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Topological quantum liquids contain internal degrees of freedom that are coupled to geometric response.
Yet, an explicit and microscopic identification of geometric response remains difficult. Here, taking notable
fractional quantum Hall (FQH) states as typical examples, we systematically investigate a promising protocol
— the Dehn twist deformation on the torus geometry, to probe the geometric response of correlated topological
states and establish the relation between such response and the universal properties of pertinent states. Based
on analytical derivations and numerical simulations, we find that the geometry-induced Berry phase encodes
novel features for a broad class of FQH states at the Laughlin, hierarchy, Halperin and non-Abelian Moore-
Read fillings. Our findings conclusively demonstrate that the adiabatic Dehn twist deformation can faithfully
capture the geometry of elementary FQH droplets and intrinsic modular information including topological spin
and chiral central charge. Our approach provides a powerful way to reveal topological orders of generic FQH

states and allows us to address previously open questions.

I. INTRODUCTION

Topological phases of matter [1] possess a variety of prop-
erties which are robust against external perturbations as long
as the topology of space where the system is defined is not
altered. As a celebrated example, the fractional quantum Hall
(FQH) effect [2] formed by two-dimensional interacting parti-
cles in strong magnetic fields has attracted broad interest in the
past decades. The topologically invariant properties of FQH
states, including the quantized electrical [3-5] and thermal
Hall conductances [6-8], topological ground-state degenera-
cies [9], exotic anyonic quasiparticles [10-12], and entangle-
ment characteristics [13—15], have been extensively studied
from both theoretical and experimental sides.

Despite FQH states are often characterized by their topo-
logically invariant features, these states do have intriguing re-
sponse to variations of the ambient geometry even if these
variations preserve the underlying topology. Two representa-
tive examples are the intrinsic “orbital spin” [16—18] and the
Hall viscosity [17, 19, 20]. The former can be related to in-
trinsic metrics which describe deformations of a FQH droplet
due to anisotropies in the background space (for instance those
induced by tilted or spatially inhomogeneous magnetic fields
[21, 22]), while the latter determines an accumulated Berry
phase caused by strains applied to the FQH droplet [19, 20].
As the geometric response is closely related to the internal
topological structure of FQH liquids, it is potentially a power-
ful diagnosis of the underlying FQH topological order.

Nevertheless, so far most studies about the geometric re-
sponse heavily relied on effective field theories [16, 20, 23—
32] and model wave functions [33-37]. Despite of a few at-
tempts to connect it with entanglement contents [38, 39], it re-
mains challenging to directly investigate the evolution and re-
sponse of wave functions at the microscopic level, especially
for generic FQH states without prior knowledge.

In this work, we aim to fill in this blank by establishing a
relation between the geometric response of FQH states and
their universal (topological and geometric) properties in the

presence of Dehn twist on the torus. This relation is ana-
Iytically derived under a gauge-fixing scheme instead of re-
lying on physical arguments, and can be readily confirmed
by numerical simulations in microscopic models. Our main
finding is, for a robust FQH phase with a set of degenerate
ground states evolving adiabatically during the Dehn twist,
there is an accumulated Berry phase in each ground state
which contains both topological and geometric information:
the Hall viscosity related to the averaged guiding-center spin,
the sector-dependent topological spin, and the chiral central
charge. These information fully characterizes the underlying
topological order. By using extensive exact diagonalization
to track the evolution of ground-state wave functions and cal-
culate the accumulated Berry phase, we demonstrate the va-
lidity of this relation for various FQH states at the fermionic
and bosonic Laughlin, hierarchy, Halperin and non-Abelian
Moore-Read fillings, and successfully extract the topologi-
cal and geometric properties of both model wave functions
and Coulomb ground states. As a byproduct, we find that the
flow of energy spectra under geometric deformation plays as
a “smoking-gun” feature to justify the robustness of FQH lig-
uids. In this context, we demonstrate that the ground-state
degeneracy at v = 5/2 under particle-hole symmetric inter-
actions is fragile, which challenges the identification of (anti-
)Pfaffian state based on finite-size calculations.

II. GEOMETRIC BERRY PHASE FROM DEHN TWIST

We consider N, particles with charge e moving in two
spatial dimensions on the torus geometry subjected to a per-
pendicular uniform magnetic field. The torus is spanned by
two vectors El = Lé&, and Eg = L7 [40], where T is
parametrized by the twist angle 6 as 7 = 7€, + ™€, =
(cos 0, + sin 0,)|La|/|L1| such that Ly = L5(6) depends
on 6 (Fig. 1). Here €, and €, are unit vectors in the 2 and
y directions, respectively. After rephrasing the coordinate
2@, + y&, as L(X1e, + X27) with X1, X2 € [0, 1], we can
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FIG. 1. Dehn twist operation on the torus. (a) A twist operation
on the annulus (red) illustrates the self-homeomorphism of 7 trans-
formation. (b) The torus geometry is defined by two fundamental
vectors Ly = L7 and Ly = L&, and the twist angle is 6. The Dehn
twist, i.e., the 7 transformation sends 7 = 71, + T2€y, to its equiva-
lent geometry 7+ €., thus leaves the torus geometry unchanged. The
area of the torus does not change during the Dehn twist. Here we give
an example of the Dehn twist changing 7 from 72€), to €, + T2€)y,
with 72 = Lo (6 = 7/2)|/| L1 ).

express the single-particle Hamiltonian as

1

Ho(7) = 59" (1) Da(A) Dy(A) M
with
_ L (P -
g(T) - L2T22 < -7 1 ’ (2)
where the vector potential A = —75 L BX €, and the covari-

ant derivative D,(A) = —ihd/0X® + |e|A,. The inverse-
mass-matrix ¢(7) depends on the shape of the torus, which
plays the role of a geometric metric [20, 23, 32, 33, 41-43].
The total number of fluxes N4 penetrating the torus is given by

the Landau level degeneracy Ny = |L1 x Ly|/(27(%), where

the magnetic length ¢ = \/h/(|e|B) is taken as the length
unit. The filling factor is defined as v = N, /N.

We focus on the continuous geometric deformation gener-
ated by the Dehn twist operation on the torus, which corre-
sponds to the adiabatic process 7 — T + €, as illustrated in
Fig. 1. Since the torus geometry after Dehn twist is equivalent
to the original one, the physics of a topological order should
be left unchanged [5]. As required by the principle of gauge
invariance, we expect that the nearly degenerate ground-state
manifold of a stable FQH phase should evolve adiabatically
in the whole process of Dehn twist, and each ground state
should finally acquire a sector-dependent Berry phase. One
advantage of our choice of Dehn twist is the potentially rich
information contained in these Berry phases. First, the process
of Dehn twist operation is equivalent to shearing the torus ge-
ometry, which is similar to applying a strain to a fluid. As a
result, these Berry phases should reflect the viscosity response
of FQH states [19, 20, 33]. Second, the Dehn twist operation
coincides with 7 -transformation in 1+1D conformal field the-
ory [44], thus we expect to extract the topological properties

of modular tensor category from these Berry phases [37, 45—
47]. Third, the adiabatic evolution of the FQH ground-state
manifold itself can be used as a criterion for the robustness of
FQH liquids, which so far has not been confirmed by proof-
of-principle numerical evidence.

A. Geometric phase

In order to explicitly illustrate the Dehn-twist induced
Berry phase, we first consider the ¥ = 1/¢ Laughlin wave
function in the topological sector « on the torus [48]:

911(Zi — Zj|7’):|q %

(st = T |22

1<J

FE {2} |7) eimNem ZilXal”, 3)

where z; = z; + iy; is the coordinate of the ¢th particle. «
labels the ¢ degenerate Laughlin states, each of which corre-
sponds to a fixed type of quasiparticle. The center-of-mass
part of the wave function is described by f.({Z}), the relative
part is captured by the Jacobi-theta function 611 (z; — z;|7),
and the normalization prefactor N'(7) = No[y/72n?(7)]N*/?
with Ny a 7-independent constant and 7 the Dedekind’s func-
tion. For the Laughlin wave function Eq. (3), we can analyt-
ically prove that, up to an N,-dependent term which can be
removed by a gauge transform, the Dehn-twist induced Berry
phase is

c

UT = P L%+ 27h, — 27—
n + 27 7T24,

a “)
where the Hall viscosity %7, the topological spin h,,, and the
chiral central charge ¢ will be defined as below. Details of
f-({Z}), n", and the proof of Eq. (4) are given in the supple-
mentary material A, in which we also derive the Dehn twist
induced Berry phase for general multicomponent Halperin
model wave functions.

B. Hall viscosity response

As we see in Eq. (4), Dehn twist induces a path-dependent
term in the Berry phase, which depends on the total Hall vis-
cosity nfI and the path length L. This term comes from the
stress response, which is generally nonzero for time-reversal
symmetry breaking Hall liquids [20, 23, 32, 41-43]. Using
Eq. (3), we calculate the 7 -path induced geometric Berry con-
nection as (see supplemental materials Sec. A.5)

A = i(U; 710, |U;7) = ——, 5)

which is a-independent and gives an adiabatic phase

/ A71d7’1 = / (AT “+ Af)dTl _ 1P _ _h*lnHLQ.
0 0 47
(6)



Several remarks should be clarified here: (i) ' describes how
the internal spin degree of freedom [17, 18] of an FQH state
responds to the geometric deformation. It is related to the

“topological shift” S by nfl = % = 8%28 [16, 20].
Usually S only appears on curved manifolds, such as the
spherical geometry, which modifies the particle-flux relation
to Ny = N,v~! — S. The appearance of '’ in Eq. (4) again
reflects that the geometric nature of Dehn twist operation. (ii)
The shift S is related to the so called “orbital spin” 5 of an
FQH droplet via S = 25. The orbital spin includes contri-
butions from both Landau orbital and guiding center orbital:
5=35— %, where § is Landau orbital spin and s/p is averaged
guiding center spin [35] (see supplementary material Sec. D).
We can define a guiding-center viscosity as n? = = _TS'
(iii) The geometric phase is determined by the square of path
length L2, rather than the system area |E1 X E2|, which reflects
the path-dependent nature of the viscosity response.

C. Modular response

Besides the stress response, the Dehn twist, i.e., the T-
transformation, is expected to encode topological information
of the modular group on the torus [45, 48]. Starting from
Eq. (3), we can prove that (see details in supplemental ma-
terial Sec. A.4)

. - . Ng
{20+ 1) = ({2} 02 P)e2mitha—5)ei =2 (7)

which gives us the matrix representation of 7 under the basis
of initial states as

(UP, 7| T 1) = (UP 7| T 7 4 1) = Toge?.  (8)
This relation indeed recovers the modular 7'-matrix
aﬁ =3 681271’ (ha 764) (9)

Here, h,, is known as the “topological spin” of the topological
sector «, and it qualifies the Berry phase obtained in the adia-
batic self-rotation of a quasiparticle. c is chiral central charge
which determines the 1 4 1D edge state structure within con-
formal field theory. Therefore, the modular matrix extracted
from microscopic ground-state wave functions can character-
ize the underlying topological phase [45—47].

In addition to the modular information, we also obtain a
system-size dependent phase factor

ﬂ'qNg
12

in Eq. (8) (see supplemental material Sec. A.4), which was
overlooked in previous literatures [38]. However, it is nec-
essary to fix this phase if we want to determine the central
charge from microscopic wave functions [49].

Y= (10)

D. Gauge Transformation

As numerical simulations of FQH problems are often im-
plemented in the Landau level orbital basis, which will be

clarified in the next section, here we derive the relation be-

tween the orbital bases before and after the Dehn twist shown

in Fig. 1(b). Before the Dehn twist, the two elementary mag-

L—;) and t, = f(ﬁ) on
27\'N

the rectangular torus satisfy f1ts = tgtle Ne¢ and act on the

single-particle orbital basis as [50, 51]

netic translational operators #; = #(

~ j2mm ~
t1|m> =e "¢ |m>a t2|m> = |m+ 1>a (11

where m = 0,1,--- , Ny — 1 and #(7) is the general magnetic
translational operator. After the 7 —transformation, the or-
bital basis should be the same as the initial one up to a gauge
phase v, i.e., T|m) = [m) = e |m), where |m) stands
for the basis after the 7 —transformation and satisfies

7> [m) = |m+1). (12)

A combination of Egs. (11) and (12) leads to vy, 41 —
(2m+1)5

Ym =
Assumlng Ym = Am? + Bm + C, we get

2
m

m = 1m— —+ C. 13

Y. ™ N, + (13)

In the many-body level, the total U (1) gauge phase 7' between

two equivalent orbital-basis Fock states before and after the

Dehn twist is simply the sum of Eq. (13) over all occupied

orbitals, i.e.,
U= ]

meEoccupied

e~ lm) (m| (14)

An analytical derivation based on the real-space wave func-
tion of the orbital basis gives C' = 0 in Eq. (13) (see supple-
mental material Sec. A.2). However, in the following we set
C = 7/Np instead, which, according to Eq. (14), is equiva-
lent to a gauge transform [U®; 7 + 1) — €"7[¥*; 7 + 1). The
advantage of this choice is that the system-size dependent 7y in
Eq. (8) can be canceled by C'N,,, such that Eq. (4) is obtained
as a combination of Egs. (6) and (8). In this case, the Berry
phase Eq. (4) is independent on [V, containing only the pure
geometric and topological terms.

II1I. MICROSCOPIC MODEL

We consider the Dehn twist driven evolution of a many-
particle system under a translation-invariant two-body interac-
tion projected to the lowest Landau level. Such a Hamiltonian
has the form of

1
Hr) = —— S Vi pocie : 15
(7) 2L1L2smozq: a:P-aPa as)

where V is the Fourier transform of the interaction potential
and pq is the projected density operator. The standard second
quantization procedure gives

ﬁq:/dre quziph (r)1, (r aﬁ%, (16)

Ji,J2
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FIG. 2. Flow of low-energy spectra. The low-energy spectra of the Coulomb interaction as a function of the twist angle 6 for (a) bosons

at v = 1/2 with N, = 8 and (b) bosons at v = 1 with NV,
|L1| = |L2| in (a) and |L.| = 1.23|L2| in (b), with 6 =
Ki2=0,1,..,

= 12. The initial geometric conditions before the Dehn twist are chosen as

7 /2. The spectra are calculated in the irreducible Brillouin zone (K1, K2) with
Ny /q — 1. (c) Finite-size scaling of the minimal energy gap A during the Dehn twist for the v = 1/2,1/3,1/4 Laughlin

states, v = 2/5, 2/3 hierarchy states and v = 1 Moore-Read state. The arrows in (a) and (b) indicate the minimal gap during the Dehn twist.

where the single-particle orbital can be taken as ¢;(z,y) =

1 1/2 27 (j+kNy) ZH 4 2T (]+/€N¢)2 w2 .
(77eme)  Zke 27 with
j =0,1,---,Ny — 1, and aj creates a particle in orbital

j. In the following, we choose the Coulomb interaction
with Vg = % or Haldane’s pseudopotentials. We use exact
diagonalization to calculate the energy spectrum and eigen-
states of Eq. (15) at v = p/q with coprime p and ¢. The full
many-body symmetry can be factorized into a center-of-mass
and a relative part [50, 51], thus each eigenstate is labeled
by a two-dimensional momentum K = (K, K3) with
Ky12=0,1,---,N4/q — 1 in the irreducible Brillouin zone.

We use the discretization scheme to extract the Berry phase
accumulated during Dehn twist [33, 34]. To be specific, we
parametrize the Dehn twist process in Fig. 1(b) by the twist
angle @ of the torus which varies continuously from /2 to
tan'(|L2(0 = 7/2)|/|L1|). The accumulated Berry phase
UJ can then be defined as an integral of the Berry connection
A(0) = i(Uo(0)|09Ta(0)), ie. elUd = ¢ilAWO yhere
|, (0)) is the ground state of H(7(6)) [Eq. (15)] in topolog-
ical sector a and 7 = 7(0) depends on 6. Dividing the path of
6 into M steps, we can get a discrete formula for U as

o M—2
Ve o (W (M)|Ug|Wa(M — 1)) T (Wali+ 1)|Tal4)),
7=0
(17)

where [, (j)) = |¥,(0;)) with 6;’s evenly spaced along the
pathof 6 (j =0,1,--- , M =0) and Ug is the gauge-relevant
operator given by Eq. (14) [52]. Note that global phases ran-
domly returned by numerical diagonalization are automati-
cally canceled in Eq. (17). When using Eq. (17), we inspect
the wave-function overlap in each step of the Dehn twist to
insure that the deformation is indeed performed adiabatically
(KWa(j + DI¥a(4))] > 0.99).

IV. RESULTS
A. Flow of Energy Spectra

As an isolated ground-state manifold in the whole process
of the geometric deformation is a requisite for a well defined
Berry phase, we first investigate the evolution of the low-
energy spectra during the Dehn twist. Such an examination
can reflect the stability of the FQH phase under the geometric
deformation. Due to the relevance with realistic systems, we
consider Coulomb interacting particles in what follows.

Remarkably, we observe an impressive robustness of
Abelian FQH states against the Dehn twist. A typical exam-
ple of v = 1/2 bosons is displayed in Fig. 2(a). Here we
choose a geometric path from a rectangular to its equivalent
one (as shown in Fig. 1). In this case, there is always a sin-
gle ground state in the (K1, K3) = (0,0) momentum sector,
which we confirm has a large overlap with the Laughlin state
and never mixes with other excited levels as the twist angle 6
of the torus changes during the Dehn twist. For each system
size, the energy gap separating the ground state and excited
states is almost constant during the Dehn twist even for the
generic Coulomb interaction [Fig. 2(a)]. A finite-size scal-
ing of the minimal energy gap A in the process of Dehn twist
suggests that the gap is very likely to survive in the thermody-
namic limit [Fig. 2(c)]. In addition, the minimum of the mag-
netoroton mode [at the bottom of excited levels in Fig. 2(a)]
only changes a little with 6, indicating that not only the ground
state but also the low-energy excitations are stable against the
Dehn twist.

We observe similar robustness of the ground-state mani-
fold for other bosonic and fermionic Coulomb ground states at
v =1/4,1/3,2/3 and 2/5, which correspond to the Abelian
Laughlin, hierarchy, and Halperin states (see supplemental
materials Sec. C). In all of these cases, the single ground
state in the irreducible Brillouin zone evolves adiabatically



TABLE L. In this table, we compare our numerical results with theoretical predictions. s is the guiding center spin, being related to the guiding

h_—s
4702 q
which corresponds to the total Hall viscosity nf =

center Hall viscosity by ¢ =

h_v
4 2me?

. If the Landau-orbital part is included, s directly determines the topological shift S of each FQH state,

S [20]. The relationship between s and S is given in supplemental materials Sec. D.

hq s the sector-dependent topological spin. See supplemental materials Sec. C for detailed information about the topological sectors of each
FQH state. Quantities with and without the superscript “cal” stand for numerically calculated results and theoretical values, respectively. We
use parent Hamiltonians for the (221) and (332) Halperin states, otherwise we use the Coulomb interaction.

Laughlin  Laughlin Laughlin Hierarchy Hierarchy Moore-Read Halperin (221) Halperin (332)
) 1 1 1 2 2 2 2 2
q 2 3 1 5 3 2 3 5
S 2 3 4 4 3 2 2 3
s -1 -1 -3 -3 -2 -1 -1 -2
seal —0.4997 —0.9964 —1.4469 —2.9552 —2.0840 | —1.0320, —1.0246 —1.0499 —2.0033
h _h fl 1 11 _ _ 13 1 12
a 0 1 3 82 2> 16 3 505
het — hgal 0.2500 0.3333  0.1250,0.5000| 0.2000,0.4000  0.3333 0.5000, 0.1873 0.3333 0.2000, 0.4000

and never mixes with excited levels during the Dehn twist.
The energy gap is also expected to be finite, as indicated by the
finite-size scaling of the minimal gap during the Dehn twist
[Fig. 2(c)].

For non-Abelian FQH states, there are multiple ground
states in the irreducible Brillouin zone, which makes the spec-
tral flow more complicated. To pursue small finite-size effects
in the Coulomb ground states, we focus on bosons at v = 1,
where it has been confirmed that the Coulomb ground states
are in the Moore-Read phase [53]. In this case, we again find
remarkable robustness against the Dehn twist. Although the
ground state in the (K7, K3) sector evolves into the one in the
(K1, K1 + K3) sector after the Dehn twist, the three ground
states are always approximately degenerate and well separated
from other excited levels by a finite energy gap [Fig. 2(c)] in
the whole spectra flow [Fig. 2(b)].
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FIG. 3. Accumulated Berry phase under Dehn-twist 7 — 7+ é.
Data are numerically calculated for Coulomb interacting bosons at
() v = 1/2 and (b) v = 1, with N, = 12 in both cases. Different
topological sectors, with notations given in the main text, are distin-
guished by colors. Fitting each curve into Eq. (4) allows us to extract
the guiding-center spin and topological spin in different topological
sectors.

B. Berry phase and Hall viscosity

Let us now turn to discuss the accumulated Berry phase
under the Dehn-twist operation. For specific NV, v, Ny =
N, /v and topological sector a, we first numerically calculate

the Dehn-twist induced Berry phase at a fixed length L = |L|
of the torus. We then vary L around the square torus limit
L = /27 N4 to investigate the dependence of the Berry phase
on L. We do these procedures in each topological sector a.
Note that the torus area |L; x La| = 2rNg is unchanged
when we tune L.

Remarkably, for various Abelian and non-Abelian FQH
states that we have studied, the numerically obtained Berry
phase U/ in each topological sector a behaves nicely as a
linear function of L? in the window of L stated above (Fig.
3), which is consistent with the prediction of Eq. (4). Thus
we expect that the slope of the linear function U/ (L?) is
given by the sector-independent guiding center Hall viscos-
ity n9 = —3 7@23 of the underlying FQH state, with —g
the averaged guiding center spin. Physically, s describes an
emergent geometric response of a correlated composite bo-
son (with p particles in consecutive ¢ orbitals) and can be
used as a topological quantum number to distinguish differ-
ent FQH states [18, 20, 35]. The reason why we expect n9
rather than the total 7 in the slope extracted from numerical
data is that we have projected the Hamiltonian into a single
Landau level such that only the guiding-center part can be
captured (see supplementary material Sec. D). On the other
hand, the sector-dependent topological spin &, describing the
phase obtained by quasiparticle a spinned by 2, and the chi-
ral central charge c are expected to be encoded in the intercept
of U] (L?) in the limit of L — 0. In particular, the difference
between the intercepts of U/ (L?) and U, (L?) should give
us the topological spin difference h, — hy.

For Abelian states, the ground states in different topologi-
cal sectors can be distinguished by their momenta (K7, Ks),
thus we straightforwardly have |¥,) = |V(K7, K3)), where
| (K71, K>)) is the ground state from numerical exact diago-
nalization. Based on this, we calculate the Berry phase U,
and indeed extract guiding center spin and sector-dependent



topological spin that are very close to their theoretical values
in pertinent FQH phases. For instance, we get s =~ —0.4997
for the two degenerate Coulomb ground states of bosons at
v = 1/2 and the intercept difference gives Ah =~ 0.2500
[Fig. 3(a)]. This matches the v = 1/2 bosonic Laughlin
state which carries s = —1/2 and has two types of quasi-
particles with hp = 0 (¢ = 0 vacuum) and hy = 1/4
(a = s semion), respectively [35, 46, 54]. We have also ex-
plored other Abelian FQH states corresponding to the Laugh-
lin states at v = 1/3,1/4, hierarchy states at v = 2/5,2/3,
and Halperin states at v = 2/3, 2/5 (see supplemental materi-
als Sec. B). We summarize these results in Tab. I, where all of
the numerically extracted guiding center spin and topological
spin are consistent with theoretical predictions based on Jack
polynomials or model wavefunction calculations [35].

For non-Abelian states, we need to appropriately superpose
the ground states | ¥ (K, K2)) obtained from numerical exact
diagonalization to construct the state |¥,) in a specific topo-
logical sector a. Here we take the v = 1 Coulomb interact-
ing bosons in the Moore-Read phase as an example. In this
case, the three numerical ground states are in the (K, K3) =
(m,0), (0, 7) and (7, ) momentum sectors. The Moore-Read
phase has three types of quasiparticles: the vacuum a = 0, the
fermionic anyon a = f and the Ising anyon a = ¢. In partic-
ular, the Ising anyon o carries non-Abelian braiding statistics
which can lead to potential applications in topological quan-
tum computation [55, 56]. Based on the symmetry analysis,
|W,) and |V (K, K5)) are related via |¥,) = |¥(0, 7)) and
[Wo.r) = 5(¥(m, 7)) £ e?[W(m,0))). where ¢ is cho-
sen to guarantee that |¥() and |¥ ;) are minimally entangled
states [45-47] with respect to the bipartition of all N4 Lan-
dau level orbitals (see supplementary material Sec. E). Similar
to Abelian cases, we find that the Dehn-twist induced Berry
phase of each such constructed |¥,) also matches a linear
dependence on L2 for L around the square torus limit [Fig.
3(b)]. The extracted guiding center spin is s ~ —1.0320 and
—1.0246 for |¥,) and | ¥y s), respectively, which is almost
sector-independent and very close to the theoretical value
s = —1 in the Moore-Read phase. The topological spin of
f and o are respectively determined by iy — hg ~ 0.5000 and
hs—ho ~ 0.1873, being consistent with expected “fermionic”
and “Ising” statistics of quasiparticle f and o [57, 58].

C. Chiral central charge and edge physics

In the vacuum sector a = 0, the topological spin h, = 0
such that the intercept of UJ_,(L?) is solely contributed by
the chiral central charge c. In this case, we can investigate
the edge structure of an FQH state which is determined by c.
As notable examples, we first consider the fermionic model
ground state at ¥ = 1/3, and its particle-hole conjugate at
v = 2/3. Working in the vacuum sector, we extract the central
charge of the v = 1/3 ground state as ¢ ~ 1.01595 (Fig. 4),
which is close to the theoretical value ¢ = 1 for the v = 1/3
Laughlin state (see supplementary material Sec. B for details).
Physically, ¢ = 1 means that the edge state is a single chi-
ral bosonic field, being consistent with the well known edge

structure of the v = 1/3 Laughlin state. By contrast, there
are multiple scenarios of the edge physics of the particle-hole
conjugate at ¥ = 2/3. One possibility is that the edge current
is carried by two chiral v = 1/3 edge states [59, 60]. How-
ever, it has been debated that the v = 2/3 state should harbor
two counter-propagating v = 1 and v = 1/3 edge modes and
edge reconstruction could occur in this hole-conjugate FQH
state [61]. The difference between the two scenarios above
is that the former hosts ¢ = 2, while the latter has ¢ = 0
due to the counter-propagating nature. As shown in Fig. 4,
we obtain ¢ ~ 0.0159 for the v = 2/3 Coulomb ground
state within very high accuracy. This result unambiguously
points to the counter-propagating picture [61] and is also con-
sistent with the recent shot noise measurements and other ex-
periments [6, 62, 63]. In addition, we identify ¢ = 1 for the
model Halperin (333) state at v = 1/3, which suggests its ef-
fective edge theory to be equivalent to the Laughlin v = 1/3
state. In this sense, our approach offers a guide to explore the
edge physics of existing FQH effects.
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FIG. 4. Chiral central charge. Linear extrapolation of the Berry
phase U,—o(L?) towards L = 0 for the model ground state at v =
1/3, its particle-hole conjugate at v = 2/3. The intercept of the
Berry phase in the vacuum sector a = 0 gives the chiral central
charge ¢ &~ 1.01595 for the v = 1/3 ground state and ¢ =~ 0.0159
for its particle-hole conjugate at v = 2/3. Similarly, we identify
¢ ~ 0.9818 for the model Halperin (333) state.
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FIG. 5. Energy spectra at v = 5/2. The low-energy spectra of (a)
the three-body parent Hamiltonian of the Pf state and (b) the two-
body Coulomb interaction at v = 1/2 in the second Landau level as
a function of the twist angle 0 for /N, = 12 electrons. The lowest
energy levels living in momentum sector (0, 7), (7, 0), (7, 7) are la-
beled by colors. The insets show the energy spectra at @ = w/2 as a
function of |K]|.



V. DISCUSSION

Apart from extracting topological and geometric quantum
numbers of the underlying FQH state, our Dehn-twist ap-
proach also provides a distinctive viewpoint to inspect the sta-
bility of an FQH phase. In some cases such stability can-
not be guaranteed by only studying finite-size samples with a
fixed torus shape. Here we use the energy spectral flow un-
der the Dehn twist as a criterion. As required by the gauge
transformation, such an energy spectral flow is expected to
maintain the ground-state degeneracy without level crossings
with excited levels if the underlying FQH phase is really ro-
bust [5]. The results shown in Figs. 2(a) and 2(b) satisfy this
requirement. However, we also notice a striking counterex-
ample for Coulomb interacting electronsatv = 5/2 (v = 1/2
in the second Landau level). In this case, while the nature
of the ground state is still under debate, there is one possibil-
ity that the ground-state manifold consists of the non-Abelian
Pfaffian (Pf) and anti-Pfaffian (aPf) states that are degener-
ate in the thermodynamic limit [12, 64—70]. As both the Pf
and aPf states are three-fold degenerate in the irreducible Bril-
louin zone on the torus, the total ground-state degeneracy in
the irreducible Brillouin zone is expected to be six-fold in this
case. Some numerical attempts indeed reported the observa-
tion of six low-lying states at v = 5/2 on the torus of spe-
cial shape [69, 70]. However, we find that this feature is not
stable under the Dehn twist. As shown in Fig. 5(b), while
there are six low-lying states on the rectangular torus [69],
three of them evolve into the higher-energy spectrum during
the Dehn twist, making the Pf-aPf interpretation questionable.
It is in sharp contrast to the case of the particle-hole symmetry
breaking three-body parent Hamiltonian of the (anti-)Pfaffian
state, for which the (anti-)Pfaffian state is always the zero-
energy ground state regardless of the torus shape [Fig. 5(a)].
Moreover, Ref. [70] claimed that a quantum-well model with
a finite layer-width could stabilize Pf and aPf states. Unfor-
tunately, we observe similar level crossing with excited levels
in the spectral flow of that model also. Thus, our calculations
suggest that, compelling evidence on the torus geometry for
Pf and aPf states at v = 5/2 is still far from conclusive (see
discussion in supplemental materials Sec. B.5).

VI. CONCLUSION AND OUTLOOK

In this work, we have presented a systematic scheme based
on the Dehn-twist deformation on the torus geometry to iden-
tify the topological orders of fractional quantum Hall (FQH)
liquids. With a gauge fixing procedure, we analytically derive
the correct formula of the geometric Berry phase accumulated
during the Dehn twist. This formula explicitly relates the ge-
ometric response of FQH liquids to their universal properties,
such as the Hall viscosity and the topological spin. We then
verify this formula in various microscopic models of Abelian
and non-Abelian FQH liquids beyond model wavefunctions,
demonstrating the potential of our scheme as a diagnosis of
the topological order in a generic FQH state without prior
knowledge. Motivated by the requirement of a well defined
geometric Berry phase, we also suggest a separated ground-
state manifold from excited levels in the whole process of ge-
ometric deformation as an indispensable criterion to justify
the stability of an FQH phase.

Our approach opens up several future directions deserv-
ing further exploration. We mostly focus on FQH states in
the lowest Landau level in this work. Considering that a se-
ries of FQH effects are also observed in higher Landau lev-
els, we believe that our Dehn-twist protocol can shed light on
the stability of those FQH states and their difference from the
lowest-Landau-level FQH states from the aspect of geometric
response. Moreover, in order to deepen our understanding of
the interplay between topology and geometry, it is instructive
to investigate how the geometric response of FQH liquids is
affected by the breaking of the rotational invariance, such as
in the cases of anisotropic FQH states [18, 21] and FQH ne-
matic phases [71, 72]. Furthermore, it would be interesting to
adjust our Dehn-twist protocol to lattice systems, such that it
can be applied to the broad class of lattice topological states
such as fractional Chern insulators [73-75].
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In this supplemental material, we provide more details of the calculation and results to support the discussion in the main
text. In Sec. A, we show a detailed derivation of geometric Berry phase shown in the main text. This section includes five
subsections. In Sec. B, we show the geometric deformation is independent on the selected twisted path. In Sec. C, we present
more numerical results at various filling factors which were not shown in the main text. This section includes six subsections. In
Sec. D, we address the relation between the current work and the previous studies. In Sec. E, we discuss how to make the gauge
choice in the bosonic Moore-Read state.

Appendix A: Theoretical Derivation for Abelian FQH states
1. Landau Level on Torus and Theta Function

Considering an electron on a torus geometry with a uniform magnetic field perpendicular to the surface:

1
Ho(A,7) = 29" (F)Da(A)Dy(A), (A1)
1 2
97) = oz <'_T'ﬁ ” ) (A2)

Where D, (A) = —ihd/0X* + |e|A, and A = (—72L? BX?,0) are the covariant derivative and vector potential respectively.
The ground states of Eq. Al are N4-fold degenerated:

1
Vrl/2Le

where Ny = Ezlﬂngz = gﬁj is the total flux through the torus, £ = y/h/|e|B is the magnetic length, and z = z 4 iy =
L(X* + 7X?) is the complex coordinate of electron. 6,,,(z|7) is the theta function:

U, (XY X2)r) = ei”N«”[lezeﬁ (Ngz/L|IN,7) (A3)

Oa(z|T) = Z exp (ir7(n + a)® 4+ i27(n + a)z). (A4)
nez

2. Dehn twist and Gauge Transformation

Now, let us consider 7 transformation 7 — 7 + 1 and notice it implies an underlying coordinate transformation z = L(X* +
TX?) = L(X" 4+ (1 + 1)X"):

1
Ho(A',7+1) = 5g*( + 1) D, (A") Dy(A), (AS)
1 T+ 112 -1 —1
T1) = ——
9r+1) = faz <_ﬁ_1 1
and the least Landau level wave function:
1 . 1212
/1 2 _ iTNg(T+1)[ X" g

V(XX 1) = e .4 (Nyz/LINs(r + 1)). (A6)
Where D/ (A') = —ihd/0X'* + |e|A], and A’ = (—m2L?BX'?,0) are the covariant derivative and vector potential in

(X't X'?). Note that we can’t compare Eq. A6 with Eq. A3 since they are in different coordinate frame. Therefore
Hy(A’, 7 + 1) should be rewritten in (X!, X2). Note that g°*(7 + 1) can be decomposed:

1 (1 -1 10
g(T+1):L2T22 <0 . >9(7)<_1 1) (A7)

<D1<{«)> _ ( 1 0> <D1<A’)> (AS)
Dy (A) 11 )\ DyA)

and
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With A = (—L?BX"? 7 [*BX"?) = (- L?*BX?% 1 L?BX?). By substituting Eq. A7 and A8 into A5, we find that
Ho(A’, 7 + 1) can be rewritten in coordinate (X *, X?):

Ho(A',7+1) = Ho(A, 1) = %gab(T)Da(A)Db(A) (A9)

with D, (A) = —ihd/dX® + |e|A,. Now one can find a gauge transformation 2/ = e~ ™ No[X"*[48]:
Do(A) =U'D, (AU (A10)
thus Eq. Al and Eq. A9 are equivalent except a gauge transformation:
Ho(A,7) =UTHo(A, 7)U. (A11)

Using Eq. A1 A3 A6 A9 and A11 we have:

m?
UT (X X2 +1)=e" Yo 0, (X1, X3|7) (A12)

Note that it is consistent with the result Eq. 13 in the main text. In Eq. A12, we have used this relation:

iTNyT(n4-2-)2+i2n (n4 2= )Ny z+in Ny (n +ﬂ)2
0 (NpelNy(r + 1)) = 30 Ve timNan

n
_ eiwﬁ—i Z( 1)nN¢ sz¢T(n+N )2 +127r(n+N )Ngz

n

a2
=e" N 0z (Ngz|Ny) (N, is even). (A13)

3. FQH Wave Functions

Now we consider the many-body problem. Starting with the multilayer FQH state (we only show the single-component case
in the main text), we can derive the wave function on torus in terms of the theta function[34, 48]:

“({= D) =N@L(Z D e WMZ(M)Q

fol=1m) = S T T " @mer Gle == ety o S TT T " ety (=f /L — =]/ Lir)

I1<J 1,3 I i<y
fe({Z"} 1) =" (n) (2 ) LI7) (A14)
where
0 =Y expqirT(n+ 1) +i27(n + 1)(z+ 1) (A15)
{ P 2 2/ g
nez
is the odd Jacobi-theta function which satisfy 611 (—z|7) = —611(z|7) corresponds to the factor (z; — z;)™ in Laughlin wave

function, f, ({z{}|7) is the relative part and the multi-dimension theta function f (@m)(Z|7) in the CM function f. ({2} )
is

fem(zir) =Y expfin(n+a+n)"Kr(n+a+n)+i2r(n+a+n)"K(Z-n)}. (A16)

neLr

The 7-dependent Dedekind’s n-function in Eq. A14 is given by:

n(r) = ¢ JT (1 = ¢")lgmerrnr (A17)

n=1
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and the normalization factor:

N(7) = No [yan(n)?2] = N (A18)

with Ny an area-dependent constant. For any given K matrix with dim/(K) = k, K7 is the enrties, k = (K11, Koz, , Kpp)T
is the diagonal elements of K. N = (Nl, N2, ... ,N"”")T where N7 is the number of electrons in the Ith layer, and Z =
(zY,22,--- ,Z")T with Z1 = 3", 2l is the central mass coordinates of the Ith layer and z/ = L(X/' + 7X/2) is the ith
electron in the I'th layer. The vectors used in A16 are given by:

n =K 'k/2 (for fermion)
n=0 (for boson). (A19)
and K« is the coset lattice Z" /K Z" which only have | det(K)| independent vectors indicate | det(K)|-fold degenerate on

torus[9, 34, 76]. For Laughlin v = 1/q state, its K matrix is K = ¢ with coset lattice Z/KZ = {K«|0,1,--- ,q— 1}
correspond to the g-fold degeneracy. And for Halperin (mmmn) state, its K matrix is:

K_mn
nm’

and its coset lattice are enclosed by the parallelogram spanned by two vectors (m,n) and (n,m), the number of independent
vectors is equal to the area of the parallelogram, i.e. | det (K)| = m? — n?. If we consider Halperin (332) state, the coset lattice
is Z2/KZ? = {K«a|(0,0), (1,1),(2,2),(3,3), (4,4) }. Once we got the coset lattice vector K c, the vector o in wavefunction
can be obtained by acting K ~! on the left-hand side of Keav, i.e. {c|0,1/q, -+ ,(q¢—1)/q} for Laughlin v = 1/q state and
{|(0,0),(1/5,1/5),(2/5,2/5),(3/5,3/5), (4/5,4/5) } for Halperin (332) state.

4. Dehn twist and Modular information

Now, considering a special modular transformation {7 : 7 — 7 + 1}, similar to the single electron case, we should introduce
a many-electron gauge transformation:

. I\?
Uy = exp { inN, > (1%) . (A20)
I,i

Using Eq. A14-A20, we have:
Uy ({1} r+1) = U N (r + D ({27} 7+ D fo({2]) |7+ 1) imNelr D S (vl /2m)°
P2} )1 e K7t in 8 N
= U ({ X X] i} ) ens TN TN =giamhe (A21)
We have used some useful relations(here, we assume the total flux Ny through torus is even):
n(r +1) = e/ 12(r)
911( |T + 1) == 6”/4911( |7')
f(a O)(Z|T + 1) _ eura Kaf a, 0)(Z|T)
f(a,K n/2)(Z|7_ + 1) _ eur(oz-i—zK )T K (a+2K*1n)f(a,K*1;-;/2) (Z|T) (A22)
Finally, we derive the modular matrix representation:
(OB, 7| T| W% 7) = Gagei2™(ha—31)emintN KN, (A23)
Here, ¢ = & is the chiral central charge and h,, is the topological spin of the topological sector a:

1
Boson: ho = EaTKa

1
Fermion: he, = §(a + K 'w/2)TK(a+ K 'K/2). (A24)
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5. Hall viscosity and Adiabatic phase
. . . 1 . .
For convenience, we denote the wave function in Eq. A14 as 7o |®; ) with

({2l H®s7) = Non(r)* ™™ fo({ 27} 7)1 ({2} [r)eimer Eulul /me)” (A25)

1, TN 7\ 2F N
(O;7|D;7) =7y 2 =< 57 ) =Z(r,7T)

and Z(7,7) = (%)_%"TN is a pure real part. Thus, we can calculate the Berry connection:[20, 34]

1 1 1 i 1 kTN
=T —=0—=|¥;7) =iVZ0,—=+ 50 Z = -0.InZ = —
Ay =i T|\/_ \/_| Ty =iVZ \/Z+Z 50 In 8
1 i kTN
= Y 20— =—-0:InZ =— . A26
Ar = i 0 o Wir) = VD, —= = —30 mZ = =5 (A26)
We can also rewrite Eq. A26 in terms of A, and A,,:
N
A=Ay + Ar = -5
4’7’2
A, =iA —iAz; =0. (A27)
The 7 transformation induced adiabatical phase is:[34, 38]
1
/ A dr = — =~ 'L (A28)
0
Finally, let us consider some examples. Laughlin state v = 1/¢, n" = % = 87TN¢12 877{2 q= 871-l28 with topological

hAmN, __
8TNyl2 871'l2

shift S = q. Halperin(mmn) state, nf = L>S with topological shift S m.

Appendix B: More numerical results
1. Laughlin state

Fig. 6(a) shows low-energy spectra versus momentum K = /K7 + K2 of Laughlin v = 1/2 state by fixing geometric
parameter § = 7/2 by fixing 7o = 1 (symmetric rectangular). There is one single ground state in momentum (0, 0) , which is
separated from the excited levels by a finite energy gap. Considering the central mass degeneracy ¢ = 2 for v = p/q = 1/2,
we recover the two-fold ground-state degeneracy for Laughlin v = 1/2 state. Above the ground state, a magneto-roton branch
exists K > 1, representing the collective mode of quasielectron-quasihole pair. In Fig. 6(b), varying the geometric parameter ¢
by fixing system area |E1 X E2|, the ground state in momentum (0, 0) evolves adiabatically and never crosses with the higher
energy levels in the spectral flow. By collecting the accumulating phase in one deformation (7 — 7 + 1) for different system
parameter L, we get the plot of U7 versus L, as shown in Fig. 6. Fitting by the linear relation Eq. 4, we get the guiding center
spin is s &~ —0.4997 and topological spin is h; — hg = 0.2500 (machine precision), consistent with the prediction of Laughlin
1/2 state with s = —1/2[35] and hy — hg = 1/4[48]. In particular, topological spin h1 — hg = 1/4 signals the element
quasiparticles satisfy semionic statistics that a semion goes back to itself by a self-rotation 8.

The same procedure can be applied to Laughlin v = 1/4 state, as shown in Fig. 8. Comparison with v = 1/2 case, the only
difference is there are four topologically distinct ground states at v = 1/4. We label the four different ground states by their
fractional charge () = a/4 (in unit of e, e the element charge of electron), with a = 0,1, 2, 3. The different ground states can
be distinguished by their topological spin: hy 3 — hg = 0.1250 and he — hg = 0.5000. Combined the v = 1/2 and 1/4 results,

we conclude that the quasiparticle a in bosonic Laughlin 1/¢ state (¢ even integer) carries topological spin h, — hg = %. This
expression is consistent with Eq.A24.

For fermionic Laughlin v = 1/3 state, we get very similar results, as shown in Fig. 7. The obtained guiding center spin
s ~ —0.9964, which is very close to the theoretical prediction from the Jack polynomial calculation[35] and Laughlin wave
function in Sec. A5: s = —1. Furthermore, based on the Jack polynomial formula in Ref. [35], the predicted topological spins
for three topological sector with @ = a/3 (a = 0,1,2) are hy — hg = ha — ho = 1/6. But in our calculation, we obtain the
topological spin as hg — hy = hg — ha &~ 0.3333 = 1/3 with machine precision. The difference in topological spin has been
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FIG. 6. (a) Low-energy spectra of Laughlin v = 1/2 state for geometric parameter ¢ = /2 and system size N, = 8. (b) Flow of energy
spectra with varying geometric parameter 6. The energy gap is defined by the minimal difference between ground states and excited states in
the whole process of Dehn twist. (¢) Accumulating Berry phase for different topological ground states |V, ) with a = 0, 1 labeled by fractional
quasiparticle charge of @@ = a/2 (in unit of e). Through the linear fitting, the obtained guiding center spin is s ~ —0.4997 and topological
spin is h1 — ho = 0.2500.The inset shows that the intercept of hg sector, therefore we obtain the chiral central charge ¢ ~ 0.9997(the yellow
dashed line is —27/24). The system size is N, = 12. Here we choose Coulomb interaction and the geometric path in Fig. 1. (d) Chiral
central charge c with varying system size NV, blue circles stand for pseudopotential and yellow triangles Coulomb interaction. The horizontal
dashed line is ¢ = 1.

noticed in Ref. [38]: The periodic boundary condition for fermion will lead to an additional 7 phase so that the topological spin.
2

The theoretical result in Eq.A24 and Ref. [48] is hy = {222 therefore we have hg = 1/24+ 1/3 = 3/8,hy = hy = 1/24

which is consistent with numerical results .
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FIG. 7. (a) Low-energy spectra for fermionic FQH v = 1/3 state with system size N, = 10, by setting geometric parameter § = % and
T2 = 1 (symmetric rectangular). The ground state is located in momentum sectors (0, 0). (b) Flow of energy spectra with varying geometric
parameter @ with system size N, = 10. (c) Accumulating Berry phase for NV, = 12. The different topological ground states |¥,) with
a = 0,1, 2 labeled by fractional quasiparticle charge of @ = a/3 (in unit of ¢). And |¥1) and |¥5) are equivalent. The obtained guiding
center spin is s &~ —0.9964 and topological spin is ho — h1,2 ~ 0.3333.The inset shows that the intercept of h1 2 sector, therefore we obtain
the chiral central charge ¢ &~ 1.0699(the yellow dashed line is —27/24). Here we choose Coulomb interaction and the geometric path in Fig.
1. (d) Chiral central charge ¢ with varying system size N, blue circles stand for pseudopotential and yellow triangles Coulomb interaction.

The horizontal dashed line is ¢ = 1.
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FIG. 8. T —transfermation on Laughlin state at v = 1/4. (a) Low-energy spectra for N, = 8, by setting geometric parameter # = 5 and

T2 = 1 (symmetric rectangular). The ground state is located in momentum sectors (0, 0). (b) Flow of energy spectra with varying geometric
parameter 6 for N, = 8. (c) Accumulating Berry phase for different topological ground states |V, ) with a = 0, 1, 2, 3 labeled by fractional
quasiparticle charge of Q@ = a/4 (in unit of €). And |¥1) and |¥3) are equivalent. The obtained guiding center spin is s = —1.4469 and
topological spinis h1,3 —ho = 0.1250, he — ho = 0.5000. The inset shows that the central charge c seems not converge for the largest system
size N, = 9 that we can touch. Here we choose Coulomb interaction and the geometric path in Fig. 1. (d) Chiral central charge ¢ with varying
system size IN),, blue circles stand for pseudopotential and yellow triangles Coulomb interaction. The horizontal dashed line is ¢ = 1.

2. Halperin state

Here we discuss a class of FQH state for double-layer systems [58, 77-79] which called Halperin state. The Halperin
states(m, m, m — 1) which filling factor is v = 2/(2m — 1) = p/q and topological shift S = m[16], thus we can derive
the corresponding guiding center spin is s = p(1 — m)/2.

Here we study fermionic (332) and bosonic (221) state. Considering (332) state with | det (K')| = 5 degenerate ground states.
The uint cell[34, 76] includes 5 lattice points: {|(0,0),(1/5,1/5),(2/5,2/5),(3/5,3/5),(4/5,4/5)}. Using Eq. A24 we can
calculate the theoretical topological spin for (332) state are hg,o = ha2 = 9/20,h3 3 = haa = 1/20,h; = 1/4. For bosonic
(221) state, the uint cell has | det (K)| = 3 lattice points: {«|(0,0),(1/3,1/3),(2/3,2/3)} and the corresponding topological

spin are h070 = 0, h171 = h272 = 1/3
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FIG. 9. (a-b)T —transfermation on Halperin(332) state for N, = 8, we choose Pseudopotential and the geometric path in Fig. 1. (a) Flow
of energy spectra with varying geometric parameter 6. (b) Accumulating Berry phase for different topological ground states |¥,,,) with
a = 0,1, 3. The obtained guiding center spin is s ~ —2.0033 and topological spin is hg,0 — h1,1 = h2,2 — h1,1 = 0.2000, h1,1 — h33
h1,1 — ha,a = 0.2000. The inset shows that the intercept of h3 3 sector, therefore we obtain the chiral central charge ¢ ~ 1.9678(the yellow
dashed line is —47/24). (c-d)7 —transformation on Halperin(221) state for N, = 8, we choose pseudopotential and the geometric path in
Fig. 1. (c) Flow of energy spectra with varying geometric parameter 6. (d) Accumulating Berry phase for different topological ground states
|W,,q) with a = 0,1, 3. The obtained guiding center spin is s ~ —0.9986 and topological spin is h1,1 — ho,0 = h2,2 — ho,0 = 0.3333. The
inset shows that the intercept of ho,o sector, therefore we obtain the chiral central charge ¢ & 2.0080(the yellow dashed line is —47/24).
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3. Particle-Hole Conjugate v = 2/3 State
The fermionic v = 2/3 state is the particle-hole conjugate state of Laughlin v = 1/3 state, whose K matrix is[1]:

(11
K_<1_2> (B1)

and ground states are also 3-fold degenerated. Using the Eq. (12) in Ref. [16], we can derive the topological shift S = 0,
therefore the guiding center spin is s = p(§ — §/2) = 1 and the topological spin is hg = —1/4,hy = ho = 1/12.
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FIG. 10. (a) Low-energy spectra for fermionic FQH v = 2/3 state with system size IV, = 20, by setting geometric parameter § = % and
T2 = 1 (symmetric rectangular). The ground state is located in momentum sectors (0, 0). (b) Flow of energy spectra with varying geometric
parameter 6 with system size N, = 20. (c) Accumulating Berry phase for N, = 24. The obtained guiding center spin is s ~ —0.9990
and topological spin is hi12 — ho =~ 0.3333.The inset shows that the intercept of h¢ sector, therefore we obtain the chiral central charge
¢ ~ 0.0160(the yellow dashed line is 0). Here we choose v1 = 1 pseudopotential and the geometric path in Fig. 1. (d) Chiral central charge ¢
with varying system size N, blue circles stand for v; = 1 pseudopotential and yellow triangles Coulomb interaction. The horizontal dashed
line is ¢ = 0.

4. Hierarchy state

Starting from Laughlin v = 1/q state, quasiparticles can condensate into successive Laughlin states and generate a hierarchy

of incompressible states. In the case of fermions the most prominent series are given by v = %, while for bosons v = % And

the relationship between the topological shift and filling factor is S = 4 for fermions and S = 3 for bosons. Thus, we anticipate
that the guiding center spin is s = —3 for fermions v = % and s = —2 for bosons v = %

Our numerical simulation gives the guiding center spin s ~ —2.0840 for the bosonic v = 2/3 state, and s ~ —2.9552 for the
fermionic v = 2/5 state, both of which matches the above expected values. Moreover, we also estimate the topological spin of
element quasiparticle in v = 2/3is hy 2 — hg = 0.3333 = 1/3and in 2/5is hy 4 — ho = 0.2 =1/5,ha 3 — hg ~ 0.4 = 2/5.

5. Fermionic Moore-Read state

As well-known that v = p/q (with ¢ odd) can be understood by the Laughlin paradigm and further hierarchy theory or Jain
composite fermion theory, the finding of even denominator v = 5/2 FQH state challenges our theoretical understanding of the
FQH effect. Among all candidates, Pfaffian or anti-Pfaffian wave function proposed by Moore and Read [12, 64, 67] seems a
promising candidate to describe the enigmatic nature of FQH v = 5/2 state. Although much efforts have been devoted to this
long-standing issue [65, 66, 68—70, 80], solid numerical evidence of topological ground state degeneracy on torus is still lacking.
In the main text, we have shown that the quasi-degenerate ground state of pure Coulomb interaction are not stable against the
dehn twist transformation on the limited system size. We also noticed that in another study, Ref. [70] proposed that the modified
Coulomb interaction with finite-layer width correction may enhance the Moore-Read signature in some range of aspect ratio on
torus. Here we also investigate this possibility, by using the modified Coulomb potential in infinite square-well potential:

4 —kd
on 3kd + 85 — B
ok k2d? + A2

(B2)
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FIG. 11. T —transformation on fermion Hierarchy state for (a)-(b) fermionic » = 2/5 and (c)-(d) bosonic v = 2/3 with system size N, = 12.
Here we choose the geometric path in Fig. 1. (a) Flow of energy spectra with varying geometric parameter 6. (b) Accumulating Berry phase
for different topological ground states |¥,) with @ = 0, 1,2, 3,4. The obtained guiding center spin is s ~ —2.9552 and topological spin
is h1,4 — ho = 0.2000, h2,3 — ho = 0.4000. (c) Flow of energy spectra with varying geometric parameter 6. (d) Accumulating Berry
phase for different topological ground states |¥,) with a = 0, 1, 2. The obtained guiding center spin is s & —2.0840 and topological spin is
hi,2 — ho = 0.3333.

~
~

where d stands for the effective layer-width of the experimental GaAs quantum well structures. In the calculation, we set d = 4/
according to the discussion in Ref. [70]. The low-energy spectra at rectangular geometry is shown in Fig.12(a), which should
exactly repeat the results of Fig. 4 in Ref. [70]. The plausible six-fold quasi-degenerate ground states are labeled by red
circle. However, under the Dehn twist deformation, the six-fold quasi-degenerate states evolve into the higher levels, as shown
in Fig. 12(b). Due to the fail of parallel transport, we cannot get Hall viscosity and topological spin for v = 5/2 state for
Coulomb interaction in our calculation. Here, our analysis based on geometric deformation suggests that numerical signature of
Moore-Read state on torus geometry is still questionable.

How to understand our results on v = 5/2 quantum Hall state? One possible understanding is that, the Coulomb ground states
at v = 5/2 lie on the marginal boundary between Pfaffian and anti-Pfaffian state since particle-hole symmetry cannot be broken
on torus geometry [69]. The recent progresses of discovering non-Abelian statistics of FQH v = g state on cylinder and sphere
geometry may shed some light on this issue, where the particle-hole symmetry is broken spontaneously or explicitly [15, 80, 81].
In addition, recent thermal Hall measurement brings other possibility to our attention. For example, the particle-hole preserved
Pfaffian state is proposed as a viable possibility [82]. Particle-hole Pfaffian state should host three-fold ground state degeneracy
(excluding the center-of-mass degeneracy). Unfortunately, in our extensive calculations (see Fig. 12), we did not observe signal
for three-fold ground state degeneracy neither. In a word, our results call for further study on the v = 5/2 problem on the torus
geometry.
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FIG. 12. (a) Low-energy spectra for fermionic FQH v = 5/2 state with system size N, = 12 by setting ¢ = 7 and 7, 1 =0.99 [70]. The
model contains a finite-layer width correction to the pure Coulomb interaction. The six-fold quasi-degenerated ground states in momentum
sectors (7, 0), (0, 7), (m, w) are indicated by red circle. (b) Flow of low-energy spectra with changing torus geometry 6. The ground states
in momentum (7, 7), (7, 0), (0, 7) are labeled by blue circle, yellow square and green rhombus. (c) Low-energy spectra for fermionic FQH
v = 5/2 state for pure Coulomb interaction. (d) Low-energy spectra for fermionic FQH v = 5/2 state for three-body model Hamiltonian.



18

6. Bosonic Moore-Read State

In the main text, the bosonic Moore-Read state is studied based on Coulomb potential. Here, we investigate the bosonic
Moore-Read v = 1 state using a 3-body model Hamiltonian:

- Ji.jz.gs 1 1t
Vi = Z Ao e g, 04, 05,054 Qs O (B3)
J1,72,J3,J4,J5,J6
J1:J2,03 3.
where Ajw-w-4 is:
o 1 1
J1:J2,J3 _ _ 242 _ 2 27 2 | smodNy
Afnda = 2L1 D exp 1 a7 + (@1 = @2)” + @] € $ 05705, 050 s
q1,92

o Ny, . . ni o N2y . . UP) dN, dN,
X {QXP [_227TN_;}(]6 —jo+ —-) — Zzﬂ—z(h —Ja+ Tw)] 5;111(1j6,f1116?;(1j3»ﬁ7«21

. n . . Nig . n . . N2y mo mo
+ exp [_Zgwﬂ(% — s+ L) _ z2wﬁ(33 — e+ i)]é dNy  smodN,

N¢ 2 N¢ 2 J2—J5,n12  J6—J1,N2z
. ni . . Nix . n2 . . N2y modN, modN,
+exp |:{—Z27TF;/(]4 -n+ T) — zQwﬁ(gl —Js+ 7)} 6j3j4)f1125j5j2)‘f12z} . (B4)

As shown in Fig. 13(a), the three-fold degenerated ground states of bosonic Moore-Read v = 1 state are the zero-energy state.
According to the topological theory, these three states corresponding to topological sectors: two abelian anyon with topological
spin hy = 0,hy = % and a non-abelian Ising anyon h, = 11 = 0.375. The topological shift of Moore-Read v = % = % =1
state is S = 2 and guiding center spin s = p(5 — £) = —1. As shown in Fig. 13(c), our calculation gives guiding center spin
is s & —1.00, which is consistent with the effective theory. And the topological spin also matches the theoretical prediction. In
addition, the average chiral central charge is determined to be ¢ ~ 1.5359, close to the theoretical prediction ¢ = 3/2. These
facts form a compete diagnosis of non-Abelian nature of bosonic Moore-Read state at v = 1.
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and 72 = 1.25. The three-fold degenerated ground states in momentum sectors (7, 0), (0, 7), (7, 7) are indicated by red circle. (b) Flow of
low-energy spectra with changing torus geometry 6. The ground states in momentum (7, ), (7, 0), (0, 7) are labeled by blue circle, yellow
square and green rhombus. (c) Accumulating Berry phase for N, = 14. The obtained guiding center spin is s ~ —1.0039(—0.9898) for
[¥o)(|¥1)) and topological spin is hy — hi & 0.5000, ho — h1 & 0.1885. The inset shows that the intercept of k1 and h, sector, therefore
we obtain the chiral central charge ¢ ~ 1.4276(the green dashed line is —é + % = 1) for hy and ¢ ~ 1.6441(the blue dashed line is — é) for

1
h1, the average of these two sectors is ¢ ~ 1.5359. Here we choose the geometric path in Fig. 1.

FIG. 13. (a) Low-energy spectra for bosonic Moore-Read v = 1 state with system size [N, = 12, by setting geometric parameter § = 7
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Appendix C: Geometric Path Dependence

The geometric Berry phase is intrinsic under geometric deformation, which should not depend on the specific deformation path
we choose. To elucidate the physics does not depend on the specific geometric path we choose, we double check the different
geometric paths in Fig. 14(a): One is geometry path from a hexagon-like geometry to its equivalent one: 0 : 27/3 — w/3
(labeled by blue) and the other one is from rectangular to its equivalent one (labeled by red). For both geometric path, the
extracted physics, guiding-center spin and topological spin are all identical.

Moreover, since the Berry phase only depends on the path length (L) along the L direction, there are two different schemes
to extract the Berry phase. One is to tune the aspect ratio |7| = |Ly|/|L1| and fix total flux N, of the system. The other
one is to change the total flux of the system. The topological information from these two different schemes should coincide.
As an example, in Fig. 14(d), we show the Berry phase U7 for system sizes N, = 4,6,8,10,12 by fixing the aspect ratio
|7| = 1(at the starting point of the 7 transformation). In Fig. 14(b), it is shown the low-energy spectra at symmetric hexagon
geometry. Again, the ground state is located in momentum sector (0, 0). The three-fold ground-state degeneracy is recovered
when considering central-mass degeneracy of the system. And we also observe a branch of magneto-roton modes above the
ground state. In Fig.14(c), when changing the geometric parameter €, the energy gap keeps open and the ground state indeed
evolves adiabatically. In Fig. 14(d), the Berry phase can be fitted by linear function. The topological information, guiding center
spin s &~ —1.0119 ~ —1 and topological spin h1 2 — ho ~ 0.3333 =~ 1/3, are consistent with the previous conclusion obtained
by different geometric path. Here, it is shown that the physics are identical when choosing different deformation paths. Thus,
reaching the same physics by the two different schemes is another evidence that the Berry phase under 7 —transformation only
depends on L, not on the total area |L; x Ly| or total flux N,,.
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FIG. 14. (a) The geometric path we used here: 0 : 27/3 — 7/3. (b) Low-energy spectra for fermionic FQH v = 1/3 state with system size
N, = 8, by setting symmetrical hexagonal geometry (§ = % and 72 = 1). The ground state is located in momentum sectors (0, 0). (c) Flow
of energy spectra with varying geometric parameter 6. (d) Accumulating Berry phase for different topological ground states |V, ), where |¥,)
labeled by fractional quasiparticle charge of Q = a/3,a = 0, 1,2 (in unit of ). And |¥;) and |¥2) are equivalent. The obtained guiding
center spin is s & —1.0119 and topological spin is h1,2 — ho ~ 0.3333.
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Appendix D: Relation to other works

We recover the different definitions discussed in other works [16, 20]. In our previous calculations, only the guiding center
Hall viscosity has been considered since we are working on the projected Hamiltonian Eq. 15. Indeed, the total Hall viscosity of
a FQH system includes two parts, guiding center Hall viscosity 79 and Landau orbital Hall viscosity n°. The guiding-center Hall
viscosity 79 describes an emergent geometric response of the correlated electrons, while Landau-orbit Hall viscosity n° directly
comes from the Landau-orbit form factor. For the Landau-orbit part, the Landau-orbit Hall viscosity can be expressed in terms
of Landau-orbit spin § [19]:

o h ~
= Evs (D1)

where Landau-orbit spin is defined as s = n+ % for n—th Landau level. 5 describes that, as the Landau level index increases, the
orbital angular momentum carried by the cyclotron motion also increases. Thus, for a given filling factor v, Landau-orbit spin is
a constant therefore Landau-orbit Hall viscosity is also a constant term. Please note this Landau-orbit Hall viscosity exists even
when the particles are uncorrelated.

Combining the the Landau-orbit and guiding-center Hall viscosities, we reach the total Hall viscosity

h s h v h v
H — e = —WS§——-)=-—=(25) = -——=S D2
nt=nt A = s =) = () = 1o (D2)
Here we recover the so-called mean “orbital spin” defined by 5 = 5 — %, which was first derived by Wen and Zee,[16] and later
by Read and Rezayi[20]. And the relationship between the orbital spin 5 and the topological shift number S is [20]

S = 2. (D3)

Topological shift S is a topological number related to a given FQH state, which always vanishes on torus or plane geometry,
but takes nonzero values on the curved geometry such as sphere. Physically, the shift on curved space results from the nature
of orbital spin carried by composite bosons in FQH effect. In phenomenological way, the basic element in FQH effect at filling
factor v = p/q is a composite boson with p particles in ¢ consecutive orbitals. Because composite bosons carry a non-zero
orbital spin s, the total flux seen by the composite boson is the sum of the magnetic flux and the Berry phase induced through
the coupling of the orbital spin 5 to the curvature of the space. It is this Berry phase that causes the topological shift S. Thus,
the composite bosons with different 5 will have different shifts S on sphere. Here, we see these topological quantum numbers,
S and the corresponding guiding center spin s, can be measured by geometric twist, although they do not directly appear on the
torus or plane.

We will close this section by illustrate some examples. For v = p/q = 1/q Laughlin states, the guiding center spin is
s = (1 — q). The orbital spin per composite boson is 5 = § — s = %, where we choose § = 1/2 for lowest Landau level.
Therefore, topological shift S = 25 = ¢. The same procedure can be easily adapted to obtain the topological shift S = 4
for Hierarchy v = 2/5 state. These results coincide with prediction from by Wen and Zee,[16] and Read and Rezayi[20], and
previous works on spherical calculations.
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Appendix E: Minimal Entangled State in Bosonic v = 1 case

We give a symmetry analysis of bosonic Moore-Read v = p/q = 2/2 = 1 state based on the root configuration. Due to the
condition of N, = Ny, the center of mass degeneracy is 1. The root configuration for bosonic Moore-Read state is no more than
p bosons in consecutive g orbitals, thus we have three topological different ground states:

[20], [02], [11]

These root configuration state also correspond to the ground states with definite type of anyonic quasiparticle, which is the
quasiparticle eigenstates. These three ground states have different momentum quantum numbers along K,: [20] and [02] have
K, = 1%2 (or m) while [11] has K, = 0%2 (or 0).

Following the analysis in Ref. [51], we get the relationship between quasiparticle eigenstates and numerical obtained ground
states labeled by momentum quantum number (K, K,)) as :

ke = m,ky = 7 > = |20) 4+ >™0/N|02) = |20) + |02)
lky = m,ky = 0> = |20) + *™/N]02) = |20) — [02)
ky = 0,k =7 > = [11) (E1)

To see Eq. El really represents the quasiparticle eigenstates, we provide two different proves here. One is that, we can
construct the modular S matrix based on Eq. El, and the other one is, we can numerically prove that Eq. E1 are the minimal
entangled states, which should be a faithful representation of quasiparticle eigenstates.

First, Eq. E1 is the quasiparticle eigenstates, which are defined by coordinates x and y:

oy 1
Ef) = ﬁ(lkx = ky =m) + ks =7, ky = 0)) =1[02)
oy 1
£3) = —= (ke =m,ky =m) — |ke =7, ky = 0)) = |20)

V2
=5) = |k =0,k =7m) = |11)
Under the S transfermation, coordinates change to x — y and y — —x, and we get the quasiparticle eigenstate as:

vy = ! 1.1

ke = 7, ky = ) + [ky = ke = 0)) = —=[—=(102) + [20)) + |11)]

V2'/2
N L P U B
) = lky = 7, ky = 0) = —[|02) — [20)],

V2
since we applied a 7 /2 rotation on ground states:
|ky =7, ky =7) = |ky =7, ky =)
ke =0,ky =7) = |ky =7, ky =0)
|ke =7, ky =0) = |ky =0,y =)

Finally, we have,

Yt V2
(E7|E%) = o 11t -2
V2 V2 0
Therefore, since Eq. E1 faithfully recovers the S matrix, Eq. E1 gives the quasiparticle eigenstates.
In practice, for twist transformation we denote the ground state by |k, k,, 7(s)), and let 7(s) = 7(0) + s. Since the numerical

calculation adds an additional phase to each wave function, we must be careful to use Eq. E1. The quasiparticle state, or minimal
entangled state can be written as

S

=2, T) =

(|ky =7, ky =7, 7) + ei“’|km =m,ky,=0,7))

)—l%|)—l
[\

=5,7) = _(|kgg =7, ky = 7T,T> _eig)'km =m,ky = O7T>)

V2
|25, 7) = ks = 0,ky =7, 7),

where ¢ can be determined by minimizing the entanglement entropy.



