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Abstract—Recent information theoretic results on a class of
broadcast channels with layered decoding and/or layered secrecy
are reviewed. In this class of models, a transmitter sends multiple
messages to a set of legitimate receivers in the presence of aset of
eavesdroppers, whose channels can be ordered based on the qual-
ity of received signals. Receivers with better channel quality are
required to decode more messages, and eavesdroppers with worse
channel quality are required to be ignorant of more messages.
The design of achievable schemes and the characterization of the
secrecy capacity regions are presented. Comparison of the designs
for different models is discussed. Applications of the information
theoretic models to studying secure communication over fading
wiretap channels and the problems of secret sharing are also
presented to illustrate potential applications of these models.

Index Terms—Broadcast channel, fading wiretap channel,
layered decoding, layered secrecy, secrecy capacity region, secret
sharing.

I. I NTRODUCTION

I N wireless networks, communication signals are transmit-
ted via the open medium of the free space, and hence

can be easily eavesdropped upon by any receiver within
transmission ranges. This broadcast nature of radio channels
is one of the major challenges to the design of secure wireless
communications. Some commonly used security approaches
employed in current wireless systems may encounter poten-
tial problems as wireless networks incorporate more com-
munication patterns and flexible structures. For example, a
popular approach to secure wireless communications is to
pre-deploy a secret certificate into mobile devices, based on
which devices can establish keys. However, for device-to-
device (D2D) communications recently proposed for LTE
networks, such an approach cannot adapt easily for a mobile
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device to directly communicate with a large set of devices in
a unicast fashion. Furthermore, public-key based encryption is
also not applicable in many cases, as mobile devices may not
be equipped with sufficiently high computational resourcesfor
implementing public-key algorithms.

In the seminal work by Wyner [1], a physical layer approach
to secrecy was proposed, which exploits randomness in statis-
tical communication channels as resources to achieve secure
communications. Without inherently employing secret keys,
such a new security approach, if applied to wireless networks,
can significantly reduce requirements on the infrastructure
and improve communication flexibility and dynamics. It is
therefore instructive to take a more careful look at Wyner’s
approach and its implications, which we do in the following
subsection.

A. Basic Wiretap Channel

Fig. 1. Wyner’s wiretap model

In Wyner’s model (see Fig. 1), a transmitter wishes to
transmit information to a legitimate receiver and to keep the
information secure from an eavesdropper1. The basic idea of
Wyner’s scheme is the so-calledstochastic codingor random
binning(see Fig. 2). Letw denote the index of the transmitted
message withw ∈ {1, 2, · · · , 2nR}, where R denotes the
transmission rate. For eachw, a bin of codewordsxn(w, l)
is constructed, wherel denotes the index of codewords within
each bin. The codewords for all bins are combined together
as a codebook. In order to transmit a messagew, the channel
input is randomly and uniformly chosen from binw. In order
to guarantee secure communication, the codebook should be
constructed to satisfy the condition that the legitimate receiver
(based on its received channel output) can always determine

1The red cross symbol on the message in Fig. 1 represents that the message
should be kept secure from the corresponding receiver. Thisis also applicable
to all other figures in the paper.
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which bin the input codeword is from even with channel
corruption, and can hence determine which messagew was
transmitted. However, the eavesdropper can only identify aset
of codewords (uniformly distributed over all bins) that maybe
transmitted based on its received channel output, and is unable
to tell which bin the transmitted codeword is likely from.
Hence, the eavesdropper does not learn any information about
the bin number (i.e., the message)w. It can be shown that
there exist such a codebook satisfying the above conditionsif
the transmission rateR satisfies

R < max
PX

[I(X ;Y )− I(X ;Z)], (1)

where I(·, ·) denotes the mutual information between its
arguments. It can be further shown that if the channel is
degraded, i.e., the Markov chain conditionX → Y → Z

holds (which implies that the legitimate channel has better
quality than the eavesdropping channel), then the above rate
is the largest for which secure communication is guaranteed,
which is referred to as thesecrecy capacity.

Fig. 2. An illustration of random binning

It can be observed that the secrecy capacity is in general
smaller than or equal to the capacity of the channel. This
fact may be misinterpreted as implying that the reliable
communication rate is sacrificed in order to achieve secure
communication. In fact, this is not the case. In Wyner’s
binning scheme, the indexl within the bin (which is uniformly
distributed) was used only for introducing the randomness to
confuse the eavesdropper. This index can also be used to carry
the transmitter’s message2, although such information cannot
be made secure from the eavesdropper. In this way, the total
communication rate can still be equal to the capacity of the
channel, and furthermore, part of the transmitted information
is made secure from the eavesdropper. From such a perspec-
tive, secrecy is provided as an additional benefit rather than
sacrificing the communication rate. Of course, the benefit does
not come for free, because the codebook should be designed
with the binning structure. We refer to a scheme that uses one
part of a message to protect another part of the message as
the embedded codingof messages.

Wyner’s result can be further extended to the case in which
the legitimate and eavesdropping channels are not degraded.
For such a case, in order to achieve the secrecy capacity,
random binning is first applied as for Wyner’s model. Then the
codeword is sent over a virtual prefix channel (chosen by the
system designer), and then sent over the actual channel. The
prefix channel is useful to provide advantage to the legitimate
receiver. Hence, the secrecy capacity is given by

C = max
PUX

[I(U ;Y )− I(U ;Z)], (2)

2Throughout the paper, we assume that all messages are uniformly dis-
tributed over their corresponding alphabet sets.

Fig. 3. Csisźar-Körner’s broadcast model

whereU represents the codeword of binning, and the prefix
channel isPX|U . This result can be specialized from Csiszár
and K̈orner’s study in [2] of a more general model (see Fig. 3),
in which the transmitter also wants to send a common message
to both the legitimate receiver and the eavesdropper in addition
to the confidential message intended for the legitimate receiver
and required to be kept secure from the eavesdropper.

B. Overview of Broadcast Networks with Secrecy

Following the initial studies in [1] and [2], broadcast chan-
nels with various decoding and secrecy constraints have been
studied intensively. Due to the upsurge of interest in this topic,
it is not possible to address all studies in this article. In the
following, we provide an overview of studies that are highly
relevant to the topic that this article focuses on here, and
refer readers to recent surveys, e.g., [3] and [4], for more
comprehensive references.

Wyner’s wiretap model was further studied when the le-
gitimate and eavesdropping channels take specific forms. As
some key examples, the Gaussian wiretap channel was studied
in [5]; the multiple-input multiple-output (MIMO) wiretap
channel with the transmitter, the legitimate receiver, and/or
the eavesdropper equipped with multiple antennas was studied
in [6]–[11]; and the compound wiretap channel, in which
there are multiple legitimate receivers and single/multiple
eavesdroppers, was studied in [12]–[16].

Csisźar and K̈orner’s broadcast model was further studied
for the Gaussian fading channel in [17], and for the MIMO
channel in [18]. This model was generalized in [19] to two
compound scenarios, in which the legitimate receiver (i.e., re-
ceiver 1) and the eavesdropper (i.e., receiver 2) are respectively
replaced by two receivers with the same decoding and secrecy
requirements. Furthermore, Csiszár and K̈orner’s model was
also generalized in [20] to the compound scenario, in which
each receiver is replaced by multiple users.

As further generalizations of the Wyner and Csiszár-Körner
models, a class of broadcast channels with an additional eaves-
dropper (see Fig. 4) were intensively studied. In the model
considered in [21] and [22], a transmitter has two independent
messages intended for two legitimate receivers, respectively,
and wishes to keep the two messages confidential from an
(additional) eavesdropper. Such a model was further studied in
[23], when the channel is corrupted by additive Gaussian noise.
The multiple antenna version of the above model was studied
in [24] and [25]. Furthermore, the multi-antenna channel
was generalized in [26] to the compound scenario with each
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receiver and the eavesdropper being replaced by a group of
co-located users. The model (in Fig. 4) was also generalized
and studied in [27] for the case with an arbitrary number of
legitimate receivers (and hence with an arbitrary number of
independent messages respectively for each receiver), andthe
fading channel of such a model was studied in [15].

Fig. 4. A two-user broadcast channel with an additional eavesdropper.

Apart from the above class of broadcast channels, another
class of models consisting of receivers that are expected to
not only receive certain information from the transmitter but
also be kept ignorant of certain other information have also
been studied. In the model studied in [28] (see Figure 5), a
transmitter has two independent messages with each intended
for one receiver and required to be kept secure from the other
receiver. The MIMO version of such a model was studied in
[29]–[31]. Furthermore, such a model was generalized in [32]
to the case in which the transmitter has one more common
message for both receivers, and users are equipped with
multiple antennas. The compound scenario of the preceding
model with each receiver being replaced by a group of co-
located users was studied in [32].

The focus of this article is on a class of broadcast channels
with layered decoding and/or layered secrecy, which can be
viewed as multi-user (and multi-message) generalizationsof
the Csisźar-Körner model. More specifically, layered decoding
refers to the case in which, as channel quality gets one level
better, one more message is required to be decoded, and
layered secrecy refers to the case in which, as channel quality
gets one level worse, one more message is required to be
secured. These models are introduced in detail in the next
section. In this paper, we focus on the degraded broadcast
channel, in which the receivers can be ordered by their channel
quality.

C. The Aim of this Article

Among broadcast models studied so far, a special class of
channels have attracted intensive attention, which we refer to

Fig. 5. A two-user broadcast channel with receivers also treated as eaves-
droppers

as thedegraded broadcast channels with layered decoding
and/or layered secrecy. A common feature that these chan-
nels share is that the channels of legitimate receivers and
eavesdroppers can be ordered based on the quality of their
received signals. Hence, it is natural to require that receivers
with better channel quality decode more messages, and eaves-
droppers with worse channel quality are kept ignorant of
more messages. Here, we focus on degraded channels for two
reasons: (1) degraded channels often arise naturally in practical
applications such as in the context of Gaussian fading channels
that model wireless communication channels; and (2) the
performance for degraded channels can often be characterized
in simpler forms that can facilitate the illustration of central
ideas. However, all achievable schemes designed for degraded
channels are applicable to non-degraded channels except that
the optimality of the schemes are not easy to prove (due to
difficulty in developing outer bounds that match achievable
regions).

Such models often arise in practice. For example, consider
the fading wiretap channel, in which the legitimate and eaves-
dropping channels are corrupted by multiplicative random
fading gains. It is typical that the transmitter does not know
the fading gains of these channels. In this case, it is desirable
that the transmitter can convey as much information as the
legitimate channel supports and keep as much information
secret as the eavesdropping channel allows. In order for the
transmission to adapt to the channel quality without knowing
the channel, a broadcast approach is very appealing. The idea
is to view the legitimate and eavesdropping channels as having
multiple states (i.e., corresponding to the values that fading
gains can take), and then design a layered transmission scheme
so that more layers can be decoded if the legitimate channel
has better quality, and more layers can be made secure if
the eavesdropper channel has lower quality. Thus, such an
approach naturally yields a degraded broadcast channel with
layered decoding and secrecy requirements.

Another example is the secret sharing problem, in which
secrets are delivered via a broadcast network from a dealer to
a number of participants. The requirements generally include
that some groups of users should be able to determine certain
secrets by sharing their channel outputs, and some groups of
users should be kept ignorant of certain secrets even if they
share their outputs. It is of interest to determine at what rates
the secrets can be delivered. Such a problem can be naturally
viewed as the broadcast channel with secrecy requirements,
in which groups that are required to determine secrets should
be viewed as legitimate receivers and groups that are required
to be ignorant of secrets should be viewed as eavesdroppers.
Layers appear when multiple groups are required to determine
and/or be ignorant of different sets of secrets.

In this article, we focus on such a class of broadcast
models with layered decoding and secrecy, aiming at providing
insights into understanding the fundamental limits on secure
communication rates for these models and inspiring further
applications. We also hope that this article can help to identify
new and interesting models in this class, and can motivate new
applications of information theoretic results developed for this
class of models. For such a purpose, we provide an overview
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of the state-of-the-art information theoretic studies of this class
of models as well as presenting our new results on an extended
model. More specifically, we present the design of achievable
schemes for the models in this class, comparison of designs
for different models, and the performance of the designed
schemes (i.e., the secrecy capacity region). We also describe
applications of these information theoretic results to studying
the fading wiretap channel and solving the problem of secret
sharing in the context of wireless networks as we describe
above. These applications demonstrate the broad contexts in
which this class of information theoretic models can be useful.

II. I NFORMATION THEORETICMODELS

In this section, we provide a review of recent information
theoretic results on a class of degraded broadcast models
with layered decoding and/or layered secrecy. In fact, these
models can be unified under a more general framework, in
which a transmitter sends a number of messages to a set
of receivers over a broadcast channel, and the receivers’
channel quality can be ordered in a certain way. Each receiver
can possibly serve as a legitimate user expecting a certain
subset of messages, and/or as an eavesdropper that should
be kept ignorant of a certain subset of messages. For each
special model we present next, we include both a high-level
introduction of the model and the design of communication
schemes, and a more technical description for readers who
are interested in greater technical depth.

In the following, we list a few major techniques exploited
to design the achievable schemes, which accommodate the
requirements of layered decoding and layered secrecy. Jointly
using these techniques has been shown to yield optimal
designs for various models of interest.

1.Superposition coding:(introduced in Section II-A) Mes-
sages are encoded into a set of layers, which are superposed
on one another. This scheme is useful when there are require-
ments of layered decoding, so that receivers have flexibility to
decode various layers of messages.

2.Random binning:(introduced in Section I) Within each
(superposition) layer, codewords are divided into a numberof
bins. The messages are indexed by the bin number, and the
index within the bin serves as a random source to protect the
messages.

3.Embedded coding:(introduced in Section I) When a
codeword is encoded with multiple message indices, or mul-
tiple messages are encoded into different layers, lower-layer
messages can serve as a random source to protect higher-
layer messages. Such a scheme is useful when there are
requirements of layered secrecy.

4.Rate sharing:(introduced in Section II-D) The rate of
a message, which satisfies the same decoding and secrecy
requirements with other messages can be shared with these
messages to enlarge the achievable region.

Throughout this section, we introduce how the above
schemes are exploited to design the achievable schemes in
each specific model as well as comparing the use of these
schemes in different models.

Fig. 6. The broadcast channel with layered decoding and non-layered secrecy

A. Layered Decoding and Non-layered Secrecy

In this subsection, we present the model for the degraded
broadcast channel with layered decoding and non-layered
secrecy [27] (see Fig. 6). In this model, a transmitter sendsK

messagesW1, . . . ,WK to K receivers in the presence of an
eavesdropper over a degraded broadcast channel. The channel
quality is assumed to gradually degrade from receiverK to
receiver 1, and each legitimate receiver has a better channel
than the eavesdropper. The system is required to satisfy the
layered decoding requirement, i.e., receiverk is required to
decode the firstk messagesW1, . . . ,Wk, and to satisfy the
secrecy requirement, i.e., the eavesdropper needs to be kept
ignorant of all messagesW1, . . . ,WK .

More technically, the broadcast channel is characterized
by the probability transition functionPZY1···YK |X , in which
X ∈ X is the channel input,Yk ∈ Yk is the channel output
of receiverk for k = 1, . . . ,K, andZ ∈ Z is the channel
output of the eavesdropper. The channel satisfies the following
Markov chain condition (i.e., the degradedness condition):

X → YK → YK−1 → . . . → Y2 → Y1 → Z, (3)

where the notationX → Y → Z means thatX andZ are
independent givenY .

Such a model captures practical scenarios, in which legiti-
mate receivers are close to the sender and the eavesdroppers
are far away. For example, consider the following location-
based applications. A company wishes to share confidential
files among their employees within an office building, and
wishes to keep these files secure from anybody outside of
the building. Another example is that a coffee shop wishes to
provide streaming movie services to its customers inside the
shop but not to people outside.

The special case withK = 2 of the above model was
studied in [24, model 1], and the secrecy capacity region was
characterized. This two-receiver model was further generalized
to a compound model in [26], in which each legitimate receiver
and the eavesdropper were replaced respectively by a group
of legitimate receivers and eavesdroppers, and the secrecy
capacity region was characterized. The general model with
K receivers was studied in [27], following which we present
the results of this model.

The idea of the achievable scheme exploits the joint design
of superposition coding, random binning and rate sharing.
More specifically, since multiple messages need to be sent over
one input, layers of codewords are designed andsuperposed
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Fig. 7. An illustration of joint design of superposition andbinning

on one another (see Fig. 7). The lowest layer of codewords
carries only messageW1, and each upper layer of codewords
carries one more message than its next lower layer. Since all
messages are required to be secured from the eavesdropper,
each layer employs arandom binningscheme, i.e., each
message in a layer corresponds to a bin of codewords indexed
by l. If a message is selected to be transmitted, then one
codeword inside the corresponding bin is randomly uniformly
selected to be transmitted. An interesting point is that for
each layer, say layerk, the index lk inside the bin serves
as a random source to protect not only messageWk in this
layer but also all higher layer messagesWk+1, . . . ,WK , which
reflects a more efficient design. At the receiver side, receiver
1 (with the worst channel quality) decodes only the lowest
layer, i.e.,W1, and then receiver 2 first decodesW1 based
over layer 1, and then decodesW2 over the part of layer 2
corresponding to the correctW1. This procedure can continue
in the same successive fashion until receiverK, which has
the best channel quality, decodes all messages successively.
Moreover, since each receiver decodes messages intended for
receivers with worse channel quality, the rates of receivers
with worse channel quality can besharedto increase the rates
of the receivers with better channel quality, which is reflected
in the sum rate bounds in Theorem 1.

More technically, in [27], it is shown that the above achiev-
able scheme is optimal, i.e., achieves the secrecy capacity
region characterized in the following theorem.

Theorem 1. [27, Theorem 1] The secrecy capacity region
of the degraded broadcast channel with layered decoding
and non-layered secrecy contains rate tuples(R1, . . . , RK)
satisfying the following inequalities:

R1 + . . .+Rl ≤

l
∑

k=1

I(Uk;Yk|Uk−1)− I(Ul;Z), (4)

for l = 1, . . . ,K,

whereU0 = Φ, UK = X , for some distributionPU1U2...UK−1X

satisfying the following Markov chain condition:

U1 → U2 → . . . → UK−1 → X. (5)

In the above theorem,U1, . . . , UK−1 represent codeword in-
formation in layers1, . . . ,K−1, respectively, and the channel
input X represents codeword information in the highest layer
K.

B. Non-layered Decoding and Layered Secrecy

Fig. 8. Broadcast channel with layered secrecy.

In this subsection, we present the model of the degraded
broadcast channel with non-layered decoding and layered
secrecy (see Fig. 8). In this model, a transmitter sendsK

messagesW1, . . . ,WK to one legitimate receiver in the pres-
ence ofK eavesdroppers. It is assumed that the legitimate
receiver has the best channel quality, and the channel quality
gradually degrades from eavesdropperK to eavesdropper 1.
The legitimate receiver is required to decode all messages
W1, . . . ,WK , and the eavesdroppers are required to satisfy
the layered secrecy requirements, i.e., the eavesdropperk

needs to be kept ignorant of the messagesWk, . . . ,WK , for
k = 1, . . . ,K. In this case, an eavesdropper with worse
channel quality is required to be ignorant of more messages
than those eavesdroppers with better channel quality.

More technically, the broadcast channel is characterized by
the probability transition functionPZ1,...,ZK ,Y |X , in which
X ∈ X is the channel input,Y ∈ Y is the channel output
at the legitimate receiver, andZk ∈ Zk is the channel output
at eavesdropperk for 1 ≤ k ≤ K. The channel satisfies
the following Markov chain condition (i.e., the degradedness
condition):

X → Y → ZK → . . . → Z2 → Z1. (6)
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Such a model captures scenarios in which the eavesdrop-
pers’ access of information can be ranked, and it is the system
designer’s choice to determine how to protect the transmitted
information in the best way. Then, it is reasonable to index
the information based on the security levels of these messages.
The top secret information should be given the highest index
so that it is kept secure from the eavesdropper even with the
best channel access, and messages requiring only low security
levels can be given lower indices and can be kept secure only
from eavesdroppers with worse channel access.

For this model, superposition coding is unnecessary because
the decoding is only at one legitimate receiver, and is not done
in a layered fashion. In order to achieve the layered secrecy
requirement,embedded coding[33] jointly with random bin-
ning are employed. Such an approach can be intuitively under-
stood as that no matter what channel quality an eavesdropper
has, sufficient rate of the embedded messages is used to
exhaust the decoding capability of the eavesdropper [34] such
that the remaining embedded messages are kept confidential
from the eavesdropper. More specifically, each codeword is
indexed by both a random index and message indices as
xn(l,W1, . . . ,WK). The random indexl protects messages
in the same fashion as we describe for Wyner’s model. Each
message, sayWk, plays two roles: carrying messageWk,
and protecting higher indexed messagesWk+1, . . . ,WK from
being learned by eavesdroppers with better channel quality. On
the other hand, the random indexl and all message indices
W1, . . . ,Wk−1 serve as random sources to protect message
Wk. Such an approach is more efficient than creating one
set of random indices for protecting each message. Moreover,
due to the degradedness condition, the messages secured from
eavesdroppers with better channel quality is also secured from
the eavesdroppers with worse channel quality. Hence, the rates
of messages secured from eavesdroppers with better channel
quality can besharedwith the rates of messages secured from
eavesdroppers with worse channel quality to improve the rate
region, which is reflected in the sum rate bounds in Theorem
2.

The above scheme was employed in [35] to study a fading
wiretap channel. To be consistent, we present the secrecy
capacity region for a discrete memoryless channel in the
following theorem.

Theorem 2. Consider the degraded broadcast channel with
non-layered decoding and layered secrecy, the following se-
crecy rate tuples(R1, . . . , RK) are achievable:

K
∑

l=k

Rl ≤ max
PX

[I(X ;Y )− I(X ;Zk)], for k = 1, . . . ,K.

We note that for each pair of the legitimate receiver and
an eavesdropper (say eavesdropperk), the channel can be
viewed as Wyner’s wiretap channel with the eavesdropper
being ignorant of messagesWk, . . . ,WK . Thus, the sum of
secrecy rates

∑K

l=k Rl should be bounded by the secrecy
capacity of Wyner’s wiretap channel given in (1). This justifies
that the above rate region is optimal.

C. Layered Decoding and Layered Secrecy

In this subsection, we present the model of the degraded
broadcast channel with layered decoding and layered secrecy
constraints [36] (see Fig. 9). In this model, a transmitter
sendsK messagesW1,W2, . . . ,WK to K receivers over a
degraded broadcast channel. It is assumed that the channel
quality gradually degrades from receiverK to receiver 1.
ReceiverK with the best channel quality is required to decode
all messages, and as the channel quality gets worse, each
receiver is required to decode fewer messages, i.e., receiver
k is required to decode the firstk messagesW1,W2, . . . ,Wk.
Unlike the previous two models, here each receiver plays two
roles: as a legitimate receiver and as an eavesdropper. As the
channel quality gets worse, each receiver is required to be kept
ignorant of more messages, i.e., receiverk is required to be
kept ignorant of messagesWk+1, . . . ,WK , for k = 1, . . . ,K.
Thus, both decoding and secrecy constraints have a layered
structure.

More technically, the channel can be characterized by the
probability transition functionPY1···YK |X , in which X ∈ X
is the channel input andYk ∈ Yk is the channel output of
receiverk for k = 1, . . . ,K. The channel outputsY1, · · · , YK

satisfy the following Markov chain condition (degradedness
condition):

X → YK → YK−1 → . . . → Y2 → Y1. (7)

Such a model captures practical scenarios in which users
are ranked to receive files with different security levels. For
example, a WiFi network in a company consists of a number
of legitimate users. Users with certain ranks are allowed to
receive files up to certain security levels, and should be kept
ignorant of files with higher security levels. Hence users with
higher ranks are able to see more files. It is also possible to set
the channel quality based on users’ ranks by assigning more
communication resources to higher ranked users. Another
example is in social networks in which one user wishes to
share more resources with close friends and fewer resources
with other friends. As we show in the next section, this model
is equivalent to a secret sharing problem.

Fig. 9. The broadcast channel with layered decoding and secrecy

The special case withK = 3 andW1 = Φ (i.e., receiver
1 serves as a pure eavesdropper) of the above model was
studied in [24, model 2], and the secrecy capacity region was
characterized. This two-receiver one-eavesdropper modelwas
further generalized into a compound model in [26], in which
each legitimate receiver and the eavesdropper were replaced
respectively by a group of legitimate receivers and eavesdrop-
pers, and the secrecy capacity region was also characterized.
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The general model withK receivers was recently studied in
[36], following which we present the results in this subsection.

The idea of the achievable scheme is similar to that intro-
duced in Section II-A, which exploits superposition coding
and random binning. For each message, sayWk, one layer is
designed and superimposed on the layer designed forWk−1.
The codewords within each layer are further divided into a
number of bins, and the corresponding message is encoded
as the bin number, while the index inside the bin serves as
a random source to protect the message. Thus, the receivers
that are required to decode this message can tell which bin
the codeword is in and hence decode the message, while those
receivers with worse channel quality are kept ignorant of the
message. Different from the achievable schemes described in
Section II-A, random binning within one layer only protects
the message corresponding to the same layer. For example, the
index lk can protect onlyWk from being known by receiver
k − 1, but cannot protectWk+1, becauseWk+1 should be
kept secure from receiverk that knowslk due to decoding
requirements.

The above scheme was shown to be optimal in [36], which
achieves the secrecy capacity region presented below.

Theorem 3. [36, Theorem 1] The secrecy capacity region
of the degraded broadcast channel with layered decoding
and secrecy constraints contains rate tuples(R1, · · · , RK)
satisfying

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1),

for k = 2, . . . ,K − 1,

RK ≤ I(X ;YK |UK−1)− I(X ;YK−1|UK−1), (8)

for somePU1U2...UK−1X such that the following Markov chain
condition holds:

U1 → U2 → . . . → UK−1 → X. (9)

In the above theorem, fork = 2, . . . ,K − 1, Uk (given
Uk−1) represents messageWk, which is required to be de-
coded by receiverk and be kept secure from receiverk − 1.
Thus, the rateRk given above can be understood intuitively
as the secrecy capacity of Wyner’s wiretap channel with the
channel inputUk, the legitimate outputYk (givenUk−1) and
the eavesdropping outputYk−1 (given Uk−1). We also note
that messageWK is represented by the channel inputX given
UK−1.

The degraded Gaussian MIMO broadcast channel was fur-
ther studied in [36]. We present the result here which is useful
for solving a secret sharing problem presented in Section
III-B. For the Gaussian MIMO channel, the received signal
at receiverk for one channel use is given by

Yk = X+ Zk, k = 1, . . . ,K, (10)

where the channel inputX, the channel outputYk and the
noiseZk are r-dimensional vectors. Furthermore, the noise
variablesZk are zero-mean Gaussian random vectors with
covariance matricesΣk for k = 1, . . . ,K that satisfy the
following order:

0 ≺ ΣK � ΣK−1 � · · · � Σ1, (11)

whereA � B denotes thatB − A is positive semi-definite.
Thus, the quality of channels gradually degrades from receiver
K to receiver1. The channel inputX is subject to a covariance
constraint

E[XX
⊤] � S (12)

where S ≻ 0. The power constraint onX can further be
imposed by requiringtrace(S) ≤ P . Since the secrecy
capacity region does not depend on the correlation across the
channel outputs, the correlation between the noise vectorscan
be adjusted such that the channel inputs and channel outputs
satisfy the following Markov chain condition:

X → YK → YK−1 → . . . → Y2 → Y1. (13)

For the MIMO channel, the achievability of the secrecy
capacity region follows directly from Theorem 3 with a proper
choice of the joint Gaussian distribution for auxiliary random
variables. The main technical development in the converse
(i.e., outer bound) proof lies in the construction of a series of
covariance matrices representing input resources for layered
messages such that the secrecy rates can be upper bounded
as the desired recursive forms in terms of these covariance
matrices. We now present the secrecy capacity region in the
following theorem.

Theorem 4. [36, Theorem 3] The secrecy capacity region
of the degraded Gaussian MIMO broadcast channel with
layered decoding and secrecy constraints contains rate tuples
(R1, . . . , RK) satisfying the following inequalities:

R1 ≤
1

2
log

|Σ1 + S|

|Σ1 + S1|
,

Rk ≤
1

2
log

|Σk + Sk−1|

|Σk + Sk|
−

1

2
log

|Σk−1 + Sk−1|

|Σk−1 + Sk|
,

for 2 ≤ k ≤ K − 1

RK ≤
1

2
log

|ΣK + SK−1|

|ΣK |
−

1

2
log

|ΣK−1 + SK−1|

|ΣK−1|
, (14)

for some0 � SK−1 � SK−2 � . . . � S2 � S1 � S.

The above theorem can be easily understood in the scalar
case, in whichΣk is the variance of noise at receiverk, and
Sk−1−Sk represents the signal power allocated to transmitted
messageWk for k = 1, . . . ,K. Thus, the rateRk is given by
the difference of the capacities of two Gaussian channels with
one having receiverk and one having receiverk − 1.

D. Layered Decoding and Layered Secrecy with Secrecy Out-
side a Bounded Range

For the model with layered decoding and secrecy described
in Section II-C, the additional message decoded by a better
receiver needs to be kept confidential from a receiver with
only one level worse channel quality (i.e., layered secrecy
and zero secrecy range). Although such a model is feasible
for broadcast channels with discrete states (i.e., the quality of
receivers can be captured by discrete channel states), it cannot
capture scenarios in which the receivers’ channel quality varies
continuously. For such a case, it is more reasonable to require
the message to be secured from receivers with a certain degree
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Fig. 10. The four-receiver degraded broadcast channel withsecrecy outside
a bounded range.

of worse channel quality, instead of being secured from the
receiver with one level worse channel quality, which is not
even well defined for continuous channel quality. To be more
explicit, we use an example to illustrate the motivation for
such a model. Consider a degraded broadcast channel with
infinitely many receivers, in whichh denotes the amplitude of
the channel gain (the larger theh, the better the channel). In
this case, it is impossible to require that the message intended
for receivers withh ≥ h0 be secured from receivers with
h < h0, because no positive secrecy rate can be achieved.
Instead, it is more natural to require that the messages intended
for receivers withh ≥ h0 be secured from receivers with
h ≤ h0 − ∆, where∆ > 0. We refer to such a secrecy
requirement assecrecy outside a bounded range.

In this subsection, we focus on a special case of the
above model recently studied in [37], which is a four-receiver
degraded broadcast channel model with secrecy outside of
a bounded range (see Fig. 10). In this model, a transmitter
sends information to four receivers over a broadcast channel.
It is assumed that the channel quality gradually degrades
from receiver 4 to receiver 1. The transmitter has four mes-
sagesW1,W2,W3 and W4 intended for the four receivers
with the following decoding and secrecy requirements. For
k = 1, 2, 3, 4, receiverk is required to decode the messages
W1, . . . ,Wk. Furthermore, the messageW3 needs to be kept
secure from receiver 1, and the messageW4 needs to be kept
secure from receivers 1 and 2. It is clear that each message is
secured from a receiver with two-level worse channel quality.

More technically, the channel is characterized by the prob-
ability transition functionPY1Y2Y3Y4|X , in which X ∈ X
denotes the channel input, andYk ∈ Yk denotes the channel
output at receiverk, for k = 1, 2, 3, 4. The channel is as-
sumed to satisfy the degradedness condition, i.e., the following
Markov chain condition holds:

X → Y4 → Y3 → Y2 → Y1. (15)

The design of an achievable scheme relies on superposition,
embedded coding and binning, and rate splitting and sharing.
Similarly to previous models, due to the requirement of lay-
ered decoding, the messages are encoded usingsuperposition
coding with each layer corresponding to one message, i.e.,
layer k corresponds toWk for k = 1, 2, 3, 4. Due to secrecy
constraints,joint embedded coding and binningare applied.
Since the messages do not need to be kept secure from their
immediate downstream receivers, such a receiver’s message
can serve as a random source for securing the higher layer
message in addition to stochastic binning. In fact, if such a

random source is sufficient for securing the message, binning
is not necessary. More specifically,W3 serves as a random
source to secureW4 from receiver 2 jointly with random
binning designed at layer 4 (if necessary). Similarly,W2 at
layer 2 serves as a random source to secureW3 andW4 from
receiver 1 jointly with binning at layers 3 and 4 (if necessary).
Furthermore,rate splitting and sharingis used, i.e.,W3 is split
into two parts, i.e.,W31 andW32. Such splitting exploits the
opportunity thatW31 is sufficient to secure bothW32 andW4

from receiver 2 for some cases, and thus the rate ofW32 can
be counted towards the rate of eitherW3 or W4. In this way,
the rate region may be enlarged.

We note that joint embedded coding and binning is nec-
essary here to exploit the secrecy requirements only outside
the bounded range (i.e., the secrecy is not imposed for the
immediate downstream receiver). Thus, messages intended
for receivers inside the bounded range can serve as ran-
dom sources for secrecy purposes. Such a scheme cannot
be used for the model with layered decoding and secrecy
presented in Section II-C, where the secrecy is imposed for
the immediate downstream receiver. We further note that the
embedded coding here uses messages across superposition
layers as random sources for secrecy, which is different from
the original embedded coding [24] as described in Sections
I and II-B where the messages serving as random sources
are at the same layers as the messages being protected. In
other words, the embedded coding technique is realized by
the superposition coding in this achievable scheme. But the
embedded coding does not have to be realized by superposition
coding only, it can also be realized by the random binning with
one more message encoded as the bin number.

Based on the scheme described above, an achievable region
can be derived, which can be further shown to be tight via a
converse argument. The following theorem characterizes the
obtained secrecy capacity region.

Theorem 5. [37] Consider the four-receiver degraded broad-
cast channel with secrecy outside a bounded range as de-
scribed above. The secrecy capacity region consists of rate
tuples(R1, R2, R3, R4) satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R3 ≤ I(U3;Y3|U2)

+ min
(

0, I(U2;Y2|U1)− I(U3;Y1|U1)
)

,

R4 ≤ I(X ;Y4|U3) + I(U3;Y3|U2)− I(X ;Y2|U2),

R3 +R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3)

+ min
(

0, I(U2;Y2|U1)− I(X ;Y1|U1)
)

,

(16)

for somePU1U2U3X such that the following Markov chain
condition holds

U1 → U2 → U3 → X. (17)

In fact, using only superposition and joint embedded coding
and binning is shown to be optimal (i.e., achieve the secrecy
capacity region) for the three-receiver model in [38]. However,
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for the four-receiver model, such an achievable scheme is
not sufficient. The major novelty of the above scheme lies
in developing rating splitting and sharing, which helps to
potentially enlarge the achievable region (at least enlarge the
region for a given distribution of auxiliary random variables).
Consequently, the proof of the converse can be developed for
such an achievable region, and thus the secrecy capacity region
is established.

More specifically, without rate splitting and sharing, super-
position and joint embedded coding and binning yields an
achievable region with rates satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2;U1),

R3 ≤ I(U3;Y3|U2)

+ min
(

0, I(U2;Y2|U1)− I(U3;Y1|U1)
)

,

R4 ≤ I(X ;Y4|U3)

+ min
(

0, I(U3;Y3|U2)− I(X ;Y2|U2)
)

,

R3 +R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3) + I(U2;Y2|U1)

− I(X ;Y1|U1). (18)

It is very difficult to develop the converse proof for the bound
R4 ≤ I(X ;Y4|U3) in the above region. However, by using
rate splitting and sharing, this bound is replaced by the bound
R3 + R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3), and the resulting
region (16) is larger than the above region (18) (for a given
distribution of auxiliary random variables). Furthermore, the
converse proof for the new bound onR3 + R4 in (16) can
be derived, and thus establishes the region (16) as the secrecy
capacity region.

III. A PPLICATIONS OFINFORMATION THEORETIC

MODELS

In this section, we provide two example applications of the
broadcast models that we present in Section II. These appli-
cations demonstrate that these information theoretic models
and approaches can be very powerful to provide solutions and
guidelines to address security issues in wireless networks.

A. Fading Wiretap Channel

In this subsection, we introduce the application of the
results presented in Sections II-A and II-B respectively for
the broadcast channel with layered decoding and with layered
secrecy to studying the following problem arising in the fading
wiretap channel.

As physical layer security exploits physical channel statis-
tics to achieve secure communication, successful implemen-
tation of this approach depends crucially on the transmitter’s
knowledge about the channel state information (CSI), which,
however, may not often be available due to limited feedback
resources. Furthermore, eavesdroppers typically do not have
incentive to send their channel states to transmitters. Thus, it is
desirable to design communication schemes that do not exploit
channel state realizations at the transmitter but still adapt to
the actual channel state that occurs in order to achieve as

good a secrecy performance as possible. Thus, the legitimate
receiver decodes more information as its channel gets better,
and out of information decoded at the legitimate receiver,
more information is kept secure from the eavesdropper as
the eavesdropper’s channel gets worse. In [35], a (layered)
broadcast approach was proposed to achieve such a goal,
which we present as follows.

Suppose a transmitter sends a message to one legitimate
receiver and one eavesdropper. The channel input-output rela-
tionship for one channel use is given by

Y = HX +W and Z = GX + V (19)

whereX is the input from the transmitter,Y andZ are outputs
at the legitimate receiver and the eavesdropper, respectively,H
andG are fading gain coefficients, and the noise variablesW

and V are proper complex Gaussian random variables with
zero means and unit variances. The fading gainH and G

are assumed to experience block fading, i.e, they are constant
within a coding block and change ergodically across blocks.
The block length is assumed to be sufficiently large such
that one codeword can be successfully transmitted if properly
constructed. The channel input is subject to an average power
constraintP over each block. The noise variables are assumed
to be independent from channel use to channel use within
block. It is assumed that the transmitter does not know the
instantaneous CSI, and each receiver knows its own channel
state. The goal is to achieve a secrecy rate as high as the legit-
imate receiver’s channel supports, and as the eavesdropper’s
channel permits, even though the transmitter does not know
CSI.

In [35], three scenarios were studied, i.e., only the legitimate
receiver’s channel is fading, only the eavesdropper’s channel
is fading, and both channels are fading. Next, we introduce
the results of the first two scenarios, which apply the results
in Sections II-A and II-B, respectively. The study of scenario
3 is to integrate the analysis of the first two scenarios.

In the first scenario, in which only the legitimate receiver’s
channel is fading and the eavesdropper’s channel is constant,
suppose there areL fading states, i.e.,|H1| ≤ |H2| ≤ . . . ≤
|HL|. In order for the transmitter to adapt its transmission
to the legitimate receiver’s channel without knowing CSI, a
broadcast approach was developed in [35], which generalized
the broadcast approach in [39] to the fading wiretap channel.
More specifically, the entire message is split intoL layers so
that the legitimate receiver decodes the firstl messages if its
channel realization isHl for l = 1, . . . , L and the eavesdropper
is kept ignorant of all messages. Under such an achievable
scheme, the channel is the same as the model described in II-A,
and hence Theorem 1 can be applied to obtain the following
result.

Theorem 6. [35, Theorem 1] For the fading wiretap channel
with the legitimate receiver having one of theL fading states
H1, . . . , HL, and with the eavesdropper having a fixed channel
state G, where |G| < |H1| ≤ |H2| ≤ · · · ≤ |HL|, the
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following secrecy rate tuples(R1, . . . , RL) are achievable:

Rl = log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

k=l+1
Pk

)

− log

(

1 +
|G|2Pl

1 + |G|2
∑L

k=l+1
Pk

)

, l = 1, . . . , L

(20)

wherePl denotes the transmission power assigned for trans-
mitting Wl and satisfies the power constraint

∑L

l=1
Pl ≤ P .

The above result was then generalized to the case with
continuous fading state to further characterize the average
secrecy rate over a large number of blocks in [35].

In the second scenario, in which only the eavesdropper’s
channel is fading and the legitimate receiver’s channel is
constant, suppose there areL fading states for the eaves-
dropper with |G1| ≤ |G2| ≤ . . . ≤ |GL|. In order for the
transmitter to adapt its transmission to the eavesdropper’s
channel without knowing CSI, an embedded coding developed
in [33] was employed in [35]. In contrast to the first scenario,
in which messages are encoded into layers, here all messages
are encoded into one codeword in an embedded fashion. Each
message corresponds to one index that identifies the codeword.
In particular, lower indexed layers of messages serve as
randomization for protecting higher indexed messages from
the eavesdropper. Depending on the eavesdropper’s channel
state, all messages up to a certain index are kept secure from
the eavesdropper. All messages are required to be decoded
by the legitimate receiver. Under such an achievable scheme,
the channel model is the same as the model described in
Section II-B, and hence Theorem 2 can be applied to obtain
the following result.

Theorem 7. [35, Theorem 3] Consider the fading wiretap
channel with the legitimate receiver having a fixed channel
stateH and the eavesdropper possibly having one ofL fading
statesG1, . . . , GL with |G1|

2 < |G2|
2 < · · · < |GL|

2 < |H |2.
The following secrecy rate tuples(R1, . . . , RL) are achiev-
able:

Rl = log
(

1 + |Gl+1|
2P
)

− log
(

1 + |Gl|
2P
)

,

for l = 1, . . . , L− 1,

RL = log
(

1 + |H |2P
)

− log
(

1 + |GL|
2P
)

. (21)

The above result was then generalized to the case with
continuous fading state to further characterize the average
secrecy rate over a large number of blocks in [35].

For the third scenario, in which both channels to the
legitimate receiver and the eavesdropper undergo fading, an
integration of the above two studies was developed in [35].
We refer the reader to [35] for further details.

We next present an interesting numerical result that com-
pares the average secrecy rates for the three scenarios in
Fig. 11. It is clear from the figure that scenario 2 (with
only the eavesdropper channel fading) has the best rate, and
scenario 3 (with both channels fading) has a better rate than
scenario 1 (with only the legitimate channel fading). It is
easy to understand that scenario 3 has a worse rate than
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Fig. 11. Comparison of rates for the three scenarios

scenario 2 because the transmitter’s power is spread over the
states due to no knowledge of the legitimate receiver’s CSI.
However, it may seem counter-intuitive that scenario 3 has a
better rate than scenario 1. This is due to the fact that when
the eavesdropper’s channel is fading, there is a good chance
that its state is below the channel average, and such channel
fluctuation facilitates achievement of a better secrecy rate and
overcomes the effect of no eavesdropper CSI at the transmitter.
Therefore, the two major factors that affect the secrecy rate
are the knowledge of the legitimate receiver’s CSI and the
channel fluctuation of the eavesdropper. The knowledge of the
eavesdropper’s CSI only weakly affects the secrecy rate.

B. Multi-Secret Sharing Problem

Fig. 12. Model for secret sharing via a broadcast channel

In this subsection, we introduce the application of the result
presented in Section II-C for the MIMO channel to studying
the following problem of sharing multiple secrets. Suppose
that a dealer wishes to shareK secretsW1,W2, . . . ,WK with
K participants. It is required that participant 1 decodesW1,
and participants1 and2 decodeW1 andW2 by sharing their
information from the dealer, butW2 should be kept secure
from participant1. Such requirements extend tok participants
for k = 1, . . . ,K in the sense that participants1 to k can
recover the firstk messagesW1, . . . ,Wk by sharing their
information from the dealer, but the new messageWk should
be kept secure from the firstk − 1 participants. Hence, as
one more participant joins the group, one more secret can
be recovered, and this new secret is kept secure from (and
hence cannot be recovered by) a smaller group. The goal is
to characterize the best tradeoff among the rates of shared
messages, i.e., the secret sharing capacity region that contains
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all possible achievable rate tuples(R1, R2, . . . , RK) for K

secrets.

The above secret sharing problem involves sharing multiple
secrets in a layered fashion, and is challenging to solve
using the classical approach based on algebraic tools [40]–
[43]. Furthermore, existing solutions based on algebraic tools
implicitly assume that information delivery from the dealer
to the participants is noise free. Such an approach works
well for traditional wired networks in which the dealer can
distribute each share over dedicated line to each participant.
Wireless networks, however, are different from wired networks
in that the transmission is noisy and is broadcast in nature.One
can address the noise issue by using error correction coding.
However, to securely deliver each share to each participant,
the dealer has to use secret keys, shared with the intended
participant, to encrypt and decrypt each share. Otherwise,even
if the secret sharing scheme itself is information theoretically
secure, the system is not secure anymore.

A different approach for secret sharing over wireless net-
works was proposed in [36]. Instead of converting noisy
channels into noiseless bit pipes, the presence of noise in-
herent in wireless channels is exploited for designing secret
sharing schemes. Suppose that a dealer communicates toK

participants via a broadcast channel (see Fig. 12). We denote
the channel input sent by the dealer byX, and the channel
output received at participantk by Yk for k = 1, . . . ,K. Thus,
the information that each group of participants share is the
outputs that participants in the group receive. The idea in
[36] is to construct an equivalent broadcast wiretap model.
In particular, suppose that the dealer communicates to the
participants via a Gaussian broadcast channel corrupted by
additive Gaussian noise variables, in which the dealer hasK

antennas and each receiver has one antenna. Now for each
group of participants1 to k, for k = 1, . . . ,K, design a virtual
receiverVk, such that the channel output at the virtual receiver
k is (Y1, . . . , Yk) representing that receivers1, . . . , k group
their outputs. The decoding and secrecy requirements for the
reformulated channel is as follows: virtual receiverk can
recover the firstk messagesW1, . . . ,Wk, and should be kept
ignorant of messagesWk+1, . . . ,WK . Thus, the secret sharing
problem can be reformulated into a communication problem
over the degraded Gaussian MIMO broadcast channel with
layered decoding and layered secrecy as described in Section
II-C. In particular,Σ′

V (k) denotes the covariance matrix of
the noise vector at the virtual receiverk, t is a parameter
introduced to make the channel output at each virtual receiver
having the same dimension, and ift → ∞, the virtual model
will reduce to the original model. We refer the readers to [36]
for more details. Therefore, the secret sharing capacity region
presented below follows from Theorem 4.

Corollary 1. [36, Corollary 1] The capacity region for the
secret sharing problem described above contains rate tuples

(R1, R2, . . . , RK) satisfying

R1 ≤
1

2
log

|Σ′
V (1) + S|

|Σ′
V (1) + S1|

,

Rk ≤ lim
t→∞

1

2
log

|Σ′
V (k) + Sk−1|

|Σ′
V (k) + Sk|

−
1

2
log

|Σ′
V (k − 1) + Sk−1|

|Σ′
V (k − 1) + Sk|

, for 2 ≤ k ≤ K − 1,

RK ≤ lim
t→∞

1

2
log

|Σ′
V (K) + SK−1|

|Σ′
V (K)|

−
1

2
log

|Σ′
V (K − 1) + SK−1|

|Σ′
V (K − 1)|

, (22)

for some0 � SK−1 � SK−2 � . . . � S2 � S1 � S, whereS
is the covariance constraint of the dealer’s input andS should
satisfy the power constraint,trace(S) ≤ P .

We note that the secret sharing problem we describe is
only an example problem. The information theoretic approach
proposed in [36] is applicable to more general multi-secret
sharing problems. The central idea is to reformulate secret
sharing problems into secure communication problems with
secrecy constraints (i.e., compound wiretap models in gen-
eral), and then information theoretic approaches developed for
wiretap models can be applied to solving these secret sharing
problems.

We further note a technical issue that the secrecy require-
ment here (and throughout the paper) refers to weak secrecy
(i.e., per block secrecy). However, the result given in Corollary
1 can be strengthened to satisfy strong secrecy requirements
(i.e., per symbol secrecy) without loss of performance by
applying the idea in [44].

IV. D ISCUSSION ANDCONCLUSION

In this paper, we have provided a review of recent studies of
a class of broadcast channels with layered decoding and/or lay-
ered secrecy. We also have reviewed the applications of such
a class of models to the secure communication problem over
the fading wiretap channel and the secret sharing problem.

Under the class of broadcast models, there are many open
problems that require further exploration. For example, the
model with secrecy outside a bounded range was fully ex-
plored only for the four-receiver case. Extension of existing
results to the case with an arbitrary number of receivers is
interesting. It is anticipated that rate splitting and sharing is
more involved because one layer message can be split into
multiple components in order to be shared by rates corre-
sponding to higher layers. The procedure of Fourier-Motzkin
elimination to obtain the resulting achievable region willalso
become more complex. This suggests that new techniques need
to be developed to simplify the mathematical manipulations,
as well as capturing the essence of the problem. Extension of
such a model can also be applied to study more practical fading
wiretap channels with continuous channel states, in which
messages decoded at a certain receiver are required to be kept
secure from receivers that are outside a bounded range (i.e.,
with a certain degree of worse channel quality). As another
example, it is of interest to study the models with arbitrary
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numbers of receivers in this class in the context of compound
scenarios, in which each receiver and/or eavesdropper can
represent a group of nodes in the same fashion as in [12] and
[26]. Such scenarios are more flexible for modeling practical
networks with clusters of receivers.

The two applications that we have reviewed in this paper
demonstrate that information theoretic approaches for secu-
rity can be advantageous and powerful in various practical
scenarios, and can hence serve as useful complements to
cryptographic approaches. As we have commented in Sec-
tion I-A, information theoretic secrecy provides an additional
benefit without sacrificing communication rates. Thus, such
an information theoretic approach at least provides additional
security protection even for a system that has been protected
via cryptographic approaches. Furthermore, in some wireless
systems such as ad hoc networks, it is typically challenging
to deploy pre-shared secret keys among the nodes. This key
distribution dilemma can be solved by information theoretic
approaches by exploiting randomness resources in physical
layer channels. As we have introduced in this paper, broadcast
communication channels can be utilized to flexibly distribute
keys to satisfy various layered secrecy requirements if we
treat messages in broadcast models as secret keys. Hence,
we anticipate that information theoretic security approaches
and cryptographic approaches will complement each other in
future wireless systems to provide the strongest protection.

This paper has focused on studies that characterize infor-
mation theoretic performance limits, and hence our review has
described only capacity achieving secrecy schemes based on
random coding arguments. In recent years, there have been
intensive studies on designing practical codes for achieving
secrecy capacity for various channel models. In particular,
low density parity check (LDPC) codes and polar codes are
designed for achieving secure communications for various
wiretap systems for example, LDPC codes for the basic
wiretap channel in [45]–[47], and polar codes for the basic
wiretap channel in [48]–[54], for the relay wiretap channelin
[48] and [55], and for the broadcast channel with confidential
messages in [56] and [57]. Practical coding designs for the
broadcast models reviewed in this paper are much less well
understood and require further exploration.
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