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Abstract 41 

Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of 42 

anthropogenically-driven climate change, resulting in habitat compression for pelagic animals. 43 

The oxygen partial pressure, pO2, at which blood is 50% saturated (P50) is a measure of blood 44 

oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species 45 

display a wide range of blood oxygen affinities (i.e., P50 values) and therefore may be 46 

differentially impacted by habitat compression as they make extensive vertical movements to 47 

forage on sub-daily time scales. To project the effects of end-of-the-century climate change on 48 

tuna habitat, we calculate tuna P50 depths (i.e., the vertical position in the water column at which 49 

ambient pO2 is equal to species-specific blood P50 values) from 21st century Earth System Model 50 

(ESM) projections included in the fifth phase of the Climate Model Intercomparison Project 51 

(CMIP5). Overall, we project P50 depths to shoal, indicating likely habitat compression for tuna 52 

species due to climate change. Tunas that will be most impacted by shoaling are Pacific and 53 

southern bluefin tunas – habitat compression is projected for the entire geographic range of 54 

Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P50 55 

depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, 56 

and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian 57 

Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental 58 
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conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change 59 

on tuna habitats. 60 

 61 

Introduction 62 

Many pelagic animal species cross steep temperature and oxygen gradients during their daily 63 

vertical migrations. Reduced ambient oxygen levels (i.e., hypoxia) at depth limit the vertical 64 

movements of tunas in some regions depending on species-specific hypoxia tolerance (e.g., Brill, 65 

1994; Schaefer et al., 2009; Stramma et al., 2010, 2011; Koslow et al., 2011; Gilly et al., 2013). 66 

Climate models project warmer temperatures and lower oxygen concentrations in the pelagic 67 

realms of the world’s oceans by 2100 (Bopp et al., 2013; Ciais et al., 2014; Rhein et al., 2014); 68 

and these effects have been referred to as “habitat compression” (Prince & Goodyear, 2007; 69 

Prince et al., 2010). Habitat compression may have pervasive effects on marine ecosystems by 70 

altering predator-prey and competitive interactions (e.g., Stramma et al., 2010; Lehodey et al., 71 

2011; Gilly et al., 2013; Gallo & Levin, 2016).  72 

 Tunas are large predators that often make extensive vertical movements (e.g., Holland et al., 73 

1990; Brill et al., 1999; Block et al., 2001, 2011; Musyl et al., 2003; Schaefer & Fuller, 2007, 74 

2010; Walli et al., 2009; Howell et al., 2010; Schaefer et al., 2011) in order to forage (Pusineri et 75 

al., 2008; Young et al., 2010). Tunas exhibit different behaviors when tracking prey vertically in 76 

the water column (Schaefer et al., 2009). The typical characteristic behavior for bigeye tuna is to 77 

remain in the surface water at night when the deep scattering layer organisms are at the surface 78 

and follow the deep scattering layer organisms to deeper depths just above the oxygen minimum 79 

layers during the day (Schaefer et al., 2009; Schaefer & Fuller, 2010). When at deeper depths, 80 

bigeye tuna repetitively return to  shallower depths because they cannot remain in cold, hypoxic 81 

conditions for the entire day (Schaefer et al., 2009; Schaefer & Fuller, 2010). Yellowfin and 82 

skipjack tunas remain in the surface waters during both night and day (Schaefer & Fuller, 2007; 83 

Schaefer et al., 2011). They make forays to deeper depths during the day to forage in the deep 84 

scattering layer when there are no other sources of food at the surface (Schaefer & Fuller, 2007; 85 

Schaefer et al., 2011). However, they can only remain at deeper depths for brief periods because 86 

they are not hypoxia tolerant (Schaefer & Fuller, 2007; Schaefer et al., 2011). These foraging 87 

behaviors influence frequency of vertical habitat usage by different tunas.  88 
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 Multiple tuna species are sympatric (Fig. 1), but analyses of prey composition in the water 89 

column, tuna gut contents, and foraging depths indicate that the ability to tolerate temperature 90 

and oxygen levels at depth is critical for niche partitioning (Bertrand et al., 2002; Potier et al., 91 

2004; Bernal et al., 2010; Young et al., 2010; Varghese et al., 2014; Olson et al., 2016). Niche 92 

partitioning may be less critical for decreasing direct competition among tunas because they are 93 

fished throughout the global ocean (Pons et al., 2017). Prey abundances have increased as 94 

predation rates have decreased due to fishing, thereby decreasing competition among the highest 95 

trophic levels in marine food webs (Essington et al., 2002; Baum & Worm, 2009). Tuna 96 

populations are relatively robust to the effects of exploitation (Schindler et al., 2002). Therefore, 97 

if tunas are more sustainably fished in the future, then they may be in direct competition with 98 

each other unless there is niche partitioning so ecological interactions should be considered.  99 

 Blood-oxygen affinity is one of the primary determinants of hypoxia tolerance of fish (Farrell 100 

& Richards, 2009; Mandic et al., 2009; Wells, 2009). It is generally quantified as P50, which is 101 

the partial pressure of oxygen (pO2) at which blood is 50% saturated. Blood with a high affinity 102 

for oxygen has a low P50, and animals with blood with a low P50 are more hypoxia tolerant. A 103 

potential trade-off for an animal with high oxygen affinity blood is slow oxygen off-loading at 104 

tissues (Yang et al., 1992). Highly active animals need fast off-loading of oxygen at muscles, for 105 

example, to maintain fast swimming speeds.  Oxygen binding to hemoglobin may be either an 106 

exothermic or endothermic reaction (i.e., the heat of oxygenation may be either negative or 107 

positive, respectively) (Hochachka & Somero, 2002). In the former, higher temperatures reduce 108 

oxygen affinity (i.e., increase P50) because heat is released when oxygen binds to the blood 109 

pigment. In the latter, higher temperatures increase oxygen affinity (i.e., reduce P50) because heat 110 

is absorbed when oxygen binds to the blood pigment. For some tuna species, heat is neither 111 

absorbed or released during blood oxygen binding (the apparent heat of oxygenation, ΔH́ ≈ 0) 112 

due to the presence of multiple forms of hemoglobin - a characteristic which makes their blood 113 

oxygen affinity temperature-independent (Rossi-Fanelli & Antonini, 1960; Wood, 1980). Tunas 114 

have species-specific blood oxygen affinities and ΔH́  values; the former ranging from 2.1 to 5.8 115 

kPa and the latter from -17 to 27 kJ mol (Brill & Bushnell, 1991, 2006; Lowe et al., 2000; Clark 116 

et al., 2008; Lilly et al., 2015). The data are from different studies, and the reported species-117 

specific differences may result from differences in experimental protocols. Differences in P50 and 118 

ΔH́  have, however, been found among very closely related species measured using the same 119 
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experimental protocols in the same laboratory (e.g., Brill & Bushnell, 1991; Lowe et al., 2000; 120 

Mandic et al., 2009), we therefore posit that differences in the blood oxygen binding 121 

characteristics among the tunas result from species-specific physiological adaptations.  122 

 Mechanistic analysis helps reveal regional and temporal patterns in tunas’ habitat and vertical 123 

movement (e.g., Lehodey et al., 2011; Horodysky et al., 2015, 2016). Physiological thresholds 124 

for blood-oxygen binding have been mapped in the ocean as the P50 depth (Mislan et al., 2015).  125 

The P50 depth is the shallowest depth at which pO2 is equal to species-specific blood P50. We use 126 

P50 depth because P50 is a primary determinant of hypoxia tolerance (Mandic et al., 2009), and, 127 

therefore, P50 depth provides a mechanistic assessment of habitat suitability and zonation in 128 

hypoxic regions. Our objective is to project effects of climate change on the vertical habitat of 129 

tunas using P50 depth. Given the differences in oxygen affinity (i.e., blood P50) and temperature 130 

sensitivity of blood oxygen affinity (i.e., ΔH́ ), we test the hypothesis that tuna species are highly 131 

likely to display species-specific habitat compression due to changes in P50

Materials and Methods 135 

 depth under the 132 

effects of climate change which will, in turn, alter the dynamics of competition and resource 133 

partitioning among sympatric tuna species.   134 

Data sources 136 

Oceanographic, physiological, and biogeographic data were used as part of this study. The 137 

oceanographic data (monthly temperature, oxygen concentration, and salinity on a 1° grid) were 138 

from the National Oceanographic and Atmospheric Administration (NOAA), National Centers 139 

for Environmental Information, World Ocean Atlas 2009 (WOA 2009) (Locarnini et al., 2009; 140 

Antonov et al., 2010; Garcia et al., 2010). The physiological data were from the published 141 

literature: skipjack tuna: P50 = 3 kPa, ΔH́  = 1.5 kJ mol-1 (Brill & Bushnell, 1991); yellowfin: P50 142 

= 2.7 kPa, ΔH́  = -0.81 kJ mol-1 (Brill & Bushnell, 1991); southern bluefin tuna: P50 = 2.1 kPa, 143 

ΔH́  = 27 kJ mol-1 (Clark et al., 2008); bigeye tuna: P50 = 2.1 kPa, ΔH́  = -17 kJ mol-1 (Lowe et 144 

al., 2000); Pacific bluefin tuna: P50 = 5.8 kPa, ΔH́  = 13 kJ mol-1 (Lilly et al., 2015); Atlantic 145 

bluefin tuna: P50 = 2.5 kPa, ΔH́  = 13 kJ mol-1 (Brill & Bushnell, 2006). P50 were measured in 146 

blood collected from animals that were captured in the wild and brought to a laboratory facility 147 

where they were acclimated to particular temperatures. P50 measurements are sensitive to 148 

changes in blood chemistry (Hochachka & Somero, 2002), particularly when animals are stressed 149 

by activities such as capture from the wild.  By using measurements from laboratory acclimated 150 
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animals, we are able to make geographic assessments for baseline P50

Model results 159 

 of unstressed tunas. Table 151 

S1 includes information on acclimation temperatures, and the temperatures that were used to 152 

calculate the apparent heat of oxygenation using the Van’t Hoff equation. Tuna biogeographic 153 

range data were obtained from the International Union for Conservation of Nature and Natural 154 

Resources (IUCN) Red List of Threatened Species (IUCN, 2011, 2014). Biogeographic range 155 

data were in vector shape files that were converted to raster NetCDF files with a 1° grid using the 156 

Geospatial Data Abstraction Library v. 1.11.5 (Warmerdam, 2016) and Generic Mapping Tools 157 

v. 5.4.1 for file format conversions (Wessel & Smith, 2015).  158 

 Projections were made using temperature and oxygen concentration results from six Earth 160 

System Models (CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-161 

LR, MPI-ESM-LR) obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 162 

archive (Palmer & Totterdell, 2001; Aumont & Bopp, 2006; Collins et al., 2011; Gent et al., 163 

2011; Jones et al., 2011; Dunne et al., 2012, 2013; Taylor et al., 2012; Dufresne et al., 2013; 164 

Giorgetta et al., 2013; Ilyina et al., 2013; Lindsay et al., 2014). In contrast to climate models, 165 

Earth System Models include numerical representations of the biogeochemical cycling in the 166 

ocean in addition to numerical representations of the atmosphere, ocean, and land. The inclusion 167 

of biogeochemical cycling in the ocean allows them to project future changes in oxygen 168 

concentration. The climate scenario used for this study was Representative Concentration 169 

Pathway (RCP) 8.5 which simulates a positive radiative forcing perturbation of 8.5 W m-2

Analysis 181 

 in 170 

2100 (Riahi et al., 2011).  RCP 8.5 was the most extreme scenario in CMIP5. The model results 171 

were bilinearly interpolated to the same grid as the monthly World Ocean Atlas 2009 data, a 1° 172 

grid with 24 depths ranging from 0 to 1500 m, using the Climate Data Operators v. 1.6.2 173 

(Kornblueh et al., 2013). The changes in temperature and oxygen concentration were calculated 174 

by subtracting the 30 year average of historical results from 1975 to 2005 from the 30 year 175 

average of the future projections from 2070 to 2100. Thirty-year averages were used to suppress 176 

the internal variability within the models. The calculated changes in temperature and oxygen 177 

concentration were then added to the average of the World Ocean Atlas 2009 data to generate 178 

projections for future conditions, thus eliminating the mean biases present in model simulations 179 

of the baseline climate.  180 
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 Oxygen concentrations in the data and model results were converted to pO2 (i.e., oxygen 182 

partial pressures) to take into account changes in O2 solubility resulting from differences in 183 

temperature and salinity (Seibel, 2011). First, we converted oxygen concentration to percent 184 

oxygen saturation using the equations from Garcia and Gordon (1992). The percent oxygen 185 

saturation was divided by 0.21 (the fractional atmospheric concentration of oxygen) to get pO2 in 186 

atmospheres (atm); pO2 was then corrected for the hydrostatic pressure at depth (Enns et al., 187 

1965). In the final step, the units for pO2

 Blood P

 were converted to kilopascals (kPa), the SI Units for 188 

pressure.  189 

50 (from hereafter referred to as simply as “P50

ΔH́ ≠ 0 because temperature in the water column generally changes with depth, and blood is at 191 

ambient temperature as it passes through the gills. We calculated blood P

”) shifts as tuna move vertically if  190 

50

  (1) 194 

 at all depths using the 192 

van’t Hoff equation:  193 

where (x,y,z) are (longitude, latitude, depth), T(x,y,10) is the temperature at 10 m, P50(x,y,10) is a 195 

measure of blood oxygen affinity at the fishes’ acclimation temperature, T(x,y,z) are temperatures 196 

at depth intervals below 10 m in the water column, ΔH́  is the apparent heat of oxygenation of 197 

whole blood (i.e., the change in blood P50 with temperature in kJ mol-1) measured under open-198 

system conditions (Wood, 1980; Brill & Bushnell, 1991; Lowe et al., 2000), and R is the 199 

universal gas constant. We assumed temperature at 10 m depth to be the acclimation temperature 200 

(i.e., the temperature within the surface layer) and based the P50(x,y,10) 

We define the P

on measurements found in 201 

the published literature. 202 

50 depth as the shallowest depth in the ocean where pO2 = P50. P50 depths 203 

were determined using NOAA Ferret v. 7 (Manke & Smith, 2012) for all the tuna species, and 204 

mapped using Python v. 3.5.1 (van Rossum, 2015). Animals can alter their baseline P50 to 205 

acclimate to different environmental conditions over the course of several days by altering 206 

concentrations of guanosine triphosphate, GTP, and adenosine triphosphate, ATP, in the blood 207 

(Weber & Lykkeboe, 1978). We assume the animals are acclimated to surface conditions and 208 

forays to deeper depths are not long enough for acclimation to a new baseline P50 to occur.  The 209 

projected changes in P50 depths from the six Earth System Models were averaged to assess the 210 

effect of climate change on tuna habitat thickness and vertical movement patterns. Ensembling of 211 
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models allows one to take advantage of the cancelation of random (opposing) differences for an 212 

overall more robust solution among models of otherwise equivalent skill. We assessed habitat 213 

compression based on the changes in P50 depth over the current range of each species. Analyses 214 

of P50 depth in the CMIP5 results were conducted for both future pO2 and future temperature, 215 

and future pO2 and WOA 2009 temperature. We thus assess the relative impact of each variable 216 

on projected P50 depths. The overall changes in P50

 220 

 depths for the current range of each species 217 

were summarized as boxplots using R v. 3.2.3 (The R Core Team, 2015). The code used for the 218 

analysis is archived in Zenodo (https://doi.org/10.5281/zenodo.808742). 219 

Results 221 

P50

Tunas encounter different temperature and oxygen conditions as they move vertically. Blood 223 

P

 depths 222 

50 therefore shifts as tunas with ΔH́ ≠ 0 descend from the surface layer to depths below the 224 

thermocline (Fig. S1). The direction in P50 shift is species-specific. Bigeye and southern bluefin 225 

tunas have the most exothermic (ΔH́  = -17 kJ mol-1), and the most endothermic (ΔH́  = 27 kJ 226 

mol-1), respectively, blood-oxygen binding reactions of the tuna species. As such, the P50 of 227 

bigeye tuna (T. obesus) decreases with depth (Fig. S1a). This, and the low P50 of bigeye tuna 228 

blood, makes bigeye tuna more hypoxia tolerant than other tunas at depth, while the P50 of 229 

southern bluefin tuna (T. maccoyii) increases with depth (Fig. S1b) thus making southern bluefin 230 

tuna less tolerant of hypoxia than other tunas at depth. Yellowfin (T. albacares) and skipjack 231 

(Katsuwonus pelamis) tunas have temperature-independent blood-oxygen binding reactions (ΔH́ 232 

≈0) so P50 does not shift as these tuna species move vertically in the water column. Therefore the 233 

hypoxia tolerance of these species is the same at the surface and depth.  Yellowfin, skipjack, 234 

bigeye, and southern bluefin have similar oxygen affinity (P50

The geographic ranges of tuna species have varying degrees of overlap with their P

 range 2.1 to 3) for the surface. 235 

However, if there is a steep thermocline, the blood oxygen affinity of bigeye tuna is much higher, 236 

and the blood oxygen affinity of southern bluefin is much lower, than blood oxygen affinities of 237 

yellowfin and skipjack tunas at deeper depths.      238 

50 depth 239 

areas (Fig. 2). Almost the entire geographic range of Pacific bluefin tuna has a P50 depth 240 

restriction. Bigeye and skipjack tunas occupy geographic areas that include areas where vertical 241 

movements are restricted by P50 depth (Fig. 2). The extent of the vertical movements of Atlantic 242 
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bluefin tuna (T. thynnus) and southern bluefin tuna are not restricted by P50 depth over most of 243 

their geographic ranges (Fig. S2). P50

P

 depths are shallowest in the tropics (Fig. 2).  244 

50

Climate change is projected to change P

 depth changes in the future 245 

50 depths in many geographic areas and thus the 246 

depth ranges occupied by tunas (Fig. 2). Fig. 2 includes three tuna species, bigeye, skipjack, and 247 

Pacific bluefin tunas, with P50 depths in large proportions of their habitat areas. The P50 depths 248 

and habitat area of yellowfin tuna are similar to skipjack tuna (Fig. S2). Atlantic and southern 249 

bluefin tunas have little to no overlap between the area with P50 depths and the habitat area (Fig. 250 

S2). The greatest changes are projected to occur in the Northwest Pacific Ocean where P50 depths 251 

are likely to be >200 m shallower at the edges of the geographic ranges of bigeye, yellowfin, and 252 

skipjack tunas (Fig. 2, S2). Shoaling of P50 depths should result in a compression of the vertical 253 

habitat. In contrast, P50 depths are projected to be deeper in the much of the tropics (30°S to 254 

30°N), particularly in regions where P50 depths are currently the most shallow (Fig. 2). Deeper 255 

P50 depths indicate an expansion of the vertical habitat. As we note in the discussion, a caveat to 256 

this finding of deeper P50

Overall, the ESM’s project more vertical compression than expansion of tuna habitats in the 259 

future (Fig. 3). The greatest compression is projected for the habitats of tuna species with 260 

endothermic blood-oxygen binding, particularly southern bluefin tuna (Fig. 3). Although most of 261 

the habitat of southern bluefin tuna does not have a P

 depths in the tropics in the future is that trends in modeled oxygen do 257 

not agree with observations from the eastern tropical Pacific.  258 

50 depth (Fig. S2), changes in P50 depths are 262 

projected to occur in the spawning region (Fig. 4). P50 depths of southern bluefin tuna are 263 

projected to be 80 to 600 m shallower, and the P50 depth area is projected to expand in size (Fig. 264 

4). The projected changes in P50 depths are due to either changes in temperature or oxygen in the 265 

water column. The median P50 depth of southern bluefin tuna is projected to be 410 m shallower 266 

in the future and 180 m of the projected shift is due to temperature changes in the water column.  267 

In contrast, temperature is projected to cause < 10 m change in the median P50 depths of 268 

yellowfin, skipjack, bigeye, and Pacific bluefin tunas. The vertical separation between P50 depths 269 

of pairs of tuna species is projected to change in the Pacific Ocean, Arabian Sea, and Bay of 270 

Bengal (Fig. 5). In the North Pacific Ocean and the Northern Tropical Pacific Ocean, the vertical 271 

separation between all pairs of tuna species is projected to decrease. There is only a very small 272 

area where the vertical separation between all pairs of tuna species is projected to expand. In 273 
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general, vertical separation between pairs of tuna species is not projected to increase or decrease 274 

uniformly at the same geographic location (Fig. 5).  275 

 276 

Discussion 277 

 Our results suggest that climate change will  impact the vertical environment of tunas because 278 

of species-specific differences in blood oxygen affinity (Fig. 3). The P50 depths of tunas with 279 

endothermic blood-oxygen binding reactions, Pacific and southern bluefin tunas, are projected to 280 

be shallower in the future (Fig. 3). The greatest decreases in oxygen concentrations are occurring 281 

in the North Pacific (Bopp et al., 2013), which is the habitat of Pacific bluefin tuna (T. 282 

orientalis), a species with endothermic blood-oxygen binding. Tuna species with exothermic and 283 

temperature-independent blood oxygen affinity also have habitats in the North Pacific including 284 

bigeye, skipjack, and yellowfin tunas, but in low abundance relative to tropical regions. 285 

Interestingly, the greatest vertical compression is projected to be just outside the northern range 286 

of these three species (Fig. 2, S3). Decreases in oxygen concentrations are also projected for the 287 

Eastern Indian Ocean where southern bluefin tuna spawn (Bopp et al., 2013). The vertical habitat 288 

of southern bluefin tuna is projected to be >500 m shallower in some locations in this region (Fig. 289 

4). The underlying cause for changes in P50 depth could be due to temperature increases shifting 290 

blood oxygen affinity (i.e., P50). Warming in the surface ocean is projected to be faster than in 291 

the deeper ocean, increasing the temperature gradient with depth. P50 increases as species with 292 

endothermic blood-oxygen binding reactions swim from the warm surface layer to cold deep 293 

depths (Fig. S1b). Therefore, southern bluefin tuna, which has an endothermic blood-oxygen 294 

binding reaction, is projected to reach P50

 Multiple tuna species are sympatric in the North Pacific where the ESMs project the greatest 296 

changes in P

 at shallower depths in the future.  295 

50 depths will  occur (Fig. 1, 2). Tunas have species-specific vertical movement 297 

patterns (e.g., Schaefer et al., 2009; Bernal et al., 2010). Skipjack and yellowfin are most 298 

frequently in the upper thermocline (<100 m depth) during both day and night and make only 299 

occasional forays for brief periods down to deeper depths during the day (Schaefer & Fuller, 300 

2007; Schaefer et al., 2009, 2011). Shallower and deeper P50 depths in the future may decrease or 301 

increase, respectively, the frequency with which these species can forage at deeper depths (Fig. 302 

2). Skipjack and yellowfin tunas exhibit similar vertical habitat usage behaviors and also both 303 

have temperature-independent blood oxygen affinities. The degree to which behaviors and 304 
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physiological characteristics are linked will need to be investigated in a future study.  Bigeye tuna 305 

are most frequently in the upper thermocline at night and frequently at depths deeper than 200 m 306 

during the day from which they make regular forays to the surface layer where oxygen 307 

concentrations are higher and temperatures are warmer (Schaefer et al., 2009; Schaefer & Fuller, 308 

2010). A change in the P50 depth may either influence the daytime foraging depth or alter the 309 

frequency of trips to the surface layer during the day (Fig. 2). Although these behaviors are 310 

considered characteristic, bigeye tuna occasionally dive to depths > 1000 m to forage below the 311 

lower oxycline (Schaefer et al., 2009). Changes in P50

The changes in P

 depths could alter the thickness of 312 

oxycline making it either easier or more difficult for bigeye tuna to access areas below the 313 

oxycline (Fig. 2).    314 

50 depth separations between pairs of tuna species may lead to changes in 315 

the frequency of competitive interactions, especially in deeper foraging zones (Fig. 5). Both 316 

increases and decreases in species-specific vertical movement patterns resulting from P50

 Factors in addition to hypoxia tolerance limit the vertical extent of tuna habitat. Atlantic 332 

bluefin tuna occupy a region where oxygen concentrations change only minimally with depth, 333 

which is exemplified by the lack of P

 depths 317 

are projected to occur at the same locations between different pairs of tuna species. As a result, 318 

competition is not projected to universally increase or decrease. The main exception is the North 319 

Pacific where projected decreases in the vertical separation among all pairs of tuna species 320 

indicate a potential increase in the frequency of interactions (Fig. 5). The effects of climate 321 

change on vertical movements and distribution of tuna prey species are also relevant for 322 

determining frequency of competitive interactions among tuna species (Polovina, 1996). If the 323 

vertical distributions of prey species shift similarly to that of tunas, there may be few changes in 324 

ecological interactions. Also, because fish track environmental variables and shift the geographic 325 

centers of their range to remain in optimal conditions (Pinsky et al., 2013), horizontal shifts in 326 

tunas’ geographic ranges may preempt any effects of climate change on their vertical habitats. As 327 

fish species reorganize in a “musical chairs" of habitats, some habitats may be excluded due to 328 

geographic range incompatibility or increases in ecological interactions. Geographic ranges of 329 

tunas cover much of the global ocean, so there is limited potential for tunas to change geographic 330 

ranges without also increasing competitive interactions (Fig. 1).  331 

50 depths throughout the range of this species (Fig. S2). 334 

However, Atlantic bluefin tuna have limitations on vertical movements (Walli et al., 2009). Tuna 335 
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maintain tissues at optimal temperatures by spending time in warmer surface waters (Brill et al., 336 

1994; Dewar et al., 1994; Graham & Dickson, 2001; Malte et al., 2007), which means that 337 

vertical movements are limited by the length of time tuna can remain at depth before needing to 338 

return to the warmer surface layer get a "gulp of heat". Another factor that limits the depths to 339 

which tuna can descend is the effect of temperature on cardiac function.  Because of circulatory 340 

anatomy, the heart remains at ambient environmental temperature which results in a decline in 341 

cardiac performance at colder deeper depths (Galli et al., 2009). Bigeye tuna, which spend the 342 

most time relative to other tuna species at deeper depths, has adaptations, including enhanced 343 

cardiac Ca2+

Our results also suggest that blood oxygen affinity is projected to change the spawning area 348 

for southern bluefin tuna, which is located in the Indian Ocean off the coast of northwestern 349 

Australia (Hobday et al., 2016). Adaptation tends to be more rapid when directly related to 350 

reproduction, therefore tracking changes in P

 cycling and stimulation using adrenaline, to maintain cardiac performance in colder 344 

temperatures (Galli et al., 2009). While a combination of these factors limits the vertical extent of 345 

tuna habitats, the effects of climate change on oxygen concentration will have the greatest impact 346 

of tuna vertical habitat.     347 

50

 We used oxygen and temperature results from Earth System Models to project changes in 361 

tuna physiology and ecology over the next century. Models have many uncertainties which can 362 

be reduced by combining results from multiple models, as we did. Even so, the temperature 363 

results were generally more robust than the oxygen results (Bopp et al., 2013). Robustness is 364 

determined by comparing model results to measurements over a historical period. Temperature 365 

mean state from the models is similar to observations throughout most of the global ocean (Bopp 366 

 and ΔH́ of southern bluefin tuna over time may 351 

provide a record of adaptation to climate change. A key step will be to connect physiological 352 

changes to gene expression and environmental changes. Tunas have physiological and 353 

morphological differences in addition to the differences in blood-oxygen affinity (e.g., Graham, 354 

1975; Bernal et al., 2010). For example, Atlantic bluefin, Pacific bluefin, and southern bluefin 355 

tunas (whose blood-oxygen binding is endothermic) do not have central vascular counter current 356 

heat exchangers (i.e., those formed from branches of dorsal aorta and postcardinal vein contained 357 

within the hemal arch of the spinal column), and rely exclusively on lateral heat exchangers to 358 

supply blood to the red muscle fiber portions of the swimming muscles (Graham, 1975; Graham 359 

& Dickson, 2001).  360 
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et al., 2013). Oxygen mean state is similar to observations in some regions of the ocean including 367 

the North Pacific where the greatest changes in blood-oxygen binding and competitive 368 

interactions are projected to occur (Fig. 2, 5) (Bopp et al., 2013). The oxygen mean state is, 369 

however, much less robust in the Eastern Tropical Pacific Ocean where P50

 Resource managers will benefit from information on the physiological mechanisms 387 

controlling habitat use when making decisions for tuna fisheries in a changing climate (e.g., Brill 388 

& Lutcavage, 2001; Horodysky et al., 2015, 2016; McKenzie et al., 2016). Ocean warming and 389 

changes in the depths of the oxycline could have dire consequences for the movements, 390 

distribution, and abilities of tunas to withstand various levels of fishing mortality if the frequency 391 

of competitive interactions increase or prey have refuges from predation. Our results imply that 392 

different tuna species will experience different degrees of habitat compression. We project that 393 

Pacific and southern bluefin tunas will  experience the greatest habitat compression. Fisheries 394 

management should account for physiological differences in the responses of tuna species to 395 

changes in the temperature and oxygen conditions of the upper water column resulting from 396 

climate change. As improvements to Earth System Models further decrease uncertainties, 397 

 depths are the 370 

shallowest (Fig. 2). Recent observations show oxygen concentrations decreasing in the Eastern 371 

Tropical Pacific Ocean (Stramma et al., 2008; Schmidtko et al., 2017), but there were no changes 372 

in oxygen concentrations in the model mean state for the region over the same period (Bopp et 373 

al., 2013). Cabré et al. (2015) found that all the models overestimated the total volume of 374 

hypoxic water in the Eastern Tropical Pacific because of biases in ventilation. Blood-oxygen 375 

affinity of tunas is not projected to change in the Eastern Tropical Pacific based on results from 376 

existing models, but this projection could change as improvements are made to the 377 

parameterizations for ventilation in new model versions. The measurements of blood oxygen 378 

affinity also have uncertainties; the measurements used here were made by different researchers, 379 

using different equipment and procedures over a 20 year period on a small number of animals. 380 

The limited numbers of measurements ignore potential intraspecies plasticity and geographic 381 

variation in the blood oxygen affinity of various tuna species. Furthermore, the effects of blood 382 

oxygen affinity on vertical movement behavior and metabolic rates of tuna still need to be 383 

determined. In summary, the projected effects of climate change on tuna habitats are uncertain 384 

and will be further improved by a combination of Earth System Model development and 385 

additional measurements of blood oxygen affinity, behavior, and metabolism.  386 
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continued efforts to link model projections of environmental changes to physiological 398 

consequences will provide a more complete picture of pelagic habitat structure over the 21st 399 

century.  400 
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Figure S3: Comparison projected changes in P
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50

 662 

 depths due to climate change for six tuna 660 

species. 661 

 663 

Figure captions:    664 

Figure 1: Tuna species richness in the global ocean (IUCN, 2011, 2014).  The map includes 665 

skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), southern bluefin (Thunnus 666 

maccoyii), bigeye (Thunnus obesus), Pacific bluefin (Thunnus orientalis), Atlantic bluefin 667 

(Thunnus thynnus), albacore (Thunnus alalunga), blackfin (Thunnus atlanticus), and longtail 668 

(Thunnus tonggol) tunas.  There are no tuna species present in grey colored areas of the ocean.  669 
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Competitive interactions and/or niche partitioning are likely to occur in areas with multiple 670 

species present.   671 

Figure 2: P50 depths and the projected changes in P50 depths due to climate change.  Grey 672 

indicates locations where there are no P50 depths.  (a), (c), and (e) are the present-day P50 depths 673 

of bigeye, skipjack, and Pacific bluefin tuna calculated using data from World Ocean Atlas 2009.  674 

(b), (d), and (f) are the average projected changes in P50 depths for bigeye, skipjack, and Pacific 675 

bluefin tunas from the six Earth System Models included in the Climate Model Intercomparison 676 

Project 5. Expansion occurs in locations where P50 depths are deeper in the future. Compression 677 

occurs in locations where P50 

Figure 3:  Compression of P

depths are shallower in the future. The stippling indicates known 678 

habitat for each tuna species (IUCN, 2011, 2014).   679 

50 depths in tuna habitats projected for the end of the century.  P. 680 

bluefin and S. bluefin are Pacific and southern bluefin tunas respectively.  The right y-axis is for 681 

S. bluefin, which has much larger projected changes than the other species.  Tuna species with 682 

blood-oxygen binding reactions that are endothermic are projected to experience more 683 

compression than species with blood-oxygen binding reactions that are exothermic or 684 

temperature independent. There are no boxes for Atlantic bluefin tuna because the geographic 685 

range of this species does not overlap with the geographic area where individuals would 686 

encounter a P50

Figure 4: P

 depth during descents (Figs. S2, S3). Outliers that are greater than 1.5 times the 687 

interquartile range are not shown. 688 

50 depths in the spawning area of southern bluefin tuna. (a) Present-day P50 depths 689 

based on World Ocean Atlas (WOA) data. (b) Future projections of P50 depths based on 690 

greenhouse gas emissions scenario RCP 8.5.  The stippling indicates known habitat (IUCN, 691 

2011). In the future, the area with a P50 depth is projected to expand south, further into the 692 

spawning region of southern bluefin tuna. The P50

Figure 5: Locations where the vertical separation in P

 depths are also projected to be shallower.  693 

50 depths of tuna species are projected to 694 

change by more than 10 m. The species include skipjack (Katsuwonus pelamis), yellowfin 695 

(Thunnus albacares) southern bluefin (Thunnus maccoyii), bigeye (Thunnus obesus), and Pacific 696 

bluefin (Thunnus orientalis), Expansion: all pairwise vertical separations increase. Mixed: 697 

pairwise vertical separations increase and decrease. Compression: all pairwise vertical 698 

separations decrease. Competition is projected to increase in areas with compression and 699 
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decrease in areas with expansion. For areas with mixed changes in vertical separation, 700 

competitive interactions are projected to increase for some pairs of species and decrease for other 701 

pairs of species. 702 
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