training and update

exchanges between the server and its associated clients, the

solution to the optimization problem (2) is able to converge

to that of the global optimal learning model.

B. Threat Model

The server in this paper is assumed to be honest. However,

there are external adversaries targeting at clients’ private

information. Although the individual dataset Di of the i-
th client is kept locally in FL, the intermediate parameter

wi needs to be shared with the server, which may reveal

the clients’ private information as demonstrated by model

inversion attacks. For example, authors in [33] demonstrated

a model-inversion attack that recovers images from a facial

recognition system. In addition, the privacy leakage can also

happen in the broadcasting (through downlink channels) phase

by analyzing the global parameter w.

We also assume that uplink channels are more secure than

downlink broadcasting channels, since clients can be assigned

to different channels (e.g., time slots, frequency bands) dy-

namically in each uploading time, while downlink channels

are broadcasting. Hence, we assume that there are at most L
(L ≤ T) exposures of uploaded parameters from each client

in the uplink1 and T exposures of aggregated parameters in

the downlink, where T is the number of aggregation times.

C. Differential Privacy

(ǫ, δ)-DP provides a strong criterion for privacy preservation

of distributed data processing systems. Here, ǫ > 0 is the

distinguishable bound of all outputs on neighboring datasets

Di,D′
i in a database, and δ represents the event that the ratio

of the probabilities for two adjacent datasets Di,D′
i cannot be

bounded by eǫ after adding a privacy preserving mechanism.

With an arbitrarily given δ, a privacy preserving mechanism

with a larger ǫ gives a clearer distinguishability of neighboring

datasets and hence a higher risk of privacy violation. Now, we

will formally define DP as follows.

Definition 1: ((ǫ, δ)-DP [23]): A randomized mechanismM :
X → R with domain X and range R satisfies (ǫ, δ)-DP, if for

all measurable sets S ⊆ R and for any two adjacent databases

Di,D′
i ∈ X ,

Pr[M(Di) ∈ S] ≤ eǫPr[M(D′
i) ∈ S] + δ. (3)

For numerical data, a Gaussian mechanism defined in [23]

can be used to guarantee (ǫ, δ)-DP. According to [23], we

present the following DP mechanism by adding artificial

Gaussian noises.

In order to ensure that the given noise distribution n ∼
N (0, σ2) preserves (ǫ, δ)-DP, where N represents the Gaus-

sian distribution, we choose noise scale σ ≥ c∆s/ǫ and the

constant c ≥
√
2 ln(1.25/δ) for ǫ ∈ (0, 1). In this result,

n is the value of an additive noise sample for a data in

the dateset, ∆s is the sensitivity of the function s given

by ∆s = maxDi,D′
i
‖s(Di)− s(D′

i)‖, and s is a real-valued

function.

1Here we assume that the adversary cannot know where the parameters
come from.

4

Considering the above DP mechanism, choosing an appro-

priate level of noise remains a significant research problem,

which will affect the privacy guarantee of clients and the

convergence rate of the FL process.

III. FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY

In this section, we first introduce the concept of global

DP and analyze the DP performance in the context of FL.

Then we propose the NbAFL scheme that can satisfy the DP

requirement by adding proper noisy perturbations at both the

clients and the server.

A. Global Differential Privacy

Here, we define a global (ǫ, δ)-DP requirement for both

uplink and downlink channels. From the uplink perspective,

using a clipping technique, we can ensure that ‖wi‖ ≤ C,

where wi denotes training parameters from the i-th client with-

out perturbation and C is a clipping threshold for bounding

wi. We assume that the batch size in the local training is

equal to the number of training samples and then define local

training process in the i-th client by

sDi

U , wi = argmin
w

Fi(w,Di)

=
1

|Di|

|Di|∑

j=1

argmin
w

Fi(w,Di,j), (4)

where Di is the i-th client’s database and Di,j is the j-th

sample in Di. Thus, the sensitivity of sDi

U can be expressed as

∆sDi

U = max
Di,D′

i

‖sDi

U − s
D′

i

U ‖

= max
Di,D′

i

∥∥∥∥∥∥
1

|Di|

|Di|∑

j=1

argmin
w

Fi(w,Di,j)

− 1

|D′
i|

|D′
i
|∑

j=1

argmin
w

Fi(w,D′
i,j)

∥∥∥∥∥∥
=

2C

|Di|
, (5)

where D′
i is an adjacent dataset to Di which has the same size

but only differ by one sample, and D′
i,j is the j-th sample in

D′
i. From the above result, a global sensitivity in the uplink

channel can be defined by

∆sU , max
{
∆sDi

U

}
, ∀i. (6)

To achieve a small global sensitivity, the ideal condition is

that all the clients use sufficient local datasets for training.

Hence, we define the minimum size of the local datasets by

m and then obtain ∆sU = 2C
m . To ensure (ǫ, δ)-DP for each

client in the uplink in one exposure, we set the noise scale,

represented by the standard deviation of the additive Gaussian

noise, as σU = c∆sU/ǫ. Considering L exposures of local

parameters, we need to set σU = cL∆sU/ǫ due to the linear

relation between ǫ and σU in the Gaussian mechanism.

From the downlink perspective, the aggregation operation

for Di can be expressed as

sDi

D , w = p1w1 + . . . + piwi + . . . + pNwN , (7)

where 1 ≤ i ≤ N and w is the aggregated parameters at the

server to be broadcast to the clients. Regarding the sensitivity

of sDi

D , i.e., ∆sDi

D , we have the following lemma.

Lemma 1 (Sensitivity after the aggregation operation):

In FL training process, the sensitivity for Di after the

aggregation operation sDi

D is given by

∆sDi

D =
2Cpi
m

. (8)

Proof 1: See Appendix A.

Algorithm 1: Noising before Aggregation FL

Data: T , w(0), µ, ǫ and δ
1 Initialization: t = 1 and w

(0)
i = w

(0), ∀i
2 while t ≤ T do

3 Local training process:

4 while Ci ∈ {C1, C2, . . . , CN} do

5 Update the local parameters w
(t)
i as

6

w
(t)
i = argmin

wi

(
Fi(wi) +

µ
2 ‖wi −w

(t−1)‖2
)

7 Clip the local parameters

w
(t)
i = w

(t)
i /max

(
1,

‖w(t)
i

‖
C

)

8 Add noise and upload parameters

w̃
(t)
i = w

(t)
i + n

(t)
i

9 Model aggregating process:

10 Update the global parameters w
(t) as

11 w
(t) =

N∑
i=1

piw̃
(t)
i

12 The server broadcasts global noised parameters

13 w̃
(t) = w

(t) + n
(t)
D

14 Local testing process:

15 while Ci ∈ {C1, C2, . . . , CN} do

16 Test the aggregating parameters w̃
(t) using local

dataset

17 t← t+ 1

Result: w̃(T)

Remark 1: From the above lemma, to achieve a small global

sensitivity in the downlin channel which is defined by

∆sD , max
{
∆sDi

D

}
= max

{
2Cpi
m

}
, ∀i, (9)

the ideal condition is that all the clients should use the same

size of local datasets for training, i.e., pi = 1/N .

From the above remark, when setting pi = 1/N , ∀i, we

can obtain the optimal value of the sensitivity ∆sD. So here

we should add noise at the client side first and then decide

whether or not to add noises at server to satisfy the (ǫ, δ)-DP

criterion in the downlink channel.

Theorem 1 (DP guarantee for downlink channels): To en-

sure (ǫ, δ)-DP in the downlink channels with T aggregations,

5

the standard deviation of Gaussian noises nD that are added

to the aggregated parameter w by the server can be given as

σD =

{
2cC

√
T 2−L2N
mNǫ T > L

√
N,

0 T ≤ L
√
N.

(10)

Proof 2: See Appendix B.

Theorem 1 shows that to satisfy a (ǫ, δ)-DP requirement

for the downlink channels, additional noises nD need to be

added by the server. With a certain L, the standard deviation

of additional noises is depending on the relationship between

the number of aggregation times T and the number of clients

N . The intuition is that a larger T can lead to a higher chance

of information leakage, while a larger number of clients is

helpful for hiding their private information. This theorem also

provides the variance value of the noises that should be added

to the aggregated parameters. Based on the above results, we

propose the following NbAFL algorithm.

B. Proposed NbAFL

Algorithm 1 outlines our NbAFL for training an effective

model with a global (ǫ, δ)-DP requirement. We denote by µ
the presetting constant of the proximal term and by w

(0) the

initiate global parameter. At the beginning of this algorithm,

the server broadcasts the required privacy level parameters

(ǫ, δ) are set and the initiate global parameter w(0) are sent to

clients. In the t-th aggregation, N active clients respectively

train the parameters by using local databases with preset

termination conditions. After completing the local training,

the i-th client, ∀i, will add noises to the trained parameters

w
(t)
i , and upload the noised parameters w̃

(t)
i to the server for

aggregation.

Then the server update the global parameters w
(t) by

aggregating the local parameters integrated with different

weights. Additive noises n
(t)
D are added to this w(t) according

to Theorem 1 before being broadcast to the clients. Based on

the received global parameters w̃
(t), each client will estimate

the accuracy by using local testing databases and start the next

round of training process based on these received parameters.

The FL process completes after the aggregation time reaches

a preset number T and the algorithm returns w̃
(T).

Now, let us focus on the privacy preservation performance

of the NbAFL. First, the set of all local parameters, denoted

by W̃ = {w̃1, . . . , w̃N}, are received by the server. Owing to

the local perturbations in the NbAFL, it will be difficult for

malicious adversaries to infer the information at the i-client

from its uploaded parameters w̃i. After the model aggregation,

the aggregated parameters w will be sent back to clients via

broadcast channels. This poses threats on clients’s privacy as

potential adversaries may reveal sensitive information about

individual clients from w. In this case, additive noises may be

posed to w based on Theorem 1.

IV. CONVERGENCE ANALYSIS ON NBAFL

In this section, we are ready to analyze the convergence

performance of the proposed NbAFL. First, we analyze the

expected increment of adjacent aggregations in the loss func-

tion with Gaussian noises. Then, we focus on deriving the

convergence property under the global (ǫ, δ)-DP requirement.

For the convenience of the analysis, we make the following

assumptions on the loss function and network parameters.

Assumption 1: We make assumptions on the global loss

function F (·) defined by F (·) ,
∑N

i piFi(·), and the i-th
local loss function Fi(·) as follows:

1) Fi(w) is convex;

2) Fi(w) satisfies the Polyak-Lojasiewicz condition with

the positive parameter l, which implies that F (w) −
F (w∗) ≤ 1

2l‖∇F (w)‖2, where w∗ is the optimal result;

3) F (w(0))− F (w∗) = Θ;

4) Fi(w) is β-Lipschitz, i.e., ‖Fi(w)− Fi(w
′)‖ ≤ β‖w−

w
′‖, for any w, w′;

5) Fi(w) is ρ-Lipschitz smooth, i.e., ‖∇Fi(w) −
∇Fi(w

′)‖ ≤ ρ‖w −w
′‖, for any w, w′, where ρ is a

constant determined by the practical loss function;

6) For any i and w, ‖∇Fi(w) −∇F (w)‖ ≤ εi, where εi
is the divergence metric.

Similar to the gradient divergence, the divergence metric εi
is the metric to capture the divergence between the gradients

of the local loss functions and that of the aggregated loss

function, which is essential for analyzing SGD. The divergence

is related to how the data is distributed at different nodes.

Using Assumption 1, we then have the following lemma.

Lemma 2 (B-dissimilarity of various clients): For a given

ML parameter w, there exists B satisfying

E
{
‖∇Fi(w)‖2

}
≤ ‖∇F (w)‖2B2, ∀i. (11)

Proof 3: See Appendix C.

Lemma 2 comes from the assumption of the divergence

metric and demonstrates the statistical heterogeneity of all

clients. As mentioned earlier, the values of ρ and B(w)
are determined by the specific global loss function F (w)
in practice and the training parameters w. With the above

preparation, we are now ready to analyze the convergence

property of NbAFL. First, we present the following lemma

to derive an expected increment bound on the loss function

during each iteration of parameters with artificial noises.

Lemma 3 (Expected increment in the loss function):

After receiving updates, from the t-th to the (t + 1)-th
aggregation, the expected difference in the loss function can

be upper-bounded by

E{F (w̃(t+1))− F (w̃(t))} ≤ λ2E{‖∇F (w̃(t))‖2}
+ λ1E{‖n(t+1)‖‖∇F (w̃(t))‖}+ λ0E{‖n(t+1)‖2}, (12)

where

λ0 =
ρ

2
, λ1 =

1

µ
+

ρB

µ
, (13)

λ2 = − 1

µ
+

ρB

µ2
+

ρB2

2µ2
, (14)

6

and n
(t) are the equivalent noises imposed on the parameters

after the t-th aggregation, given by

n
(t) =

N∑

i=1

pin
(t)
i + n

(t)
D . (15)

Proof 4: See Appendix D.

In this lemma, the value of an additive noise sample n
in vector n

(t) satisfies the following Gaussian distribution

n ∼ N (0, σ2
A). Also, we can obtain σA =

√
σ2

D + σ2
U/N

from Section III. From the right hand side (RHS) of the above

inequality, we can see that it is crucial to select a proper

proximal term µ to achieve a low upper-bound. It is clear

that artificial noises with a large σA may improve the DP

performance in terms privacy protection. However, from the

RHS of (12), a large σA may enlarge the expected difference

of the loss function between two consecutive aggregations,

leading to a deterioration of convergence performance.

Furthermore, to satisfy the global (ǫ, δ)-DP, by using The-

orem 1, we have

σA =

{
cT∆sD

ǫ T > L
√
N,

cL∆sU√
Nǫ

T ≤ L
√
N.

(16)

Next, we will analyze the convergence property of NbAFL

with the (ǫ, δ)-DP requirement.

Theorem 2 (Convergence upper bound of the NbAFL):

With required protection level ǫ, the convergence upper bound

of Algorithm 1 after T aggregations is given by

E{F (w̃(T))− F (w∗)} ≤

PTΘ+

(
κ1T

ǫ
+

κ0T
2

ǫ2

)(
1− PT

)
, (17)

where

P = 1 + 2lλ2, κ1 =
λ1βc

m(1− P)

√
2

Nπ
(18)

and

κ0 =
λ0c

2

m2(1 − P)N
. (19)

Proof 5: See Appendix D.

Theorem 2 reveals an important relationship between pri-

vacy and utility by taking into account the protection level

ǫ and the number of aggregation times T . As the number

of aggregation times T increases, the first term of the upper

bound decreases but the second term increases. Furthermore,

By viewing T as a continuous variable and by writing the

RHS of (17) as h(T), we have

d2h(T)

d2T
=

(
Θ− κ1T

ǫ
− κ0T

2

ǫ2

)
PT ln2 P

− 2

(
κ1

ǫ
+

2κ0T

ǫ2

)
PT lnP +

2κ0

ǫ2
(
1− PT

)
. (20)

It can be seen that the second term and third term of on the

RHS of (20) are always positive. When N and ǫ are set to

be large enough, we can see that κ1 and κ0 are small, and

thus the first term can also be positive. In this case, we have

d2h(T)/d2T > 0 and the upper bound is convex for T .

Remark 2: As can be seen from this theorem, expected gap

between the achieved loss function F (w̃(T)) and the minimum

one F (w∗) is a decreasing function of ǫ. By increasing ǫ,
i.e., relaxing the privacy protection level, the performance of

NbAFL algorithm will improve. This is reasonable because the

variance of artificial noises decreases, thereby improving the

convergence performance.

Remark 3: The number of clients N will also affect its

iterative convergence performance, i.e., a larger N would

achieve a better convergence performance. This is because

a lager N leads to a lower variance of the artificial noises.

Remark 4: There is an optimal number of maximum ag-

gregation times T in terms of convergence performance for

given ǫ and N . In more detail, a larger T may lead to a

higher variance of artificial noises, and thus pose a negative

impact on convergence performance. On the other hand, more

iterations can generally boost the convergence performance if

noises are not large enough. In this sense, there is a tradeoff

on choosing a proper T .

V. K -CLIENT RANDOM SCHEDULING POLICY

In this section, we consider the case where only K(K < N)
clients are selected to participate in the aggregation process,

namelly K-random scheduling.

We now discuss how to add artificial noises in the K-

random scheduling to satisfy a global (ǫ, δ)-DP. It is nature

that in the uplink channels, each of the K scheduled clients

should add noises with scale σU = cL∆sU/ǫ for achieving

(ǫ, δ)-DP. This is equivalent to the noise scale in the all-clients

selection case in Section III, since each client only considers

its own privacy for uplink channels in both cases. However, the

derivation of the noise scale in the downlink will be different

for the K-random scheduling. As an extension of Theorem 1,

we present the following lemma in the case of K-random

scheduling on how to obtain σD.

Lemma 4 (DP guarantee in K-random scheduling): In

the NbAFL algorithm with K-random scheduling, to satisfy

a global (ǫ, δ)-DP, and the standard deviation σD of additive

Gaussian noises for downlink channels should be set as

σD =

2cC
√

T2

b2
−L2K

mKǫ T > ǫ
γ ,

0 T ≤ ǫ
γ ,

(21)

where

b = −T

ǫ
ln

(
1− N

K
+

N

K
e

−ǫ

T

)
,

γ = − ln

(
1− K

N
+

K

N
e

−ǫ

L
√

K

)
.

(22)

Proof: See Appendix F.

Lemma 4 recalculates σD by considering the number of

chosen clients K . Generally, the number of clients N is fixed,

we thus focus on the effect of K . Based on the DP analysis

in Lemma 4, we can obtain the following theorem.

7

Theorem 3 (Convergence under K-random scheduling):

With required protection level ǫ and the number of chosen

clients K , for any Θ > 0, the convergence upper bound after

T aggregation times is given by

E{F (ṽT)− F (w∗)} ≤ QTΘ

+
1−QT

1−Q

(
cα1β

−mK ln
(
1− N

K + N
K e−

ǫ

T

)
√

2

π

+
c2α0

m2K2 ln2
(
1− N

K + N
K e−

ǫ

T

)
)
.

(23)

where

Q = 1 +
2l

µ2

(
ρB2

2
+ ρB +

ρB2

K
+

2ρB2

√
K

+
µB√
K
− µ

)
,

(24)

α0 =
2ρK

N
+ ρ, α1 = 1 +

2ρB

µ
+

2ρB
√
K

µN
, (25)

and

ṽ
(T) =

K∑

i=1

pi

(
w

(T)
i + n

(T)
i

)
+ n

(T)
D . (26)

Proof 6: See Appendix G.

The above theorem provides the convergence upper bound

between F (ṽT) and F (w∗) under K-random scheduling.

Using K-random scheduling, we can obtain an important

relationship between privacy and utility by taking into account

the protection level ǫ, the number of aggregation times T and

the number of chosen clients K .

Remark 5: From the bound derived in Theorem 3, we

conclude that there is an optimal K in between 0 and N
that achieves the optimal convergence performance. That is,

by finding a proper K , the K-random scheduling policy is

superior to the one that all N clients participate in the FL

aggregations.

VI. SIMULATION RESULTS

In this section, we evaluate the proposed NbAFL by us-

ing multi-layer perception (MLP) and real-world federated

datasets. In order to characterize the convergence property of

NbAFL, we conduct experiments by varying the protection

levels of ǫ, the number of clients N , the number of maximum

aggregation times T and the number of chosen clients K .

We conduct experiments on the standard MNIST dataset

for handwritten digit recognition consisting of 60000 training

examples and 10000 testing examples [34]. Each example is

a 28 × 28 size gray-level image. Our baseline model uses a

a MLP network with a single hidden layer containing 256

hidden units. In this feed-forward neural network, we use a

ReLU units and softmax of 10 classes (corresponding to the 10
digits) with the cross-entropy loss function. For the optimizer

of networks, we set the learning rate to 0.002. The values of

ρ, β, l and B are determined by the specific loss function, and

we will use estimated values in our simulations [19].

1 4 7 10 13 16 19 22 25
Aggregation Time (t)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n

 = 50
 = 60
 = 100

Non-private approach

Figure 2: The comparison of training loss with various protection levels for 50 clients

using ǫ = 50, ǫ = 60 and ǫ = 100, respectively.

1 4 7 10 13 16 19 22 25
Aggregation Time (t)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T

es
ti

ng
 A

cc
ur

ac
y

 = 50
 = 60
 = 100

Non-private approach

Figure 3: The comparison of training accuracy with various protection levels for 50

clients using ǫ = 50, ǫ = 60 and ǫ = 100, respectively.

A. Performance Evaluation on Protection Levels

In Fig. 2 and Fig. 3, we choose various protection levels

ǫ = 50, ǫ = 60 and ǫ = 100 to show the results of the

loss function and testing accuracies in NbAFL. Furthermore,

we also include a non-private approach to compare with our

NbAFL. In this experiment, we set N = 50, T = 25 and

δ = 0.01, and compute the values of the loss function as a

function of the aggregation times T . As shown in Fig. 2, values

of the loss function in NbAFL are decreasing as we relax

the privacy guarantees (increasing ǫ). Meanwhile, in Fig. 3,

testing accuracies are also increasing as the privacy parameter

reduces. Such observation results are in line with Remark 2.

Considering the K-client random scheduling, in Fig. 4 and

Fig. 5, we investigate the performances with various protection

levels ǫ = 50, ǫ = 60 and ǫ = 100. For simulation parameters,

we set N = 50, K = 20, T = 25, and δ = 0.01. As shown

8

1 3 5 7 9 11 13 15 17 19 21 23 25
Aggregation Time (t)

0.6

0.8

1

1.2

1.4

1.6

1.8

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n

 = 50
 = 60
 = 100

Non-private Approach

Figure 4: The comparison of training loss with various privacy levels for 50 clients using

ǫ = 50, ǫ = 60 and ǫ = 100, respectively.

1 3 5 7 9 11 13 15 17 19 21 23 25
Aggregation Time (t)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

T
es

ti
ng

 A
cc

ur
ac

y

 = 50
 = 60
 = 100

Non-private Approach

Figure 5: The comparison of training accuracy with various privacy levels for 50 clients

using ǫ = 50, ǫ = 60 and ǫ = 100, respectively.

in Fig. 4 and Fig. 5, the convergence performance under the

K-client random scheduling is improved with an increasing ǫ.

B. Impact of the number of clients N

Fig. 6 and Fig. 7 compare the convergence performance of

NbAFL under required protection level ǫ = 60 and δ = 10−2

as a function of clients’ number, N . In this experiment, we

set N = 50, N = 60, N = 80 and N = 100. We notice

that the performance among different numbers of clients is

governed by Remark 3. This is because that more clients

not only provide larger global datasets for training, but also

bring down the of standard deviation additive noises due to

the aggregation.

1 3 5 7 9 11 13 15 17 19 21 23 25
Aggregation Time (t)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n

N = 50
N = 60
N = 80
N = 100

Figure 6: The value of the loss function with various numbers of clients under ǫ = 60
under NbAFL Algorithm with 50 clients.

1 3 5 7 9 11 13 15 17 19 21 23 25
Aggregation Time (t)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
T

es
ti

ng
 A

cc
ur

ac
y

N = 50
N = 60
N = 80
N = 100

Figure 7: The value of the loss function with various numbers of clients under ǫ = 60
under NbAFL Algorithm with 50 clients.

C. Impact of the number of maximum aggregation times T

In Fig. 8, we show the theoretical upper bound of training

loss as a function of maximum aggregation times with various

privacy levels ǫ = 50, 60 and 100 under NbAFL algorithm.

Fig. 9 compares the theoretical upper bound using the dotted

line and experimental results using the solid line with ǫ = 60
and 100. Fig. 8 and Fig. 9 reveal that under a low privacy

level (a large ǫ), NbAFL gives a large improvement in terms

of the convergence performance. This observation is in line

with Remark 4, and the reason comes from the fact that a

lower privacy level decreases the standard deviation of additive

noises and the server can obtain better quality ML model

parameters from the clients. Fig. 8 also implies that an optimal

number of maximum aggregation times increases almost with

respect to the increasing ǫ.

Fig. 10 compares the normal NbAFL and K-random

9

5 10 15 20 25 30
Number of Maximum Aggregation Times (T)

0

1

2

3

4

5

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n

 = 50
 = 60
 = 100
 = Non-private Approach

Figure 8: The convergence upper bounds with various privacy levels ǫ = 50, 60 and

100 under 50-clients’ NbAFL algorithm.

5 10 15 20 25 30
Number of Maximum Aggregation Times (T)

0.5

1

1.5

2

2.5

3

3.5

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n

 = 60 (Theoretical Results)
 = 60 (Simulation Results)
 = 100 (Theoretical Results)
 = 100 (Simulation Results)

Figure 9: The comparison of the loss function between experimental and theoretical

results with the various aggregation times under NbAFL Algorithm with 50 clients.

scheduling based NbAFL for a given protection level. In

Fig. 10, we plot the values of the loss function in NbAFL

with various numbers of maximum aggregation times. This

figure shows that the value of loss function is a convex

function of maximum aggregation times for a given protection

leavel under NbAFL algorithm, which validates Remark 4.

From Fig. 10, we can also see that for a given ǫ, K-random

scheduling based NbAFL algorithm has a better convergence

performance than the normalized NbAFL algorithm for a

larger T . This is because that K-random scheduling can bring

down the variance of artificial noises with little performance

loss.

D. Impact of the number of chosen clients K

In Fig. 11, we plot values of the loss function with various

numbers of chosen clients K under the random scheduling

10 15 20 25 30 35 40
Number of Maximum Aggregation Times (T)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n

 = 60 (N = K = 50)
 = 100 (N = K = 50)
 = 60 (N = 50, K = 30)
 = 100 (N = 50, K = 30)

Figure 10: The value of the loss function with various privacy levels ǫ = 60 and ǫ = 80
under NbAFL Algorithm with 50 clients.

10 15 20 25 30 35 40 45 50
Number of the Chosen Clients (K)

0.5

1

1.5

2

2.5

3

V
al

ue
 o

f
th

e
L

os
s

F
un

ct
io

n
 = 50
 = 60
 = 100

Non-private Approach

Figure 11: The value of the loss function with various numbers of chosen clients under

ǫ = 50, 60, 100 under NbAFL Algorithm and non-private approach with 50 clients.

policy in NbAFL. The number of clients is N = 50, and

K clients are randomly chosen to participate in training

and aggregation in each iteration. In this experiment, we set

ǫ = 50, ǫ = 60, ǫ = 80 and δ = 0.01. Meanwhile, we

also exhibit the performance of the non-private approach with

various numbers of chosen clients K . Note that an optimal K
which further improves the convergence performance exists for

various protection levels, due to a trade-off between enhance

privacy protection and involving larger global training datasets

in each model updating round. This observation is in line

with Remark 5. The figure shows that in NbAFL, for a given

protection level ǫ, the K-random scheduling can obtain a better

tradeoff than the normal selection policy.

VII. CONCLUSIONS

In this paper, we have focused on differential attacks in SGD

based FL. We first define a global (ǫ, δ)-DP requirement for

10

both uplink and downlink channels, and develop variances of

artificial noises at clients and server sides. Then, we propose

a novel framework based on the concept of global (ǫ, δ)-
DP, named NbAFL. We develop theoretically a convergence

bound of the loss function of the trained FL model in the

NbAFL. From theoretical convergence bounds, we obatin the

following results: 1) There is a tradeoff between the conver-

gence performance and privacy protection levels, i.e., a better

convergence performance leads to a lower protection level;

2) Increasing the number N of overall clients participating

in FL can improve the convergence performance, given a

fixed privacy protection level; 3) There is an optimal num-

ber of maximum aggregation times in terms of convergence

performance for a given protection level. Furthermore, we

propose a K-random scheduling strategy and also develop

the corresponding convergence bound of the loss function in

this case. In addition to above three properties. we find that

there exists an optimal value of K that achieves the best

convergence performance at a fixed privacy level. Extensive

simulation results confirm the correctness of our analysis.

Therefore, our analytical results are helpful for the design

on privacy-preserving FL architectures with different tradeoff

requirements on convergence performance and privacy levels.

APPENDIX A

PROOF OF LEMMA 1

From the downlink perspective, for all Di and D′
i which

differ in a signal entry, the sensitivity can be expressed as

∆sDi

D = max
Di,D′

i

‖sDi

D − s
D′

i

D ‖. (27)

Based on (4) and (7), we have

sDi

D = p1w1(D1)+ . . .+piwi(Di)+ . . .+pNwN (DN) (28)

and

s
D′

i

D = p1w1(D1)+ . . .+piwi(D′
i)+ . . .+pNwN (DN), (29)

Furthermore, the sensitivity can be given as

∆sDi

D = max
Di,D′

i

‖piwi(Di)− piwi(D′
i)‖

pi max
Di,D′

i

‖wi(Di)−wi(D′
i)‖ = pi∆sDi

U ≤
2Cpi
m

. (30)

Hence, we can set ∆sDi

D = 2Cpi

m . This completes the proof.

�

APPENDIX B

PROOF OF THEOREM 1

To ensure a global (ǫ, δ)-DP in the uplink channels, the

standard deviation of additive noises in client sides can be

set to σU = cL∆sU/ǫ due to the linear relation between ǫ
and σU with Gaussian mechanism, where ∆sU = 2C

m is the

sensitivity for the aggregation operation and m is the data size

of each client. We then set the sample in the i-th local noise

vector to a same distribution ni ∼ ϕ(n) (i.i.d for all i) because

each client is coincident with the same global (ǫ, δ)-DP. The

aggregation process with artificial noises added by clients can

be expressed as

w̃ =
N∑

i=1

pi (wi + ni) =
N∑

i=1

piwi +
N∑

i=1

pini. (31)

The distribution φN (n) of
∑N

i=1 pini can be expressed as

φN (n) =

N⊗

i=1

ϕi (n), (32)

where pini ∼ ϕi (n), and
⊗

is convolutional operation.

When we use Gaussian mechanism for ni with noise scale

σU, the distribution of pini is also Gaussian distribution. To

obtain a small sensitivity ∆sD, we set pi = 1/N . Furthermore,

the noise scale σU/
√
N of the Gaussian distribution φN (n)

can be calculated. To ensure a global (ǫ, δ)-DP in downlink

channels, we know the standard deviation of additive noises

can be set to σA = cT∆sD/ǫ, where ∆sD = 2C/mN . Hence,

we can obtain the standard deviation of additive noises at the

server as

σD =

√
σ2

A −
σ2

U

N
=

{
2cC

√
T 2−L2N
mNǫ T > L

√
N,

0 T ≤ L
√
N.

(33)

Hence, Theorem 1 has been proved. �

APPENDIX C

PROOF OF LEMMA 2

Due to Assumption 1, we have

E
{
‖∇Fi(w) −∇F (w)‖2

}
≤ E{ε2i } (34)

and

E
{
‖∇Fi(w)−∇F (w)‖2

}

= E
{
‖∇Fi(w)‖2

}
− 2E

{
∇Fi(w)⊤

}
∇F (w)

+ ‖∇F (w)‖2 = E
{
‖∇Fi(w)‖2

}
− ‖∇F (w)‖2.

(35)

Considering (34), (35) and ∇F (w) = E{∇Fi(w)}, we have

E
{
‖∇Fi(w)‖2

}
≤ ‖∇F (w)‖2 + E{ε2i }
= ‖∇F (w)‖2B(w)2.

(36)

Note that when ‖∇F (w)‖2 6= 0, there exists

B(w) =

√
1 +

E{ε2i }
‖∇F (w)‖2 ≥ 1, (37)

which satisfies the equation. We can notice that a smaller value

of B(w) implies that the local loss functions are more locally

similar. When all the local loss functions are the same, then

B(w) = 1, for all w. Therefore, we can have

E
{
‖∇Fi(w)‖2

}
≤ ‖∇F (w)‖2B2, ∀i, (38)

where B is the upper bound of B(w). This completes the

proof. �

11

APPENDIX D

PROOF OF LEMMA 3

Considering the aggregation process with artificial noises

added by clients and the server in the (t+ 1)-th aggregation,

we have

w̃
(t+1) =

N∑

i=1

piw
(t+1)
i + n

(t+1), (39)

where

n
(t) =

N∑

i=1

pin
(t)
i + n

(t)
D . (40)

Because Fi(·) is ρ-Lipschitz smooth, we know

Fi(w̃
(t+1)) ≤ Fi(w̃

(t)) +∇Fi(w̃
(t))⊤(w̃(t+1) − w̃

(t))

+
ρ

2
‖w̃(t+1) − w̃

(t)‖2, (41)

for all w̃(t+1), w̃(t). Combining F (w̃(t)) = E{Fi(w̃
(t))} and

∇F (w̃(t)) = E{∇Fi(w̃
(t))}, we have

E{F (w̃(t+1))−F (w̃(t))} ≤ E{∇F (w̃(t))⊤(w̃(t+1)−w̃(t))}
+

ρ

2
E{‖w̃(t+1) − w̃

(t)‖2}. (42)

We define

J(w
(t+1)
i ; w̃(t)) , Fi(w

(t+1)
i)+

µ

2
‖w(t+1)

i −w̃(t)‖2. (43)

Then, we know

∇J(w(t+1)
i ; w̃(t)) = ∇Fi(w

(t+1)
i)

+ µ
(
w

(t+1)
i − w̃

(t)
)

(44)

and

w̃
(t+1) − w̃

(t) =

N∑

i=1

(
w

(t+1)
i + n

(t+1)
i

)
+ n

(t+1)
D − w̃

(t)

=
1

µ
E{∇J(w(t+1)

i ; w̃(t))−∇Fi(w
(t+1)
i)} + n

(t+1). (45)

Because Fi(·) is ρ-Lipschitz smooth, we can obtain

E{∇Fi(w
(t+1)
i)} ≤ E{∇Fi(w̃

(t)) + ρ‖w(t+1)
i − w̃

(t)‖}
= ∇F (w̃(t)) + ρE{‖w(t+1)

i − w̃
(t)‖}. (46)

Now, let us bound ‖w(t+1)
i − w̃

(t)‖. We know

‖w(t+1)
i − w̃

(t)‖ ≤ ‖w(t+1)
i − ŵ

(t+1)
i ‖+ ‖ŵ(t+1)

i − w̃
(t)‖,
(47)

where ŵ
(t+1)
i = argminw Ji(w; w̃(t)). Let us define µ =

µ − ρ > 0, then we know Ji(w; w̃(t)) is µ-convexity. Based

on this, we can obtain

‖ŵ(t+1)
i −w

(t+1)
i ‖ ≤ θ

µ
‖∇Fi(w̃

(t))‖ (48)

and

‖ŵ(t+1)
i − w̃

(t)‖ ≤ 1

µ
‖∇Fi(w̃

(t))‖, (49)

where θ denotes a θ solution of minw Ji(w; w̃(t)) [18]. Now,

we can use the inequality (48) and (49) to obtain

‖w(t+1)
i − w̃

(t)‖ ≤ 1 + θ

µ
‖∇Fi(w̃

(t))‖. (50)

Therefore,

‖w̃(t+1) − w̃
(t)‖ ≤ ‖w(t+1) − w̃

(t)‖+ ‖n(t+1)‖
≤ E{‖w(t+1)

i − w̃
(t)‖}+ ‖n(t+1)‖

≤ 1 + θ

µ
E{‖∇Fi(w̃

(t))‖}+ ‖n(t+1)‖

≤ B(1 + θ)

µ
‖∇F (w̃(t))‖+ ‖n(t+1)‖.

(51)

Using (46) and (47), we know

‖E{∇Fi(w
(t+1)
i)} − ∇F (w̃(t))− E{∇J(w(t+1)

i ; w̃(t))}‖
≤ ρE{‖w(t+1)

i − w̃
(t)‖}+ E{∇J(w(t+1)

i ; w̃(t))}

≤ ρB(1 + θ)

µ
‖∇F (w̃(t))‖+Bθ‖∇F (w̃(t))‖.

(52)

Substituting (46), (51) and (52) into (42), we know

E{F (w̃(t+1))− F (w̃(t))}

≤ E

{
∇F (w̃(t))⊤

(
− 1

µ
∇F (w̃(t)) +

1

µ
n
(t+1)

+

(
ρB(1 + θ)

µµ
+

Bθ

µ

)
‖∇F (w̃(t))‖

)}

+
ρ

2
E

{[
B(1 + θ)

µ
‖∇F (w̃(t))‖ + ‖n(t+1)‖

]2}
. (53)

Then, using triangle inequation, we can obtain

E{F (w̃(t+1))− F (w̃(t))} ≤ λ2‖∇F (w̃(t))‖2

+ λ1E{‖n(t+1)‖}‖∇F (w̃(t))‖+ λ0E{‖n(t+1)‖2}.
(54)

where

λ2 = − 1

µ
+

B

µ

[
ρ(1 + θ)

µ
+ θ

]
+

ρB2(1 + θ)2

2µ2 , (55)

λ1 =
1

µ
+

ρB(1 + θ)

µ
andλ0 =

ρ

2
. (56)

In this convex case, where µ = µ, if θ = 0, all subproblems

are solved accurately. We know λ2 = − 1
µ + ρB

µ2 + ρB2

2µ2 , λ1 =
1
µ + ρB

µ and λ0 = ρ
2 . This completes the proof. �

APPENDIX E

PROOF OF THEOREM 2

We assume that F satisfies the Polyak-Lojasiewicz inequal-

ity [35] with positive parameter l, which implies that

E{F (w̃(t))− F (w∗)} ≤ 1

2l
‖∇F (w̃(t))‖2. (57)

Moreover, subtract E{F (w∗)} in both sides of (54), we know

E{F (w̃(t+1))− F (w∗)}
≤ E{F (w̃(t))− F (w∗)}+ λ2‖∇F (w̃(t))‖2

+ λ1E{‖n(t+1)‖}‖∇F (w̃(t))‖+ λ0E{‖n(t+1)‖2}. (58)

12

Considering ‖∇F (w(t))‖ ≤ β and (57), we have

E{F (w̃(t+1))−F (w∗)} ≤ (1+2lλ2)E{F (w̃(t))−F (w∗)}
+ λ1βE{‖n(t+1)‖}+ λ0E{‖n(t+1)‖2}, (59)

where F (w∗) is the loss function corresponding to the optimal

parameters w
∗. Considering the same and independent distri-

bution of additive noises, we define E{‖n(t)‖} = E{‖n‖}
and E{‖n(t)‖2} = E{‖n‖2}, for 0 ≤ t ≤ T . Applying (59)

recursively, we have

E{F (w̃(T))−F (w∗)} ≤ (1+2lλ2)
T
E{F (w(0))−F (w∗)}

+
(
λ1βE{‖n‖}+ λ0E{‖n‖2}

) T−1∑

t=0

(1 + 2lλ2)
t

= (1 + 2lλ2)
T
E{F (w(0))− F (w∗)}

+
(
λ1βE{‖n‖}+ λ0E{‖n‖2}

) (1 + 2lλ2)
T − 1

2lλ2
. (60)

If T ≤ L
√
N and then σD = 0, this case is special. Hence,

we will consider the condition that T > L
√
N . Based on (16),

we have σA = ∆sDTc/ǫ. Hence, we can obtain

E{‖n‖} =
∆sDTc

ǫ

√
2N

π
andE{‖n‖2} =

∆s2DT
2c2N

ǫ2
.

(61)

Substituting (100) into (60), setting ∆sD = 1/N and

F (w(0))− F (w∗) = Θ, we have

E{F (w̃(T))− F (w∗)} ≤ (1 + 2lλ2)
TΘ

+

(
λ1Tβc

ǫ

√
2

Nπ
+

λ0T
2c2

ǫ2N

)
(1 + 2lλ2)

T − 1

2lλ2

= PTΘ+

(
κ1T

ǫ
+

κ0T
2

ǫ2

)(
1− PT

)
,

(62)

where P = 1 + 2lλ2, κ1 = λ1βc
m(P−1)

√
2

Nπ and κ0 =
λ0c

2

m2(P−1)N . This completes the proof. �

APPENDIX F

PROOF OF LEMMA 4

We define the sampling parameter q , K/N to represent

the probability of being selected by the server for each client

in an aggregation. Let M1:T denote (M1, . . . ,MT) and

similarly let o1:T denote a sequence of outcomes (o1, . . . , oT).
Considering a global (ǫ, δ)-DP in the downlinks channels,

we use σA to represent the standard deviation of aggregated

Gaussian noises. With neighboring datasets Di and D′
i, we are

looking at
∣∣∣∣ln

Pr[M1:T (D′
i,1:T) = o1:T]

Pr[M1:T (Di,1:T) = o1:T]

∣∣∣∣

=

∣∣∣∣∣∣∣

T∑

i=1

ln
(1− q)e

− ‖n‖2
2σ2

A + qe
− ‖n+∆sD‖2

2σ2
A

e
−‖n‖2

2σ2
A

∣∣∣∣∣∣∣

=

∣∣∣∣∣

T∑

i=1

ln

(
1− q + qe

− 2n∆sD+∆s
2
D

2σ2
A

)∣∣∣∣∣

=

∣∣∣∣∣ln
T∏

i=1

(
1− q + qe

− 2n∆sD+∆s
2
D

2σ2
A

)∣∣∣∣∣ .

(63)

This quantity is bounded by ǫ, we require
∣∣∣∣ln

Pr[M1:T (D′
i,1:T) = o1:T]

Pr[M1:T (Di,1:T) = o1:T]

∣∣∣∣ ≤ ǫ. (64)

Considering the independence of adding noises, we know

T ln

(
1− q + qe

− 2n∆sD+‖∆sD‖2

2σ2
A

)
≥ −ǫ. (65)

We can obtain the result

n ≤ − σ2
A

∆sD

ln

(
exp(− ǫ

T)

q
− 1

q
+ 1

)
− ∆sD

2
. (66)

We set

b = −T

ǫ
ln

(
exp(−ǫ/T)− 1

q
+ 1

)
. (67)

Hence,

ln

(
exp(−ǫ/T)− 1

q
+ 1

)
= −bǫ

T
. (68)

Note that ǫ and T should satisfy

ǫ < −T ln (1− q) or T >
−ǫ

ln (1− q)
. (69)

Then,

n ≤ σ2
Abǫ

T∆sD

− ∆sD

2
. (70)

Using the tail bound Pr[n > η] ≤ σA√
2π

1
η e

−η2/2σ2
A , we can

obtain

ln

(
η

σA

)
+

η2

2σ2
A

> ln

(√
2

π

1

δ

)
. (71)

Let us set σA = c∆sDT/bǫ, if bǫ/T ∈ (0, 1), the inequa-

tion (71) can be solved as

c2 ≥ 2 ln

(
1.25

δ

)
. (72)

Meanwhile, ǫ and T should satisfy

ǫ < −T ln
(
1− q +

q

e

)
or T >

−ǫ
ln
(
1− q + q

e

) . (73)

If bǫ/T > 1, we can also obtain σA = c∆sDT/bǫ by adjusting

the value of c. The standard deviation of requiring noises is

given as

σA ≥
c∆sDT

bǫ
. (74)

13

Hence, if Gaussian noises are added at the client sides, we can

obtain the additive noise scale in the server as

σD =

√(
c∆sDT

bǫ

)2

− c2L2∆s2U
Kǫ2

=

2cC
√

T2

b2
−L2K

mKǫ T > bL
√
K,

0 T ≤ bL
√
K.

(75)

Furthermore, considering (69), we can obtain

σD =

2cC
√

T2

b2
−L2K

mKǫ T > ǫ
γ ,

0 T ≤ ǫ
γ ,

(76)

where

γ = − ln
(
1− q + qe

−ǫ

L
√

K

)
. (77)

This completes the proof. �

APPENDIX G

PROOF OF THEOREM 3

Here we define

v
(t) =

K∑

i=1

piw
(t)
i , (78)

ṽ
(t) =

K∑

i=1

pi

(
w

(t)
i + n

(t)
i

)
+ n

(t)
D (79)

and

n
(t+1) =

K∑

i=1

pin
(t+1)
i + n

(t)
D . (80)

which considers the aggregated parameters under K-random

scheduling. Because Fi(·) and F (·) are β-Lipschitz, we obtain

that

E{F (ṽ(t+1))} − F (w(t+1)) ≤ β‖ṽ(t+1) −w
(t+1)‖. (81)

Because β is the Lipchitz continuity constant of function F ,

we have

β ≤ ‖∇F (ṽ(t))‖+ ρ
(
‖w(t+1) − ṽ

(t)‖

+‖v(t+1) − ṽ
(t)‖
)
.

(82)

From (51), we know

‖w(t+1) − ṽ
(t)‖ ≤ B(1 + θ)

µ
‖∇F (ṽ(t))‖. (83)

Then, we have

E{‖w(t+1) − ṽ
(t+1)‖2} = ‖w(t+1)‖2

− 2[w(t+1)]⊤E{ṽ(t+1)}+ E{‖ṽ(t+1)‖2}. (84)

Furthermore, we can obtain

E{ṽ(t+1)} = 1(
N
K

)

(
N
K

)

N
K

N∑

i=1

piw
(t+1)
i + n

(t+1)

= E{w(t+1)
i }+ n

(t+1) = w
(t+1) + n

(t+1)

(85)

and

E{‖ṽ(t+1)‖2} = E

∥∥∥∥∥

K∑

i=1

(
piw

(t+1)
i + pin

(t+1)
i

)∥∥∥∥∥

2

= E

∥∥∥∥∥

K∑

i=1

piw
(t+1)
i

∥∥∥∥∥

2

+ E

∥∥∥∥∥

K∑

i=1

pin
(t+1)
i

∥∥∥∥∥

2

+ 2E

[
K∑

i=1

piw
(t+1)
i

]⊤
n
(t+1)

 .

(86)

Due the independence between w
(t+1)
i and n

(t+1)
i , we know

E

∥∥∥∥∥

K∑

i=1

piw
(t+1)
i

∥∥∥∥∥

2

 = E

{
K∑

i=1

∥∥∥piw(t+1)
i

∥∥∥
2
}

. (87)

Note that we set pi = Di/
∑K

i=1 Di = 1/K in K-random

scheduling in order to a small sensitivity ∆sD. We have

E

∥∥∥∥∥

K∑

i=1

piw
(t+1)
i

∥∥∥∥∥

2

 =

1

NK

N∑

i=1

∥∥∥w(t+1)
i

∥∥∥
2

+
(K − 1)

NK(N − 1)

N∑

i=1

N∑

j=1
⋃

j 6=i

[
w

(t+1)
i

]⊤
w

(t+1)
j

≤ 1

K2

K∑

i=1

‖w(t+1)
i ‖2 + K − 1

K
‖w(t+1)‖2 (88)

and

E{‖ṽ(t+1)‖2} ≤ 1

K2

K∑

i=1

‖w(t+1)
i ‖2 + K − 1

K
‖w(t+1)‖2

+ ‖n(t+1)‖2 + 2[w(t+1)]⊤n(t+1). (89)

Combining (84) and (89), we can obtain

E{‖w(t+1) − ṽ
(t+1)‖2}

≤ 1

K2

K∑

i=1

‖w(t+1)
i ‖2 − 1

K
‖w(t+1)‖2 + ‖n(t+1)‖2

≤ 1

K2

K∑

i=1

‖w(t+1)
i − ṽ

(t)‖2 + ‖n(t+1)‖2.

(90)

Using (50), we know

E{‖w(t+1) − ṽ
(t+1)‖2} ≤ ‖n(t+1)‖2+

B2(1 + θ)2

Kµ2 ‖∇F (ṽ(t))‖2. (91)

Moreover,

E{‖w(t+1) − ṽ
(t+1)‖} ≤ ‖n(t+1)‖

+
B(1 + θ)

µ
√
K
‖∇F (ṽt)‖. (92)

14

Substituting (54), (82) and (92) into (81), setting θ = 0 and

µ = µ, we can obtain

E{F (ṽ(t+1))} − F (ṽ(t)) ≤ F (w(t+1))− F (ṽ(t))(
‖∇F (ṽ(t))‖+ 2ρ‖w(t+1) − ṽ

(t)‖
)
E‖w(t+1) − ṽ

(t+1)‖
+ ρE{‖w(t+1) − ṽ

(t+1)‖2} = α2‖∇F (ṽ(t))‖2

+ α1‖n(t+1)‖‖∇F (ṽ(t))‖+ α0‖n(t+1)‖2, (93)

where

α2 =
1

µ2

(
ρB2

2
+ ρB +

ρB2

K
+

2ρB2

√
K

+
µB√
K
− µ

)
, (94)

α1 = 1 +
2ρB

µ
+

2ρB
√
K

µN
andα0 =

2ρK

N
+ ρ. (95)

In this case, we take expectation E{F (ṽ(t+1)) − F (ṽ(t))}
as follows,

E{F (ṽ(t+1))− F (ṽ(t))} ≤ α2‖∇F (ṽ(t))‖2

+ α1E{‖n(t+1)‖}‖∇F (ṽ(t))‖+ α0E{‖n(t+1)‖2}.
(96)

For Θ > 0 and f(v(0))− f(w∗) = Θ, we can obtain

E{F (ṽ(t+1))− F (w∗)}
≤ E{F (ṽ(t))− F (w∗)}+ α2‖∇F (ṽ(t))‖2

+ α1βE{‖n(t+1)‖}+ α0E{‖n(t+1)‖2}. (97)

If we select the penalty parameter µ to make α2 < 0 and

using (57), we know

E{F (ṽ(t+1))−F (w∗)} ≤ (1+2lα2)E{F (ṽ(t))−F (w∗)}
+ α1βE{‖n(t+1)‖}+ α0E{‖n(t+1)‖2}. (98)

Considering independence of additive noises and applying (98)

recursively, we have

E{F (ṽ(T))−F (w∗)} ≤ (1+2lα2)
T
E{F (v(0))−F (w∗)}

+
1− (1 + 2lα2)

T

2lα2

(
α1βE{‖n‖}+ α0E{‖n‖2}

)

= QTΘ +
1−QT

1−Q

(
α1βE{‖n‖}+ α0E{‖n‖2}

)
, (99)

where Q = 1+2lα2. Substituting (74) into (99), we can obtain

E{‖n‖} = ∆sDTc

bǫ

√
2N

π
,E{‖n‖2} = ∆s2DT

2c2N

b2ǫ2
(100)

and

E{F (ṽT)− F (w∗)} ≤ QTΘ

+
1−QT

1−Q

(
cα1β

−mK ln
(
1− N

K + N
K e−

ǫ

T

)
√

2

π

+
c2α0

m2K2 ln2
(
1− N

K + N
K e−

ǫ

T

)
)
.

(101)

This completes the proof. �

REFERENCES

[1] J. Li, S. Chu, F. Shu, J. Wu, and D. N. K. Jayakody, “Contract-Based
Small-Cell Caching for Data Disseminations in Ultra-Dense Cellular
Networks,” IEEE Trans. Mobile Comput., vol. 18, no. 5, pp. 1042–1053,
May 2019.

[2] Z. Ma, M. Xiao, Y. Xiao, Z. Pang, H. V. Poor, and B. Vucetic, “High-
Reliability and Low-Latency Wireless Communication for Internet of
Things: Challenges, Fundamentals, and Enabling Technologies,” IEEE

Internet Things J., vol. 6, no. 5, pp. 7946–7970, Oct. 2019.

[3] H. Lee, S. H. Lee, and T. Q. S. Quek, “Deep Learning for Distributed
Optimization: Applications to Wireless Resource Management,” IEEE

J. Sel. Areas Commun., vol. 37, no. 10, pp. 2251–2266, Oct. 2019.

[4] W. Sun, J. Liu, and Y. Yue, “AI-Enhanced Offloading in Edge Comput-
ing: When Machine Learning Meets Industrial IoT,” IEEE Netw., vol. 33,
no. 5, pp. 68–74, Sep. 2019.

[5] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
Learning for IoT Big Data and Streaming Analytics: A Survey,” IEEE

Commun. Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, Jun. 2018.

[6] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
Learning of Deep Networks using Model Averaging,” arXiv, 2016.
[Online]. Available: http://arxiv.org/abs/1602.05629

[7] J. Konecný et al., “Federated Learning: Strategies for Improving
Communication Efficiency,” arXiv, 2016. [Online]. Available:
http://arxiv.org/abs/1610.05492

[8] U. Mohammad and S. Sorour, “Adaptive Task Allocation for
Asynchronous Federated Mobile Edge Learning,” arXiv, 2019.
[Online]. Available: http://arxiv.org/abs/1905.01656

[9] X. Wang et al., “In-Edge AI: Intelligentizing Mobile Edge Computing,
Caching and Communication by Federated Learning,” IEEE Network,
vol. 33, no. 5, pp. 156–165, Sep. 2019.

[10] Y. Qiang, L. Yang, C. Tianjian, and T. Yongxin, “Federated Machine
Learning: Concept and Applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, pp. 12:1–12:19, Jan. 2019.

[11] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning:
Challenges, Methods, and Future Directions,” arXiv, 2019. [Online].
Available: https://arxiv.org/abs/1908.07873

[12] N. H. Tran, W. Bao, A. Zomaya, N. Minh N.H., and C. S. Hong, “Fed-
erated Learning over Wireless Networks: Optimization Model Design
and Analysis,” in Proc. IEEE INFOCOM, Apr. 2019, pp. 1387–1395.

[13] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling
Policies for Federated Learning in Wireless Networks,” IEEE Trans.

on Commun., pp. 1–1, to appear 2019.

[14] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards Efficient and
Privacy-Preserving Federated Deep Learning,” in Proc. IEEE ICC, Paris,
France, May 2019, pp. 1–6.

[15] A. Alekh and D. J. C, “Distributed Delayed Stochastic Optimization,”
in Proc. IEEE CDC, Maui, HI, USA, Dec. 2012.

[16] L. Xiangru, H. Yijun, L. Yuncheng, and L. Ji, “Asynchronous Parallel
Stochastic Gradient for Nonconvex Optimization,” in Proc. ACM NIPS,
Montreal, Canada, Dec. 2015, pp. 2737–2745.

[17] X. Lian et al., “Can Decentralized Algorithms Outperform Centralized
Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient
Descent,” in Proc. ACM NIPS, Long Beach, California, USA, Dec. 2017,
pp. 5336–5346.

[18] T. Li et al., “On the Convergence of Federated Optimization
in Heterogeneous Networks,” arXiv, 2018. [Online]. Available:
http://arxiv.org/abs/1812.06127

[19] S. Wang et al., “Adaptive Federated Learning in Resource Constrained
Edge Computing Systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[20] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in
Proc. ACM CCS, Denver, Colorado, USA, Oct. 2015, pp. 1310–1321.

[21] Z. Wang et al., “Beyond Inferring Class Representatives: User-Level
Privacy Leakage From Federated Learning,” in Proc. IEEE INFOCOM,
Paris, France, Apr. 2019, pp. 2512–2520.

[22] C. Ma, J. Li, M. Ding, H. Hao Yang, F. Shu, T. Q. S. Quek,
and H. V. Poor, “On Safeguarding Privacy and Security in the
Framework of Federated Learning,” arXiv, 2019. [Online]. Available:
https://arxiv.org/abs/1909.06512

[23] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential
Privacy,” Foundations and Trendsr in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[24] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical Privacy:
The SuLQ Framework,” in Proc. ACM PODS, Baltimore, Maryland, Jun.
2005, pp. 128–138.

http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1905.01656
https://arxiv.org/abs/1908.07873
http://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1909.06512

15

[25] Úlfar Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal Response,” in Proc. ACM CCS,
Scottsdale, Arizona, USA, Nov. 2014, pp. 1054–1067.

[26] N. Wang et al., “Collecting and Analyzing Multidimensional Data with
Local Differential Privacy,” in Proc. IEEE ICDE, Macao, China, Apr.
2019, pp. 638–649.

[27] S. Wang, L. Huang, Y. Nie, X. Zhang, P. Wang, H. Xu, and W. Yang,
“Local Differential Private Data Aggregation for Discrete Distribution
Estimation,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9, pp. 2046–
2059, Sep. 2019.

[28] A. Martin et al., “Deep Learning with Differential Privacy,” in Proc.

ACM CCS, Vienna, Austria, Oct. 2016, pp. 308–318.
[29] N. Wu, F. Farokhi, D. Smith, and M. A. Kâafar, “The Value of

Collaboration in Convex Machine Learning with Differential Privacy,”
arXiv, 2019. [Online]. Available: http://arxiv.org/abs/1906.09679

[30] J. Li, M. Khodak, S. Caldas, and A. Talwalkar, “Differentially
Private Meta-Learning,” arXiv, 2019. [Online]. Available:
https://arxiv.org/abs/1909.05830

[31] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private Federated
Learning: A Client Level Perspective,” arXiv, 2017. [Online]. Available:
http://arxiv.org/abs/1712.07557

[32] S. Truex et al., “A Hybrid Approach to Privacy-
Preserving Federated Learning,” arXiv, 2018. [Online]. Available:
http://arxiv.org/abs/1812.03224

[33] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc.

ACM CCS, New York, NY, USA, 2015, pp. 1322–1333.
[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[35] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, 1st ed. Springer Publishing Company, Incorporated, 2014.

http://arxiv.org/abs/1906.09679
https://arxiv.org/abs/1909.05830
http://arxiv.org/abs/1712.07557
http://arxiv.org/abs/1812.03224

	I Introduction
	II Preliminaries
	II-A Federated Learning
	II-B Threat Model
	II-C Differential Privacy

	III Federated Learning with Differential Privacy
	III-A Global Differential Privacy
	III-B Proposed NbAFL

	IV Convergence Analysis on NbAFL
	V K-Client Random Scheduling Policy
	VI Simulation Results
	VI-A Performance Evaluation on Protection Levels
	VI-B Impact of the number of clients N
	VI-C Impact of the number of maximum aggregation times T
	VI-D Impact of the number of chosen clients K

	VII Conclusions
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Lemma ??
	Appendix E: Proof of Theorem ??
	Appendix F: Proof of Lemma ??
	Appendix G: proof of Theorem ??
	References

