
A New Path from Splay to Dynamic Optimality∗

Caleb Levy† Robert Tarjan‡

Abstract
Consider the task of performing a sequence of searches in a
binary search tree. After each search, an algorithm is allowed
to arbitrarily restructure the tree, at a cost proportional
to the amount of restructuring performed. The cost of an
execution is the sum of the time spent searching and the time
spent optimizing those searches with restructuring operations.
This notion was introduced by Sleator and Tarjan in 1985 [27],
along with an algorithm and a conjecture. The algorithm,
Splay, is an elegant procedure for performing adjustments
while moving searched items to the top of the tree. The
conjecture, called dynamic optimality, is that the cost of
splaying is always within a constant factor of the optimal
algorithm for performing searches. The conjecture stands to
this day.

We offer the first systematic proposal for settling the
dynamic optimality conjecture. At the heart of our methods
is what we term a simulation embedding : a mapping from
executions to lists of keys that induces a target algorithm to
simulate the execution. We build a simulation embedding
for Splay by inducing it to perform arbitrary subtree
transformations, and use this to show that if the cost of
splaying a sequence of items is an upper bound on the cost of
splaying every subsequence thereof, then Splay is dynamically
optimal. We call this the subsequence property. Building on
this machinery, we show that if Splay is dynamically optimal,
then with respect to optimal costs, its additive overhead is
at most linear in the sum of initial tree size and number of
requests. As a corollary, the subsequence property is also a
necessary condition for dynamic optimality. The subsequence
property also implies both the traversal [27] and deque [30]
conjectures.

The notions of simulation embeddings and bounding
additive overheads should be of general interest in competitive
analysis. For readers especially interested in dynamic
optimality, we provide an outline of a proof that a lower
bound on search costs by Wilber [32] has the subsequence
property, and extensive suggestions for adapting this proof
to Splay.

1 Introduction

1.1 Terminology. By an instance, we mean a list of
tasks together with a specified initial configuration. An
execution for an instance is a sequence of operations that
accomplish the tasks. An algorithm maps an instance
to an execution of that instance.

Operations are assigned a cost. The cost of an
execution is the sum of the costs of its constituent
operations, and the cost of an algorithm to execute an
instance is the cost of the execution it produces for that
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instance. Importantly, certain kinds of instances admit
a natural notion of an optimal execution: a collection of
operations that accomplish the given instance with the
lowest possible total cost.

In this paper, instances consist of an initial tree
together with a sequence of items to access (the tasks)
in that tree. The operations are subtree transformations,
and the executions are sequences of subtree transforma-
tions which bring each accessed key to the root. The
main algorithm of interest to us will be Splay [27], al-
though we will also make use of Move-to-Root [1]. The
cost of a subtree transformation is the size of the trans-
formed subtree, and the cost of an execution is the sum
of sizes of the transformed subtrees.

It is of course desirable to obtain precise descriptions
of optimal executions, but this seems to be exceedingly
difficult. However, we can sometimes hope for something
almost as good: a constant-competitive algorithm whose
execution cost never exceeds a fixed multiple1 of the
optimum cost. The crux of the dynamic optimality
conjecture is to determine whether Splay is constant-
competitive for all instances comprising searches in a
binary search tree.

1.2 Simulation Embeddings. The main issue is
how to prove an algorithm is constant competitive
without knowing what optimal executions “look like.”
We answer this question by constructing simulation
embeddings, which combine two concepts.

The first starts with a simple observation: in many
situations, we intuitively expect that removing tasks
from an instance should decrease the cost for the
algorithm to execute it. This may not always be the
case, but it is a reasonable idea to explore. Accordingly,
we say that an algorithm has the subsequence property if
some fixed multiple of the time it requires to execute a
list of tasks is an upper bound on the cost of executing
any subsequence thereof.

The second idea is to force an algorithm to simulate
arbitrary executions by feeding it appropriately con-
structed “simulation-inducing” instances. A simulating
instance must have two properties. First, the cost for the
algorithm to execute the simulation should not exceed a

1That is, the same constant applies to all instances.
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fixed multiple of the simulated execution’s cost. Second,
the simulation must contain the original instance corre-
sponding to the simulated execution as a subsequence.
We call a map from executions to simulation-inducing
instances a simulation embedding. An algorithm with a
simulation embedding has the simulation property.

An algorithm with the simulation property can
simulate an optimal execution of a given instance just as
well as any other execution. The cost for the algorithm to
execute the simulation is, by construction, no more than
a fixed multiple of the optimal cost for that instance.

Now comes the key point. The simulation of this
optimal execution will, again by construction, contain the
original instance as a subsequence. If the algorithm also
has the subsequence property, then the cost of executing
the original instance will never exceed a fixed multiple
of the simulation’s cost, and hence of the optimal cost.
We conclude: algorithms with both the subsequence and
simulation properties are constant-competitive!

We should emphasize that we reserve the term “simu-
lation embedding” exclusively for simulations constructed
with the intention of reducing some question of constant
competitiveness to one of proving that an algorithm has
the subsequence property. Many other uses of simula-
tions exist, but they do not fall under the purview of
this work.

1.3 The State of Knowledge. The most interesting
binary search tree algorithms are on-line algorithms; i.e.
those which choose their operations based on tasks that
come before, but not after, the current one. These
reflect the algorithms that tend to be useful in realistic
scenarios, and Splay is one of the most famous on-line
binary search tree algorithms.

Currently, no on-line binary search tree algorithm
is known to be constant competitive. Actually, our
knowledge is much worse than this. There is no sub-
exponential time algorithm whatsoever that is known to
compute, or even approximately compute, the cost of an
optimum binary search tree execution for an instance.
There are several known lower bounds [10, 32], none
known to be tight (though some conjectured to be).

In fact, there is circumstantial evidence indicating
that exactly computing the optimum cost of a binary
search tree instance is NP-Complete: a slight general-
ization in which each task in the instance can request
multiple keys is NP-Complete [10]. The theoretical and
practical difficulties that we encountered when trying to
reason about optimal binary search tree executions ulti-
mately led us to the present approach, which consciously
avoids directly comparing algorithms with optimal be-
havior.

The other major candidate on-line optimal binary

search tree algorithm is called greedy (variously, Greedy-
Future and Geometric Greedy). An off -line version of
this algorithm was originally conjectured to be constant-
competitive for binary search trees by Lucas [20]. The
algorithm received renewed attention when Demaine et.
al. showed that it could be simulated by an on-line
algorithm by using a representation of binary search tree
executions as cartesian coordinate point-sets [10]. Since
then, many of the interesting properties that first drew
attention to Splay have been proved for Greedy, as well
as some additional properties. See [18, Chapters 1 & 2]
for a thorough survey.

Many of the techniques developed in this paper
should also be applicable to Greedy, but we do not focus
on Greedy, and applying our results in the geometric
model would likely constitute another investigation in
its own right.

1.4 Our Main Contributions. The following re-
sults, given in the beginning half of the paper (§3 and
§4), will likely be of interest to the broadest audience.

• We show that the subsequence property is a suffi-
cient and necessary condition for settling the dy-
namic optimality conjecture, the first “non-trivial”
and conceptually “intuitive” condition we are aware
of for this problem.

• We codify the notion of a simulation embedding,
which has arisen in binary search tree algorithms.
We have spent a great deal of effort presenting our
simulation embedding for Splay in a manner that
lends itself to generalization beyond problems for
binary search trees.

• We formalize the notion of an algorithm being
optimal with an “additive overhead” in the form of
transient bounds, and show that Splay can only be
optimal with additive overhead at most linear in
the sum of the number of requests and the size of
the initial tree.

The remainder of the paper will be of greatest utility to
those interested in directly building on our results.

• We show that the traversal and deque conjectures
are also implied by the subsequence property, and
extend the simulation embedding for Splay to a
much broader class of algorithms. (§5)

• We show Wilber’s second lower bound function [32]
on the cost of an instance has the subsequence
property, and provide extensive commentary on
how to adapt the proof of the subsequence property
for Wilber’s bound to Splay. (§6, §7 and §8).
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1.5 Related Work. We know of two prior works
that construct simulation embeddings for binary search
trees. The earlier one is tucked away in Dion Harmon’s
Ph.D. thesis [13], where he uses the geometric model
of binary search tree algorithms (made popular in [10])
to prove that a well-known geometric greedy algorithm
is constant-competitive if it satisfies the subsequence
property. The second investigation was undertaken by
Lúıs Russo, who analyzed a simulation embedding for
Splay using potential functions [23]. Neither of these
works seem to have garnered as much attention as we
feel they deserve, and we encourage others to take a
close look at their methods.

Our manner of constructing simulation embeddings
for Splay offers several advantages over [23]. The analysis
is completely combinatorial, and more straightforward
to carry through. The simplicity of our arguments also
makes them readily generalizable (see §5.5). Further-
more, by building simulations using tree transformations,
we are able to prove both the sufficiency and necessity of
the subsequence property for dynamic optimality using
the same machinery. We also note that both [13] and [23]
declined to observe (or at least formalize) the necessity
of the subsequence property.

We are aware of no published results that give
an upper bound on the additive overhead for which
a binary search tree algorithm can be optimal. We are
somewhat surprised this issue has not received further
attention, as it has likely applications to recent work on
pattern-avoiding access in binary search trees [2], not
to mention enabling our reductions of the deque and
traversal conjectures to that of proving the subsequence
property. From personal conversations, we are aware that
John Iacono has independently considered some of the
methods we employ in §4 in unpublished investigations.

Some of the ideas that we propose in “The Path For-
ward” (§7) resemble those that gave rise to Tango Trees
[11]. This data structure was essentially constructed by
turning Wilber’s first lower bound into an algorithm.
By comparing the executions of the algorithm with the
known lower bound, Demaine et. al. were able to prove
that tango costs no more than O(log log n) times the op-
timum for a tree of size n. In §7, we argue for analyzing
Splay by comparing portions of its cost with Wilber’s
second lower bound. In fact, the similarities run deeper,
as Tango trees arose from an attempt to turn Wilber’s
second lower bound into an algorithm.

The proposed path forward also draws inspiration
from several other sources. John Iacono’s perspective
on Wilber’s second lower bound bound in [15, 16, and
personal communication] was especially helpful, as were
Wilber’s own thoughts about BST executions [32]. We
were also influenced by the global view of binary search

tree algorithms [3] and Joan Lucas’ comments on the
difficulty of applying standard inductive proofs to binary
search tree algorithms [20].

Our proof that Wilber’s bound has the subsequence
property is novel.

2 Preliminaries

2.1 Binary Search Trees and Rotations. Our ter-
minology for describing binary search trees is essentially
paraphrased from [18, Chapter 1.3]. A binary tree T
comprises of a finite set of nodes, with one node desig-
nated to be the root. All nodes have a left and a right
child pointer, each leading either to a different node or to
a childless null object. Every node in T , spare for the
root, has a single parent node of which it is a child. (The
root has no parent). By the subtree rooted at node x we
mean the set comprised of x along with all other nodes
reachable by starting from x and following left and right
pointers. Nodes thus have left and right subtrees rooted
respectively at their left and right children. (Subtrees
are empty for null children). In a binary search tree,
every node has a unique key, and the tree satisfies the
symmetric order condition: every node’s key is greater
than those in its left subtree and smaller than those in
its right subtree.

The binary search tree derives its name from how its
structure enables finding keys. To find a key k initialize
the current node to be the root. While the current node
is not null and does not contain the given key, replace
the current node by its left or right child depending on
whether k is smaller or larger than the key in the current
node, respectively. The search returns the last current
node, which contains k if k is in the tree and otherwise
null. The cost of this search is set by convention to be
the number of nodes, including null, encountered prior
to termination (this is called the length of the search
path). If k is in the tree then the depth of the node
containing it is the number of pointers followed during
the search.

We will use a local restructuring primitive called a
rotation. A rotation at left child x with parent y makes
y the right child of x while preserving symmetric order.
A rotation at a right child is symmetric, and rotation at
the root is undefined. (See Figure 1).

2.2 Splay and Move-to-Root. The main subject
of our study is the Splay algorithm, first described in
[25]. The algorithm begins with a binary search for a
key in the tree. Let x be the node returned by this
search. If x is not null then the algorithm repeatedly
applies a “splay step” until x becomes the root. A splay
step applies a certain series of rotations based on the
relationship between x, its parent, and its grandparent,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1313

D
ow

nl
oa

de
d 

02
/2

1/
23

 to
 1

40
.1

80
.2

40
.1

06
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



y

x

x

y

A B

C A

B C

rotate at x

rotate at y

Figure 1: Rotation at node x with parent y (left), and
reversing the effect by rotating at y (right).
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Rotate at x

Rotate at x two times

Rotate at y, then x

Figure 2: A splaying step at node x. Symmetric variants
not shown. Triangles denote subtrees.

as follows. If x has no grandparent (i.e. x’s parent is
the root), then rotate at x (this case is always terminal).
Otherwise, if x is a left child and its parent is a right
child, or vice-versa, rotate at x twice. Otherwise, rotate
at x’s parent, and then rotate at x. Sleator and Tarjan
[27] assigned the respective names zig, zig-zag and zig-zig
to these three cases. The series of splay steps that bring
x to the root are collectively referred to as splaying at
x, or simply splaying x. The three cases are depicted in
Figure 2.

We will also make use of a second algorithm called
Move-to-Root in our analysis. Move-to-Root is likely
the simplest non-trivial algorithm fitting in Sleator and
Tarjan’s cost model. First search for a key k, and then
repeatedly rotate the returned node x until it becomes
the root. Allen and Munro were the first to analyze this
algorithm [1]. Its similarity to Splay is striking, and it
is one of Splay’s progenitors [27]. Indeed, we will argue
later that Splay’s is connected with Move-to-Root on
many levels.

2.3 The Binary Search Tree Model. The follow-
ing model for binary search tree executions is based on
“transition trees.” It is cost-equivalent to other models
defined throughout the literature. Our definition most
closely resembles [18, Second Model].

The fundamental operation is subtree transformation.
To perform a subtree transformation on tree T , first
select an arbitrary connected subtree of Q containing
the root of T . Then reshape Q into any other valid
binary search tree Q′ containing the same set of keys.
(We refer to Q′ as a transition tree.) To complete the
operation, form the after-tree T ′ by substituting Q′ for Q
in T , re-attaching the subtrees of Q to Q′ in the manner
uniquely prescribed by the symmetric order. The cost of
this operation is the size (number of nodes) of Q. The
process is depicted in Figure 3.

T
1

3
2

6
4

5 7Q

1
3

6
4

T’

2

5 7

Q’

Figure 3: Example of a subtree substitution of cost four.

Definition 2.1. (BST Model) An instance of a bi-
nary search tree optimization problem comprises a se-
quence X = (x1, x2, . . . , xm) of requested keys and an
initial tree T containing these keys.

An execution for this instance comprises a sequence
of subtrees Q1, . . . , Qm, a sequence of transition trees
Q′1, . . . , Q

′
m, and a sequence of after-trees T1, . . . , Tm,

where T0 ≡ T and for 1 ≤ i ≤ m:

• Qi is a connected subtree of Ti−1 that contains both
root(Ti−1) and xi,

• Q′i is a binary search tree with the same keys as Qi
such that xi = root(Q′i), and

• Ti is formed by substituting Q′i for Qi in Ti−1.

Each Qi in an execution is uniquely determined by Ti−1

and Q′i, and each Ti for i > 0 is uniquely determined by
Q′i and Ti−1. Thus an execution is uniquely determined
by the sequence of transition trees, and we shall denote
the execution by this sequence. Figure 4 shows an
example of an instance and corresponding execution.

The cost of execution E = (Q′1, . . . , Q
′
m) is∑m

i=1 |Q′i|, where |Q′| denotes the number of nodes in
Q′. At least one execution for X starting from T has
minimum, or optimum value, and we define

OPT(X,T ) ≡ min
E for X,T

∑
Q′∈E

|Q′|.
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T0

Q1’ Q2’

T1

Q3’

Q1

T2 T3
3

1 6
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5

1
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2 6
4

5

1

2

6

3

4

5

1

2

6

3

4
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1

3 1

2

6

3
2

6

X = (1, 2, 6)

Q2

Q3

Figure 4: Example of an execution for an instance X =
(1, 2, 6). The total cost is |Q′1|+|Q′2|+|Q′3| = 2+4+2 = 8.

Remark 2.1. We will sometimes abuse notation and
let OPT(X,T ) also refer to a sequence of transition
subtrees that achieves the optimum cost. We will also
abuse terminology by referring to the optimum execution
for X and T instead of an optimum execution. Although
there may be many executions achieving optimum cost,
it will not matter for our purposes which is chosen, so
we assume one is chosen arbitrarily.

Remark 2.2. By [4, Theorem 43], we can assume
without loss of generality that subtrees without requested
keys can be ignored. Hence T is the smallest connected
subtree of the root containing all of X’s keys. Since
every node in T , at least initially, is on a path from the
root to a node that will be accessed, even an optimal
execution must visit every node in the tree at least
once. We therefore have OPT(X,T ) ≥ |T |. Similarly,
every execution produces at least one transition tree per
requested item, hence OPT(X,T ) ≥ |X|, where |X| is
the number of requests in X.

A few comments are in order. Defining the cost
of an execution as the sum of the transition tree sizes
captures the notion of paying for restructuring: fewer
operations are required to substitute a smaller tree. Each
transition tree contains the root and the requested item,
and therefore the path connecting them (we call this
the access path). This accounts for the cost of searching.
We describe how to extend this model to encompass
insertions and deletions in §5.2.

2.4 The Dynamic Optimality Conjecture. As
intimated in the introduction, we may view binary
search tree algorithms (such as Splay and Move-to-
Root) as maps from instances to executions. More
formally, an algorithm A is a map from instances (X,T )
to a sequence of valid transition trees Q′1, . . . , Q

′
|X| for

executing request sequence X with starting tree T . We
denote the cost of this execution by costA(X,T ). Note

that we will be dealing almost exclusively with the cost
of the Splay algorithm, hence cost(X,T ) will always refer
to the cost of splaying the keys of X with initial tree T .
Also note that in our BST model, the cost of splaying a
node is simply the length of the access path.

Definition 2.2. An algorithm A is said to be dynam-
ically optimal (or constant competitive) if there exists
some constant c ≥ 1 so that, for all sequences of keys
X and all corresponding initial trees T , we have that
costA(X,T ) ≤ cOPT(X,T ). The dynamic optimality
conjecture states that Splay is dynamically optimal.

The term “dynamically optimal” instead of
“constant-competitive” is traditional in the literature on
this problem, and so we adopt it in this paper.

3 A Simulation Embedding for Splay.

We show how to induce Splay to perform restricted
rotations, as defined by [5], in constant time, and thereby
transform a subtree arbitrarily in time proportional to
the subtree’s size. We use these tree transformations to
build a simulation embedding for Splay in the BST Model,
and establish as a consequence that the subsequence
property implies dynamic optimality.

3.1 Restricted Rotations. We use the term re-
stricted rotation to refer to rotating a node whose parent
is either the root, or the root’s left child.

Theorem 3.1. ([6] and [19]) Any tree T1 of size n
can be transformed into any other tree T2 on the same set
of keys through the application of at most 4n restricted
rotations.

Cleary was the first to prove a linear bound on
restricted rotation distance in [5], using properties of
Thompson’s Group F, a group-theoretic concept related
to binary search trees. Cleary and Taback improved this
bound to 4n in [6]. Lucas presents Cleary’s result in
terms of the standard BST model [19]. She essentially
describes an algorithm that uses restricted rotations
to “unwrap” T1 into a “flat” tree, which is transformed
into T2 by applying the flattening algorithm in reverse.
Figure 5 contains a sketch of this algorithm.

3.2 Inducing Restricted Rotations. The next the-
orem, despite its utter simplicity, forms the basis of our
entire method. To begin, we view splaying as a function
that takes a tree T and a node x ∈ T and returns a new
tree T ′. Note that we can only do this because of Splay’s
very simple structure: the resultant tree T ′ does not
depend at all on the history of accesses. We can define
Gn, the transition graph for Splay on binary search trees
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Figure 5: Applying restricted rotations to unwind a
binary search tree as in [19].

of n nodes, as follows. Assign to every binary tree with
n elements a node in Gn. For each T ∈ Gn and x ∈ T
draw an edge from T to splay(T, x).

Theorem 3.2. G4 is strongly connected.2

Proof. The reader may feel free to verify by hand the
Hamiltonian cycle of G4 depicted in Figure 6. �

Remark 3.1. We conjecture, but have not tried to
prove, that Gn has a Hamiltonian cycle for n ≥ 4. Those
interested in tackling this question may find it helpful
to look at [21] and [22].

Theorem 3.2 opens the door to inducing restricted
rotations in trees with four nodes. We can see this most
easily by example. Suppose we start with tree XI in
Figure 6, and that we wish to rotate at 2. The after-tree
produced by this rotation corresponds to tree II in the
diagram. Following the sequence of nodes marked by
“∗,” we see that splaying the sequence of keys 1, 4, 2, 1
and then 4 produces the desired effect. Similarly, we
can induce a rotation at 1 in tree III by splaying the
sequence (1, 4, 1, 3). We can use an identical procedure
for performing any other restricted rotation in a four-
node tree: find the corresponding starting tree and final
tree in the cycle of Figure 6 and splay at the indicated
keys to transform accordingly.

While Figure 6 provides a striking visual depiction
of this process, we can use more pedestrian methods
to improve the cost overheads of performing restricted
rotations in this fashion.

2Note that G3 is not strongly connected.
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Figure 6: A Hamiltonian cycle in G4. Splay at nodes
marked by ∗ to convert one tree into the next.

Theorem 3.3. A sequence of at most 5 splay operations
suffices to do a restricted rotation in a four-node binary
tree.

Proof. By direct computation of the diameter of G4. �

Remark 3.2. The manner in which a splay operation
alters the search path is a function only of the path’s
pointer structure. In particular, the structure of the
subtrees hanging from the path have no bearing on the
splay operation, save that they are reattached to the
splayed path in accordance with the symmetric order. If
we use splay operations to induce a restricted rotation
in a four-node connected subtree of the root of a larger
tree T , then we have performed the restricted rotation
in T .

3.3 Tree Transformations. Define a BST algorithm
to have the transformation property if for every pair of
trees T and T ′ on the same set of keys there exists a
request sequence that induces the algorithm to transform
T into T ′ in O(n) time. The crucial consequence of
Theorems 3.2 and Remark 3.2 is that Splay has the
transformation property! Stated more precisely:

Theorem 3.4. Let T and T ′ be binary search trees of
size n ≥ 4 with the same keys. There exists a request
sequence causing Splay to transform T into T ′ with cost
at most 80n.

Proof. By Theorem 3.1, it takes at most 4n restricted
rotations to transform T into T ′. By Theorem 3.3, each
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restricted rotation can be done using no more than 5
splays. Each splay path has length 4 or less. Hence the
total cost in the BST model is at most 4n ∗ 5 ∗ 4 = 80n.
�

The proof of Theorem 3.4 is designed for minimalism.
A more careful analysis could reduce the constant factor.
For example, half of the restricted rotations rotate left
or right at the root, and can be induced with cost 2.
Additionally, our purposes are different from Cleary’s
in [5], and relaxing the requirement that the rotated
node’s parent is either the root or the root’s left child
may enable further reduction of the constant.

3.4 Constructing the Embedding. Applying the
logic of Remark 3.2: the net effect of using splay
operations to transform Q into Q′, where Q′ is a
connected subtree of the root of another tree T , is to
substitute the subtree Q′ for Q in T . Hence Theorem
3.4 is a recipe for inducing Splay to perform subtree
transformations. This can immediately be used to build
a simulation embedding, S, for Splay in the model of
Definition 2.1, by stringing together the transformations
that induce each subtree substitution of an execution.
Now for the formalities.

In what follows, we assume without loss of generality
that all initial trees and transition trees in the BST
model have at least four nodes. Given trees T and T ′

with the same keys, let T(T, T ′) denote the sequence
of keys generated by using the process described in
Theorem 3.4 for transforming T into T ′.3 When
T = T ′, T(T, T ′) ≡ root(T ). We refer to T(T, T ′)
as the transformation sequence turning T into T ′.
Additionally, let W ⊕ Y denote the concatenation of
sequences W = (w1, . . . , wk) and Y = (y1, . . . , yl) into
(w1, . . . , wk, y1, . . . , yl). The input to S is an execution
E for X = (x1, . . . , xm) starting from T , comprising
subtrees Q1, . . . , Qm, transition trees Q′1, . . . , Q

′
m, and

after-trees T1, . . . , Tm, as described in Definition 2.1.

Definition 3.1. S(E) ≡ T(Q1, Q
′
1)⊕· · ·⊕T(Qm, Q

′
m).

Theorem 3.5. The map S from executions to request
sequences is a simulation embedding for Splay in the
BST Model.

Proof. By construction, the execution of each block
T(Qi, Q

′
i) for 1 ≤ i ≤ m substitutes Q′i for Qi in Ti−1,

which brings the splayed tree’s shape in line with that of

3The freedom to choose different four-node subtrees for enacting
restricted rotations with splaying means there can be many such
sequences. This choice will not affect the following analysis, so
we assume an arbitrary convention is imposed for choosing the
subtrees.

the execution’s. Next, notice that by Definition 2.1, xi is
at the root of Q′i. Note that the Splay algorithm always
brings the splayed node to the root of the tree, hence
the last key featured in T(Qi, Q

′
i) is always xi, meaning

X is a subsequence of S(E). Finally,

cost(S(E), T ) =
m∑
i=1

cost(T(Qi, Q
′
i), Ti−1)

≤ 80(|Q′1|+ · · ·+ |Q′m|).

The cost of the initial execution is |Q′1| + · · · + |Q′m|,
hence a constant multiple of the original execution’s
cost is an upper bound on the cost for Splay to execute
the simulation. We conclude that S is a simulation
embedding for Splay. �

3.5 The Subsequence Property.

Definition 3.2. A BST algorithm A is said to satisfy
the subsequence property if there is some constant
a > 0 so that for all requests X, all corresponding
initial trees T , and all subsequences Y of X, we have
costA(Y, T ) ≤ a costA(X,T ). We refer to the constant
a as the overhead.

Note that a subsequence is not necessarily contiguous.
We form a subsequence Y by any sequence of deletions
of items from X. Readers will likely anticipate the next
result.

Theorem 3.6. If Splay has the subsequence property
then it is dynamically optimal.

Proof. Suppose Splay has the subsequence property
with overhead a, and let (X,T ) be an instance of a
BST problem. Let Z denote the sequence of subtrees
generated by OPT(X,T ). Note that

cost(X,T ) ≤ a cost(S(Z), T ) ≤ 80aOPT(X,T ).

Theorem 3.5 gives us the second inequality, and ensures
us that X is a subsequence of S(Z). The first inequality
is due to the subsequence property. �

It is worth asking whether we even need the
subsequence overhead a. At least in the case of Splay, it is
indeed required. For the simplest example, let T be a left
path with integer nodes from 1 to n, and let X = (3, 1, 2)
and Y = (1, 2). The reader can easily verify that
cost(X,T ) = n+O(1) while cost(Y, T ) = 3n/2 +O(1),
hence Splay’s overhead a ≥ 3/2. With a little more
effort, we can get a slightly better lower bound on
a. Let T be a left path with integer nodes 1 to
2k − 1. If X = (2k−1, 2k−2, . . . , 2, 1, 2, 4, . . . , 2k−1) and
Y = (1, 2, 4, . . . , 2k−1), then cost(X,T ) = 2k + O(k)
while cost(Y, T ) = 2 · 2k +O(k), hence a ≥ 2 for Splay.
We conjecture that this ratio is tight.
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4 Transient Bounds.

4.1 Additive Overheads. It is conceivable, a priori,
that an algorithm A can be dynamically optimal, but
with some “startup overhead.” For example, if n
denotes the size of T then perhaps costA(X,T ) =
O(OPT(X,T ) + n lg lg n). Such a situation is not at
all unimaginable. The typical reasoning ascribed to
this possibility is that it may take “a few” accesses for
Splay, or any other algorithm, to “sort itself out” given
a “bad” initial tree. One might imagine starting with
an “unbalanced” tree; for example, a left path. We can
formalize this as follows.

Definition 4.1. We say that an algorithm A is dynam-
ically optimal with transient bound g : N → N if there
exists some positive constant c so that for every request
sequence X and corresponding initial tree T we have
costA(X,T ) ≤ c(OPT(X,T ) + g(|T |)).

Remark 4.1. If A costs at most as much as the opti-
mum with additive overhead g(|T |), then for X contain-
ing Ω(g(|T |)) requests, we can say that costA(X,T ) =
O(OPT(X,T )). In fact, this can be used as an alterna-
tive definition of transient bounds.

The notion of optimality with an “additive overhead”
has something of a history with respect to the conjecture.
The earliest example comes from Sleator and Tarjan’s
original paper [27], via the “balance theorem”. They
prove that for a sequence of m keys in a binary search
tree with n nodes Splay costs O((m + n) log(m + n)).
According to this bound, if m is asymptotically less than
n, for example m = Θ(n/ log log n), then an optimal
execution could perform asymptotically better than
Splay on “short” request sequences. The preliminary
version of Cole’s work on the dynamic finger theorem
[7] included an O(n log log n) additive overhead in the
bound, which required serious footwork involving inverse-
Ackerman functions and significantly bloated constants
to eliminate [8, 9].4

Some consideration has also been devoted to Greedy-
Future’s transients. In particular, it is conjectured in
[10] that GreedyFuture’s execution cost never exceeds
the optimal by more than an additive factor of n/2. Fi-
nally, Iacono describes a “proof-of-concept” algorithm
in [16] which is dynamically optimal under certain con-
jectured assumptions with an (admittedly ludicrous)
super-exponential additive overhead in initial tree size.5

4Note that this does not eliminate the possibility of O(n logn)
additive overhead for Splay, since we can have a request sequence
whose dynamic finger bound is O(n logn) yet whose optimal
execution cost is O(n). See, for example, [14].

5Iacono uses a multiplicative weights update method where

The observations of §3.5 already give us something
of a “lower bound” on Splay’s transients, which must
absorb at least Ω(n) additional cost for Splay as com-
pared with OPT due to the subsequence discrepancy.6

Sleator and Tarjan optimistically speculated an O(n)
upper bound on the additive overhead separating Splay
from OPT [27]. Remarkably, their guess must be right
for the conjecture to be true, as we shall see in the next
section.

4.2 Amplifying Transients. We prove in this sec-
tion that O(|T |) is an upper bound on the permissi-
ble functional form of any additive overhead in initial
tree size with which Splay can be dynamically optimal.
Equivalently, we show that proving that Splay is dynam-
ically optimal for some additive overhead automatically
establishes it is optimal with overhead O(|T |).

The formalities require care, but the idea is quite
straightforward. Start with request sequences and initial
trees inducing such “transient” effects, and augment
the request sequences with transformation sequences
returning the trees at the end of Splay’s executions
back to their initial states. By repeating the augmented
sequences we can produce instances of arbitrary length
on which Splay is uncompetitive.

Before proceeding to the proof, it is important to
remember that the optimality of an algorithm is never
defined for any particular instance. To illustrate this,
we note that costA(X,T ) ≤ |T |OPT(X,T ) for every
algorithm A, hence for fixed initial tree size |T |, every
algorithm is |T |-competitive. The problem, of course, is
that |T | can be of arbitrary size, hence (obviously) not
all algorithms are necessarily dynamically optimal. This
elementary fact is a reminder that Definition 2.2 is only
meaningful for an infinite family of request sequences
and corresponding initial trees that contains arbitrarily
large trees. Hence a proof that an algorithm is not
optimal must make use of sequences of instances, and
show that the algorithmic execution costs of the terms in
the sequence asymptotically diverge from those of OPT.
More formally, an algorithm A is not optimal whenever
there is a series {X1, X2, . . . } of request sequences
and corresponding initial trees {T1, T2, . . . } such that
limn→∞ costA(Xn, Tn)/OPT(Xn, Tn) =∞.

The next theorem shows that if any sequence of
instances separates Splay’s cost from OPT then Splay

each “expert” is a member from a certain class of BST algorithms,
ensuring that if any member of this class is optimal then so is his
algorithm.

6We can, if so desired, simply absorb this into OPT (see Remark
2.2), giving an overhead equal to zero. The observations of Section
7 will provide natural reasons to maintain this as a separate
overhead.
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cannot be optimal for any transient bound. More
precisely:

Theorem 4.1. Suppose we are given request se-
quences {X1, X2, . . . } and corresponding initial trees
{T1, T2, . . . }. If

lim
n→∞

cost(Xn, Tn)

OPT(Xn, Tn)
=∞

then there is no transient bound g : N → N and
corresponding constant c so that for all instances X
and corresponding initial trees T we have cost(X,T ) ≤
c(OPT(X,T ) + g(|T |)).

Before beginning the proof, Theorem 4.1 is worth
translating back into the language of additive overheads.
Suppose, hypothetically, that there is a sequence of in-
stances {(X1, T1), (X2, T2), . . . } for which |Tn| = n such
that cost(Xn, Tn) = Θ(n log n) while OPT(Xn, Tn) =
Θ(n). A priori this is compatible with the possibility
that cost(X,T ) = Θ(OPT(X,T ) + |T | log |T |). But as
we shall see, this sequence of instances would allow us
to construct request sequences of any length that cost
Splay Θ(log n)-times as much to execute as OPT.

Proof. By contradiction. Suppose Splay does indeed
have such a transient bound g with constant c. By
Remarks 2.2 and 4.1, we have for all sequences X of
length greater than g(|T |) that

2cOPT(X,T ) ≥ c(OPT(X,T ) + g(|T |))
≥ cost(X,T ),

or equivalently,

cost(X,T )

OPT(X,T )
≤ 2c.

We will construct sequences of length greater than g(|T |)
violating the above bound.

Let Vn be the the tree produced by splaying the
keys Xn starting from Tn, and define the augmented
sequence Un = Xn ⊕ T(Vn, Tn), where T(Vn, Tn) is the
transformation sequence that makes Splay transform Vn
into Vn. Denote by k ∗ Un the sequence Un repeated k
times. We make the following observations about the
behavior of Splay:

• cost(Un, Tn) ≥ cost(Xn, Tn), since Un merely con-
sists of requests appended to Xn.

• cost(k∗Un, Tn) = k cost(Un, Tn), where the equality
follows by construction of Un, which resets the tree
to Tn, making each repetition an identical execution.

Next, we need bounds for the optimal costs of two
sets of instances, both of which are established by first
constructing executions that satisfy the bounds, and
then noting that OPT has cost lower than any execution.
The bounds are:

• OPT(Un, Tn) ≤ OPT(Xn, Tn) + 81|Tn|. The upper
bounding execution is built by appending to a
sequence of transition trees for OPT(Xn, Tn) the
trees formed by splaying the paths to the nodes of
T(Vn, Tn), except with the first such path replaced
by the tree formed by splaying the first node of
T(Vn, Tn) in Vn. The total lengths of the remaining
paths are at most 80|Tn| by the transformation
property (Theorem 3.4).

• OPT(k ∗ Un, Tn) ≤ k ∗ (OPT(Un, Tn) + |Tn|). The
execution is constructed as follows. Let Bn denote
a sequence of transition trees for OPT(Un, Tn).
Define B′n to be identical to Bn, except the first
transition tree of B′n includes the entirety of the tree
formed by substituting the first transition tree in
Bn into Tn. The execution comprises of Bn followed
by k − 1 repetitions of B′n. The cost of B′n is at
most |Tn| greater than Bn, hence the inequality.

Combining the two bounds on OPT gives

OPT(k ∗ Un, Tn) ≤ k(OPT(Xn, Tn) + 82|Tn|)
≤ 83kOPT(Xn, Tn),

where the last inequality follows from Remark 2.2.
Finally, we can define a lower bound function h on

the ratio between the execution costs of Splay and OPT
for k ∗ Un by

cost(k ∗ Un, Tn)

OPT(k ∗ Un, Tn)
≥ 1

83
�k cost(Xn, Tn)

�kOPT(Xn, Tn)
=: h(n).

Notice that h is independent of k. Since h(n)→∞ as
n→∞, we can choose n0 so that h(n0) > 2c. Pick some
k0 > g(n0). The request sequence k0 ∗Un0

with starting
tree Tn0

violates the presumed transient bound. �

Remark 4.2. Kurt Mehlhorn has pointed out that
this theorem’s contrapositive is perhaps more readily
understandable: a proof showing Splay is optimal with
some additive overhead suffices to show optimality for
every instance. We have retained our framing of Theorem
4.1 as a negative result because it is more suggestive of
the ideas in 7.5.

4.3 Necessity of the Subsequence Property. We
can almost immediately use 4.1 to show that Splay must
have the subsequence property in order to be dynamically
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Figure 7: Example of eliding three transition trees.

optimal. However, we note the critical fact that Splay
cannot have the subsequence property if OPT does not
have the subsequence property. Fortunately, this is one
of a select few properties that is relatively easy to prove
about optimum BST executions.

Theorem 4.2. Let Y be a strict subsequence of X =
(x1, . . . , xm). For all valid initial trees T containing the
keys in X, OPT(Y, T ) < OPT(X,T ).

Proof. Let E be an optimal execution for X starting
from T with subtrees Q1, . . . , Qm, transition trees
Q′1, . . . , Q

′
m, and after-trees T1, . . . , Tm. We build an

execution for Y with initial tree T costing less than
OPT(X,T ). Note that Y is formed by eliminating the
requests in X that correspond to some subset of the
integer indices from 1 to m. Let j be the smallest index
eliminated, and let k be the smallest index greater than
j which was not removed from X to form Y . If k does
not exist (i.e. xj , . . . , xm are all dropped) then simply
remove Qj , . . . , Qm and Q′j , . . . , Q

′
m from E to form a

valid execution for Y . Otherwise we “elide” subtrees as
follows.

Replace Qj , . . . , Qk with Q, the connected subtree
of the root of Tj−1 that contains all of the nodes in
Qj ∪ · · · ∪Qk. Then form the tree Q′ by starting from
Q and successively transforming the subtree Qi into Q′i
for j ≤ i ≤ k (see Figure 7). The transition tree Q′

replaces Q′j , . . . , Q
′
k, and becomes the transition tree

for the access in Y that corresponds to the kth access
in X. Observe that |Q| ≤ |Qj | + · · · + |Qk| − (k − j).
Since k − j > 1, the cost of substituting Q′ for Q in
Tj−1 is strictly less than the commensurate substitutions
of Qj , . . . , Qk in X. Repeat this process for each
subsequent contiguous subsequence of requests in X
that are missing from Y to form a valid execution for Y
costing less than X. �

Theorem 4.3. If Splay does not have the subsequence
property then it is not dynamically optimal.

Proof. Suppose we have request sequences {X1, X2, . . . }
with starting trees {T1, T2, . . . } and corresponding sub-

sequences {Y1, Y2, . . . } such that

lim
n→∞

cost(Yn, Tn)

cost(Xn, Tn)
=∞.

Because OPT has the subsequence property by The-
orem 4.2, we have OPT(Yn, Tn) ≤ OPT(Xn, Tn) ≤
cost(Xn, Tn), hence

lim
n→∞

cost(Yn, Tn)/OPT(Yn, Tn) =∞.

By Theorem 4.1, Splay is not dynamically optimal. �

Of course since OPT has the subsequence property,
any dynamically optimal algorithm must as well, in an
asymptotic sense at minimum. Theorem 4.3, in a manner
very similar to Theorem 4.1, provides the additional as-
surance that Splay must obey the subsequence property
in a very strictly.

5 Extensions

5.1 Competitive Ratios. The subsequence prop-
erty is useful even if Splay is not constant-
competitive. For example, showing Splay has
subsequence overhead O(log log |T |) would suffice
to establish that Splay is O(log log |T |)-competitive
with OPT.7 Similarly if, hypothetically, there is
some sequence of instances {(X1, T1), (X2, T2), . . . } for
which cost(Xn, Tn) = Ω(log log nOPT(Xn, Tn)), then
cost(Xn, Tn)/ cost(S(OPT(Xn, Tn)), Tn) = Ω(log log n),
and Splay’s subsequence overhead would be Ω(log log n).

In fact, Splay’s competitive ratio with OPT, to
within a constant factor, is identical to its subsequence
overhead: if f(n) = sup|T |=n,Y⊆X cost(Y, T )/ cost(X,T )
and g(n) = sup|T |=n,X cost(X,T )/OPT(X,T ) then

f(n)/g(n) = Θ(1).8 The subsequence property and
dynamic optimality are very much equivalent.

5.2 Insertion and Deletion. We can extend the
BST model to cover insertions and deletions. To do
so, we divide the tree into two sets of nodes: visible and
invisible. The visible nodes always form a connected
subtree of the root. The nodes of the starting tree all
begin as visible. The keys which are not in the initial tree
but will be inserted some time later are “pre-inserted”
into the initial tree without adjustment as invisible nodes,
by leaf insertion in insertion order.

To delete a visible node, an execution produces a
transition tree where the node’s successor is the root,
its predecessor is the root’s left child, and the node to

7This itself would be a major result, improving over the best-
known bound, cost(X,T ) = O(log |T |OPT(X,T )), that was first
derived in [27].

8Here, Y ⊆ X denotes Y is a subsequence of X.
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be deleted is its predecessor’s right child (if one of the
successor or predecessor is not present then the deleted
node becomes the child of the other one, otherwise it
becomes the root).9 After substituting the subtree, the
deleted node becomes invisible.

The execution cannot incorporate an invisible node
into a transition tree until it is made visible by an
insertion. To execute an insertion, an invisible child
of a visible node is made visible, and then incorporated
into a transition tree in the usual way. We assume
without loss of generality that an inserted node is always
a child of a visible node, or is at the root (otherwise we
can create an alternate request sequence that satisfies
this property and has an equivalent execution).

The representations of insertion and deletion are
carefully constructed so that if Splay has the subsequence
property in the model of Definition 2.1 then it will also
be constant competitive with OPT on request sequences
that allow these operations. We implement these
operations as requests that impose certain restrictions
on the transition trees employed by OPT. Since Splay
can simulate arbitrary transition trees, it can simulate
transition trees of restricted form as well. We thus never
need to add insertions or deletions to the simulation
embeddings for Splay to account for these operations.10

5.3 The Deque Conjecture. Consider the following
problem. Start with tree T having integers 1 through
n as elements, and consider a sequence of m of the
following operations: delete(min{T}), delete(max{T}),
insert(min{T} − 1), and insert(max{T}+ 1). (We call
these deque operations.) We can use our implementations
of insertion and deletion to perform these operations
in O(n + m) amortized time in the BST model (see
[4, Lemma 36] for details). In [30], Tarjan considered
whether the total cost of performing deque operations via
splaying costs O(m+n), calling this the deque conjecture.
If deque operations are implemented with our versions
of insertion and deletion then by Theorems 3.6 and 4.1,
the subsequence property implies that Splay executes
these deque operations with cost O(m+ n).11

9Our definition of deletion is unusually strong: normally
deletion is implemented by accessing the successor or predecessor,
but not both. Our definition ensures that the subtree rooted at
the deleted item contains no visible node, and can be implemented
using a subtree transformation. We leave the analysis of standard
deletion algorithms as an open problem.

10An extended version of this paper will feature a detailed proof.
11Tarjan’s original method for using Splay to implement deque

operations is slightly different [30]. We leave determining
whether the subsequence property also implies that the original
implementations satisfy the deque conjecture as an open problem.

5.4 The Traversal Conjecture. A corollary of The-
orem 4.1 is that if Splay has the subsequence property
(and hence is dynamically optimal) then it satisfies the
traversal conjecture, which is as follows. Let T1 and T2

be two binary search trees on the same set of n keys,
and let P be the sequence listing T2’s keys in preorder
(the item in the root of T2 first, followed by the items in
the left subtree of T2 in preorder, followed by the items
in the right subtree of T2 in preorder). The traversal
conjecture [27] is that cost(T1, P ) = O(n). The traversal
conjecture would be an immediate consequence of Splay
being dynamically optimal with linear transient bound,
but would not necessarily follow from Splay being op-
timal with super-linear transient bound. Theorem 4.1
removes the difference.

5.5 Path-Based Algorithms. A reexamination of
§3 and §4 reveals that all of our results apply to any
algorithm that

1. has transition trees that are strict functions of
the binary encodings of the search paths for the
requested nodes, and

2. whose transition graph Gn is strongly connected for
some n ≥ 3.

These two properties guarantee the transformation
property, and the overhead of the transformations (and
hence simulations) will be bounded above by n-times
the diameter of the algorithm’s transition graph Gn.

We note that the transition graph of “Simple Splay,”
described in [27], is also strongly connected. Hence if
Simple Splay has the subsequence property then it is
dynamically optimal. These results do not immediately
apply to top-down splaying, either regular or “simple”
variant, as they do not have the transformation property
(proof omitted). Interestingly enough, these results do
apply to Move-to-Root, since we can use Move-to-Root
to transform between three-node trees (proof omitted).
It is easy to show that Move-to-Root is not optimal.
Hence by Theorem 3.6 Move-to-Root does not have the
subsequence property. (We leave finding the relevant
family of sequence/subsequence pairs to the reader.) If
nothing else, this indicates Theorem 4.3 could be a useful
tool for showing algorithms are not optimal.

We also observe in particular that any template
based algorithm of the types discussed in [28] and [12]
whose transition graph Gn is strongly connected for some
n ≥ 3 is dynamically optimal if and only if it satisfies the
subsequence property. We suspect, but have not tried to
prove, that there are simple sets of combinatorial criteria
by which one can evaluate a template to determine if it
has some strongly connected transition graph, and that
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a large sub-family of template algorithms will meet such
criteria.

6 Wilber’s Bound

In this section we describe Wilber’s second lower bound in
terms of the crossing nodes of Move-to-Root’s execution,
and characterize Move-to-Root as the unique algorithm
that maintains the treap of keys with heap-order defined
by most recent access time. This allows us to prove
that Wilber’s bound has the subsequence property with
constant factor of 1.

6.1 Treaps and Move-to-Root. A treap is a binary
search tree in which each node is assigned a unique
priority, from a totally ordered set. The nodes of a treap
obey the usual symmetric order condition with respect to
their keys, and the heap-order condition with respect to
the priorities: a non-root node’s priority never exceeds its
parent’s. There is only one way to arrange the nodes of
a binary tree in a manner satisfying both the symmetric
and heap orderings with respect to a given set of priorities
and keys: the root is the node of greatest priority, and
the left and right subtrees comprise the treaps of keys
respectively smaller and greater than the root. Jean
Vuillemin constructed treaps from permutations, setting
each key’s priority to its position in the the permutation
[31]. The term “treap” is due to Seidel and Aragon [24].

Move-to-Root is the unique algorithm such that,
after each access, the keys so far requested are arranged
as a treap in which a key’s priority is the most recent
time at which it was requested. The action of Move-to-
Root is equivalent to setting the requested key’s priority
to one greater than that of all other nodes, and then
restoring the treap order. (The first item is accessed at
time 1, and for initial tree T each node x ∈ T is given
initial priority of r(x)− |T |, where r(x) is the index at
which x appears in T ’s postorder.12)

We can see as follows that Move-to-Root restores
the heap-order invariant. Resetting the priority of
the requested node x introduces a single “heap-order
violation” at the edge between x and its parent (if the
parent is present). After each rotation at x that does not
result in x becoming the root, only a single edge in the
tree violates the heap order, and that edge is always the
one between x and its parent. When x becomes the root,
it has the largest priority, and no other edges violate the
heap order. That Move-to-Root is the unique algorithm
restoring heap order stems from the uniqueness of the
treap for the given priorities.

12The postorder of T is a sequence comprising the items in the
left subtree of T in postorder, followed by the items in the right
subtree of T in postorder, followed by the item in the root of T .

6.2 Crossing Costs. The lower bound ignobly
named Wilber 2 has never had more than support-
ing roles in various lemmas and corollaries scattered
throughout the literature. That the “independent rect-
angle bound” from the geometric view of the BST model
subsumes Wilber’s seems to have further eroded its pop-
ularity (see [10] for details). But we think Wilber’s
outwardly inscrutable lower bound on the cost of binary
search tree executions will yet play a crucial part in the
story of the elusive dynamic optimality conjecture, and
we give it a new debut. Note that we will have no use
for the first lower bound defined in [32]. Hence from
this point forward, Wilber’s bound will always mean his
second lower bound.

We reformulate Wilber’s bound, as a count of critical
keys chosen by their positions in the treap maintained
by Move-to-Root. This formulation, implicit in Iacono’s
work [15] and alluded to in [16], is far more amenable to
our purposes in §6.3 than the original.13

Let x be a node in a binary tree T , and consider
the subtree P of T comprising the nodes of the path
connecting x to the root of T . The crossing nodes for
x in T are comprise x, the root of T , and the nodes in
P that are either left children with a right child on P
or right children with a left child on P . We refer to the
number of crossing nodes for x as the crossing depth or
level of x in T , and denote in `T (x).

Definition 6.1. (Crossing Cost) Let X =
(x1, . . . , xm) be a request sequence with initial
tree T = T0, and let T1, . . . , Tm be the after-trees of
an execution E for this instance. The crossing cost of
execution E is

∑m
i=1 `Ti−1

(xi).
Wilber’s bound for instance (X,T ), denoted by

Λ(X,T ), is the crossing cost of Move-to-Root’s execution
of this instance.14

Theorem 6.1. (From [32].) Λ(X,T ) ≤ OPT(X,T ).

Remark 6.1. Crossing nodes can be computed visually.
Let root(T ) = p1, p2, . . . , pk = x be the nodes of the
access path for x in T . The first crossing node is p1. Draw
a line vertically from x up to infinity.15 For 1 < i ≤ k,
if the edge connecting pi−1 to pi touches this line then
pi is a crossing node. See Figure 8 for an example of
graphically calculating Wilber’s bound.

13Proving equivalence between Wilber’s and Iacono’s formula-
tions of Wilber’s bound is, in our opinion, not entirely trivial, and
appears to be folklore. We include a proof in an extended version
of this paper.

14We have slightly changed the original bound to account for
initial trees.

15A node’s horizontal coordinate is its key’s position in symmet-
ric order; its vertical coordinate is the negative of its depth.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1322

D
ow

nl
oa

de
d 

02
/2

1/
23

 to
 1

40
.1

80
.2

40
.1

06
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



7
6

4
3

2

5
1

7
6

4
3

8
5

1

7
63

2

4

5
1

7

6

8
51

8
2

8 2

3
4

Figure 8: Execution of X = (8, 2, 7, 4) starting from T
by Move-to-Root. There are 14 total crossing nodes.
Hence Λ(X,T ) = 14.

6.3 Λ has the Subsequence Property. The treap-
based view of Wilber’s bound enables us to change the
problem of proving the subsequence property from one of
executing different request sequences starting from the
same tree to one of executing the same request sequence
starting from different trees. In detail, let Q be an initial
tree for request sequence U , and let V be a subsequence
of U formed by removing an access to a single request
x from U , so that U = W ⊕ (x) ⊕ Z and V = W ⊕ Z
for some subsequence W of U . Let S be the tree formed
by executing W with Move-to-Root starting from Q,
and let T be formed by moving x to the root of S via
Move-to-Root.

Lemma 6.1. Λ(Z, S)− Λ(Z, T ) ≤ `S(x).

This innocuous looking lemma turns out to be very
tedious to prove. The basic idea is to analyze how the
structure of S and T evolve as requested items in Z are
moved to the root using Move-to-Root. This requires
both the treap and rotation-based views of Move-to-Root.
Our proof, which involves a “brute-force” case analysis of
how more than a dozen families of nodes change crossing
depths depending on what is accessed,16 is not very
elegant.

The gory details will not be of immediate interest to
our investigation, so we relegate them to §8 for reference.
We caution that even the lengthy proof in §8 is merely
an outline, as many of the observations contained within
it are not trivial, and deserve proofs in their own right.

Lemma 6.2. Λ(U,Q) ≥ Λ(V,Q).

Proof. The execution of both U and V by Move-to-
Root starting from Q is identical for every request in
W , hence Λ(U,Q) = Λ(W,Q) + lS(x) + Λ(Z, T ) while
Λ(V,Q) = Λ(W,Q) + Λ(Z, S). The theorem follows from
Lemma 6.1. �

16The families are the crossing nodes on the left and right side
of x, the nodes between these crossing nodes on the path to x, the
subtrees of each of these families, and corner cases at the root and
the subtrees of x.

Theorem 6.2. Wilber’s bound has the subsequence
property with overhead one.

Proof. The result follows from Lemma 6.2, by induction
on the request deletions used to form Y from X. �

Remark 6.2. After reviewing our paper, Kurt
Mehlhorn kindly supplied us with a vastly simplified
proof of Theorem 6.2 in the geometric model [10]. This
simplified proof will be featured in an extended version
of this paper. Similarly, a reviewer has pointed out that
it is even easier to prove that the stronger Independent
Rectangle Bound has the subsequence property. We
have chosen to focus on Wilber’s weaker lower bound
because we suspect Theorem 6.2 can be used as
a template for showing Splay has the subsequence
property, as we discuss at length in §7. In addition, we
strongly believe that Splay is not amenable to geometric
analysis, hence we retain our longer non-geometric proof
of Theorem 6.2.

7 The Path Forward

In this section, we put forward the following plan for
structuring a proof that Splay is dynamically optimal,
which builds on the tools developed in §3 - 6. First, we
argue for separately analyzing the number of zig-zags
(or crossings) and zig-zigs in Splay’s executions. We
then supply evidence of a strong relationship between
Splay’s crossing costs and Wilber’s bound, and outline
two avenues for making use of this relationship. The
first option is to directly bound Splay’s crossing costs by
those of Move-to-Root. The second option is to adapt the
proof of the subsequence property from Wilber’s bound
to Splay. We discuss the advantages and disadvantageous
of each approach. Both approaches seem likely to require
potential functions in their analysis, and we speculate
on what this potential might look like. For the last part
of the proof, we claim Splay’s zig-zig costs should be
bounded by its crossing costs, and offer our thoughts on
how to prove this.

Disclaimer. Our in-depth suggestions are entirely spec-
ulative, and our speculation could be partially or entirely
wrong. However, the suppositions are informed by ex-
tensive informal evidence of some variety. This includes
folklore knowledge gleaned from discussions with col-
leagues, comments from other papers, notebooks filled
with the first author’s failed attempts to prove various
theorems, and most of all, numerical experiments run
using the first author’s (thoroughly tested) personal im-
plementations of the algorithms discussed herein. The
results of our numerical experiments in particular have
been corroborated in large part by John Iacono. The
authors of this paper are confident that, at a minimum,
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any incorrect statements in the following section can
only be wrong for interesting reasons.

7.1 Separating Λ′ and ζ. We believe proving that
Splay is dynamically optimal will require separately
counting the number of zig-zig and zig-zag steps that
it performs. First, we cover some formalities. In the
sequel, for the purposes of both typographic clarity and
conceptual harmony with our terminology for Wilber’s
bound, we refer to zig-zags as crossings, while retaining
the terminology for zig-zigs.

Let Λ′(X,T ) denote the crossing cost (as in Defini-
tion 6.1) of splaying the nodes of X starting from tree
T . Define the zig-zig nodes of an access as the nodes
of the access path that are not crossing nodes. The
zig-zig cost of an execution is the total number of zig-zig
nodes along all the access paths encountered. We will
use ζ(X,T ) to denote the zig-zig costs of splaying the
items requested in X starting from T . Note that, by
definition, cost(X,T ) = Λ′(X,T ) + ζ(X,T ).

Numerical experiments indicate that cost(X,T ) ≤
3(Λ(X,T ) + |T |) for all request sequences X and corre-
sponding T , giving preliminary impetus for exploring
how Splay and Wilber’s bound are related. But we have
also observed a much stronger connection. We believe
Splay’s crossing costs are equal to Move-to-Root’s up to
lower order additive terms, and conjecture:

|Λ′(X,T )− Λ(X,T )| = O(|X|+ |T |).17

Note that up to an additive O(|X|) term, Λ′(X,T ) is
equal to the number of zig-zag splay steps enacted.

Empirically, ζ exhibits far more variability than Λ′

with respect to Wilber’s bound, providing at least some
motivation to analyze these two quantities in different
ways. This proposal also agrees well with Iacono’s
remarks from [16]. He notes that one way to prove
Wilber’s bound is tight is by designing an algorithm
that can search for elements in time proportional to the
number of crossing nodes on the path to that key in the
treap maintained by Move-to-Root. His remarks align
with our suspicion (see §7.7) that the BST model’s true
power stems from the existence of crossing nodes, and
that zig-zig nodes are, in some sense, merely incidental
“bookkeeping” nodes. Splay is of course defined by
separating the zig-zig and zig-zag cases, lending further
credence to the suggestion for distinct analyses.

Our basic proposal for analyzing ζ is to upper bound
it by Λ′. We defer further discussion of ζ to §7.6, and
focus our immediate attention on Λ′.

17The absolute value signs are not accidental. For a minimum
example, let X = (3, 1, 4, 2), and T the corresponding treap.

Figure 9: A global view of Splay trees. The transforma-
tion from the left to the middle illustrates Move-to-Root.
The transformation from the left to the right illustrates
Splay trees. (Figure and caption from [3]).

7.2 Connecting Λ and Λ′. As discussed in §6,
Wilber’s bound is defined by the crossing costs of Move-
to-Root. That Splay’s and Move-to-Root’s crossing costs
might be intimately tied becomes less surprising by
looking at Splay in the global view of template algorithms.
We quote the description of Splay from [3] verbatim.
“Splay extends Move-to-Root: Let s = v0, v1, . . . , vk be
the reversed search path. We view splaying as a two step
process, see Figure 9. We first make s the root and split
the search path into two paths, the path of elements
smaller than s and the path of elements larger than s.
If v2i+1 and v2i+2 are on the same side of s, we rotate
them, i.e., we remove v2i+2 from the path and make it a
child of v2i+1.”

Paraphrasing, Splay first executes Move-to-Root,
and then performs extra rotations, the zig-zigs, along
the side-arms of the after tree to ensure a “depth-halving”
effect. In the language of treaps, each of these zig-zigs
creates a “violation” in the heap ordering that Move-
to-Root maintains with respect to most recent access
time. As the executions of both Splay and Move-to-
Root proceed for a given instance (X,T ), these zig-zigs
will sometimes create further heap-order violations. At
other times, the various splay steps will remove some
of the heap-order violations. Tracking the creation and
destruction of heap-order violations in Splay’s executions
rapidly becomes complicated, yet there is a clear intuitive
basis for suspecting the Splay and Move-to-Root never
become “too far” out of sync. As we shall see in §7.5,
this strongly suggests the use of a potential function [29]
for tracking these violations.

Of course, we have not specified what one might use
this potential for. This question brings us to a fork in
our path. In the next two sections, we discuss what each
road forward entails.

7.3 Road I: Bounding Λ′ by Λ. The obvious way
forward is attempting to directly prove the empirically
derived conjecture of the previous section that Splay’s
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Figure 10: Comparison of crossing nodes for Splay and
Move-to-Root when X = (8, 2, 7, 4).

crossing costs equal those of Move-to-Root up to an
additive linear overhead. Note that if our suspicion
that ζ(X,T ) = O(Λ′(X,T )) in §7.6 is correct, then
Λ′(X,T ) = Θ(Λ(X,T )) is in fact a stronger result than
dynamic optimality: it would imply that Wilber’s lower
bound is tight.

The authors have tried at length to prove the above
conjecture directly. Suffice it to say, this paper would
have included a proof had we succeeded. John Iacono
has also noticed this relationship, and spent some time
trying to prove it, to no avail. To the extent that it
is possible to describe why a certain kind of proof is
ineffective for attacking a given problem, we offer our
comments on where the difficulties lie.

Consider a request sequence X = (x1, . . . , xm)
and let P1, . . . , Pm and P ′1, . . . , P

′
m denote the paths

encountered while executing X starting from T with,
respectively, Move-to-Root and Splay. Path-for-path
comparisons on various request sequences reveal that
these two algorithms appear to share more than crossing
costs. In fact, for most 1 ≤ i ≤ m, the keys of the
crossing nodes along each Pi and P ′i will be extremely
similar (see Figure 10), albeit sometimes “offset” from
each other in symmetric order by a small amount.
However, the crossing nodes in Pi do not always appear
directly in P ′i . Usually, P ′i contains about one half to one
third of the crossing nodes in Pi. Other of Pi’s crossing
nodes appear in P ′i+1, a few more in P ′i+2, and so on. In
essence, there appears to be some “temporal spreading”
in terms of when Move-to-Root’s crossing nodes appear
within the splay paths. The extent of temporal mixing
is somewhat varied, depending on the particular request
sequence. Likely, this is due to the differing extents to
which nodes violate the heap order in Splay with respect
to most recent access time.

Joan Lucas has remarked that, in a number of
contexts, OPT does not seem amenable to analysis by

direct inductive proofs [20]. We believe this observed
temporal mixing is one manifestation of this difficulty.
Essentially, any inductive proof relating Λ′(X,T ) to
Λ(X,T ) must account for multiple previous requests at
the inductive step. If true, this issue essentially destroys
what makes inductive arguments simple.

We think this matter merits further investigation.
It would certainly be an elegant end to the conjecture if
Splay’s crossing costs essentially equal Wilber’s bound,
and it is quite possible the above impediments to
proving this are a mere product of the authors’ lack
of imagination.

7.4 Road II: Λ′ and Subsequences. We see only
one other viable route to analyzing Λ′: show, for any
request sequence X, starting tree T , and subsequence Y
of X, that Λ′(Y, T ) ≤ Λ′(X,T ) +O(|X|+ |T |).18

There are several points in favor of this alternative
approach. First, if Λ′(X,T ) is bounded by Λ(X,T ) up
to additive terms then Λ′ must necessarily have the sub-
sequence property in this sense, from the subsequence
property for Wilber’s bound. Since numerical experi-
ments indicate the former statement is true, we expect
the latter to be true as well. Second, Λ′ having the
subsequence property is an (a priori) weaker statement
than equating Λ′ to Wilber’s bound, hence it can still
be true even if our numerical experiments comparing Λ
and Λ′ have misled us. Third, and most importantly
(and unlike the situation in Road I) we already have a
reasonable starting point : we can try to prove Λ′ has the
subsequence property by adapting the machinery of §6.3
from Wilber’s bound to Splay. This critical task requires
a key modification to Theorem 6.2: we must change the
form of the induction.

The proof of Theorem 6.2 used in §6.3 has a specific
structure: begin by establishing that the removal of a
single item from a request sequence always decreases
Λ (Lemma 6.2), and then induct on item removals to
show that Λ(X,T ) ≥ Λ(Y, T ) for any subsequence Y
formed by successively removing requests from X. This
structure enables establishing the subsequence property
for Wilber’s bound without having to “compare” how
Move-to-Root executes two different request sequences
(key to Lemma 6.1).

This trick is unlikely to work for Splay. Numerical
evidence strongly indicates that removing a request

18In fact, we merely require that Λ′(Y, T ) = O(Λ′(X,T ) + |X|+
|T |). The constant in front of Λ′(X,T ) does not need to be 1 for
our proofs to carry through. We also note that there are cases in
which Λ′ does not obey the subsequence property in the strictest
possible sense. For example, form T by inserting keys in the
order (5, 3, 1, 4, 2) into an empty tree, let X = (2, 3, 5, 1, 4), and
Y = (3, 5, 1, 4). Here, Λ′(Y, T ) > Λ′(X,T )
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for an item with crossing depth κ in the splayed
tree can increase Splay’s crossing costs by ω(κ).19

If true, the inductive step will fail. Instead, we
must “directly” demonstrate that removing an arbitrary
subset of requests increases Splay’s crossing costs by at
most O(|X| + |T |) in total. More precisely, let X =
(x1, x2, . . . , xm), with Y = (y1, y2, . . . , ym−k) produced
as a subsequence of X through deleting request numbers
1 ≤ d1 < · · · < dk ≤ |X|. For 1 ≤ i ≤ m, define Xi =
(x1, . . . , xi), Y0 = () and Yi =

(
y1, . . . , yi−max{j|dj≤i}

)
.

What we want is a double induction on both i and k
that establishes Λ′(Yi, T ) ≤ Λ′(Xi, T ) +O(i+ |T |). This
style of induction requires comparing how Splay executes
different request sequences starting from different trees.

Prudence dictates reproving the subsequence prop-
erty for Wilber’s bound via the above-mentioned double
induction before moving on to analyzing Splay’s cross-
ing costs. The proof of Theorem 6.2 via Lemma 6.1 is
already unpleasantly complicated, so the more intricate
version is, frankly, not going to be pretty. The good
news is that since we already know the theorem is true,
this alternate method of establishing it is, at least in
principle, achievable.

We must still adapt this new proof from Λ to Λ′.
The conversion process will almost certainly require a
potential function in order to smooth out the effects
of occasional requests whose removal produces a high
increase in Splay’s crossing costs. We discuss this matter
in the next section.

We leave readers at a fork in the road. Road I
is more obvious, yet so far it has led explorers astray.
Perhaps the second road, less well-travelled, can make
all the difference.20

7.5 A Potential for Heap Order Violations. A
potential function is a tool for analyzing algorithms that
have individual operations with high cost, but for which
the cost per operation, amortized over all requests in a
sequence, is low. (Splay is of course a perfect example.)
Each possible configuration of the data structure (e.g.
the tree) is assigned a numerical value, called its potential.
We then redefine the cost of an operation to depend on
both the “actual” cost, and on how the potential changes
due to the operation’s effect on the data structure. If
carefully constructed, the sum of the redefined costs over
a sequence of operations will be an upper bound on the
sum of the actual costs, yet no individual operation’s
“redefined” cost will ever be very large. This relates to
our problem in the following way.

19Sadly, we have not come up with any set of examples showing
this.

20With apologies to Robert Frost.

Consider request sequence X = (x1, . . . , xm). While
the crossing depth may differ greatly for any individual xi
at the time it is accessed in the splayed tree vs. the move-
to-root tree, we still believe that Λ′(X,T ) and Λ(X,T )
are always tightly coupled (§7.3). Similarly, despite
evidence that the removal of any individual request may
greatly increase Λ′, we remain convinced that removing
an arbitrary subset of requests will not increase Λ′ too
much in total (7.4). Both of these conjectures are ripe
for analysis via a potential function.

Those who have designed potential functions under-
stand by experience that it can be a tricky and subtle
business. We are fairly convinced that the correct poten-
tial for either of the above problems should in some way
smooth out Splay’s heap-order violations. Constructing
this potential function is perhaps the biggest remaining
roadblock to proving dynamic optimality left open by
this work. We can however, infer something very impor-
tant. As noted in [17], a potential function’s design is
closely tied to the extent to which the potential’s value
can increase or decrease; i.e. its range. Typically, the
potential’s range is used to determine the algorithm’s
additive overhead. In our case, however, we have found
Splay’s additive overhead via Theorem 4.1, which in-
forms us that the potential’s range should not exceed
O(|X|+ |T |), and in fact we strongly suspect that the
maximum value of this potential is O(|T |).

We speculate on two possible forms for the potential.
The first simply counts the number of edges in the tree
being splayed that violate the heap-order condition with
respect to most recent access time. The authors have
spent some time analyzing this simple potential, but not
enough to form an opinion about whether it will suffice
for the purpose at hand. If this potential is not up to
the task, the likely reason will be that it is too “coarse,”
in that it fails to capture heap-order violations between
nodes not immediately connected by an edge.

In case the potential does require more granularity,
it seems reasonable to address this through weighting
each node by some function of the difference between its
crossing depth (or level) in the splayed tree and in the
treap maintained by Move-to-Root. Russo’s potential
from [23] may be a good starting point for gleaning
inspiration. But any further speculation that we provide
on the form of this second type of potential is more likely
than not to simply make readers liable for the authors’
ignorance.

We strongly recommend those that who build on
the present work exhaust all attempts at using the
first potential function before moving on the second,
for two reasons. First, it is a natural analogue of the
potential function used to show that Move-to-Front,
the algorithm that motivated splay trees, is constant-
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competitive in list-based caching models [26]. Second,
the minutia of reweighing the second kind of potential
(due to level changes in subtrees of rotated nodes) is
likely to considerably complicate the analysis. In a
sense, the first potential function is the simplest one
that conceivably can work. Time will tell if it does.

7.6 Bounding ζ by Λ′. Should either of the results
conjectured in §7.3 or in §7.4 hold true, then bounding
Splay’s zig-zig costs by its crossing costs would suffice
to affirmatively settle the conjecture. More formally

Theorem 7.1. If ζ(X,T ) = O(Λ′(X,T ) + |T |), and
there is some constant c so that either

• Λ′(X,T ) ≤ c(Λ(X,T ) + |T |) or

• Λ′(Y, T ) ≤ c(Λ′(X,T ) + |T |) for all subsequences Y

then Splay is dynamically optimal.

We also note that if our numerical experiments indicat-
ing Λ′(X,T ) + |T | = Θ(Λ(X,T ) + |T |) = Θ(cost(X,T ))
are correct, then ζ(X,T ) = O(Λ′(X,T ) + |T |) follows by
necessity.

We can gain some intuition on why this bound
might hold by comparing the trees resulting from
splaying paths with many zig-zigs to those resulting
from splaying paths with many crossings. Essentially,
Splay turns crossings into zig-zigs, and zig-zigs into
crossings. Precisely tracking the creation and destruction
of crossings and zig-zigs as Splay’s execution progresses
seems to become quickly unmanageable, which is why
we suggest employing some sort of potential function to
do so.

We believe an appropriate potential function will
act as a proxy for “the number of zig-zigs” in the tree
being splayed. Intuitively, a leftward or rightward path
should maximize this potential, and a perfectly balanced
binary search tree (which has 2k−1 nodes all with depth
at most k − 1) should minimize it. There does seem to
be some more subtlety in appropriately defining the
“number of zig-zigs” in a binary search tree than one
might expect at first. Our investigations into this matter
are only preliminary, so we decline to comment further
on what the potential might look like.

We postulate that ζ(X,T ) ≤ 2(Λ′(X,T ) + |T |), and
that the maximum value of the zig-zig potential should
be 2|T |. We surmise the factor of two from the lower
bound on Splay’s subsequence overhead, derived in §3.5
by splaying nodes at the end of a left path. Indeed, notice
from that example that all of the |T |−o(|T |) extra splay
steps introduced by removing requests from X were
zig-zigs, lending credence to our suspicion that Splay’s
subsequence overhead stems from its zig-zig costs.

7.7 Why This Path? Our ideas stem from two
convictions: that Splay is dynamically optimal, and
that the subsequence property is the way to prove it.
Having covered the formal and empirical bases for these
convictions, we conclude by offering a bit of intuition.

At a high level, the binary search tree model is
a natural extension of the “list-based” caching model
that Sleator and Tarjan explored in tandem with their
work on Splay trees [26]. The difference between the
list-based model and the BST model is as simple as it is
profound: in the list-based model, nodes have a single
“next” pointer, while nodes in the BST model have two
pointers, “left” and “right”. The additional pointer in
the BST model allows breaking lists into “short” access
paths that comprise alternating left and right children
(i.e. crossings, or zig-zags). Since the power of the BST
model arises from zig-zags, it is not so surprising to find
a lower bound, Λ, based on crossing costs.

Wilber argues convincingly why we might expect the
crossing costs to be related to items’ prior access times
[32]. From Definition 2.1, when an item is accessed,
a BST algorithm must bring it to the root. This
requires relocating items that were brought to the root by
previous requests. Wilber’s bound essentially counts the
number of such items which must be “moved back out
of the way” in order to complete a request. Treaps with
time-ordered priorities provide a natural way to represent
this information. Move-to-Root neatly maintains this
treap.

Move-to-Root is only non-optimal due to sometimes
having high zig-zig costs. Splay tweaks Move-to-Root by
breaking apart zig-zig edges in the side-arms of the after-
tree. Splay thus seems to be precisely the modification
needed to make Move-to-Root optimal.

Reducing dynamic optimality to the subsequence
property is an example of a time-tested mathematical
technique: to establish that a function (the Splay
algorithm) has a certain property (its cost is < c ·OPT)
at every point (an instance (X,T )) in a space (the set
of all BST instances),

• demonstrate that the property is true in some subset
of the space (the simulation instances), and

• relate the function’s behavior (via the subsequence
property) at other points in the space to its behavior
in the subset.

We rest our case: the subsequence property is a new
path from Splay to Dynamic Optimality.

8 Proof of Lemma 6.1

Let Z = Z ′ ⊕ (z). We denote by S′ and T ′ the
trees formed by executing the request sequence Z ′
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starting respectively from S and T using Move-to-
Root. We denote by S′′ and T ′′ the trees formed
respectively by moving z to the root of T ′ and S′.
Conceptually, this proof is a complicated induction on
the number of requests in Z. Recall that we wish to
show Λ(Z, S)− Λ(Z, T ) < `S(x). The base case, when
Z is the empty sequence, is trivial. For the inductive
step we must show that if the lemma holds for request
sequence Z ′ then it also holds for Z ′ ⊕ z.

For y ∈ Q we define ∆(y) = `S(y)− `T (y), ∆′(y) =
`S′(y)− `T ′(y), and ∆′′(y) = `S′′(y)− `T ′′(y). The proof
will focus on parametrizing the functions ∆, ∆′, and ∆′′,
since only the difference between z’s crossing depth in
S′ and T ′ will contribute to any discrepancy between
Λ(Z, S) and Λ(Z, T ). Let u be the greatest key less than
or equal to x in Z ′, and v the smallest key greater than
or equal to x in Z ′. (Initially u = −∞ and v = ∞.)
Observe:21

1. Let y be on the path from the root of a binary search
tree Π to z ∈ Π, and let Πy denote the subtree
rooted at y in Π. The tree move-to-root(Π, z) is
identical to move-to-root(Π′, z), where Π′ is formed
by replacing Πy with move-to-root(Πy, z) in Π.22

2. The nodes in (−∞, u] ∪ [v,∞) form a connected
subtree of the root in both S′ and T ′. This subtree,
I, is identical in both S′ and T ′.

3. For z ∈ I, `S′(z) = `T ′(z).

4. For y ∈ Q \ I, both u and v appear on the search
path for y in both S′ and T ′. If u was accessed
more recently than v in Z ′ then the set of keys in
v’s left subtree is exactly Q \ I, otherwise the set of
keys in u’s right subtree is exactly Q \ I.23

5. Let J be subtree containing keys Q \ I in S′,
and K the subtree with keys Q \ I in T ′. K =
move-to-root(J, x).

6. The crossing depth of a node y in tree Π can
be determined as follows. If y is the root, then
`Π(y) = 1. If y’s parent, p is the root, then
`Π(y) = 2. If y and p are both left children or
both right children then `Π(y) = `Π(p). Otherwise
`Π(y) = `Π(p) + 1.

7. Let J+ and K+ be subtrees J and K, augmented
with their parent in I. From Observation 6, ∆′(y) =
`J+(y)− `K+(y) for y ∈ Q \ I.

21Proofs omitted for brevity.
22Splay does not share this “overlapping structure” property

due to the zig-zig steps.
23We omit details for cases when v − u =∞.

Observation 3 ensures that ∆′(z) = 0 for z ∈ I.
Observation 7 suggests computing ∆′(z) for z ∈ Q \ I
in terms of `J+(z) − `K+

(z). Both `J+ and `K+
can

be determined entirely from knowing u, v, the original
configurations of S and T , and which of u or v was more
recently accessed in Z ′, as follows.

Without loss of generality, assume that the root of
S is less than x and that x is a left child in S (the other
cases are similar). Define the indicator variable δ to be
1 if x is a right child in T ′ and 0 otherwise. Similarly
define ϕ to be 1 if x is a left child in T ′ and 0 otherwise.
The quantity δ + ϕ is an indicator of whether x has
a parent in T ′. Define the indicator variable ψ to be
1 if the root of J+ is greater than x, and 0 otherwise.
Similarly define σ to be 1 if the root of J+ is less than x,
and 0 otherwise. Finally, let j be the number of crossing
nodes for x in J with keys greater than x. Note x has
j − ψ crossing nodes in J with keys less than x.

Let P be the nodes of the path from the root of J
to x, excluding x, descending downwards. Let L be the
nodes of the rightward path descending downward from
the root of x’s left subtree, R the nodes on the leftward
path descending from the root of x’s right subtree, and
define P+ = P ∪ L ∪R ∪ {x}.

Let a1, . . . , aj−ψ be the crossing nodes encountered
on the left side of x descending down the path from
the root of J to x (if j − ψ = 0 then none are
defined). Similarly, let b1, . . . , bj be the crossing nodes so
encountered on the right side of x. Additionally, define
aj+1−ψ to be the root of x’s left subtree in J , and bj+1

the root of its right subtree. For convenience, define
aj+2−ψ = bj+2 = x.

For 1 ≤ i ≤ j+1−ψ, define ci to be the smallest node
in P+ lying strictly between ai and ai+1 in symmetric
order, and for 1 ≤ i ≤ j + 1 let di be the largest node
in P+ lying strictly between bi and bi+1 in symmetric
order. Finally, let Ai and Ci be the left subtrees of ai
and ci, and Bi and Di the right subtrees of bi and di.
We make the following further observations:

8. For 1 ≤ i ≤ j and any node y ∈ P+ lying between
bi and bi+1 in symmetric order, `J+(y) = `J+(di).
A similar statement holds for `J+(ci). This justifies
the use of ci and di as stand-ins for all nodes in P+

in respective intervals (ai, ai+1) and (bi, bi+1).

9. For y ∈ P+ \ {x}, let Σy denote its left subtree in
J if y < x and its right subtree in J if y > x. Let
Σ′y be defined similarly in K. Then Σy = Σ′y.

10. Denote by `Π(Σ) the level of the root of subtree Σ
in Π. For any node y ∈ Ai, ∆′(y) = ∆′(Ai), and
for any node y in the left subtree of node f ∈ P+

such that ai < f < ai+1, ∆′(y) = ∆′(Ci). A similar
statement holds for Bi and Di.
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Figure 11: Schematic of tree J+.

11. When j > 1, he following hold (see Figure 11):

`J+(x) = 2j + ϕσ + σ + δψ

`J+(ai) =


1 + δ + ϕ+ δψ, i = 1

2i− 1 + ϕσ + ψ + δψ, 1 < i ≤ j − ψ
`J+(x), i = j + 1− ψ

`J+(bi) =


2 + ϕσ, i = 1

2i− 1 + ϕσ + σ + δψ, 1 < i ≤ j
`J+(x) + 1, i = j + 1

`J+(ci) = `J+(bi+ψ), 1 ≤ i ≤ j + 1− ψ

`J+(di) =

{
`J+(ai+σ), 1 ≤ i ≤ j
`J+(x) + 2, i = j + 1

`J+(Ai) =

{
2 + δ, i = 1

`J+(ai), 1 < i ≤ j + 1− ψ

`J+(Bi) =

{
2 + ϕ, i = 1

`J+(bi), 1 < i ≤ j + 1

`J+(Ci) = `J+(ci) + 1, 1 ≤ i ≤ j + 1− ψ
`J+(Di) = `J+(di) + 1, 1 ≤ i ≤ j + 1

12. The following can be extrapolated from Figure 12:

`K+(x) = 1 + δ + ϕ

`K+
(ai) =

{
2 + δ, i = 1

3 + δ, 1 < i ≤ j + 1− ψ

`K+
(bi) =

{
2 + ϕ, i = 1

3 + ϕ, 1 < i ≤ j + 1

`K+
(ci) = 3 + δ, 1 ≤ i ≤ j + 1− ψ

`K+
(di) = 3 + ϕ, 1 ≤ i ≤ j + 1

`K+(Ai) =

{
2 + δ, i = 1

4 + δ, 1 < i ≤ j + 1− ψ

x

! "

a1

c1

a2

c2

C1

A1

A2

C2 aj+1-ψ

Aj+1-ψ

b1

d1 B1

b2
D1

B2d1

D2

cj+1-ψ

Cj+1-ψ

bj+1

Bj+1dj+1

Dj+1

Figure 12: Schematic of tree K+.

`K+
(Bi) =

{
2 + ϕ, i = 1

4 + ϕ, 1 < i ≤ j + 1

`K+
(Ci) = 4 + δ, 1 ≤ i ≤ j + 1− ψ

`K+
(Di) = 4 + ϕ, 1 ≤ i ≤ j + 1

The value ∆′(z) can now be computed from `J+(z)−
`K+

(z). Using this, we note that for z ∈ Q:

(a) ∆(x) = `S(x)− 1,

(b) ∆′(x) ≥ max{∆′(z), 0},

(c) ∆′′(x) ≤ ∆′(x)−max{∆′(z), 0}.

Items (a) and (b) are found by maximizing ∆′ for each of
the sixteen families of nodes discussed in Observations 11
and 12. Inequality (c) follows by a more tedious analysis,
using previous observations, of how moving z with level
difference ∆′(z) to the root affects the parameters δ, ϕ,
σ, ψ and j, and thereby ∆′′(x). We omit these analyses.

We are now ready to complete the proof of the
lemma. Recall the original goal: we wish to show
that Λ(Z, S) − Λ(Z, T ) < `S(x). Let Z = (z1, . . . , zm).
Let T0 = T , S0 = S, and for 1 ≤ i < m let Ti =
move-to-root(Ti−1, zi) and Si = move-to-root(Si−1, zi).
Let ∆i(y) = `Si−1

(y)− `Ti−1
(y). Note that ∆1 = ∆.

By definition, Λ(Z, S) − Λ(Z, T ) =
∑m
i=1 ∆i(zi).

By Observation (b),
∑m
i=1 ∆i(zi) ≤ ∆m(x) +∑m−1

i=1 ∆i(zi).
24 By Observation (c), ∆i(x) ≤ ∆i−1(x)−

max{∆i−1(zi−1), 0}, hence for 1 ≤ k ≤ m,

∆i(xi) +
k−1∑
i=1

∆i(zi) ≤ ∆i−1(x) +
k−2∑
i=1

∆i(zi).

When k = 1, we have
∑m
i=1 ∆i(zi) ≤ ∆(x) < `S(x). The

last inequality follows from Observation (a). �

24If k < j then we define
∑k

i=j to be zero.
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Final Remarks

The dynamic optimality conjecture remains standing
despite our best efforts, and the path forward does not
appear easy. Our hope is that we have at least brought
this problem from the realm of the unyielding to the
realm of what is merely difficult. We anticipate that,
in the long run, the most important influence of this
work will be the application of simulation embeddings
for analyzing approximation algorithms generally. For
now, the fate of this fascinating tale lies in the hands of
our audience.
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