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ABSTRACT

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of
astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole
in the Milky Way (Sgr A∗), the plasma in the disk is essentially collisionless. We present a nonlinear study of
the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional
(axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations
with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfvén velocity, vA,
is comparable to the speed of light, c (independent of the initial value of vA/c). This is consistent with the lack of
saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic
field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B
being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the
volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization
is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces
a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood
of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for
interpreting the observed emission—from the radio to the gamma-rays—of systems such as Sgr A∗.
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1. INTRODUCTION

Accretion disks are ubiquitous in astrophysics and play a
fundamental role in areas as diverse as planet formation, gamma-
ray bursts, and accretion onto supermassive black holes in
the centers of galaxies. The accretion of gas in disks requires
outward transport of angular momentum, typically assumed to
be provided by the magnetorotational instability (MRI; Balbus
& Hawley 1991, 1998). The MRI has been widely studied using
MHD simulations. However, in many cases the MHD approach
is not directly applicable. When the timescale for electron and
ion Coulomb collisions is longer than the inflow time in the disk,
the plasma is macroscopically collisionless and MHD breaks
down. This is the case in radiatively inefficient accretion flow
(RIAF) models, applicable when the accretion rate is less than a
few per cent of the Eddington rate (Narayan et al. 1998). The low
rate of Coulomb collisions implies that ions and electrons are
thermally decoupled, so the plasma should be two-temperature.
RIAFs are ubiquitous, occurring, for example, in the low-hard
state of X-ray binaries (e.g., Esin et al. 1997), and around the
central supermassive black hole in the Milky Way (Sgr A∗) and
most nearby galaxies.

The first efforts to understand the MRI in the collisionless
limit were done using the kinetic MHD approach (Quataert
et al. 2002; Sharma et al. 2003, 2006; see also the closely
related work by Balbus 2004 and Islam & Balbus 2005). These
studies highlighted the importance of pressure anisotropies with
respect to the local magnetic field, B, and incorporated the
evolution of the pressure parallel and perpendicular to B in
a fluid model of the plasma. In particular, an increase in the
magnetic field due to the MRI causes the plasma temperature

Tj (and pressure, pj) of a given particle species j to increase
in the direction perpendicular to the local magnetic field due
to the conservation of the magnetic moment, μj , on scales
larger than their Larmor radius (μj ≡ p⊥,j /ρjB, where ρj

is the mass density of species j). (Throughout this paper the
subscript j will stand for the particle species, j = i for ions
and j = e for electrons). This way, on average, the pressures
perpendicular (p⊥,j ) and parallel (p||,j ) to the local magnetic
field must satisfy p⊥,j > p||,j . We expect that this anisotropy
is ultimately regulated by kinetic micro-instabilities (e.g., ion
cyclotron, mirror, firehose, electron whistler, etc.), as shown by
previous detailed calculations of the kinetic stability of plasmas
with anisotropic pressure, particle-in-cell (PIC) simulations
(e.g., Gary et al. 1997), and by solar wind observations (Bale
et al. 2009). The kinetic MHD simulations of Sharma et al.
(2006, 2007) modeled the presence of these instabilities by
setting an upper limit to |T⊥,j /T||,j − 1|. This limit on the
temperature anisotropy plays a critical role in the evolution
of the MRI, making the physics much more MHD-like than it
otherwise would have been. Indeed, the saturation of the MRI
is qualitatively similar to that in MHD (Sharma et al. 2006,
2007). One significant difference, however, is that the presence
of a pressure anisotropy leads to an anisotropic pressure stress
that may be as important for angular momentum transport and
plasma heating as the magnetic stress.

In this paper, we study the collisionless MRI using first-
principle one-dimensional (1D) and two-dimensional (2D) PIC
simulations. We defer more realistic—but also more compu-
tationally expensive—three-dimensional (3D) calculations to a
future paper. In a PIC code, the plasma is represented by a col-
lection of macro-particles that carry charge and mass, and are
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moved by integration of the Lorentz equations. The electromag-
netic fields are evolved by solving Maxwell’s equations on a
grid, where the current is calculated by adding the contribution
of each macro-particle. Given its complete treatment of plasmas,
the PIC approach has the ability to capture the whole dynamics
of the particles and fields. In particular, the MRI, the result-
ing evolution of the plasma pressure anisotropy, the interaction
of particles with small-scale kinetic instabilities, and particle
heating and acceleration are all self-consistently captured.

The remainder of this paper is organized as follows. The basic
equations and the simulation setup are explained in Sections 2
and 3, respectively. In Section 4, a thorough dispersion relation
study is performed based on 1D simulations, which we com-
pare with previous analytic results. We also study the nonlinear
magnetic field amplification by the MRI in 1D. In Section 5, we
explore the nonlinear evolution of the MRI-driven turbulence us-
ing more realistic 2D simulations. Special attention is paid to the
field saturation, particle heating, pressure anisotropy evolution,
and the contribution of the different stress tensor components to
angular momentum transport. Finally, in Section 6 we present
our conclusions.

2. BASIC EQUATIONS

We carry out our study in the local, small-box approximation,
where the size of the simulation box is much smaller than its
distance to the center of the disk, r0. The box rotates with the
disk at the local (Keplerian) orbital frequency ω0 = ω(r0), so the
reference frame is non-inertial. In the rotating frame, Maxwell’s
equations acquire extra terms (Schiff 1939):

∇ · E = 4πρc +
2ω0 · B

c
− v0

c
· ∇ × B, (1)

∇ · B = 0, (2)

∂ B
∂t

= − c∇ × E, and (3)

∂ E
∂t

= c∇ × B − 4π J +
v0

c
× ∂ B

∂t

− ∇ ×
(
v0 ×

(
E − v0

c
× B

))
, (4)

where v0 = ω0 × r and c is the speed of light.
Our approach is to neglect all of the terms due to the non-

inertial reference frame in Equations (1) and (4). We now justify
this approximation. In the non-relativistic limit (v0 � c), the
last two terms on the right-hand side of Equation (4) are much
smaller than c∇ × B. Thus, when v0 � c, it is possible to
assume that J ≈ c∇ × B/4π . However, because our numerical
technique is relativistic (see Section 3), we cannot neglect the
displacement current in Equation (4), since it is used to evolve E.
We thus choose to integrate Equation (4) neglecting the last two
terms on the right-hand side. Even though this approximation
is not expected to affect the MHD-scale dynamics of the
plasma, the neglected terms can still formally be larger than
the displacement current ∂ E/∂t , which is not accurately evolved
regardless of the v0 � c condition. The effect of this can be seen
in Equation (1), where the last two terms of the right-hand side
represent the appearance of extra electric charges in the rotating
box. In particular, the term proportional to v0 can be much larger
than ∇ · E if |E|/|B| � |v0|/c. This is expected in the case

of the small-box approximation, where the typical magnitude
of the turbulence velocity (∼c|E|/|B|) is much smaller than
|v0|. As a first approach to this problem, we will neglect the
existence of theses extra charges, assuming that they do not
affect the plasma microphysics. Thus, our simulations will solve
the standard Maxwell’s equation, with the additional forces due
to gravity acting on each particle individually.

In the rotating frame, the particles will experience Lorentz
forces, plus the Coriolis and tidal forces; in the case of a
Keplerian disk, these are given by the well-known expressions:

d p
dt

= 3mω2
0xx̂ − 2ω0 × p + q

(
E +

u
c

× B
)

, (5)

where p and u are the particle’s momentum and velocity, m
and q are its mass and charge, and x corresponds to the radial
coordinate.

The expressions for the Coriolis and tidal forces presented
in Equation (5) are valid in the “cold” limit (|u| � |v0|). Even
though in our simulations the particles will reach relativistic
velocities, the validity of the cold limit will still hold, but in
a fluid sense. This means that, as long as the fluid velocity for
each species satisfies |u| � |v0|, the fluid dynamics will be well
described by the cold limit expression (Equation (5)). Also, since
in the MRI turbulence |u| can be similar to vA (≡ B/

√
4πρi ,

where the subscript i stands for ions), our non-relativistic, cold
limit will be strictly valid when vA � c.

3. SIMULATION SETUP

Our simulations are performed using the electromagnetic PIC
code TRISTAN-MP (Buneman 1993; Spitkovsky 2005) in one
and two dimensions. In 2D, the simulation box consists of a
rectangle in the x–z plane, where x corresponds to the radial
coordinate and z represents the vertical direction of the disk.
The azimuthal direction (into the simulation plane) is given by
the y-axis. The shearing velocity is v = −xsŷ, where s is the
shearing parameter (≡ 3ω0/2, in the Keplerian case).

In standard MHD simulations, shearing periodic boundary
conditions are used along the radial (x) direction (see, e.g.,
Hawley et al. 1995). In that case, Galilean transformations of
the MHD quantities at the boundaries are made to compensate
for their initial velocity difference |Δv| = sLx . These shearing
periodic boundary conditions cannot be self-consistently imple-
mented in PIC simulations. This is because, under a relativistic
change of reference frame, the transformation of J cannot be
obtained by only transforming the velocity of particles. This
can introduce charge conservation problems at the box bound-
aries, even if |Δv| = sLx � c. We avoid this difficulty by
implementing shearing coordinates, in which the grid moves
with the shearing velocity v = −xsŷ. In this new frame, the
net plasma velocity at the boundaries cancels out, allowing the
use of periodic boundary conditions. In the shearing coordinate
system, the 2D version of Maxwell’s equations get modified by
the presence of extra terms in Faraday and Ampere’s equations.
The new equations read

∂ B(r, t)
∂t

= −∇ × E(r, t) − sBx(r, t)ŷ and (6)

∂ E(r, t)
∂t

= ∇ × B(r, t) − 4π J − sEx(r, t)ŷ (7)

(see the Appendix for the derivation of Equations (6) and (7)).
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Apart from the modifications to Maxwell’s equations, forces
on the particles will also transform in the shearing coordinate
system:

d p
dt

= 2ω0pyx̂ − 1

2
ω0pxŷ + q

(
E +

u
c

× B
)

, (8)

where p is the particle momentum. We can see that the com-
bination of tidal and coriolis forces is substantially modified,
with no dependence on the x coordinate in the shearing frame4

(see the Appendix for the derivation of Equation (8)). Thus, our
initial set up will consist of a periodic box where, apart from
Lorentz forces, particles are pushed by the forces corresponding
to the first two terms in the right-hand side of Equation (8), and
where the fields are evolved according to Equations (6) and (7).5

Our simulations are defined by a series of parameters, which
set both the physical conditions and numerical resolution of
the runs. The physical parameters are the ion to electron mass
ratio mi/me, the initial magnetic field direction and strength, the
orbital frequency ω0, the initial ion and electron pressures pj,
and the x and z sizes of the box (Lx and Lz). The initial magnetic
field along ẑ (Bz,0) is quantified using the corresponding Alfvén
velocity of the plasma, vz

A,0 ≡ Bz,0/
√

4πρic2). The box size is
normalized by λ0 ≡ 2πvz

A,0/ω0 (roughly the wavelength of the
fastest growing MRI mode in the MHD limit), and the orbital
frequency is expressed in terms of the initial ion-cyclotron
frequency ωz

c,i (≡ |e|Bz,0/mic), so our free parameter is the
plasma magnetization ωz

c,i/ω0. Finally, the initial pressure of
the particles is expressed in terms of their initial beta parameter,
βz

j (≡ 8πpj/B
2
z,0).

In order to understand our choice of parameters, it is useful
to know how they affect the total computing time, Tcomp, of the
runs. The computational cost of a simulation is proportional to
Nppc ×Nts ×Ngp, where Nppc is the number of particles per cell,
while Nts and Ngp are the number of times steps and of grid
points of the runs, respectively. Thus, it is possible to show that
the computing time necessary to run a 2D simulation for a given
number of orbital periods, P0 (≡ 2π/ω0), scales as

Tcomp ∝ [
(mi/me)3/2

(
c
/
vz

A,0

)(
ωz

c,i

/
ω0

)3]
× [((c/ωp,e)/Δx)3(L/λ0)2Nppc(Δx/(Δt c))], (9)

where c/ωp,e is the electron inertial length, and Δx and Δt

represent the grid spacing and simulation time step, respectively.
Equation (9) shows that the computing time increases for large
values of the mass ratio (mi/me) and magnetization (ωz

c,i/ω0),
and for small values of the initial Alfvén velocity (vz

A,0/c).
In addition, there is an increase in computing time due to
spatial resolution (c/ωp,e/Δx), box size (L/λ0), and particle
resolution (Nppc). Thus, in general, our simulations will use
rather low values for the ion to electron mass ratio, mi/me, and
magnetization, ωz

c,i/ω0, and high values of vz
A,0/c. The low mass

ratios and magnetizations used in our runs will be significantly
far from realistic values. We will assess the dependence of our
results on these parameters.

4 Note that the combined expression for the coriolis and tidal forces in
Equation (8) and the modified expression for the induction law given by
Equation (6) are equivalent to the 2D versions of Equations (14) and (15) of
Johnson et al. (2008). These equations correspond to the MHD momentum
evolution and induction equations, expressed in terms of Δ v ≡ v - vorb, with v
being the total fluid velocity and vorb = −3xω0/2ŷ.
5 Since the modification to Faraday’s (Ampere’s) equation only affects the
evolution of By (Ey) with an extra term that depends on Bx (Ex), we integrate
By (Ey) using simple time and space interpolations of Bx (Ex). This way, after
these modifications are implemented, the numerical algorithm used by
TRISTAN-MP continues to be second-order accurate in time and space.

Table 1
Parameters for the Different Sets of 1D Runs

Runs βz
j By,0/Bz,0 vz

A,0/c ωz
c,i/ω0 mi/me

O1 0.05 0 1/20 11 10
O2 0.05 0 1/20 −11 10
O3 0.05 0 1/20 33 10
O4 0.05 0 1/20 −33 10
O5 0.05 0 1/20 110 10
O6 0.05 0 1/20 −110 10
O7 1 0 1/20 33 10
O8 1 0 1/20 −33 10
O9 10 0 1/20 33 10
O10 10 0 1/20 −33 10
O11 0.05 0 1/20 33 1
O12 0.05 0 1/20 33 5
O13 0.05 0 1/20 33 20
O14 0.05 0 1/60 33 10
O15 0.05 1 1/20 33 10
O16 1 1 1/20 33 10
O17 10 1 1/20 33 10
O18 1 0 1/20 220 10
O19 1 0 1/20 −220 10
O20 1 0 1/5 33 10
O21 1 0 1 33 10
O22 1 0 1/60 33 10

Notes. We list the beta parameter of ions and electrons βz
j (where j stands for ions

or electrons), the ratio between the mean y (azimuthal) and z fields By,0/Bz,0,
the initial Alfvén velocity vz

A,0/c, the plasma magnetization defined as the ratio
of the initial ion-cyclotron frequency and the disk rotation frequency ωz

c,i/ω0,
and the ion to electron mass ratio mi/me (βz

j , vz
A,0, and ωz

c,i are calculated using
only Bz,0). The space and particle resolutions in all of our 1D simulations are
given by c/ωp,e/Δx = 10 and Nppc = 15.

4. 1D SIMULATIONS: DISPERSION
RELATION ANALYSIS

In this section, we study the linear behavior of the collisionless
MRI and compare our results with previous analytical studies.
We use 1D simulations, where the x (radial) dimension is
reduced to a few cells; this way only wave vectors, k, pointing
along the z-axis are resolved. The box length along z, Lz,
is varied in such a way that only one single mode (with
|k| = 2π/Lz) can grow. The mode is seeded by means of an
initial plasma velocity vseed = (vz

A,0/20) sin(2πz/Lz)x̂, which,
by itself, would induce an Alfvén wave of linear amplitude
in the plasma (|δB|/Bz,0 ∼ 1/20). By measuring the growth
rates in each case, we calculate the MRI dispersion relation,
which then we compare with previous analytical results. The
simulation parameters for each dispersion relation studied are
specified in Table 1. We explore both the weak field regime
(Krolik & Zweibel 2006; Ferraro 2007) and also the high
magnetization limit (Quataert et al. 2002). Although our main
focus is the highly magnetized case (ωz

c,i/ω0 � 1), the study
of the low magnetization limit will help us understand the
parameter regime that minimizes the effect of weak fields, while
optimizing the use of computer time.

4.1. Low Magnetization Regime

The low magnetization regime has been explored analytically
both in the cold limit (Krolik & Zweibel 2006) and in the finite
temperature case (Ferraro 2007). We will investigate the effect
of ωz

c,i/ω0 in the cold case first. We measure the MRI dispersion
relation for βz

j = 0.05 using the magnetizations ωz
c,i/ω0 = 11,

−11, 33, −33, 110, and −110 (corresponding to simulations
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Figure 1. Dispersion relations for 1D simulations O1–O6 from Table 1, which
use the same parameters (βz

j = 0.05, vz
A,0/c = 1/20, mi/me = 10, and

By,0 = 0), except for the initial magnetization of the plasma, which is defined
by the ratio of the initial ion-cyclotron frequency to the disk orbital frequency
ωz

c,i/ω0. The red, green, and black lines are for |ωz
c,i/ω0| = 11, 33, and 110;

solid and dashed lines show ωz
c,i/ω0 > 0 and <0, respectively. The results

converge at |ωz
c,i/ω0| = 33 to a dispersion relation reasonably in agreement with

the analytical MHD prediction (Balbus & Hawley 1991), shown with the blue
line. The growth rate ω is normalized in terms of the orbital frequency ω0, and
the wavenumber k is normalized in terms of k0 (≡ ω0/v

z
A,0). These numerical

results are consistent with the analytical dispersion relation calculation of Krolik
& Zweibel (2006).

(A color version of this figure is available in the online journal.)

O1–O6 in Table 1), which are presented in Figure 1. The red
lines correspond to |ωz

c,i/ω0| = 11 with the solid (dashed) line
depicting the ωz

c,i/ω0 > 0 (< 0) case. Although neither the
wave number of the fastest growing mode nor the corresponding
growth rate varies between these two cases, the range of unstable
wave numbers extends to larger values when ωz

c,i/ω0 = −11.
The green and black lines show results for |ωz

c,i/ω0| = 33 and
110, respectively. There is practically no difference between
these two magnetizations, and the sign of ωz

c,i/ω0 no longer
plays a role. This shows that, when |ωz

c,i/ω0| = 33, our simu-
lations have already converged to a dispersion relation reason-
ably in agreement with the analytical MHD result (Balbus &
Hawley 1991). The way the dispersion relation depends on the
sign and magnitude of ωz

c,i/ω0 shows that at low magnetization
the coupling between the particles’ gyromotion and their epicy-
cle motion can modify the MRI dynamics significantly. These
results are consistent with the MRI dispersion relations at low
magnetization (zero temperature) presented in Figures 1 and 2
of Krolik & Zweibel (2006).

We have also studied the effect of finite particle temperatures
(and, thus, of finite Larmor radius, FLR) by re-running simula-
tions O3 and O4 using βz

j =1 (runs O7 and O8) and 10 (runs O9
and O10). The results are presented in Figure 2. The black lines
show the “cold” (βz

j = 0.05) case of Figure 1, and the green
and red lines show the βz

i,e = 1 and 10 results. The solid and
dashed lines show ωz

c,i/ω0 > 0 and <0, respectively. Figure 2
shows that for larger initial plasma pressure, the range of un-
stable MRI modes shifts to larger wavelengths. The maximum
value of the growth rate also increases for larger initial pressure.
In addition, no substantial difference is observed between the
ωz

c,i/ω0 > 0 and <0 cases. This result can be compared with
the analytical treatment of Ferraro (2007), where the effect of
the finite larmar radii of the ions was included. Ferraro’s ana-
lytical prediction is consistent with our numerical calculation

Figure 2. Black, green, and red lines show dispersion relations for 1D
simulations with the same initial plasma magnetization |ωz

c,i/ω0| = 33, but
with different plasma betas: βz

j = 0.05 (O3 and O4), 1 (O7 and O8), and 10
(O9 and O10); solid and dashed lines show ωz

c,i/ω0 > 0 and <0, respectively.
As βz

j increases, the unstable MRI modes shift to larger wavelengths, with the
maximum growth rate increasing. This is a consequence of the ion Larmor
radius increasing with increasing βz

j . There is no substantial difference between
ωz

c,i/ω0 > 0 and < 0. The blue lines show runs like O7 and O8, but with six
times larger magnetization (|ωz

c,i/ω0| = 220; runs O18 and O19). The migration
to longer wavelengths seen in runs O7 and O8 is reduced, and the dispersion
relations approach the βj = 0.05 cases. This is consistent with the fact that
relatively large values of βj do not produce significant finite Larmor radius
(FLR) effects if the magnetization is large enough.

(A color version of this figure is available in the online journal.)

only for ωz
c,i/ω0 > 0 (see his Figure 1). For ωz

c,i/ω0 < 0, his
prediction is that larger temperatures increase the upper limit
of the unstable wave numbers and reduce the maximum growth
rate. We do not find this dependence on the sign of Bz,0. This
may be because of the small dynamical separation between the
ions and electrons in our simulations (mi/me = 10), in contrast
with the regime considered by Ferraro (2007), where mi/me

is effectively infinite. In any case, if the dependence on βz
j in

Figure 2 is caused by FLR effects of the kind predicted by
Ferraro (2007), then increasing the plasma magnetization for
fixed βz

j should cause our results to approach the limit in which
FLR effects are negligible. We tested this by taking runs O7
and O8 (with βz

i,e = 1) and increasing their magnetization by a
factor of six to |ωz

c,i/ω0| = 220 (while keeping the same βz
j ).

The corresponding dispersion relations are shown by the blue
lines in Figure 2. Increasing the magnetization indeed increases
the range of unstable wave numbers, with the results approach-
ing the cold plasma (zero FLR effects) results. Thus, for the
magnetizations utilized in this paper, we expect FLR effects to
be present for finite values for βj . In the astrophysical regimes
of interest, however, FLR effects are expected to be negligible.

4.2. High Magnetization Regime

The linear behavior of the MRI has been studied analytically
in the high magnetization regime by Quataert et al. (2002)
and Sharma et al. (2003) using the kinetic MHD approach.
In this approach, it is assumed that ωz

c,i/ω0 → ∞ and also that
FLR effects are unimportant, i.e., the ion gyroradius is much
smaller than λ0. One of the main differences with respect to
standard MHD is the increase in both the growth rate and the
wavelength of the fastest growing mode, which happens for
large βz

j in the presence of a significant toroidal magnetic field.
We tested this result for simulations with βz

j = 0.05, 1, and

4



The Astrophysical Journal, 755:50 (20pp), 2012 August 10 Riquelme et al.

Figure 3. Dispersion relation calculations for runs with By,0 = Bz,0 but different
values of βz

j = 0.05, 1, and 10 (black, green, and red lines corresponding to runs
O15, O16, and O17, respectively). The growth of longer wavelength modes is
favored at higher pressures, with the maximum growth rate for the βz

j = 10 case
being significantly larger than for By,0 = 0 (shown by the red lines in Figure 2).
This is consistent with linear analytic calculations (Quataert et al. 2002).

(A color version of this figure is available in the online journal.)

10, with By,0/Bz,0 =1 (runs O15, O16, and O17, respectively).
The corresponding dispersion relations are shown in Figure 3,
where the black, green, and red lines depict the cases with
βz

j = 0.05, 1, and 10. The tendency to favor the growth of
longer wavelengths and for larger maximum growth rates for
larger βz

j is clearly seen. Note that the maximum growth rate
for the βz

j = 10, By,0 = Bz,0 case is significantly larger than
for the analogous case with By,0 = 0 (shown in Figure 2).
These dispersion relations are in reasonable agreement with
their analytical counterpart shown in the right panel of Figure 4
of Quataert et al. (2002).

4.3. Dependence on Other Parameters

Given the low mass ratios mi/me that we use, it is important
to check that our results are not affected by this parameter.
Thus, we carried out simulations analogous to run O3 but using
different values of mi/me. The dispersion relations are shown
in Figure 4 for mi/me = 1, 5, 10, and 20 (green, blue, black,
and red lines, respectively). Figure 4 shows that mi/me does
not play any significant role in the linear dispersion relation
of the MRI, which does not change between mi/me = 1 and
20. Note, however, that this independence from mi/me occurs
only at sufficiently large magnetizations (ωz

c,i/ω0 = 33). At
lower magnetizations the different masses of ions and electrons
do affect the growth rate of the MRI, producing a dependence
on the sign of ωz

c,i/ω0 (as can be seen from Figure 1). This
is qualitatively consistent with the analytic result of Balbus &
Terquem (2001) and Krolik & Zweibel (2006), who showed that
the Hall effect introduces a dependence of the MRI growth rate
on the sign of ωz

c,i/ω0 for ωz
c,i ∼ ω0. Finally, in the same figure,

a test of the effect of vz
A,0/c is shown by the dashed-black

line, which shows the dispersion relation for vz
A,0/c = 1/60

(run O14). There is no substantial difference relative to the
vz

A,0/c = 1/20 cases.

4.4. MRI Saturation in 1D

Most of our nonlinear MRI analysis will be done using 2D
simulations. In this section, however, we determine a saturation
criterion for the magnetic amplification in 1D. Although far

Figure 4. Comparison of numerical dispersion relations for different mass ratios
mi/me = 1 (green; run O11), 5 (blue; run O12), 10 (black; run O3), and 20
(red; run O13). The value of mi/me does not change the linear growth rate, even
for mi/me = 1. Also, a test of the effect of vz

A,0/c is shown by the dashed-black
line, which corresponds to vz

A,0/c = 1/60 (run O14). No substantial difference
is observed when comparing with the vz

A,0/c = 1/20 cases.

(A color version of this figure is available in the online journal.)

Figure 5. Alfvén velocities vk
A/c calculated with the k component of the

magnetic field (k = x, y, and z) in three 1D simulations (O22, O20, and
O21). The runs have the same box-size Lz = 1.25λ0 (λ0 ≡ 2πvz

A,0/ω0) and
the same parameters, except for their initial vz

A,0/c. The black, green, and red
lines correspond to vz

A,0/c = 1/60, 1/5, and 1 (runs O7, O20, and O21 of
Table 1, respectively). All three calculations have roughly the same saturation,
with vx

A ∼ c and v
y

A ∼ 10c. Similar results are obtained using a larger box
(Lz = 5λ0), and at different mi/me and magnetizations.

(A color version of this figure is available in the online journal.)

from realistic, this will help us better understand and interpret
the 2D results in Section 5.

Figure 5 shows the magnetic energy evolution for three 1D
simulations with “box” sizes Lz = 1.25λ0 and with similar
parameters except for their initial vz

A,0/c. The black, green, and
red lines correspond to vz

A,0/c = 1/60, 1/5, and 1 (runs O22,
O20, and O21 of Table 1), and the solid and dashed lines show
the evolution of their radial and azimuthal magnetic energies,
B2

x/B
2
0 and B2

y/B
2
0 , respectively. The maximum amplification

of Bx in all three cases satisfies vx
A ∼ c (where vx

A corresponds
to the Alfvén velocity calculated only with the x component of
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Table 2
Parameters of the 2D Runs

Runs βz
j By,0/Bz,0 vz

A,0/c ωz
c,i/ω0 mi/me Lx × Lz/λ

2
0 c/ωp,e/Δx Nppc Zero Flux?

T1 1 0 1/20 11 2 8 × 8 7 3 No
T2 1 0 1/20 11 5 4 × 4 7 3 No
T3 1 0 1/60 11 2 5 × 5 7 3 No
T4 40 0 1/20 22 2 4 × 4 7 3 No
T5 1 1 1/20 11 2 8 × 8 7 3 No
T6 1 0 1/20 22 2 4 × 4 7 3 No
T7 1 0 1/120 11 2 5 × 5 7 3 No
T8 10 0 1/20 11 2 8 × 8 7 3 No
T9 1 0 1/20 11 2 2 × 2 10 6 No
T10 1 0 1/20 11 2 4 × 4 7 3 No
T11 10 0 1/20 11 2 2 × 2 14 3 No
T12 1 0 1/60 11 2 8 × 8 7 3 Yes
T13 1 0 1/20 11 2 8 × 8 7 3 Yes
T14 1 0 1/20 11 2 16 × 8 7 3 Yes

Notes. A list of 2D simulations, defined by the initial beta parameter of ions and electrons βz
j , the ratio between the mean y (azimuthal)

and z (vertical) fields, By,0/Bz,0, the initial Alfvén velocity, vz
A,0/c, the plasma magnetization, ωz

c,i/ω0 (the ratio between the initial
ion-cyclotron frequency and the rotation frequency of the disk), and the ion to electron mass ratio, mi/me (the z superscript indicates
that βz

j , vz
A,0/c, and ωz

c,i are defined by the z-component of B). The numerical resolution of the runs is defined by the box size Lx/λ0

and Lz/λ0 (where λ0 ≡ 2πvz
A,0/ω0), and the space and particle resolutions, which are determined by the number of grid points per

electron skin depth c/ωp,e/Δx and the number of particles per cell Nppc, respectively.

the magnetic field). After the saturation of the radial field, By
continues to grow, but at a significantly lower rate. This result
appears to be independent of the size of the box (it was also
tested for Lz = 5λ0), and other parameters like mi/me, ωz

c,i/ω0,
and βj . Note also that for vz

A,0/c = 1 the linear growth rate is
reduced, leading to a suppressed exponential growth of Bx. It
is important to emphasize that, by assumption, our treatment of
the MRI is valid only in the non-relativistic regime, i.e., when
vA � c. This regime is the most interesting since vA ∼ c
corresponds to a magnetic field energy close to the rest-mass
energy of the particles, which should be precluded by energy
conservation, except very close to a black hole event horizon.
Thus, this saturation criterion implies that, at least in 1D, there
is no mechanism stopping the growth of the field in the regime
of interest (vA � c).

In the next section, we study how this 1D evolution is modified
by 2D effects. We also analyze the sources of angular momentum
transport in detail, and study the interplay between the nonlinear
MRI turbulence and particle heating.

5. TWO-DIMENSIONAL SIMULATIONS

Our 2D analysis is organized in four parts. First, Section 5.1
describes the overall nonlinear behavior of the MRI turbulence,
paying special attention to its saturation. Section 5.2 briefly
discusses how the nonlinear evolution is modified in the zero
magnetic flux case. Section 5.3 analyzes angular momentum
transport, considering the contribution of an anisotropic pressure
stress. Finally, in Section 5.4 we discuss particle heating and
identify the different processes that contribute to it. Our analysis
is based on a series of simulations listed in Table 2. The initial
physical conditions of the runs are defined by: the beta of ions
and electrons βz

j , the magnetic field along ŷ, By,0, the field
along ẑ, Bz,0 (quantified via vz

A,0/c), the plasma magnetization
ωz

c,i/ω0, and the ion to electron mass ratio, mi/me (vz
A,0/c, βz

j ,
and ωz

c,i are calculated only considering Bz,0). The remaining
parameters determine the numerical resolution of the runs.
These are defined by: the box dimensions (Lx ×Lz)/λ2

0 (where,

Figure 6. Evolution of the three components of the magnetic field for 2D
simulations T1 (vz

A,0/c = 1/20; black lines) and T5 (vz
A,0/c = 1/60; red

lines). Magnetic field values are expressed in terms of the Alfvén velocities
vk
A (≡ Bk/

√
4πρ, with k = x, y, and z). The solid, dashed, and dotted lines

represent the x, y, and z components, respectively. As in 1D, the magnetic field
saturates at v

x,z
A /c ∼ 1 and v

y

A/c ∼ 10.

(A color version of this figure is available in the online journal.)

as before, λ0 = 2πvz
A,0/ω0), and the space, time, and particle

resolutions. The space and time resolutions are set by the number
of grid points per electron skin depth, c/ωp,e/Δx , while the
particle resolution is defined by the number of particles per
cell, Nppc.

5.1. MRI Turbulence Evolution

The nonlinear MRI evolution is characterized by an initial
exponential growth of the field (until |B|/Bz,0 ∼ 5), followed
by a significant decrease in the growth rate. This can be seen in
Figure 6, which shows the evolution of the three magnetic energy
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Three components of the magnetic field Bx, By, and Bz and its energy normalized in terms of the initial field Bz,0, for run T1 at three different times. The
arrows in the log(B2/B2

z,0) plots show the projection of the magnetic field direction on the x–z plane. At t = 1.6P0 (top row) the MRI is in the mildly nonlinear regime,
with the magnetic fluctuations dominated by the fastest growing linear MRI channel mode. At t = 3.6P0 (middle row), the growth has migrated to longer wavelengths,
with the dissipation of the short wavelength modes dominated by magnetic reconnection. Finally, at t = 14P0 (bottom row), the turbulence is in a quiescent state, with
no MRI modes and magnetic field concentrated in loops. At that point, growing MRI modes have wavelengths larger than the box size.

(A color version of this figure is available in the online journal.)

components for simulations T1 (black) and T3 (red) of Table 2
quantified using their Alfvén velocities (vx

A/c, v
y

A/c, and vz
A/c,

represented by solid, dashed, and dotted lines, respectively).
In both cases, while v

y

A/c continues to grow exponentially
(although at a slower rate), the x and z components appear to
enter a linear growth regime and saturate at amplitudes about
one order of magnitude smaller than the azimuthal field. In
both cases, the magnetic growth proceeds until vx

A ≈ 2vz
A ≈ c

and v
y

A ≈ 10c, which is qualitatively consistent with the 1D
saturation criterion found in Section 4.4. This implies that
no saturation of the MRI is expected in the 2D simulations,
as long as vA � c, which is the regime where our non-
relativistic approximations to the Maxwell’s equations in a
rotating frame are valid (see Section 2). There are only two
important differences between the 2D and 1D cases. The first one
is the growth of Bz, which cannot occur in the 1D case (∇ × E
cannot have a component along ẑ, given that ∂x = ∂y = 0).
The other difference is that, regardless of the initial vz

A,0, the
exponential field growth stops at |B|/Bz,0 ≈ 5. This can be
explained by the role of magnetic reconnection in dissipating
the field energy in the nonlinear regime of our 2D runs. Figure 7

shows the 2D structure of the magnetic field for run T1, with the
three field components along with the magnetic energy plotted
at t = 1.6, 3.6, and 14P0.

At t = 1.6P0 the instability is in the mildly nonlinear
regime (|B|/Bz,0 ∼ 1). At that point, magnetic amplification is
dominated by the fastest growing MRI mode with a wavelength
λ ≈ λ0. At t = 3.6P0, on the other hand, the field has been
amplified to |B|/Bz,0 ∼ 60 and the dominant wavelength has
grown to λ ≈ 4λ0. This migration to longer wavelengths occurs
along with the reconnection of magnetic field lines associated
with the small wavelength modes as they become nonlinear.
Magnetic reconnection takes place in thin current sheets, where
Bx and By switch sign. Along with the onset of reconnection,
there is the appearance of loop-like structures (see, for instance,
the one at (x, z) ≈ (200, 200)c/ωp,e in Figures 7(e)–(h)).
The magnetic loops also correspond to regions of high plasma
density, as can be seen from Figure 8, which shows the evolution
of the plasma density, ρ/ρ0, and Bx/B0 for run T1. The
formation of loops is much clearer at t = 14P0. At that stage,
they appear as overdense regions (ρ/ρ0 ∼ 10), in pressure
equilibrium with the surrounding magnetic field.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Plasma density, ρ/ρ0, and Bx, for our fiducial 2D simulation T1 at
three different times. The arrows in the Bx plot represent the magnetic field
direction on the x–z plane. At t = 1.6P0 (top row) the instability is in the
mildly nonlinear regime. At t = 3.6P0 (middle row), the short wavelength
modes have dissipated by magnetic reconnection and growth has migrated to
longer wavelengths. Finally, at t = 14P0 (bottom row), the turbulence has died
away and growing MRI modes have wavelengths larger than the box size. In this
quiescent state, both the magnetic field and plasma are concentrated in loops
created by reconnection.

(A color version of this figure is available in the online journal.)

As By decays, the magnetic energy corresponding to Bx and Bz

stays rather constant. This energy is contained primarily in the
magnetic loops, as can be seen from the field plots at t = 14P0
in Figures 7(i)–(l). At this point, the fields are in a quiescent
state, with the loops experiencing almost no evolution (as can
also be inferred from the smooth magnetic energy evolution after
t � 13 in Figure 6). This implies that, at late times, the growth of
new linear MRI modes is dramatically suppressed. This behavior
can be explained by the migration of the growing modes to large
wavelengths due to FLR effects at large βz

j (see Section 4.1). In-
deed, for the relatively low magnetization ωz

c,i/ω0 = 11 of sim-
ulation T1, the observed increase in temperature corresponds
to βz

j ≈ 1000 (when only the initial Bz,0 is considered), which
makes the particle’s gyroradii outside of the loops larger than λ0
(after By has been significantly dissipated). Thus, FLR effects
should significantly increase the wavelength of the unstable
modes, presumably to length scales larger than the box size. In

Figure 9. Comparison of magnetic energy evolution in 2D (black) and 3D
(red) runs that use the kinetic MHD model of Sharma et al. (2006). These fluid
simulations are analogous to simulation T1, i.e., they use the same initial β

and box size Lx,z/λ0 (with the 3D case having Ly = Lx,z). The x (radial), y
(azimuthal), and z (vertical) components of the magnetic energy are shown with
solid, dashed, and dotted lines, respectively. In contrast to the 3D case, the 2D
case does not saturate, qualitatively reproducing the lack of saturation in our
2D PIC simulations when vA < c. Also, in the 2D case the magnetic energy is
dominated by the azimuthal field component (black-dashed line), which is also
in agreement with our PIC results. This suggests that the 2D geometry of our
runs plays a crucial role in precluding field saturation in the vA < c regime.

(A color version of this figure is available in the online journal.)

a realistic astrophysical scenario, however, the MRI will not be
suppressed by FLR effects. Indeed, ωz

c,i/ω0 is typically many or-
ders of magnitude larger than the value used in our simulations,
which would make FLR effects negligible (Ferraro 2007).

Also, in all of our simulations the quiescent state happens after
the MRI has reached the saturation condition vx

A ≈ 2vz
A ≈ c

and v
y

A ≈ 10c. However, we expect the MRI to saturate before
reaching this condition in a more realistic 3D problem. Indeed,
we believe that the 2D geometry of our simulations favors both
the different evolution of By (compared with Bx and Bz) and the
unrestricted field growth in the non-relativistic regime (vA � c).
Loop formation makes reconnection a 2D phenomenon, which
is favored if these structures are well resolved by the simulation.
In our 2D runs, this is the case only for reconnection of field
lines lying mainly on the x–z plane.

The effect of the 2D geometry can be seen in Figure 9, which
shows the magnetic energy evolution of 2D and 3D kinetic MHD
versions of run T1 (using the same modified version of the ZEUS
code as in Sharma et al. 2006). We see that the magnetic field
energy evolves fundamentally differently in the 2D and 3D runs.
In the 2D case, the magnetic energy growth does not saturate,
with the By contribution dominating in the nonlinear regime
(like in our runs), while in the 3D case the field saturates at
|δB/Bz,0| ∼ 10 with By contributing nearly the same energy as
the other two field components.

5.2. The Zero Net Flux Case

The MRI evolution presented above can be substantially
modified if the net magnetic flux along ẑ is zero. Figure 10
shows the density and Bx of run T12, which is analogous to run
T3 but with B0 = − sin(x/Lx)Bz,0ẑ. In the zero net flux case
the MRI initially grows faster in the low field regions. This is
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Plasma density, ρ/ρ0, and Bx, for 2D run T12 at three different times,
showing the overall MRI evolution in the case of zero net Bz flux. The first,
second, and third rows show the linear, nonlinear, and post-saturation states at
t = 1.6P0, 2.4P0, and 5.6P0, respectively. With zero-net flux reconnection is
much more vigorous and leads to saturation of the MRI prior to vA ∼ c (see
Figure 11). Magnetic loops are also much less prominent.

(A color version of this figure is available in the online journal.)

due to FLR effects, as explained in Section 4.1. When |B0| is
small, the beta of the plasma is large, which increases the growth
rate of the fastest growing mode (see Figure 2). This effect also
appears to be stronger when ωz

c,i/ω0 < 0, which is consistent
with the slightly different growth rates seen in Figure 2 for
different signs of ωz

c,i/ω0. This FLR effect is not expected in
realistic astrophysical settings.

The MRI saturates at smaller amplitude with no net flux,
compared with finite net flux. This can be seen in Figure 11,
where the magnetic energy evolution of runs T12 (vz

A,0/c =
1/60) and T13 (vz

A,0/c = 1/20) is depicted in black and red
lines, respectively. With no net flux, the saturation is no longer
characterized by a particular value of vA ∼ c (as in the finite flux
case; see Figure 6). Instead, different values of vz

A,0/c saturate
with similar amplification factors: Bx/Bz,0 ≈ 10, By/Bz,0 ≈ 30,
and Bz/Bz,0 ≈ 4. Also, the x-size of the box Lx/λ0 appears to
play a role in the final saturation, as can be seen by comparing
runs T13 and T14 (which are equal except for having Lx/λ0 = 8
and 16, respectively). Indeed, T14 produces somewhat larger
values of B2

k than T13. This can be understood by noting

Figure 11. Evolution of the three magnetic energy components for simulations
T12, T13, and T14, with no vertical flux. The maximum magnetic field
amplification (Bmax/Bz,0) in runs T12 (vz

A,0/c = 1/60; black line) and T13
(vz

A,0/c = 1/20; red line) appears to be almost the same, despite their different
initial Alfvén velocity. This is fundamentally different from the finite Bz flux
cases, where the lower the initial vz

A,0, the larger the amplification factor (so

that at saturation vx
A,0 ∼ vz

A,0 ∼ c, and v
y

A,0 ∼ 10c). The amplification seems
to increase in the case of run T14 (vz

A,0/c = 1/20; green line), which has an
Lx/λ0 twice as large as the one in run T13. Thus, in zero net flux simulations,
field amplification depends on box size (Lx,z/λ0), which is not the case in
simulations with net vertical flux.

(A color version of this figure is available in the online journal.)

that, for sufficiently large Lx, regions of positive and negative
initial Bz will behave as spatially distinct regions, being able
to reach saturation at amplitudes similar to the finite flux cases.
Note also that the earlier saturation suppresses the formation of
strong channel flows and magnetic loops (see the density and
Bx configurations in the saturated state in Figures 10(e) and (f)).

5.3. Pressure Anisotropies and Anisotropic Stresses

The growth of a pressure anisotropy with respect to the local
magnetic field can contribute to angular momentum transport via
an anisotropic pressure stress, Axy,j ≡ −ΔpjBxBy/B

2, where
Δpj ≡ p⊥,j −p||,j and j stands for ions and electrons (Quataert
et al. 2002; Sharma et al. 2006). This pressure anisotropy is ex-
pected in regions where B is being amplified by the MRI, due to
the adiabatic invariance of the magnetic moment of the particles,
μj ≡ p⊥,j /ρjB. The anisotropic stress may be comparable to
the Maxwell stress, Mxy ≡ −BxBy/4π in low-collisionality
accretion disks, as was found by previous nonlinear studies of
the MRI in collisionless plasmas (Sharma et al. 2006, 2007).
These studies used a fluid based approach, which did not evolve
the pressure in an entirely self-consistent way. Instead, an ap-
proximate model was used both to close the fluid equations
and to limit the growth of Δpj . As mentioned in Section 1,
Δpj is regulated by plasma microinstabilities (mirror, ion cy-
clotron, electron whistler, etc.) acting on scales comparable to
the gyroradii of the different species. This provides a mech-
anism for pressure isotropization in the absence of Coulomb
collisions. The effect of these instabilities on particles’ veloc-
ities is kinetic in nature and cannot be consistently captured
by a fluid approach. Thus, to date, their effect has been mod-
eled by imposing a “hard wall” upper limit to |p⊥,j /p||,j − 1|,
based on the assumption that Δpj/p||,j will grow only until
the relevant microinstabilities reach their instability threshold.
This criterion is motivated by solar wind observations (Bale
et al. 2009), and theoretical and PIC studies of the relevant in-
stabilities (e.g., Gary et al. 1997). However, how these criteria
apply given the simultaneous driving of the MHD turbulence
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. 2D plots of the ion pressure anisotropy Δpi/p||,i (Δpi = p⊥,i −p||,i ), the ion parallel beta β||,i , the ion anisotropic stress Axy,i/p0, and the Maxwell stress
Mxy/p0, at t = 1.6P0, 3.6P0, and 14P0 for run T1 (where p0 is the initial pressure in the plasma). Overall, the pressure anisotropy increases as the MRI grows. At
late times, however, the pressure is roughly isotropic in the magnetic loops but anisotropic elsewhere.

(A color version of this figure is available in the online journal.)

by the MRI remains to be clarified. In this section, we describe
the evolution of the anisotropy stress self-consistently using
PIC simulations of the MRI, and quantify their contribution to
transport in the disk. In Section 5.3.1, we provide a detailed
2D description of pressure anisotropies and their corresponding
anisotropic stress Axy,j . In Section 5.3.2, we analyze the depen-
dence of Δpj and Axy,j on different simulation parameters using
volume-averaged quantities. Finally, in Section 5.3.3 we illus-
trate the growth of anisotropy-driven microinstabilities by iden-
tifying and analyzing the properties of the relevant small-scale
modes.

5.3.1. Spatial Distribution of the Anisotropies

Figure 12 shows the spatial distribution of the ion pressure
anisotropy (Figure 12(a)) and the corresponding anisotropic
stress (Figure 12(c)) at t = 1.6P0, 3.6P0, and 14P0 for run
T1. By comparing with Figure 7(d), we see that at t = 1.6P0
the maximum anisotropy occurs in regions of large magnetic
amplification, which consequently coincide with minima in β||,i
(shown in Figure 12(b)). The anisotropy Δpi/p||,i is also well
correlated with the Maxwell stress Mxy (Figure 12(d)) and,
therefore, with the anisotropic stress, Axy,i . At this early (linear)

stage, the ion anisotropy satisfies Δpi/p||,i � 1, and thus
plasma microinstabilities are not expected to provide significant
pressure isotropization (given that, as we will see below,
microinstabilities isotropize the plasma pressure efficiently
when Δpi/p||,i ∼ 1/β

q

||,i , with q ∼ 1, and initially βz
i = 1). The

lack of ion isotropization can be seen in Figure 13(a), which
shows that at early times the average magnetic moment of ions,
μi , remains very close to its initial value μi,0.

At t = 3.6P0, on the other hand, the correlation between
Axy,i and Mxy gets significantly suppressed. Axy,i is especially
suppressed in regions of large Mxy, which coincide with the
regions of the lowest β||,i . This suggest the presence of an
efficient mechanism for pressure anisotropization at low β||,j .
We will quantitatively discuss (in Section 5.3.2) the most
likely mechanism for ion pitch angle scattering in these low
β||,j regions. Magnetic reconnection is also expected to reduce
Δpj at this stage. Indeed, as we will see below, at this time
reconnection contributes significantly to particle energization.
Since this process is not expected to preserve μj , pressure
anisotropies must also be reduced due to reconnection. The
non-conservation of μj can be seen explicitly in Figure 13(b),
which shows that at late times μi/μi,0 ≈ 60 on average (in
accordance with B/B0 ≈ 60 and βi,⊥ ≈ 1).
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(a) (b)

Figure 13. 2D plots of the average magnetic moment of ions μi (≡ p⊥,i /(ρiB))
at t = 1.6P0 and 3.6P0 for run T1, normalized in terms of its initial value μi,0.
At late times, the magnetic moment has increased significantly, consistent with
the isotropization of the plasma pressure by small-scale kinetic instabilities (see
Figures 15 and 16).

(A color version of this figure is available in the online journal.)

At t = 14P0 there are no regions in the box where β||,i � 1,
which suggests that the correlation between Mxy and Axy,i must
be to some degree recovered. However, this does not occur. A
significant fraction of the magnetic field energy is contained in
loops, but the pressure anisotropy within these loops appears to
be almost zero. This is consistent with the fact that no significant
magnetic amplification occurs in the loops, so they do not
develop pressure anisotropies due to μ conservation. Indeed,
loops are a byproduct of the magnetic reconnection of the
MRI-amplified field, so no significant growth of Δpi/p||,i
is expected to occur in these regions. Thus, we see from
Figures 12(k) and (l) that, whereas the largest contribution to Mxy
comes from the inner part of the loops, the largest magnitudes of
Axy,i come from their outer parts. We also note that both Mxy and
Axy,i can get large negative and positive values, implying that
these quantities may produce a negative stress on average. This
is because, as can be seen from Figures 7(i) and (j), the magnetic
loops do not develop an anticorrelation between Bx and By, as
is the case with the MRI channel modes. As we will see below,
this produces negative volume-averaged Mxy and Axy,j in the
late stages of some of our simulations. This is, we believe, an
artifact of how our 2D simulations saturate.

5.3.2. Volume-averaged Anisotropies and Stresses

In this section, we quantitatively analyze the physics of
pressure anisotropy evolution and the corresponding anisotropic
stresses, using volume-averaged quantities. Figure 14 shows the
time evolution of volume-averaged stresses, plasma betas, and
ion pressure anisotropies for runs T1 and T4. The first column
concentrates on run T1, with panel 14a depicting the Maxwell
stress (Mxy; red), the Reynolds stress (Rxy = Rxyi

+Rxy,e; green),
and the anisotropic stress (Axy = Axy,i + Axy,e; black). These
stresses are plotted as solid (dotted) lines when they are positive
(negative), and are normalized in terms of the total perpendicular
pressure p⊥ = p⊥,i + p⊥,e. They are thus an estimate of the
contribution to the effective α parameter of Shakura & Sunyaev
(1973). We see that in the exponential growth regime (from
t = 0 to t ≈ 2P0) Mxy and Rxy almost coincide, in accordance
with the expected linear MRI behavior. On the other hand,
Axy appears to grow exponentially at a rate larger than that
of Mxy and Rxy. This is because Axy,j /Mxy ∼ Δpj/B

2, so in
the linear regime this ratio grows as Δpj/B

2
z,0. Also, this ratio

can be expressed as Axy,j /Mxy = Δpjβ||,j /(2p||,j ). Thus, since

(a) (b)

(c) (d)

(e) (f)

Figure 14. Evolution of volume-averaged quantities for simulations T1 and T4.
The first row shows the different stresses Mxy (red), Rxy (Rxy = Rxy,i + Rxy,e;
green), and Axy (Axy = Axy,i + Axy,e; black), normalized in terms of the
perpendicular plasma pressure (p⊥ = p⊥,i + p⊥,e). The second row shows the
parallel and perpendicular betas (in solid and dotted lines, respectively), for
ions (black) and electrons (green). These quantities are calculated dividing the
volume averages of the particles’ pressures and the magnetic field pressure. The
third row shows the pressure anisotropy Δpi/p||,i of ions (black line; electrons
follow a qualitatively similar trend), along with the theoretically estimated
thresholds for the ion-cyclotron (IC) instability (Δpi,IC; green) and an empirical
threshold obtained from solar wind ion anisotropy measurements (Δpi,SW),
shown by the red line (Bale et al. 2009). Note that the plasma remains near the
solar wind threshold (which is very similar to the threshold for excitation of
mirror modes), particularly in the higher beta simulation T4 (right column).

(A color version of this figure is available in the online journal.)

in the linear regime Δpj/p||,j � 1 and β||,j = 1 (for run
T1), the ion and electron anisotropic stresses Axy,j must satisfy
Axy,j � Mxy .

After t ≈ 1.5P0, the growth of the anisotropic stress Axy
becomes significantly slower than that of the Maxwell stress
Mxy. This can be understood in terms of the dependence of
Δpj/p||,j on β||,j . Figure 14(e) shows the time evolution of the
ion pressure anisotropy Δpi/p||,i for run T1 (black line; the
electrons follow qualitatively the same trend). When β||,i � 0.3
(t � 3P0), Δpi/p||,i appears to be constrained by the condition
for ion-cyclotron instability growth (green line), as used by
Sharma et al. (2006). This threshold is given by

Δpi

p||,i
� 0.35

β0.42
||,i

, (10)

which implies that Axy,j /Mxy = Δpjβ||,j /(2p||,j ) �
0.18β0.58

||,j � 1 if β||,i � 1. This explains the lack of correlation
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between Axy,j and Mxy in the low β||,i regions at t = 3.6P0, as
seen in Figures 12(g) and (h).

At larger values of β||,i (t � 3P0), the pressure anisotropy
appears to be limited by a condition less stringent than that of
the ion-cyclotron instability. Remarkably, the bound on the ion
anisotropy in our simulations is consistent with the maximum
anisotropy measured in the solar wind (Bale et al. 2009), shown
by the red line. This limit is given by

Δpi

p||,i
� 0.77

(β||,i + 0.016)0.76
. (11)

The bound in Equation (11) is very similar to the stability
condition for the mirror instability, which is given by

Δpi

p||,i
� 1

β⊥,i

. (12)

Thus, both our simulations and the solar wind data suggest that
the mirror instability plays the key role controlling the pressure
anisotropy when β||,i � 0.3. The significant role of the mirror
instability will be confirmed below by directly identifying the
presence of mirror modes embedded in the MRI turbulence.

Figure 14 shows that the anisotropic stress begins to dominate
for t � 6P0. In addition, at late times the pressure anisotropy
Δpi/p||,i is significantly larger than the limit provided by
Equation (11). This can also bee seen in Figures 12(i) and (j),
which show the spatial distribution of Δpi/p||,i and β||,i of run
T1 at t = 14P0. Indeed, in most of the volume β||,i ≈ 20,
while Δpi/p||,i ≈ 4 (see, for instance, the region centered at
(x,z) = (250,500)c/ωp,e), which is significantly larger than what
is expected from Equation (11). This lack of isotropization is
probably due to the large value of the ion Larmor radius RL,i at
the end of the simulations, which makes the typical wavelength
of the mirror instability close to the MRI wavelength. Indeed,
in regions of large anisotropy, RL,i ≈ 100c/ωp,e, while the
wavelength of the dominant MRI mode is 800c/ωp,e (see
Figure 7(j)). Thus, given the similarity between mirror and MRI
wavelengths, we do not expect the mirror modes to grow as
effectively as they do in the regime where these scales are well
separated.6

The large beta behavior of the ion anisotropies can be seen
in the second column of Figure 14, which shows results for
run T4, which initially has βz

j = 40. We see that initially Axy
becomes comparable to Mxy during the stage of exponential
growth. Note that Axy is similar to Mxy only until the end of the
exponential growth regime. After that the significant decrease in
β||,i makes Mxy the dominant stress. We also see in Figure 14(b)
that Mxy and Axy may acquire negative values. This indicates, as
seen in Section 5.3.1, that in the post-saturation state, stresses
may be dominated by loop-like structures where Bx and By are
not necessarily anti-correlated (as in the case of MRI modes).
Figure 14(f) shows that the maximum of Δpi/p||,i is determined
by Equation (11) almost all the time (except at the end of the
run, as in run T1). This indicates that using a large initial βz

||
ensures that isotropization will be dominated by the mirror
instability even at the end of the exponential growth, with the

6 Since the ratio of the MRI growth rate and the ion-cyclotron frequency in
our simulations is ω0/ωc,i ∼ 0.1–0.01, the mirror and ion-cyclotron
timescales are much closer to the MRI timescale than in reality (where
ω0/ωc,i ∼ 10−7). However, our linear calculations show that the pressure
anisotropy thresholds for a much larger growth rate are only a factor of ∼2
larger than in Equation (11) and can only partially explain the large departure
from the threshold seen in Figure 14(e).

ion-cyclotron instability playing a less important role. This large
beta behavior also happens for βz

|| = 10, as in runs T8 and
T11. An interesting question is whether using βz

j significantly
larger than 40 would make Axy,i the dominant viscous stress in
the MRI-driven turbulence, because the precise value of Axy,i

depends on the exact dependence of Δpi/p||,i on β||,i . Testing
this possibility requires using values of ωz

c,i/ω0 significantly
larger than the ones used here (in order to keep the ion Larmor
radii much smaller than the dominant MRI wavelength, λ0).
This possibility will be investigated in a future work.

We also studied the dependence of Δpj/p||,j and the plasma
stresses on other simulation parameters. We tested the depen-
dence on: mi/me (with run T2; using mi/me = 5), different val-
ues of vz

A,0/c (with runs T3 and T7; using vz
A,0/c = 1/60 and

1/120, respectively), initial finite azimuthal flux with By,0 =
Bz,0 (run T5), and a larger magnetization ωz

c,i/ω0 = 22 (run
T6). All these simulations (which have β||,j = 1 as in run T1)
have the same behavior as run T1, showing that the physics of
pressure isotropization obtained in our simulations is reason-
ably well converged, with β||,j being the only relevant param-
eter. Finally, we have also tested numerical convergence using
runs T9 and T10. Run T9 tested box size dependence by using
Lx = Lz = 4λ0 (half the values used in T1), and run T10 tested
space, time, and particle resolution by using c/ωp,e/Δx = 10
and Nppc = 6. No difference with respect to the results of run
T1 was found.

5.3.3. Mirror Mode Analysis

As seen in Section 5.3.2, the physics of pressure isotropization
at β||,j � 0.3 appears to be well described by the mirror
instability, both for ions and (the large mass) electrons. In this
section, we analyze the structure of the small-scale modes in the
plasma, and check whether they satisfy mirror mode properties.
Figure 15 shows the case of run T8, which is analogous to T1 but
with βz

j = 10 (the larger βz
j makes the effects of the mirror mode

more prominent, as can be seen in Figure 14(f)). Figure 15(a)
shows log(B2/Bz,0) at t = 2P0. It is clear visually that, in
regions of amplified magnetic field, small-scale fluctuations
arise. The length scale of these modes is about 2RL,i (where
RL,i is the average Larmor radius of the ions), as can be seen
from Figures 15(b)–15(e). These plots depict log(B2/Bz,0) and
δBj/〈B〉 in a zoomed region marked by the small rectangle
centered at x/RL,i = 100 and z/RL,i = 99 in Figure 15(a)
(where δBk = Bk − 〈Bk〉 is a measure of the magnetic field
fluctuations along the k-axis, and 〈〉 represents the volume
average within the zoomed-in region). The typical wavelength
of ∼2RL,i of the mirror modes is also observed in simulation
T4, where the initial ion temperature is four times that of
simulation T8. Also, we confirmed the numerical convergence
of this scaling using run T11, which has a spatial resolution of
c/ωp,e = 14Δx (twice the one of run T8).

One of the properties of the mirror instability is the anti-
correlation between B2 and plasma density ρ. This anti-
correlation is present in Figures 16(a) and (b), which depict
(B2 − 〈B2〉)/〈B2〉 and (ρ − 〈ρ〉)/〈ρ〉 in the same zoomed-in
region shown in Figure 15. Also, mirror modes satisfy δB ⊥ k.
This can be checked by computing the components of δB par-
allel and perpendicular to k, shown in Figures 16(c) and 16(d),
respectively (where k and x̂ are estimated to form an angle of
120◦). The amplitude of δB⊥ is significantly larger than that of
δB||, consistent with the mirror mode polarization. Finally, we
can compare the projection of δB on the x–z plane (shown by the
δBx and δBz plots in Figures 15(c) and (e)) with the analogous

12



The Astrophysical Journal, 755:50 (20pp), 2012 August 10 Riquelme et al.

(a)

(b)

(c)

(d)

(e)

Figure 15. Magnetic energy and magnetic field fluctuations for run T8
highlighting the appearance of mirror modes at t = 2P0, driven by plasma
pressure anisotropies. Panel (a) shows log(B2/B2

z,0) and panel (b) shows
the same quantity but in a zoomed region centered at x/RL,i = 100 and
z/RL,i = 99 (marked by the yellow-dotted rectangle in panel (a)). Panels (c),
(d), and (e) depict δBk/〈B〉, with k = x, y, and z. RL,i is the average ion Larmor
radius and 〈〉 represents volume average within the zoomed-in region. The x and
z axes are normalized by RL,i because this is the characteristic wavelength of
the fastest growing mirror modes.

(A color version of this figure is available in the online journal.)

projection of B (shown by black arrows in Figure 15(b)). The
magnetic fluctuations in the x–z plane roughly satisfy δB||B,
another polarization property of the mirror modes.

(a)

(b)

(c)

(d)

Figure 16. Fluctuations in magnetic energy and plasma density for the same
region depicted in Figure 15 are shown in panels (a) and (b), respectively. The
anti-correlation between these two quantities is a signature of the mirror insta-
bility. Panels (c) and (d) show magnetic field fluctuations that are perpendicular
and parallel to the dominant mirror wavevector k, respectively. The components
parallel to k have an amplitude smaller than the perpendicular ones, showing
that these modes roughly satisfy the mirror polarization δB ⊥ k.

(A color version of this figure is available in the online journal.)

5.4. The Energy Distribution of Particles

In this section, we explore the signatures of the different
heating processes in the energy spectra of the particles by
analyzing the case of run T1. Figures 7 and 8 show that at
t = 3.6P0 efficient migration into longer wavelength MRI
modes is happening, with a correspondingly significant rate
of magnetic field energy dissipation through reconnection.
Figure 17(a) shows that the average ion and electron spectra
at that moment are composed of a thermal distribution, plus a
power-law tail with spectral index of ∼1.57 (black and green
correspond to ions and electrons, respectively). On the other
hand, Figure 17(b) shows the energy spectra at t = 14P0, which
corresponds to the “quiescent” state, where no reconnection
happens whatsoever. We see that, at this stage, there is no
power-law tail and, instead, a high-energy bump appears. The
high-energy particles concentrate in the regions outside of the
magnetic loops, where Axy,j is relatively large, as can be seen

7 Note that this is the same reconnection-driven spectral index found by
Sironi & Spitkovsky (2011) in their PIC simulations of relativistic striped wind
shocks. This suggests a possible connection between relativistic and
non-relativistic reconnection-driven non-thermal particle spectra.
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(a)

(b)

Figure 17. Particle spectra for run T1 at times t = 3.6P0 (panel (a)) and
t = 14P0 (panel (b)). Black and green lines correspond to ions and electrons,
respectively. While the early-time spectra are composed of a thermal (shown for
reference in red-dotted line) and power-law distribution, the late-time spectra
correspond to a two-temperature distribution for each species. The formation
of the power-law distribution is clearly correlated with magnetic reconnection,
while the heating at later times appears to be dominated by viscous heating due
to the anisotropic stress.

(A color version of this figure is available in the online journal.)

from Figure 12(k). This indicates that at later times particle
energization occurs mainly via a viscous heating proportional
to Axy,j (like the one suggested in Equation (6) of Sharma
et al. 2007). The energy spectra between t = 3.6P0 and
t = 14P0 are a combination of these two distributions. In a
future study, we will explore in further detail the physics of the
ion and electron heating due to the anisotropic stress Axy,i and
reconnection. We will pay special attention to the controlling
effect of ion- and electron-scale microinstabilities, such as the
mirror and the electron whistler instabilities, which regulate the
pressure anisotropies in the plasma. By using values of mi/me

significantly larger than the ones used in this paper, this study
will shed light on the different energization mechanisms for ions
and electrons in collisionless disks.

6. SUMMARY AND DISCUSSION

In this paper, we have studied the MRI in a collisionless
plasma using first-principles PIC simulations. Our motivation
is the application to low accretion rate, RIAFs (e.g., Narayan
et al. 1998). These flows are expected to be present in systems

accreting at less than a few per cent of the Eddington rate. This
includes the central black hole of our Galaxy (Sgr A∗) and most
nearby galaxies, as well as the low-hard state of X-ray binaries.

In the first part of the paper (Section 4), we studied the
linear dynamics of the MRI using 1D simulations in which
only wavevectors along the z-direction—the rotation axis—are
resolved. We focused in particular on understanding the effects
of the plasma magnetization ωz

c,i/ω0 (the ratio of the initial ion-
cyclotron frequency to the disk rotation frequency) and finite
particle temperature on the dispersion relation of the MRI. Our
results were in reasonable agreement with previous analytical
studies of the collisionless MRI (Quataert et al. 2002; Krolik &
Zweibel 2006; Ferraro 2007).

In the second part of the paper, we studied the multidimen-
sional aspects of the MRI using local 2D (axisymmetric) simu-
lations. Given the computational effort involved in PIC simula-
tions, we defer fully 3D simulations to future work. In our 2D
calculations, we focused on the evolution of the plasma pres-
sure, magnetic energy, and plasma stresses, and assessed their
dependence on the different physical and simulation parameters.
We found that the overall evolution of the MRI in axisymmet-
ric simulations is qualitatively similar to that found in previous
MHD simulations and simulations that included fluid models of
kinetic effects (Sharma et al. 2006). In particular, in the PIC sim-
ulations with net magnetic flux, the MRI only saturates when
the Alfvén speed becomes comparable to the speed of light
(irrespective of the initial value of the Alfvén speed). This is
consistent with the absence of saturation of MRI channel mod-
els in analogous axisymmetric fluid simulations (see Figure 9).
Since our simulations use a non-relativistic approximation to
Maxwell’s equations in a rotating frame, this result implies that
the magnetic field growth does not saturate in the regime where
our calculations are valid (vA � c). By contrast, for simula-
tions with no net magnetic flux, the MRI saturates at a lower
amplitude before vA ∼ c (see Figure 11).

By adiabatic invariance of the magnetic moment of particles,
the amplification of the magnetic field by the MRI in a
collisionless plasma produces pressure anisotropies, Δpj =
p⊥,j −p||,j , for each species j (where the directions are measured
relative to the local magnetic field). These anisotropies can
be important for angular momentum transport and particle
heating, since they give rise to an anisotropic pressure stress,
Axy,j ≡ −BxByΔpj/B

2, which may be comparable to the
magnetic stress (Quataert et al. 2002; Sharma et al. 2006).
This is effectively a macroscopic viscosity in a collisionless
plasma. We investigated this physics in a self-consistent way by
studying the evolution of the plasma pressure during the linear
and nonlinear phases of the MRI. We found that the importance
of the anisotropic stress depends on the instantaneous plasma β.
For small βi � 10, the ion anisotropic stress, Axy,i , is smaller
than the Maxwell stress Mxy. However, Axy,i may be comparable
to or even surpass Mxy when βi � 10. This regime is difficult
to achieve in our simulations due to the continuous build up
of B, which grows until vx

A and vz
A ∼ c, and v

y

A ∼ 10c.
This difficulty could in principle be overcome by using a large
initial βj . However, this would require using values of the
magnetization parameter ωz

c,i/ω0 significantly larger than those
used here (so that the MRI and microinstability length scales
are properly separated), which is computationally difficult (see
Equation (9)). We expect that the saturation of both the magnetic
field and the pressure anisotropy will be fundamentally different
in 3D simulations. In that case, magnetic field amplification
is expected to stop when vA � c, which would allow the
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existence of a turbulent state in which β||,i � 10 (see, e.g.,
the 2D versus 3D fluid simulations in Figure 9). Our results
suggest that transport and heating due to the anisotropic stress
will be important in this regime.

Absent any mechanism of temperature isotropization—which
is provided by collisions in the fluid limit—the pressure
anisotropy would continue to grow throughout the linear phase
of the MRI in a low-collisionality plasma. In our calculations,
we find direct evidence for collisionless processes that provide
temperature isotropization in the absence of Coulomb colli-
sions. In particular, the p⊥ > p‖ state that is generically cre-
ated by the MRI is unstable to the excitation of mirror modes
(see Figures 15 and 16). Moreover, once mirror excitation com-
mences the volume-averaged pressure anisotropy remains near
the threshold for the onset of the mirror instability, particularly
in our higher βz

j simulations (as shown in Figures 14(e) and (f)).
This is consistent with the evolution of the pressure anisotropy
observed in the near-Earth solar wind (Bale et al. 2009). Our
results, analogous theoretical work in the solar wind context
(Hellinger et al. 2006), and the solar wind measurements all
strongly suggest that temperature isotropization in moderate β
low-collisionality plasmas is dominated by (reasonably) well-
understood velocity space instabilities (in particular, the mirror,
firehose, and ion-cyclotron instabilities).

In future work, we will study the heating of particles in
MRI turbulence in detail, paying particular attention to how
the assumed electron to ion mass ratio me/mi gives rise to
different electron and ion heating physics. In our preliminary
analysis in the present paper, we found that particle heating
occurs via two dominant mechanisms: one is reconnection and
the other is the viscous heating produced by the anisotropic
stress Axy,j (Sharma et al. 2007). These different heating
processes are expected to imprint different signatures in the
energy spectra of particles. Perhaps most interestingly, we find
that magnetic reconnection produces a distinctive power-law
distribution function (with spectral index ≈1.5) as the MRI
becomes nonlinear, but before the turbulence has saturated and
died away (see Figure 17(a)). This spectral index is similar
to the one found by Sironi & Spitkovsky (2011) in their PIC
study of reconnection forced by relativistic shocks in the striped
wind of pulsars. Whether this non-thermal energization is due
to the reconnection electric field parallel to the current sheet
(as in the case of Sironi & Spitkovsky 2011), or by a Fermi-
like process due to the formation of magnetic loops (Drake
et al. 2006), will be clarified in detail in a future work. The
importance of reconnection diminishes once the MRI saturates.
At that point, the particle energization appears to be dominated
by the anisotropic stress Axy,j , which is largest outside of the
magnetic loops. This process produces a high-energy bump in
the energy spectra of particles (see Figure 17(b)), with the most

energetic particles concentrating outside of the magnetic loops.
In our calculations we do not find unambiguous evidence for
heating via the turbulent cascade of Alfvén and slow waves that
is expected to be set up via the nonlinear saturation of the MRI
(Quataert & Gruzinov 1999). This could be a limitation of our
2D simulations which do not develop sustained turbulence; in
addition, such a cascade may be difficult to resolve given the
modest dynamic range in our simulations between the inner and
outer turbulent scales.

The PIC simulations presented in this paper have numerous
advantages relative to fluid calculations for studying the physics
of the MRI in low-collisionality plasmas. In particular, our
PIC simulations represent the first self-consistent study of
magnetic field amplification and saturation, particle heating, and
pressure anisotropy evolution in MRI-driven turbulence. There
are, however, also drawbacks associated with PIC simulations.
In addition to being very computationally demanding, the need
to resolve the electron skin depth implies that there is always
an unphysically small dynamic range between the initial ion-
cyclotron frequency ωc,i (where i stands for “ions”) and the disk
rotation frequency ω0: Our simulations initially have ωc,i/ω0 ∼
10–100 instead of ωc,i/ω0 ∼ 107 in real systems. This ratio,
however, increases to ωc,i/ω0 ∼ 100–1000 in the nonlinear
regime, considering both the magnetic field amplification and
the growth of the mean Lorentz factor of the particles. We find no
strong dependence of our results on the initial value of ωc,i/ω0,
suggesting that we are adequately in the “MHD” regime, but this
will need to be carefully studied in 3D simulations as well, where
the computational requirements are even more demanding.

Another limitation of the current calculations is that our
results are strictly valid only in the limit v0 � c (where
v0 is the bulk rotation velocity of the plasma). In particular,
the PIC equations evolved here neglect additional terms in
Maxwell’s equations that arise from being in a rotating reference
frame (see the Appendix); these are self-consistently small
in the limit of small rotation velocities. Our analysis does
consistently allow for relativistic temperatures and thus it is
possible to study quantitatively the limit of relativistic electrons,
but non-relativistic ions that is of particular interest for RIAF
models.
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APPENDIX

SHEARING COORDINATES

We describe the plasma in the shearing frame, S ′, which is related to the usual cartesian frame S by the following coordinate
transformation:

x ′ = x, y ′ = Γ(y − vt),

z′ = z, and t ′ = Γ(t − vy/c2),
(A1)

where the primed coordinates correspond to the frame S ′, Γ = (1 − v2/c2)−1/2 is the Lorentz factor due to shear, v = −sx is the
y-component of the shear velocity, and s is the shear parameter (s = 3ω0/2 in the case of a Keplerian disk). In S ′ the plasma is
initially at rest (with no shearing velocity), which allows us to replace shearing box periodic boundary condition by standard periodic
boundary conditions. The transformation of the electric and magnetic fields from S to S ′ can be expressed as the standard Lorentz
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invariant transformation

E′
y = Ey, E′

⊥ = Γ
(

E⊥ +
v

c
× B⊥

)
,

B ′
y = By, and B′

⊥ = Γ
(

B⊥ − v

c
× E⊥

)
.

(A2)

As we will see below, the evolution of the fields in S ′ is given by modified versions of Maxwell’s equations. The modifications arise
from the dependence of v and Γ on x. Although we are interested in the small box limit, we derive the evolution of E′ and B′ assuming
an arbitrarily large box, with the small box limit taken only at the end of the calculations. Since the module of v(x) cannot exceed c,
we will use a shear profile where this is satisfied regardless of the value of x. To do that we will impose that the “local” shear profile
seen by an observer moving with the flow is vlocal = −sxlocal, where xlocal = 0 at the observer’s position. One can show that this
condition implies a global shear in the box given that v/c = −arctanh(sx/c). With this space dependence of v(x), the x-derivatives
of v and Γ will be given by

dv/dx = −s/Γ2 and dΓ/dx = −sΓv/c2, (A3)

which we will use in the derivation of the field dynamics described below.

A.1. Modifications to Maxwell’s Equations

We determine the changes to each component of Maxwell’s equations one by one. Let us start with Faraday’s equation.

A.1.1. Faraday’s Equation: x Component

Given the transformations defined in Equations (A1) and (A2), we want to know how the equation

∂Bx(r, t)
∂t

= −(c∇ × E(r, t))x (A4)

is modified in the coordinate system S ′. From Equations (A2) we get

B ′
x(r ′, t ′) = Γ

(
Bx(r, t) − v

c
Ez(r, t)

)
,

E′
z(r, t ′) = Γ

(
Ez(r, t) − v

c
Bx(r, t)

)
, and

E′
y(r ′, t ′) = Ey(r, t). (A5)

Then, from Equation (A1) it is possible to show that

∂B ′
x(r ′, t ′)
∂t ′

= Γ2

(
∂Bx(r, t)

∂t
− v

c

∂Ez(r, t)
∂t

+ v
∂Bx(r, t)

∂y
− v2

c

∂Ez(r, t)
∂y

)
,

∂E′
y(r ′, t ′)

∂z′ = ∂Ey(r, t)
∂z

, and

∂E′
z(r ′, t ′)
∂y ′ = Γ2

(
v

c2

∂Ez(r, t)
∂t

− v2

c3

∂Bx(r, t)
∂t

+
∂Ez(r, t)

∂y
− v

c

∂Bx(r, t)
∂y

)
. (A6)

Combining these three expressions, one can show that

∂B ′
x(r ′, t ′)
∂t ′

= −(c∇′ × E′(r ′, t ′))x. (A7)

So, the x component of Faraday’s equation does not transform from S to S ′.

A.1.2. Faraday’s Equation: y Component

Here, the procedure is analogous to the case described above. However, since the y component includes partial derivatives with
respect to x ′, the x ′ dependence of v and Γ will give rise to new terms. From Equations (A2) we get

B ′
y(r ′, t ′) = By(r, t),

E′
z(r ′, t ′) = Γ

(
Ez(r, t) − v

c
Bx(r, t)

)
, and

E′
x(r ′, t ′) = Γ

(
Ex(r, t) +

v

c
Bz(r, t)

)
. (A8)
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Then

∂B ′
y(r ′, t ′)

∂t ′
= Γ

(
∂By(r, t)

∂t
+ v

∂By(r, t)
∂y

)
,

∂E′
x(r ′, t ′)
∂z′ = Γ

(
∂Ex(r, t)

∂z
+

v

c

∂Bz(r, t)
∂z

)
, and

∂E′
z(r ′, t ′)
∂x ′ = ∂Γ

∂x

(
Ez(r, t) − v

c
Bx(r, t)

)
− Γ

c

∂v

∂x
Bx(r, t) + Γ

(
∂Ez(r, t)

∂x
− v

c

∂Bx(r, t)
∂x

)

+ Γ
(

∂Γ
∂x

(y ′ + vt ′) + Γt ′
∂v

∂x

) (
∂Ez

∂y
− v

c

∂Bx

∂y

)
+ Γ

(
∂Γ
∂x

(
t ′ +

vy ′

c2

)
+ Γ

y ′

c2

∂v

∂x

)(
∂Ez

∂t
− v

c

∂Bx

∂t

)
. (A9)

Combining Equations (A9), and using the expressions for the x derivatives of v and Γ shown in Equation (A3), it is straightforward
to obtain

∂B ′
y(r ′, t ′)

∂t ′
= −(c∇′ × E′(r ′, t ′))y − sB ′

x(r ′, t ′) + s

(
ct ′

∂E′
z

∂y ′ +
y ′

c

∂E′
z

∂t ′

)
. (A10)

A.1.3. Faraday’s Equation: z Component

The derivation in this case is analogous to the case of the y component. From Equations (A2) we can get

B ′
z(r ′, t ′) = Γ

(
Bz(r, t) +

v

c
Ex(r, t)

)
,

E′
x(r ′, t ′) = Γ

(
Ex(r, t) +

v

c
Bz(r, t)

)
, and

E′
y(r ′, t ′) = Ey(r, t), (A11)

which imply that

∂B ′
z(r ′, t ′)
∂t ′

= Γ2

(
∂Bz(r, t)

∂t
+

v

c

∂Ex(r, t)
∂t

+ v
∂Bz(r, t)

∂y
+

v2

c

∂Ex(r, t)
∂y

)
,

∂E′
x(r ′, t ′)
∂y ′ = Γ2

(
v

c2

∂Ex(r, t)
∂t

+
v2

c3

∂Bz(r, t)
∂t

+
∂Ex(r, t)

∂y
+

v

c

∂Bz(r, t)
∂y

)
, and

∂E′
y(r ′, t ′)

∂x ′ = ∂Ey(r, t)
∂x

+
∂Ey(r, t)

∂y

(
∂Γ
∂x ′ (y

′ + vt ′) +
∂v

∂x ′ Γt ′
)

+
∂Ey(r, t)

∂t

(
∂Γ
∂x ′

(
t ′ +

v

c2
y ′

)
+

∂v

∂x ′ Γ
y ′

c2

)
. (A12)

Then, combining Equations (A12) with the derivatives of v and Γ given in A3, it can be shown that

∂B ′
z(r ′, t ′)
∂t ′

= −(c∇′ × E′(r ′, t ′))z − s

(
ct ′

∂E′
y(r ′, t ′)

∂y ′ +
y ′

c

∂E′
y(r ′, t ′)

∂t ′

)
. (A13)

The three components of Faraday’s equation (Equations (A6), (A9), and (A12)) can be combined in a single expression:

∂ B′(r ′, t ′)
∂t ′

= −c∇′ × E′(r ′, t ′) − sBx(r ′, t ′)ŷ + s

(
ct ′

∂ E′(r ′, t ′)
∂y ′ +

y ′

c

∂ E′(r ′, t ′)
∂t ′

)
× x̂. (A14)

Equation (A14) contains a time-dependent term arising from the time evolution of the S ′ coordinates with respect to the ones in S.
Indeed, as time goes on, ∂ E′/∂x ′ (∂ B′/∂x ′) must increase its difference relative to ∂ E/∂x (∂ B/∂x) simply because two points of
equal y in S (Δy = 0) have a difference in y ′ (Δy ′) that grows linearly with time. This explains why the time-dependent term must
be proportional to the extent to which the fields depend on y ′. Thus, in the 2D case (relevant to this work), this time-dependent term
does not play any role.

In addition to the time-dependent term, there is the term proportional to y ′, which appears to be inconsistent with a 2D treatment of
Equation (A14). However, in the small box limit (i.e., when y ′ is much smaller than the distance from the box origin to the disk center,
r0), the magnitude of the velocity sy ′ is much smaller than the orbital velocity of the disk at r0 (v0). Thus, since v0 � c, sy ′ must also be
� c, which allows us to neglect the space-dependent term in Equation (A14), especially if one expects |E′| � |B′| in non-relativistic
turbulence. Thus, given our non-relativistic, small box approximation, we can neglect the y ′ dependence in Equation (A14), which
allows us to formally use a 2D approach to this problem.8 In that limit, Faraday’s equation can be expressed as

∂ B′(r ′, t ′)
∂t ′

= −c∇′ × E′(r ′, t ′) − sB ′
x(r ′, t ′)ŷ. (A15)

8 Using a Galilean instead of a Lorentzian transformation of coordinates and fields, it is easy to show that the y′ dependence in Equation (A14) does not appear,
which confirms the validity of our result in the non-relativistic limit.
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A.2. Ampere’s Equation: x Component

We want to get an equation analogous to

∂Ex(r, t)
∂t

= (c∇ × B(r, t))x − 4πJx (A16)

in the coordinate system S ′. From Equations (A2) we get

E′
x(r ′, t ′) = Γ(Ex(r, t) +

v

c
Bz(r, t)),

B ′
z(r ′, t ′) = Γ(Bz(r, t) +

v

c
Ex(r, t)), and

B ′
y(r ′, t ′) = By(r, t). (A17)

Thus, from Equations (A1) we get that

∂E′
x(r ′, t ′)
∂t ′

= Γ2

(
∂Ex(r, t)

∂t
+

v

c

∂Bz(r, t)
∂t

+ v
∂Ex(r, t)

∂y
+

v2

c

∂Bz(r, t)
∂y

)
,

∂B ′
y(r ′, t ′)

∂z′ = ∂By(r, t)
∂z

, and

∂B ′
z(r ′, t ′)
∂y ′ = Γ2

(
v

c2

∂Bz(r, t)
∂t

+
v2

c3

∂Ex(r, t)
∂t

+
∂Bz(r, t)

∂y
+

v

c

∂Ex(r, t)
∂y

)
. (A18)

Then, combining Equations (A19) and assuming that the x-current in S ′ transforms as J ′
x = Jx , it is possible to show that

∂E′
x(r ′, t ′)
∂t ′

= (c∇′ × B′(r ′, t ′))x − 4πJ ′
x. (A19)

The assumption J ′
x = Jx will be checked below by considering the way charge density transforms under Equations (A1).

A.3. Ampere’s Equation: y Component

Here, we proceed similarly as for the x component of the Ampere’s equation. From the field transformations defined in
Equations (A2) we get that

E′
y(r ′, t ′) = Ey(r, t),

B ′
z(r ′, t ′) = Γ

(
Bz(r, t) +

v

c
Ex(r, t)

)
, and

B ′
x(r ′, t ′) = Γ

(
Bx(r, t) − v

c
Ez(r, t)

)
. (A20)

Thus, from Equations (A1) it is possible to show that

∂E′
y(r ′, t ′)

∂t ′
= Γ

(
∂Ey(r, t)

∂t
+ v

∂Ey(r, t)
∂y

)
,

∂B ′
x(r ′, t ′)
∂z′ = Γ

(
∂Bx(r, t)

∂z
− v

c

∂Ez(r, t)
∂z

)
, and

∂B ′
z(r ′, t ′)
∂x ′ = Γ

(
∂Bz(r, t)

∂x
+

v

c

∂Ex(r, t)
∂x

+

(
∂Γ
∂x

(y ′ + vt ′) + Γt ′
∂v

∂x

)(
∂Bz

∂y
+

v

c

∂Ex

∂y

)

+

(
∂Γ
∂x

(
t ′ +

vy ′

c2

)
+

Γy ′

c2

∂v

∂x

) (
∂Bz

∂t
+

v

c

∂Ex

∂t

)
. (A21)

Combining Equations (A22) and assuming J ′
y = Γ(Jy − vρc) (which we will check below) we obtain

∂E′
y(r ′, t ′)

∂t ′
= (c∇′ × B′(r ′, t ′))y − 4πJ ′

y − sE′
x(r ′, t ′) − s

(
ct ′

∂B ′
z

∂y ′ +
y ′

c

∂B ′
z

∂t ′

)
. (A22)
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A.3.1. Ampere’s Equation: z Component

Finally, from the transformations (A2) we get

E′
z(r ′, t ′) = Γ

(
Ez(r, t) − v

c
Bx(r, t)

)
,

B ′
x(r ′, t ′) = Γ

(
Bx(r, t) − v

c
Ez(r, t)

)
, and

B ′
y(r ′, t ′) = By(r, t). (A23)

Also, from Equation (A1) we obtain

∂E′
z(r ′, t ′)
∂t ′

= Γ2

(
∂Ez(r, t)

∂t
− v

c

∂Bx(r, t)
∂t

+ v
∂Ez(r, t)

∂y
− v2

c

∂Bx(r, t)
∂y

)
,

∂B ′
x(r ′, t ′)
∂y ′ = Γ2

(
v

c2

∂Bx(r, t)
∂t

− v2

c3

∂Ez(r, t)
∂t

+
∂Bx(r, t)

∂y
− v

c

∂Ez(r, t)
∂y

)
, and

∂B ′
y(r ′, t ′)

∂x ′ = ∂By(r, t)
∂x

+

(
∂Γ
∂x

(y ′ + vt ′) + Γt ′
∂v

∂x

)
∂By

∂y
+

(
∂Γ
∂x

(
t ′ +

vy ′

c2

)
+ Γ

y ′

c2

∂v

∂x

)
∂Bz

∂t
. (A24)

Combining Equations (A25) and assuming J ′
z = Jz (which will be checked below) it is possible to show that

∂E′
z(r ′, t ′)
∂t ′

= (c∇′ × B′(r ′, t ′))z − 4πJ ′
z + s

(
ct ′

∂B ′
y

∂y ′ +
y ′

c

∂B ′
y

∂t ′

)
. (A25)

Thus, combining the three components of Ampere’s law (Equations (A19), (A22), and (A25)) we get

∂ E′(r ′, t ′)
∂t ′

= c∇′ × r ′(r ′, t ′) − 4π J ′ − sE′
x(r ′, t ′)ŷ − s

(
ct ′

∂ B′(r ′, t ′)
∂y ′ +

y ′

c

∂ B′(r ′, t ′)
∂t ′

)
× x̂. (A26)

As with Faraday’s equation, Ampere’s equation also gets a time-dependent term that disappears under the 2D approximation. Similarly,
the 2D limit requires the y ′ term to be negligible so that the equations governing the evolution of E′ are independent of y ′. As in
the case of Faraday’s equation, this can be done by noticing that since ∂ B′/∂t ′ ≈ ∇′ × E′, then ∇′ × B′ � sy ′∂ B′/∂t ′, provided
that sy ′ � c and |E′| � |B′|. This means that the y ′-dependent term sy ′∂ B′/∂t ′ can also be neglected in the case of Ampere’s
equation. It is important to note, however, that sy ′∂ B′/∂t ′ is not necessarily much smaller than ∂ E′/∂t ′. Thus, although neglecting
the y ′-dependent term does not modify the MHD-scale dynamics (e.g., that of the MRI), it does not fully capture the evolution of the
curl-less electric field component. Thus, our approach neglects the appearance of electric charges that in principle could influence
the microphysics of the plasma. These charges, however, appear to be smaller than the ones due to frame rotation (see discussion in
Section 2), which we are already neglecting in the context of the kinetic MRI dynamics.

Thus, assuming a 2D geometry, Ampere’s equation becomes

∂ E′(r ′, t ′)
∂t ′

= c∇′ × B′(r ′, t ′) − 4π J ′ − sE′
x(r ′, t ′)ŷ. (A27)

A.4. Particle Momentum Evolution in the S ′ Frame

The modified version of Ampere’s equation assumes that currents transform as

J ′
x = Jx, J ′

y = Γ(Jy − vρc), and J ′
z = Jz. (A28)

Based on the coordinate transformation (A1), it is possible to show that the charge density in S ′ (ρ ′
c) is related to the one in S by

ρ ′
c = Γ(ρc − vJy/c

2 + sy ′Jx/(c2Γ)), (A29)

where u is the fluid velocity in S. Equation (A29) can be simplified under the assumptions v, sy ′ � c, implying that, in the non-
relativistic limit, charge densities do not transform. This means that simple Galilean velocity transformations are enough to reproduce
the non-relativistic version of current transformation, Equations (A28). However, since individual particles in our simulations are
allowed to become relativistic, we will use the relativistic transformation of their momenta, p. This way, we ensure that no particles
in S ′ exceed the speed of light. Thus,

p′
x = px, p′

y = Γ(py − vγ ),

p′
z = pz, and γ ′ = Γ(γ − vpy/(mc2)),

(A30)
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where m is the mass of the particle. These relations (along with the time transformation shown in Equation (A1)) imply that

dp′
x

dt ′
= dpx/dt

Γ(1 − vuy/c2) + suxy ′/c2
,

dp′
y

dt ′
= dpy/dt − mvdγ/dt + spx(1 − vuy/c

2)

1 − vuy/c2 + suxy ′/(c2Γ)
, and

dp′
z

dt ′
= dpz/dt

Γ(1 − vuy/c2) + suxy ′/c2
, (A31)

where ux and uy are the x and y velocities of the particle in the S frame. It is straightforward to show that, in the non-relativistic limit
(v, sy ′ � 1), Equations (A31) correspond to the standard force transformation between two inertial frames, plus an extra force sp′

x ŷ.
Thus, given that the electric and magnetic fields transform analogously to the usual relativistic field transformation, one can easily
show that the time evolution of the particle momenta in S ′ will be given by the Lorentz forces plus the extra term sp′

x ŷ. In addition
to these forces, we also need to find out what is the transformation of the coriolis and tidal forces on the particles. We know that in
the S frame9

du
dt

= 3ω2
0xx̂ − 2ω0 × u. (A32)

It is straightforward to show that, in the cold limit, the S ′ version of Equation (A32) becomes

du′

dt
= −2ω0ẑ × u′. (A33)

Since this force does not perform work on a particle, it can be equivalently expressed in terms of p′ instead of u′. Thus, combining
Equation (A33) with the transformation to Lorentz forces found above, we get

d p′

dt
= 2ω0p

′
y x̂ − 1

2
ω0p

′
x ŷ + q

(
E′ +

u′

c
× B′

)
, (A34)

where q is the charge of the particle. Finally, it is important to point out that the momentum transformation shown in Equations (A30)
is not entirely consistent with the evolution of particle positions. Indeed, by directly differentiating Equation (A1) one gets

u′
x = ux

Γ(1 − vuy/c2) + suxy ′/c2
,

u′
y = uy − v + suxt

′/Γ
(1 − vuy/c2) + suxy ′/(c2Γ)

, and

u′
z = uz

Γ(1 − vuy/c2) + suxy ′/c2
. (A35)

In the non-relativistic regime, the discrepancy appears only in u′
y . In the 2D case, this does not imply an inconsistency between the

values of u′
y and the evolution of the y ′ position of particles (where by definition y ′ = 0). In 3D, on the other hand, this implies a

violation of charge conservation, which will need to be taken into account in future 3D studies of this problem.

9 This expression is valid in the cold limit, i.e., |u| � |v0|. Since in our simulation individual particles are allowed to get accelerated to velocities |u| � |v0|, the
validity of the cold limit will be in a fluid sense. Thus, as long as the mean velocities of the particles are non-relativistic, the contribution of gravity to particle
dynamics will be well described by Equation (A32).
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