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We develop a generic k ·p open momentum space method for calculating the Hofstadter butterfly
of both continuum (moiré) models and tight-binding models, where the quasimomentum is directly
substituted by the Landau level (LL) operators. By taking a LL cutoff (and a reciprocal lattice
cutoff for continuum models), one obtains the Hofstadter butterfly with in-gap spectral flows. For
continuum models such as the moiré model for twisted bilayer graphene, our method gives a sparse
Hamiltonian, making it much more efficient than existing methods. The spectral flows in the
Hofstadter gaps can be understood as edge states on a momentum space boundary, from which
one can determine the two integers (tν , sν) of a gap ν satisfying the Diophantine equation. The
spectral flows can also be removed to obtain a clear Hofstadter butterfly. While tν is known as the
Chern number, our theory identifies sν as a dual Chern number for the momentum space, which
corresponds to a quantized Lorentz susceptibility γxy = eBsν .

Two-dimensional (2D) lattice electrons in large mag-
netic fields are known to exhibit Hofstadter butterfly
spectra [1]. Conventionally, the Hofstadter butterfly is
calculated at rational fluxes per unit cell ϕ = 2πp/q in a
basis with translation symmetry of q unit cells, where
p and q are coprime integers. The calculation often
involves a complicated construction of the matrix ele-
ments. In particular, for continuum k·p models obtained
from plane wave expansions such as the moiré model
for twisted bilayer graphene (TBG) [2–4], the Hofstadter
Hamiltonian matrix is infinite dimensional and dense [5–
10], which requires a large cutoff for the spectrum to
converge.

In contrast, the Landau levels (LLs) of a k · p Hamil-
tonian at small magnetic fields can be calculated by sim-
ply substituting the quasimomentum k = (kx, ky) with

(a+a†√
2`
, a−a

†

i
√

2`
), where a and a† are the LL lowering and

raising operators, and ` is the magnetic length [11]. In
this letter, we demonstrate that such a substitution with
a LL cutoff (and a reciprocal lattice cutoff for contin-
uum models) provides an efficient method for calculating
the Hofstadter butterfly in large magnetic fields, which
greatly simplifies the Hamiltonian matrix elements [12].
In particular, for continuum models, this method yields
a sparse Hamiltonian, whose spectrum can be efficiently
calculated by the shift-and-invert Lanczos method.

The method can be understood as an open momentum
space calculation, where the smaller of the momentum-
space LL wavefunction radius cutoff and reciprocal lattice
radius cutoff plays the role of a momentum space bound-
ary. As a result, the spectrum contains not only the
Hofstadter butterfly, but also in-gap spectral flow levels
[12, 13] which can be understood as “momentum space
edge states”. We show that the spectral flows of these
edges allow us to determine the two integers (tν , sν) in
a Hofstadter gap ν satisfying the Diophantine equation
[14–16], where tν is the Chern number of the gap. More-
over, we show that sν can be interpreted as a dual Chern
number for the momentum space, which yields a quan-

tized Lorentz susceptibility (Eq. (15)). Furthermore,
by identifying and removing the momentum space edge
states, one can obtain the Hofstadter butterfly without
spectral flows. We demonstrate our method for both con-
tinuum models and tight binding models in a 2D periodic
lattice. We shall denote the lattice Bravais vectors as d1

and d2, and the reciprocal vectors as g1 and g2, which
satisfy gi · dj = 2πδij (i, j = 1, 2).

Continuum models. At zero magnetic field, a contin-
uum model can be written in the real space basis |r, α〉
as [3–7, 17]

Hαβ(r) = εαβ(−i∇) +
∑
j

V αβj eiq
αβ
j ·r , (1)

where r = (x, y) is the real space position, −i∇ =
−i(∂x, ∂y) is the canonical momentum, and we assume
there are M intrinsic orbitals labeled by α, β. εαβ(−i∇)

and V αβj eiq
αβ
j ·r are the electron kinetic term in free space

and the periodic lattice potential between orbitals β and
α, respectively. If one denote Q ∈ g1Z+g2Z as the recip-
rocal lattice, and choose the momentum origin of orbital
α at pα, one can define a momentum lattice Qα = pα+Q

for orbital α, and qαβj in Eq. (1) must be the difference

Q′α−Qβ between some sites Q′α and Qβ (see supplemen-
tary material (SM) [18] Sec. S2A). Generically, one can
always fix all pα = 0; however, in certain models (e.g.,
the TBG model [2]) nonzero pα choices are preferred.

One can transform the zero-magnetic-field Hamilto-
nian (1) into the momentum eigenbasis |k,Qα, α〉 =∫

d2rei(k+Qα)·r|r, α〉, where k is in the first Brillouin
zone (BZ). The momentum space Hamiltonian under ba-
sis |k,Qα, α〉 then takes the form [2, 18]

Hαβ
Q′αQβ

(k) = εαβ(k + Qβ)δQ′αQβ
+
∑
j

V αβj δQ′α,Qβ+qαβj
.

(2)
When a uniform out-of-plane magnetic field B = Bẑ

is added, −i∇ in Eq. (1) is replaced by the kinematic
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momentum Π = −i∇ − A(r), where A(r) is the vec-
tor potential satisfying ∂xAy − ∂yAx = B. The kinetic

momentum satisfies [Πx,Πy] = i/`2, where ` = 1/
√
B is

the magnetic length. We also define the guiding center
R = r − `2ẑ × Π, which satisfies [Rx, Ry] = −i`2, and
[R,Π] = 0.

The usual Hofstadter method for continuum models
employs the Landau basis defined by eigenstates of Rx
and Π2, which has complicated matrix elements [5–10].
Here we shall take a different basis, under which we prove
the nonzero magnetic field Hamiltonian can be simply
obtained by the zero-field momentum-space Hamiltonian
(2) with the substitution of Eq. (5).

We define Rτ̂ = R · τ̂ as the guiding center along

unit vector τ̂ , where we choose τ̂ ·(ẑ×g1)
τ̂ ·(ẑ×g2) irrational. We

also define a set of (linearly dependent) LL operators
aQα = √̀

2
[Πx − Qα,x − k0,x + i(Πy − Qα,y − k0,y)] and

their conjugates a†Qα
associated with momentum sites

Qα, where k0 = (k0,x, k0,y) is a freely chosen real vector
which we call the center momentum. We then construct
an orthonormal basis |λ,Qα, n, α〉 for orbital α and re-
ciprocal site Qα by requiring

Rτ̂ |λ,Qα, n, α〉 = [λ− `2τ̂ · (ẑ×Qα)]|λ,Qα, n, α〉,

a†Qα
aQα
|λ,Qα, n, α〉 = n|λ,Qα, n, α〉.

(3)

Here n ≥ 0 is an integer LL number, while λ is a real
number chosen in the set λ+ `2τ̂ · (ẑ× g1)Z + `2τ̂ · (ẑ×
g2)Z representing the set, or abstractly, λ ∈ R/[`2τ̂ ·
(ẑ × g1)Z + `2τ̂ · (ẑ × g2)Z] (see SM [18] Sec. S2B).
It can then be proved that all the states |λ,Qα, n, α〉
form a complete basis for the continuum model satisfying
〈λ,Qα, n, α|λ′,Q′β , n′, β〉 = δλλ′δQα,Q′β

δnn′δαβ .

The above basis |λ,Qα, n, α〉 is advantageous because
the nonzero-magnetic-field Hamiltonian is diagonal in λ
and independent of λ. In SM [18] Sec. S2B, we show the
Hamiltonian in a fixed λ subspace is

Hλ,αβ
Q′αQβ

= εαβ(κ̂Qβ
+k0+Qβ)δQ′αQβ

+
∑
j

VjδQ′α,Qβ+qαβj
,

(4)

where we have defined κ̂Qα = 1√
2`

(aQα + a†Qα
,−iaQα +

ia†Qα
). Without ambiguity, we can drop the subindex

Qα and simplify (aQα
, a†Qα

) as (a, a†), which acts as

a|λ,Qα, n, α〉 =
√
n|λ,Qα, n−1, α〉 and a†|λ,Qα, n, α〉 =√

n+ 1|λ,Qα, n+ 1, α〉. The Hamiltonian (4) is then ex-

actly the zero-field Hamiltonian Hαβ
Q′αQβ

(k) in Eq. (2)

with the substitution

kx →
a+ a†√

2`
+ k0,x , ky →

a− a†

i
√

2`
+ k0,y , (5)

as we claimed earlier. One then only need calculate the
spectrum for a fixed λ. Different λ and λ′ subspaces
have identical spectra, but have eigenstates differing by
displacement λ− λ′ in the τ̂ direction (Rτ̂ eigenvalue).

q1

q2q3

KM

KM’
ΓM

Q
k0 k0

Q

|   |=  2NL/lκ

(a) (b)

Ak=2πNL/l 2 Ak=NQΩBZ

FIG. 1. (a) When ϕ/2π < NQ/NL, the momentum space
(the shaded area) has a circular boundary of radius

√
2NL/`.

(b) When ϕ/2π > NQ/NL, the momentum space boundary is
the reciprocal lattice boundary enclosing NQ BZs (the shaded
area).

To numerically calculate the spectrum of Hamiltonian
(4), one can fix a center momentum k0, take a LL cutoff
n ≤ NL, and take a cutoff of reciprocal lattice Qα at a
boundary enclosing NQ BZs. This yields a Hamiltonian
of size MNLNQ for M intrinsic orbitals. If ε(k) only con-
tains polynomials up to ∆-th power of k, and the number

of qαβj is finite, 〈λ,Q′α,m, α|H|λ,Qβ , n, β〉 will be zero

for |m−n| > ∆ or |Q′α−Qβ | > max(|qαβj |), so the Hamil-
tonian H is a sparse matrix. The low-energy eigenstates
and spectrum can then be efficiently calculated by the
Lanczos algorithm.

The cutoffs NQ and NL, however, lead to spectral flows
in the Hofstadter gaps due to the absence of periodic
boundary conditions [12, 13]. As an example, we cal-
culate the Hofstadter butterfly of the TBG continuum
model defined on a honeycomb momentum lattice Qα

[2], which has a Dirac kinetic term ε(k) = vFσ
∗ · k, and

2×2 hopping matrices Vj between the nearest momentum
sites, where σ∗ = (σx,−σy) are the Pauli matrices (SM
[18] Sec. S3). Fig. 2(a) shows the TBG spectrum at twist
angle θ = 2.2◦ versus the flux per unit cell ϕ = B|d1×d2|,
where we take NQ = 37 and NL = 60. Besides the Hof-
stadter butterfly, one can see numerous in-gap spectral
flow levels.

The in-gap spectral flows are generically due to the
presence of boundaries which host edge states [12, 13].
Here, as illustrated in Fig. 1(a) and (b), the cutoff NQ

sets a boundary of momentum radius
√

NQΩBZ
π enclosing

NQ BZs, where ΩBZ = 4π2/|d1×d2| is the BZ area; while

the LL cutoff NL yields a boundary
√
〈κ̂2

Qα
〉 ≤

√
2NL
`

for κ̂Qα in the Hamiltonian (4). The smaller value of√
NQΩBZ

π and
√

2NL
` then serves as a momentum space

boundary radius for Hamiltonian (4) (SM [18] Sec. S2C),
which gives rise to edge states.

The momentum space edge state levels then generate
the spectral flows versus the magnetic field B. This can
be understood from the Diophantine equation [14–16, 18]
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satisfied by the ν-th Hofstadter gap (ν ∈ Z) at ϕ = 2πp/q
flux per unit cell:

tνp+ sνq = ν , (6)

where (tν , sν) are two integer quantum numbers charac-
terizing the gap. tν is the Chern number of the gap,
while sν is referred to as the electromechanical quantum
number in Ref. [5]. It is often rewritten as

tν
ϕ

2π
+ sν = ρ , (7)

where ρ = ν/q is the number of occupied bulk states per
unit cell in the gap [18–20]. Here it is more useful to
rewrite it in a dual form

tν + sν
2π

ϕ
= ρK , (8)

where ρK = 2πρ/ϕ = ν/p. In SM [18] Sec. S2F, we
show that ρK gives the number of occupied bulk states
per BZ in the gap for the Hamiltonian (4) at a fixed λ.
Furthermore, in Eq. (16), we show that sν plays the role
of a dual Chern number for the momentum space. Eq.
(8) then determines the in-gap spectral flows (Fig. 2(a))
in two different regimes as follows.

In the first regime ϕ/2π < NQ/NL, the momentum
space boundary is a circle enclosing a ϕ-dependent area
AK = 2πNL/`

2 centered at k0 (Fig. 1(a)). In a gap,
the total number of occupied states in the momentum
area AK is NK = ρKAK/ΩBZ = NLρKϕ/2π = NLρ.
Therefore, by Eq. (8) we have

NK = NL(tνϕ/2π + sν) . (9)

In a bulk gap, the number of occupied states NK can
only change by pumping edge states into (out of) the
bulk. Therefore, the edge states necessarily produce in-
gap spectral flows, where the rate of flowing levels is
dNK/d(ϕ/2π) = NLtν by Eq. (9). Fig. 2(c) shows
a gap in this regime, where the midgap line (dashed
line) crosses 16 levels as ϕ/2π increases from 0.25 to 0.5,
and NL = 60. The flow rate is then dNK/d(ϕ/2π) =
16/(0.5−0.25) = 64, so we can identify the Chern number
of the gap as the integer closest to N−1

L dNK/d(ϕ/2π) =
1.07, namely, tν = 1. Further, at ϕ/2π = 0.5, we counted
there are NK = 32 levels from zero energy to the midgap
energy (for TBG, NK = 0 is at zero energy (SM [18] Sec.
S2G)), so we find the gap has sν = NK/NL−tνϕ/2π = 0
from Eq. (9).

In the second regime ϕ/2π > NQ/NL, the momentum
space boundary is given by cutoff NQ, which encloses a ϕ
independent area AK = NQΩBZ (Fig. 1(b)). The num-
ber of occupied states NK = ρKAK/ΩBZ in momentum
area AK in a gap is then

NK = NQ(tν + 2πsν/ϕ) . (10)

This yields a spectral flow rate dNK/d(2π/ϕ) = NQsν .
Besides, for TBG which has a Dirac kinetic term, there
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FIG. 2. (a) Hofstadter butterfly and spectral flow of θ = 2.2◦

TBG with NQ = 37 and NL = 60, and k0 at Γ point. The
horizontal axis ϕ/2π is linearly plotted in [0, 1], and deformed
into 2 − 2π/ϕ in [1,∞]. (b) The Hofstadter butterfly after
deleting the edge states (with w = min{`−1, 1.6

√
ΩBZ}, Pc =

0.5), and (tν , sν) in the gaps. (c) Zoom-in plot in the regime
ϕ/2π < NQ/NL. (d) Zoom-in plot in the regime ϕ/2π >
NQ/NL.

are 2NQ horizontal levels at ϕ/2π > NQ/NL in Fig.
2(a), which are spurious zero modes due to LL cutoff
NL (see SM [18] Sec. S3). These spurious levels should
be excluded when counting NK . Fig. 2(d) shows a
gap in this regime, where the midgap line crosses 6 lev-
els (excluding the spurious modes) as 2π/ϕ decreases
from 2/3 to 1/2, and NQ = 37. The flow rate is then
dNK/d(2π/ϕ) = 6/(2/3−1/2) = 36, thus sν can be iden-
tified as the integer closest to N−1

Q dNK/d(2π/ϕ) = 0.97,
namely, sν = 1. Further, we counted there are NK = 55
levels (excluding the spurious modes) between midgap
and zero energy at 2π/ϕ = 1/2, thus the gap has a Chern
number tν = NK/NQ − 2πsν/ϕ = 1 from Eq. (10).

We note that models with a Dirac kinetic term ε(k) =
vFσ

∗ · k would have NK = 0 defined at half filling (zero
energy for TBG), while models with a lower-bounded ki-
netic term (e.g., ε(k) = k2/2m0) would have NK = 0
below the lowest band (SM [18] Sec. S2G). More generi-
cally, if a gap persists below and above ϕ/2π = NQ/NL,
one can identify tν and sν separately from the spectral
flow rates at small and large ϕ, after which one can obtain
NK of the gap from Eq. (9) or (10).

The edge states and spurious modes can be easily re-
moved from the spectrum. We define a boundary projec-
tor Pκb,w onto basis |λ,Qα, n, α〉 with n > (κb−w)2`2/2

for some w > 0, where κb ≈ min{
√

2NL
` ,

√
NQΩBZ

π } is

the radius of momentum space boundary. We can then
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identify the eigenstates with 〈Pκb,w〉 > Pc above certain
value Pc ∈ [0, 1] as momentum space edge states within
distance w to the boundary, and delete them to obtain a
bulk Hofstadter spectrum. For example, Fig. 2(b) is ob-
tained by setting w = min{`−1, 1.6

√
ΩBZ} and Pc = 0.5.

Tight-binding models. The substitution (5) can also be
employed to calculate the Hofstadter butterfly of tight-
binding models. Given the position uα of each Wannier
orbital α in a unit cell in the continuum space, we denote
orbital α at position D+uα as |D, α〉, where D ∈ d1Z+
d2Z is the lattice vector. The Hamiltonian under Peierls
substitution [21–23] then takes the form

H =
∑
j,α,β

tαβj TDj+uα−uβ , (11)

where Dj ∈ d1Z + d2Z, tαβj is the hopping from |D, β〉
to |D +Dj , α〉, and

TDj+uα−uβ =
∑
D

e
i
∫
cαβ

A(r)·dr|D +Dj , α〉〈D, β| (12)

is the translation operator, with cαβ being the straight
line segment from D+uβ to D+Dj +uα. At zero mag-
netic field, the Hamiltonian can be transformed into the
momentum space basis |k, α〉 =

∑
D eik·(D+uα)|D, α〉 as

Hαβ(k) =
∑
j

tαβj e−ik·(Dj+uα−uβ) . (13)

At nonzero magnetic field, we define a basis as
|λ, n, α〉 =

∑
D |D, α〉〈D + uα, α|λ,0, n, α〉, where |D +

uα, α〉 is the continuum space position eigenstate at po-
sition r = D + uα, |λ,0, n, α〉 is the state defined in Eq.
(3) in the continuum space at reciprocal site 0, and λ ∈
R/[`2τ̂ ·(ẑ×g1)Z+`2τ̂ ·(ẑ×g2)Z]. One can then show that

|λ, n, α〉 forms a complete orthonormal basis of Hamilto-

nian (11) satisfying 〈λ′, n′, β|λ, n, α〉 = δλλ′δn′nδβα (SM
[18] Sec. S4A). Furthermore, TDj+uα−uβ is diagonal in
λ and takes the λ independent form

Tλ,αβDj+uα−uβ = e−i(κ̂+k0)·(Dj+uα−uβ) (14)

in a fixed λ subspace between basis |λ, n, β〉 and |λ, n′, α〉,
where κ̂ = 1√

2`
(a + a†,−ia + ia†), with a|λ, n, α〉 =

√
n|λ, n− 1, α〉 and a†|λ, n, α〉 =

√
n+ 1|λ, n+ 1, α〉 (SM

[18] Sec. S4A). Therefore, the nonzero magnetic field
tight-binding Hamiltonian (11) in a fixed λ is given by
the zero-field momentum space Hamiltonian (13) with
substitution (5). For nonstandard Peierls substitutions
along nonstraight cαβ paths, e−i(κ̂+k0)·(Dj+uα−uβ) in Eq.

(14) becomes the path-ordered integral Pe−i
∫
cαβ

(κ̂+k0)·dr

(SM [18] Sec. S4B).
The Hofstadter butterfly can then be numerically cal-

culated with a LL cutoff, namely, n ≤ NL. Fig. 3(a) and
(b) show the spectrum of the square lattice tight-binding
model H(k) = − cos kx−cos ky [1] with cutoffs NL = 100

E
0

2

-2
0 1/2 1

ϕ/2π
0 100 200 300 400 500

0

0.05 bulk state

n

|ψ|2

0 100 200 300 400 500
0

0.1
edge state

n

|ψ|2

E 0

2

-2
0 1/2 1

ϕ/2π

E 0

2

-2
0 1/2 1

ϕ/2π

(a)

(c)

(d)

(b)

(e)

FIG. 3. The Hofstadter spectrum for tight-binding model
H(k) = − cos kx − cos ky with k0 = 0 and LL cutoff (a)
NL = 100 and (b) NL = 500. (c) Probability distribution of
a typical momentum space edge state in (b) versus LL number
n. (d) Probability distribution of a typical bulk state in (b).
(e) The Hofstadter butterfly obtained by deleting the edge
states in (b) (with w = 3.5`−1√ϕ+ 0.5, Pc = 0.5), which
looks identical to that obtained by usual methods.

and NL = 500, respectively, where we set k0 = 0. The
spectrum exhibits both the Hofstadter butterfly and the
spectral flows, which can again be understood as momen-
tum space edge states. Since tight-binding models have
no cutoff in the reciprocal lattice, the momentum space

boundary is always at radius κb =
√

2NL
` given by NL,

and the spectral flows always satisfy Eq. (9).
One can define a boundary projector Pκb,w onto basis

|λ, n, α〉 with n > (κb − w)2`2/2 for certain w > 0, and
identify the eigenstates with 〈Pκb,w〉 > Pc for some Pc ∈
[0, 1] as momentum space edge states. Fig. 3(c) and (d)
show the probability of a typical edge state and bulk state
versus LL number n, respectively. By deleting the edge
states, one can obtain a high-quality Hofstadter butterfly
without spectral flows, as shown in Fig. 3(e) (where w =
3.5`−1

√
ϕ+ 0.5 and Pc = 0.5).

Quantized Lorentz susceptibility. The Chern number
tν is known to give a quantized Hall conductance via the
Kubo formula σxy = i∂ω

∫
dω′〈Gω+ω′ ĵxGω′ ĵy〉|ω→0 =

tν
e2

h [10], where Gω is the Green’s function at energy ω,

and ĵ = (ĵx, ĵy) is the uniform current operator. The du-
ality between Eqs. (7) and (8) suggests that sν behaves
as a dual Chern number for the momentum space, thus
sν should also give a quantized response. Indeed, by not-
ing that the natural momentum-space dual of the current

operator ĵ is the force operator F̂ = eB× dR
dt = (F̂x, F̂y),

we find sν leads to a quantized Lorentz susceptibility (SM
[18] Sec. S6)

γxy = −i ∂
∂ω

∫
dω′〈Gω+ω′ F̂xGω′ F̂y〉

∣∣∣
ω→0

= eBsν . (15)
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It yields a Lorentz force per unit cell Fx = γxyvy on the
system when the lattice is moving at velocity vy. Fur-
thermore, a formula similar to the Thouless-Kohmoto-
Nightingale-den Nijs formula [10] at flux per unit cell
ϕ = 2πp/q can be derived for sν (SM [18] Sec. S6B2):

sν = −i
∑
n∈occ

∫
d∈ΩM

d2d

2π
ẑ · 〈∂dwn,d| × |∂dwn,d〉 , (16)

where ΩM is a torus with periods d1 and d2/p serving as

a “dual magnetic BZ”, |wn,d〉 = ei`
−2(ẑ×R)·d|ψn,`−2ẑ×d〉

(see the explicit form in SM [18] Sec. S6C) is defined
using the Bloch eigenstates |ψn,k〉 of band n, and n runs
over all occupied bands.

Discussion. It is worth noting that the cutoffs in our
method affect the resolution but not the shape of the
Hofstadter butterfly. Our method greatly simplifies the
matrix element construction compared to usual meth-
ods [1, 5], and require neither rational flux per unit cell
nor large magnetic unit cells, making it easy to calculate
the Hofstadter spectra of complicated models [12, 24–26].

Moreover, it leads to a sparse Hamiltonian for continuum
models. At small magnetic fields, our method reduces to
the LL calculations of k·p Hamiltonians expanded at cen-
ter momentum k0. The large magnetic field spectrum is
insensitive to the choice of k0.
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I. THE ALGEBRA IN A MAGNETIC FIELD

We first review the algebra obeyed by 2-dimensional (2D) electrons in a uniform static magnetic field B in the
continuum real space (in the first quantized language). We denote r = (x, y) as the position operator, and −i∇ =
(−i~∂x,−i~∂y) as the canonical momentum operator.

Assume the magnetic field B corresponds to a gauge field A(r) = (Ax(r), Ay(r)), which satisfies ∂xAy−∂yAx = B.

We can then define the magnetic length ` =
√
~/eB, where e is the electron charge, and ~ is the Planck constant.

The kinematic momentum operator of an electron in a magnetic field is given by Π = (Πx,Πy), which satisfies

Πx = −i∂x − eAx , Πy = −i∂y − eAy , [Πx,Πy] =
i~2

`2
, (17)

or in vector form Π = −i∇ − A(r). In the absence of the gauge field, Π = −i∇ is the same as the canonical
momentum. We also define the real space guiding center coordinates R = (Rx, Ry), which satisfy

Rx = x+
`2

~
Πy , Ry = y − `2

~
Πx , [Rx, Ry] = −i`2 . (18)

It can be written in the vector form as R = r− `2

~ ẑ×Π. Semiclassically, the guiding center is the central position of
the cyclotron motion of an electron in magnetic field B. The kinematic momentum operator Π commutes with the
guiding center operator R, namely, [Πx, Rx] = [Πx, Ry] = [Πy, Rx] = [Πy, Ry] = 0.

For convenience, hereafter we set e = ~ = 1, unless recovery of the original units is needed. Besides, we always
understand r as the position operator instead of a vector parameter, except that |r〉 stands for a state at position r
(where r is a parameter).

II. BASIS COMPLETENESS AND MATRIX ELEMENTS FOR CONTINUUM MODELS

In this section, we give the detailed derivation of the basis we choose and the Hamiltonian matrix elements for
continuum models at zero magnetic field and nonzero magnetic field.

A. Continuum model in real space

We consider a continuum model with M intrinsic orbitals per zero-magnetic-field unit cell. For example, in the one-
valley one-spin twisted bilayer graphene (TBG) continuum model in Ref. [2] (see also Sec. III), the intrinsic orbitals
are graphene sublattice and layer indices. In more generic examples with spin-orbit coupling, intrinsic orbitals also
include spin, etc. We denote the lattice Bravais vectors as d1 and d2, and the reciprocal vectors as g1 and g2, which
satisfy

gi · dj = 2πδij , (i, j = 1, 2). (19)

We denote the reciprocal lattice as

Q = m1g1 +m2g2 , (m1,m2 ∈ Z). (20)

In the absence of magnetic field, the continuum model Hamiltonian in a continuum space with a lattice potential is
of the generic form

H =

∫
d2rc†α(r)H̃αβ(r)cβ(r) , (21)

where

H̃αβ(r) = ε̃αβ(−i∇) +
∑
j

Ṽ αβj eiqj ·r . (22)
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Here α, β denote the M intrinsic orbitals, cα(r), c†α(r) are the electron annihilation and creation operators of orbital α

at position r, ε̃αβ(−i∇) is the kinetic term in free space, Ṽ αβj is the momentum qj component of the lattice potential.

The momentum qj of the lattice potential component Ṽ αβj satisfy

qj ∈ Q , (23)

where Q is the set of reciprocal lattice sites in Eq. (20); thus the lattice potential is periodic with lattice Bravais

vectors d1,d2. Besides, the Hamiltonian is Hermitian, namely, ε̃αβ(−i∇) = ε̃βα(−i∇)†, and V αβj = V βα∗
j

for momenta

qj = −qj .

Here we note that H denotes the second quantized Hamiltonian, and H̃αβ(r) denotes the first quantized single-

particle Hamiltonian. The basis of the first quantized Hamiltonian H̃αβ(r) is given by

c†α(r)|0〉 , (24)

with |0〉 being the vacuum state. Since we do not consider interactions, we can work in the first quantized single-
particle Hamiltonian hereafter.

B. Continuum model in real space with orbital-dependent momentum origin shifts

In writing the Hamiltonian (22) above, the momentum origins of all orbitals are chosen at the Γ point of the BZ of
the lattice. In some continuum models, it is convenient to shift the momentum origins of different orbitals α to some
desired momenta pα. This is done by transforming the single-particle Hamiltonian (22) from the real space basis in
Eq. (24) into a new real space basis defined by

|r, α〉 = e−ipα·rc†α(r)|0〉 , (25)

where pα is an orbital α dependent momentum vector which can be chosen freely. Here we shall restrict the choices
of pα so that

pα = pβ if ε̃αβ(−i∇) 6= 0 , (26)

which ensures the kinetic term under the new basis (25) to be a function of −i∇ only and is independent of r (see
Eq. (27)). An example of models with such orbital-dependent momentum origin shifts is the TBG continuum model
originally written down in Ref. [2], where the orbitals α of the upper layer have pα = kθ(0, 1), and the orbitals β
of the lower layer have pβ = kθ(0,−1) (see Sec. III for definition of kθ and more details). Condition (26) is also
satisfied for the TBG continuum model, since the kinetic term ε̃αβ(−i∇) between an orbital α in the upper layer and
an orbital β in the lower layer is zero.

Under the assumption (26), we find the first quantized single-particle Hamiltonian transforms under the new basis
(25) into

Hαβ(r) = 〈r, α|H|r, β〉 = eipα·rH̃αβ(r)e−ipβ ·r = εαβ(−i∇) +
∑
j

V αβj eiq
αβ
j ·r , (27)

where we have defined

εαβ(−i∇) = ε̃αβ(−i∇− pα) , V αβj = Ṽ αβj , qαβj = qj + pα − pβ ∈ Qα −Qβ (qj ∈ Q) , (28)

and the momentum lattice Qα for orbital α is defined as

Qα = pα + Q = pα +m1g1 +m2g2 , (m1,m2 ∈ Z) , (29)

where Q is the reciprocal lattice sites in Eq. (20). In particular, we note that with the constraint (26), the transformed
kinetic term εαβ(−i∇) in Eq. (28) under the new real space basis (25) is still only a function of −i∇, and does not
depend on r. In contrast, if we choose vectors pα which do not satisfy the constraint (26), after the transformation of
Eq. (27), we would have a kinetic term εαβ(−i∇, r) = ε̃αβ(−i∇− pα)ei(pα−pβ)·r that is position r dependent, which
brings unnecessary complications. Therefore, we will impose the constraint (26).

We note that the single-particle Hamiltonian in Eq. (27) is generically invariant up to a unitary transformation
under the translation of a Bravais lattice vector di. Under the real space basis |r, α〉 in Eq. (25), if we define the
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translation operator of distance d which satisfies Td|r, α〉 = |r+d, α〉, its real space representation in the first quantized
language is given by Td = e−d·∇, and we have

Hαβ(r + di) = T−1
di
Hαβ(r)Tdi = ed·∇

εαβ(−i∇) +
∑
j

V αβj eiq
αβ
j ·r

 e−d·∇ = eipα·diHαβ(r)e−ipβ ·di , (30)

where di (i = 1, 2) is a Bravais lattice vector, and we have used the assumption (26), and the relation (19). It is clear
that if we set all pα = 0, we would have the usual translational invariance Hαβ(r + di) = Hαβ(r) which does not
involve a unitary transformation.

For generality, we shall use the first quantized continuum model single-particle Hamiltonian in Eq. (27), which has
orbital-dependent momentum origin shifts pα, and the real space basis is defined in Eq. (25). We note that one can
always choose all pα = 0, in which case the form of the continuum model Hamiltonian reduces back to Eq. (22).

C. Transforming the model at zero magnetic field into momentum space

Eq. (27) gives the single-particle Hamiltonian in the absence of magnetic field. It can be written in the momentum
space by Fourier transformation. To do this, we define the momentum space basis

|k,Qα, α〉 =
1√
Ωtot

∫
d2rei(k+Qα)·r|r, α〉 , (31)

where k is the quasimomentum in the first Brillouin zone (BZ), Qα for intrinsic orbital α is defined in Eq. (29), and
Ωtot is the total area of the system. Under this momentum space basis |k,Qα, α〉, the single-particle Hamiltonian
Hαβ(r) in Eq. (27) transforms into the following form diagonal in k (here k,k′ are in the first BZ):

Hαβ
Q′αQβ

(k′,k) = 〈k′,Q′α, α|H|k,Qβ , β〉 =
1

Ωtot

∫
d2rd2r′e−i(k

′+Q′α)·r〈r, α|H|r′, β〉ei(k+Qβ)·r′

=
1

Ωtot

∫
d2re−i(k

′+Q′α)·rHαβ(r)ei(k+Qβ)·r =
1

Ωtot

∫
d2re−i(k

′+Q′α)·r

εαβ(−i∇) +
∑
j

V αβj eiq
αβ
j ·r

 ei(k+Qβ)·r

=δk,k′

εαβ(k + Qβ)δQ′α,Qβ
+
∑
j

V αβj δQ′α,Qβ+qαβj

 = δk,k′H
αβ
Q′αQβ

(k) ,

(32)

where we have used the definition of qαβj in Eq. (28), and the condition (26). The Hamiltonian diagonal in k

Hαβ
Q′αQβ

(k) = εαβ(k + Qβ)δQ′α,Qβ
+
∑
j

V αβj δQ′α,Qβ+qαβj
(33)

then gives Eq. (2) in the main text.

D. The Basis and Hamiltonian in nonzero magnetic field

Under a uniform magnetic field B = Bẑ, the canonical momentum −i∇ in Eq. (27) will be replaced by the kinetic
momentum Π = −i∇−A(r), where ∇×A(r) = B. The (first quantized) single-particle Hamiltonian then reads

Hαβ(r) = εαβ(Π) +
∑
j

V αβj eiq
αβ
j ·r . (34)

In the below, we will construct a basis under magnetic field, in which we show that the Hamiltonian in magnetic field
is block diagonalized into blocks with identical matrix elements (different blocks differ by guiding center translations
in the real space, see explanations below Eq. (55)), and each block is simply given by Eq. (33) (the momentum space
Hamiltonian at zero magnetic field) with the substitution

k→ κ̂+ k0 , κ̂ =
1√
2`

(a+ a†,−ia+ ia†) , (35)
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where k0 is an arbitrarily chosen momentum vector, a and a† are lowering and raising operators satisfying [a, a†] = 1
which we will define below, and ` is the magnetic length.

To begin, we would like to find a set of mutually commuting operators to define the quantum numbers of our basis.
First, we define a set of Landau level (LL) lowering and raising operators associated with the momentum lattice sites
Qα = (Qα,x, Qα,y) of orbital α as

aQα
=

`√
2

[Πx −Qα,x − k0,x + i(Πy −Qα,y − k0,y)] , a†Qα
=

`√
2

[Πx −Qα,x − k0,x − i(Πy −Qα,y − k0,y)] , (36)

where k0 = (k0,x, k0,y) is a freely chosen fixed momentum which we call the center momentum. They satisfy the

commutation relation [aQα , a
†
Qα

] = 1. We note that for two different sites Qα and Q′α, the operators aQα and aQ′α

only differ by a constant shift, thus are linearly dependent. We also note that [a†Qα
aQα , a

†
Q′α
aQ′α ] 6= 0 for Qα 6= Q′α.

The eigenvalue of a†Qα
aQα

for a given Q runs over all the nonnegative integers.

Secondly, we define (recall that R = r− `2

~ ẑ×Π)

Rτ̂ = R · τ̂ = Rxτ̂x +Ry τ̂y (37)

as the guiding center along the τ̂ direction, where τ̂ = (τ̂x, τ̂y) is a unit vector so chosen that τ̂ ·(ẑ×g1)
τ̂ ·(ẑ×g2) is an irrational

number (the reason will be explained below Eq. (41)). In an infinite real space (which we assume is the case here),
the eigenvalue of Rτ̂ runs over all real numbers R. This can be seen from the fact that one can shift the eigenvalue

of Rτ̂ by any value b ∈ R using the operator eibR·(τ̂×ẑ)/`2 , namely,

eibR·(τ̂×ẑ)/`2Rτ̂ e
−ibR·(τ̂×ẑ)/`2 = Rτ̂ + b , (b ∈ R) (38)

We note that once Rτ̂ is diagonalized for a given direction τ̂ , one cannot further diagonalize the guiding center
coordinate Rτ̂ ′ = R · τ̂ ′ along any other direction τ̂ ′ 6= ±τ̂ , since [Rτ̂ ′ , Rτ̂ ] = −i`2ẑ · (τ̂ ′ × τ̂ ) 6= 0 unless τ̂ ′ = ±τ̂
(Note that Rτ̂ = −R−τ̂ , so diagonalization of Rτ̂ is sufficient).

Since [R,Π] = 0, it is easy to see that

[Rτ̂ , aQα ] = [Rτ̂ , a
†
Qα

] = [Rτ̂ , a
†
Qα
aQα ] = 0 (39)

for any Qα. Therefore, Rτ̂ and a†Qα
aQα (for a given Qα) can be diagonalized simultaneously. For a given Qα, there

is no other functions of R,Π independent of Rτ̂ and a†Qα
aQα which commute with both Rτ̂ and a†Qα

aQα , so Rτ̂ and

a†Qα
aQα form the maximal commuting set of operators R,Π. We shall therefore use Rτ̂ and a†Qα

aQα to define the
quantum numbers of our basis.

In the previous Hofstadter method for continuum models [5], the chosen basis makes the lattice potential term

eiq
αβ
j ·r in Eq. (34) a complicated dense matrix. We hope to find a different basis where the operator eiq

αβ
j ·r have

simple matrix elements, so that the Hamiltonian takes a much simpler form. Now we describe the construction of

such a basis (in which the operator eiq
αβ
j ·r has very simple matrix elements, see Eq. (48)). For each momentum site

Qα, we define a set of basis |λ,Qα, n, α〉 satisfying

Rτ̂ |λ,Qα, n, α〉 = [λ− `2τ̂ · (ẑ×Qα)]|λ,Qα, n, α〉 , a†Qα
aQα
|λ,Qα, n, α〉 = n|λ,Qα, n, α〉 , (40)

where n ≥ 0 is a nonnegative integer (Landau level number), λ is a real number, and α is the intrinsic orbital index.
Note that we have defined the eigenvalue of Rτ̂ in a Qα dependent way (we could have defined the Rτ̂ eigenvalue
without `2τ̂ · (ẑ × Qα), which would be equivalent to the basis used in usual method [5]). One advantage of such

a definition is that, the operator eiq
αβ
j ·r will not change the number λ when acting on the basis |λ,Qα, n, α〉, as

we will prove in Eq. (48). Another advantage of such a definition in Eq. (40) is that, for a fixed number λ, the
basis |λ,Qα, n, α〉 of all quantum numbers α, Qα and n are orthonormal. To see this, consider two momentum sites
Qα,Q

′
α ∈ pα + g1Z + g2Z (as defined in Eq. (29)), and assume Qα −Q′α = m1g1 +m2g2. If two states |λ,Qα, n, α〉

and |λ,Q′α, n′, α〉 have equal Rτ̂ eigenvalues, namely,

λ− `2τ̂ · (ẑ×Qα) = λ− `2τ̂ · (ẑ×Q′α) → m1τ̂ · (ẑ× g1) +m2τ̂ · (ẑ× g2) = 0 , (41)

we must have m1 = m2 = 0, namely, Q′α = Qα, since τ̂ ·(ẑ×g1)
τ̂ ·(ẑ×g2) is an irrational number. Vice versa, if Q′α 6= Qα,

the two states |λ,Qα, n, α〉 and |λ,Q′α, n′, α〉 will have different Rτ̂ eigenvalues and will be orthogonal to each other.
Therefore, the basis with a fixed number λ satisfies the orthonormal relation:

〈λ,Q′β , n′, β|λ,Qα, n, α〉 = δβαδQ′βQα
δn′n . (42)
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We note that Eq. (42) would not hold if we define Rτ̂ |λ,Qα, n, α〉 = λ|λ,Qα, n, α〉 instead, as two different Q’s would
have the same eigenvalue λ.

As we will show later below Eq. (48), the way of defining the basis in Eq. (40) will greatly simplify the matrix
elements of Hamiltonian (34). However, before we move on, we note that the set of basis with a fixed number
λ (satisfying Eq. (42)) is not a complete basis for the Hamiltonian (34), since for a fixed λ, the Rτ̂ eigenvalue
λ − `2τ̂ · (ẑ ×Qα) (of all momentum sites Qα) does not run over the entire real number set R (the complete set of
Rτ̂ eigenvalues is R, see the argument above Eq. (38)). Therefore, we need to allow λ to run over a certain set to
make the basis |λ,Qα, n, α〉 a complete basis. We now prove this can be done by assuming λ runs over the following
quotient set:

λ ∈ Λτ̂ = R/[`2τ̂ · (ẑ× g1)Z + `2τ̂ · (ẑ× g2)Z] , (43)

namely, each number λ labels a coset {λ+`2τ̂ ·(ẑ×g1)Z+`2τ̂ ·(ẑ×g2)Z} of the subgroup `2τ̂ ·(ẑ×g1)Z+`2τ̂ ·(ẑ×g2)Z in
the real number group R. Two numbers λ and λ′ label the same coset if they belongs to the same coset. For example,
assume we have `2τ̂ · (ẑ × g1) = 1 and `2τ̂ · (ẑ × g2) =

√
2, then the quantum number λ = 0 will label the coset

{Z+
√

2Z}. Accordingly, λ = 0 is identical to λ = 1 and λ =
√

2, etc. In contrast, λ = 0 and λ =
√

3 are not identical,
which belong to different cosets. For definiteness, we will pick a fixed element λ in each coset to represent the coset,
so each coset is represented by a definite number λ. For example, we can choose to use the definite number λ = 0
(instead of 1,

√
2, etc) to represent the coset {Z +

√
2Z}. In this way, we can represent each element (coset) in the

set Λτ̂ in Eq. (43) by a definite number λ.
With the set of representative numbers λ given in Eq. (43), we now show that the basis |λ,Qα, n, α〉 forms a

complete orthonormal basis. Note that for each λ in Eq. (43), the Rτ̂ eigenvalue λ− `2τ̂ · (ẑ×Qα) of all Qα runs over
all the numbers in the coset {λ− `2τ̂ · (ẑ×pα) + `2τ̂ · (ẑ× g1)Z+ `2τ̂ · (ẑ× g2)Z}, where pα is the momentum origin
shift of orbital α defined in Eq. (25), and recall that Qα = pα + g1Z+ g2Z as defined in Eq. (29). Therefore, the Rτ̂
eigenvalue of |λ,Qα, n, α〉 of all λ in Eq. (43) and all Qα runs over all the real numbers R (since λ is a continuous
variable in the quotient set (43)). In particular, two orbital α states |λ,Qα, n, α〉 and |λ′,Q′α, n′, α〉 will have their Rτ̂
eigenvalues in different cosets if λ 6= λ′ (λ, λ′ ∈ Λτ̂ in Eq. (43), note that we have chosen a unique definite number λ
in each coset to represent the coset in Eq. (43)). Therefore, we have the orthonormal relation

〈λ′,Q′β , n′, β|λ,Qα, n, α〉 = δβαδλλ′δQ′βQα
δn′n . (44)

Thus, the basis |λ,Qα, n, α〉 with λ defined in Eq. (43) forms a complete orthonormal basis of Hamiltonian (40).
We now show that the most important advantage of the basis |λ,Qα, n, α〉 satisfying Eq. (44) is, the Hamiltonian

(34) is diagonal in λ, and its matrix elements are independent of λ. To see this, we first note that from the commutation
relations in Sec. (I), we have

e−iq·rRτ̂ e
iq·r = Rτ̂ − `2τ̂ · (ẑ× q) , e−iq·raQα

eiq·r = aQα
+

`√
2

(qx + iqy) = aQα−q , (45)

where r is the position operator, and q is an arbitrary momentum vector. Therefore, we have

Rτ̂ e
iq·r|λ,Qα, n, α〉 = eiq·r(Rτ̂ − `2τ̂ · (ẑ× q))|λ,Qα, n, α〉 = [λ− `2τ̂ · (ẑ× (Qα + q))]eiq·r|λ,Qα, n, α〉 (46)

a†Qα+qaQα+qe
iq·r|λ,Qα, n, α〉 = eiq·ra†Qα

aQα
|λ,Qα, n, α〉 = neiq·r|λ,Qα, n, α〉 , (47)

which indicates

eiq·r|λ,Qα, n, α〉 = |λ,Qα + q, n, α〉 , (48)

where r is the position operator (understood as
∑
α

∫
r|r, α〉〈r, α|d2r when expanded in position basis), and it also

plays the role of the generator of momentum translations.
We then examine the matrix elements of Hamiltonian (34). Using Eq. (48), we find the lattice potential term

V αβj eiq
αβ
j ·r in the Hamiltonian (34) has matrix elements

〈λ′,Q′α,m, α|V
αβ
j eiq

αβ
j ·r|λ,Qβ , n, β〉 = V αβj 〈λ

′,Q′α,m, α|λ,Qβ + qαβj , n, β〉 = V αβj δλ′λδQ′α,Qβ+qαβj
δmn , (49)

where r on the left hand side is understood as the position operator (instead of a number). Therefore, the lattice

hopping potential term V αβj eiq
αβ
j ·r is diagonal in quantum numbers λ and n when acting on basis |λ,Qα, n, α〉, while

changes the orbital from β to α, and shifts the reciprocal momentum Qβ to Qβ + qαβj .
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As for the kinetic term ε(Π), we first note that the kinetic momentum Π commutes with Rτ̂ and does not change
the Rτ̂ eigenvalue (which has one-to-one correspondence with the pair of quantum numbers λ and Qα). Therefore,
the matrix elements of ε(Π) has to be diagonal in both λ and Qα. Besides, for each orbital α, we can rewrite the
kinetic momentum as Π = κ̂Qα

+ k0 + Qα, where we have defined a Qα dependent operator

κ̂Qα
=

1√
2`

(aQα
+ a†Qα

,−iaQα + ia†Qα
) . (50)

Note that κ̂Qα
only acts on the quantum number n of basis |λ,Qα, n, α〉, which obeys the following rules:

aQα |λ,Qα, n, α〉 =
√
n|λ,Qα, n− 1, α〉 , a†Qα

|λ,Qα, n, α〉 =
√
n+ 1|λ,Qα, n+ 1, α〉 . (51)

Therefore, it is easy to find that

〈λ′,Q′β ,m, β|ε(Π)|λ,Qα, n, α〉 =δλ′λδQ′β ,Qα
〈λ′,Q′β ,m, β|ε(κ̂Qα

+ k0 + Qα)|λ,Qα, n, α〉

=δλ′λδQ′β ,Qα
[εβα(κ̂Qα

+ k0 + Qα)]mn .
(52)

Mathematically, we can define an operator

κ̂ =
1√
2`

(a+ a†,−ia+ ia†) (53)

without the Qα subindex, where a and a† are some lowering and raising operators satisfying [a, a†] = 1 (which need

not have any relation with aQα and a†Qα
). It is then easy to see that the matrix element in Eq. (52) is mathematically

equal to

[εβα(κ̂Qα
+ k0 + Qα)]mn = [εβα(κ̂+ k0 + Qα)]mn = 〈m|εβα(κ̂+ k0 + Qα)|n〉 , (54)

where |n〉 is the basis of a and a† defined by a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉. Therefore, mathematically

one could replace κ̂Qα
by κ̂ without ambiguity, provided that one remembers that κ̂ acts on the quantum number n.

From Eqs. (49), (52) and (54), it is easy to see that the matrix elements of both the kinetic term and the lattice
potential term of Hamiltonian (34) are diagonal in λ and independent of λ. Therefore, we can divide the entire Hilbert
space into subspaces with different (continuous) quantum number λ; the energy spectra of all the λ subspaces are the
same. Within the subspace of a fixed λ, the Hamiltonian matrix element from basis |λ,Qβ , n, β〉 to |λ,Q′α,m, α〉 can
be written as

Hλ,αβ
Q′αQβ ,mn

=
[
εαβ(κ̂+ k0 + Qβ)

]
mn

δQ′α,Qβ
+
∑
j

V αβj δQ′α,Qβ+qαβj
δmn , (55)

where [εαβ(κ̂ + k0 + Qβ)]mn is defined in Eq. (54). This is nothing but the zero magnetic field momentum space
Hamiltonian (33) with the substitution k → κ̂ + k0 (given also in Eq. (5) of the main text). It is then sufficient to
compute the spectrum within just one fixed λ subspace.

We note that different λ sectors have different eigenstate wave functions, although they have identical Hamiltonian
matrix elements independent of λ as given by Eq. (55). To see this explicitly, if we take a Landau gauge perpendicular
to the τ̂ direction, A = B(r · τ̂ )(ẑ× τ̂ ), we have

〈r, α|λ,Qα, n, α〉 = ei[λ−`
2τ̂ ·(ẑ×Qα)][r·(ẑ×τ̂ )]/`−[r·τ̂−λ+`2τ̂ ·(ẑ×Qα)]2/2`2hn

(
`−1[r · τ̂ − λ+ `2τ̂ · (ẑ×Qα)]

)
, (56)

where hn(x) is the n-th Hermite polynomial. Therefore, one can see explicitly that the wave functions |λ,Qα, n, α〉 at

different λ have different guiding centers. Assume the subspace Hamiltonian Hλ,αβ
Q′αQβ ,mn

in sector λ has an eigenstate

|λ, u〉 =
∑
α,Qα,n

uα,Qα,n|λ,Qα, n, α〉 at energy energy Eu, where the coefficients uα,Qα,n are independent of λ. Then

the subspace Hamiltonian Hλ′,αβ
Q′αQβ ,mn

in sector λ′ will have an eigenstate |λ′, u〉 =
∑
α,Qα,n

uα,Qα,n|λ′,Qα, n, α〉 at

the same energy Eu. However, the τ̂ direction guiding center coordinate Rτ̂ of the two wave functions |λ, u〉 and
|λ′, u〉 will differ by λ′ − λ, namely, the central position of the two wave functions are different.

We also note that, if there is a disorder potential that breaks the periodicity of the lattice model, e.g., a potential

term δṼ αβeiq̃·r from orbitals β to α with q̃ 6= Q + pα−pβ for any reciprocal vector Q, this term will couple different
λ sectors, and the Hamiltonian will no longer be diagonal in λ and independent of λ. By Eq. (48) and Eq. (40),

such a term δṼ αβeiq̃·r will couple the sector of coset labeled by λ (defined in Eq. (43)) with the sector of coset of
λ− `2τ̂ · (ẑ× [q̃ + pβ − pα)], which does not live in the same coset. In this paper, we shall not consider any disorder
potential breaking the periodicity of the lattice model.

In particular, if the kinetic energy ε(k) is a polynomial of k up to power ∆ (∆ ∈ Z+), the matrix element in Eq.
(55) has to be zero for |m− n| > ∆. In this case, the Hamiltonian (55) is sparse.
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E. Numerical Hofstadter calculations: the cutoffs and the momentum space boundary

In numerical calculations, one needs to take a cutoff in the reciprocal lattice at a boundary enclosing an area of NQ
BZs, and a cutoff in the LL quantum number n ≤ NL. The Hamiltonian (55) is then a matrix of size MNLNQ. We
now explain how the cutoffs NQ and NL set a momentum space boundary for Hamiltonian (55).

For concreteness, assume the cutoff of the reciprocal lattice encloses a circular momentum space area NQΩBZ
centered at the center momentum k0, where ΩBZ = |g1 × g2| = 4π2/|d1 × d2| is the BZ area. This restricts the
reciprocal momentum sites within a momentum radius

|k0 + Qα| ≤
√
NQΩBZ/π . (57)

In addition, by Eq. (53), with the LL cutoff NL, for any states we have

|κ̂|2 = 〈κ̂2〉 =
1

`2
〈(2a†a+ 1)〉 ≤ 2NL + 1

`2
≈ 2NL

`2
, (58)

where we have defined |κ̂| =
√
〈κ̂2〉 as the norm of the operator κ̂. Therefore, κ̂ is restricted within a radius

|κ̂| ≤
√

2NL/`.
The Hamiltonian (55) can be viewed as a lattice model in the momentum space with “hoppings” Vj between nearby

reciprocal sites, and an “on-site potential energy” ε(κ̂ + k0 + Qα) on each site Qα, and κ̂ plays the role of the
“position” operator in the momentum space (although its x and y components are noncommuting). The momentum
space probability (norm square of amplitude) of the basis wave function |λ,Qα, n, α〉 is concentrated circularly near

a ring of radius
√
〈κ̂2〉 ≈

√
2n/`.

The radius cutoff of k0 + Qα and the radius cutoff of κ̂ become equal when√
2NL/` =

√
NQΩBZ/π , → ϕ

2π
=
B|d1 × d2|

2π
=

2π

`2ΩBZ
=
NQ
NL

, (59)

where ϕ = B|d1×d2| is the magnetic flux per unit cell, and we have used the Brillouin zone area ΩBZ = 4π2/|d1×d2|
and B = 1/`2. Given NQ, NL which we pick in our calculation, this flux ϕ/2π = NQ/NL then separates the system
into a small B regime and a large B regime as follows.

If
√

2NL/` <
√
NQΩBZ/π, or equivalently ϕ/2π < NQ/NL (the small B field regime), the momentum space

“position” κ̂ has a hard cutoff |κ̂| ≤
√

2NL/` which serves as the momentum space boundary.

On the contrary, if
√

2NL/` >
√
NQΩBZ/π, or equivalently ϕ/2π > NQ/NL (the large B field regime), we have

the expectation value of |κ̂ + k0 + Qα| >
√

2NL/` −
√
NQΩBZ/π for all sites Qα if a state has expectation value

|κ̂| >
√
NQΩBZ/π. In general, the kinetic energy, or “on-site potential energy” in the momentum space ε(κ̂+k0+Qα),

is an increasing function of |κ̂ + k0 + Qα|. If an eigenstate has a large expectation value of |κ̂ + k0 + Qα| for any

Qα (because it has expectation value |κ̂| >
√
NQΩBZ/π), it will also have a large expectation value of kinetic energy

ε(κ̂ + k0 + Qα) for any Qα, thus its eigenenergy is expected to be large, and cannot be a reliable eigenstate of the
low energy Hofstadter bulk bands.

Therefore, from the reasoning the above, we can define a momentum boundary radius given by the cutoffs NL and
NQ as

κb ≈ min{
√

2NL
`

,

√
NQΩBZ

π
} , (60)

and a trustable low-energy eigenstate in the Hofstadter bulk bands should have its expectation value |κ̂| < κb. Any
state with expectation value |κ̂| & κb are effectively localized on the momentum space boundary at radius κb (if we
view κ̂ as a momentum space coordinate), which we will call the momentum space edge states. Accordingly, we call
the states with |κ̂| < κb the momentum space bulk states. The momentum space bulk states give the Hofstadter bulk
band spectra we want to calculate.

As we discussed in the main text (below main text Eq. (10)), the momentum space edge states can be identified
by a boundary projection operator Pκb,w, the matrix elements of which are defined by

〈λ′,Q′α,m, β|Pκb,w|λ,Qβ , n, α〉 = Θ
(
n− (κb − w)2`2/2

)
δλ′λδmnδαβδQ′α,Qβ

, (61)

where Θ(x) is the Heaviside unit step function, κb ≈ min{
√

2NL
` ,

√
NQΩBZ

π } as defined in Eq. (60), and w > 0 is a

parameter one can vary representing the defining width of the edge states. An eigenstate with large expectation value
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〈Pκb,w〉 will be mainly concentrated at |κ̂| > κb − w in the momentum space, namely, within distance w inside the
boundary radius κb, thus are momentum space edge states. These edge eigenstates with large 〈Pκb,w〉 > Pc above
a certain chosen threshold Pc ∈ [0, 1] can then be deleted in the energy spectrum, so that only the bulk spectrum
Hofstadter butterfly is kept (see main text Fig. 2(b), which is calculated with cutoffs NQ = 37 and NL = 60). In
practice, one may properly adjust w and 〈Pκb,w〉 for different magnetic fields B and different energy range to reach a
cleaner Hofstadter butterfly. Generically, the momentum space edge states in a smaller (larger) Hofstadter gap will be
less (more) localized at the momentum boundary, thus requires a larger (smaller) edge width w and a smaller (larger)
projection threshold Pc. In calculating main text Fig. 2(b), we have chosen w = min{`−1, 1.6

√
ΩBZ}, and the edge

projection threshold Pc = 0.5. Here the factor 1.6 in front of
√

ΩBZ is numerically tested to be a good choice for
eliminating most edge states in the main Hofstadter gaps of the TBG model calculated here. Generically the optimal
order 1 factor in front of

√
ΩBZ depends on the models calculated (and can even be chosen to be dependent on the

magnetic field B and the energy of the eigenstate). Generically, we suggest to choose w to be around the order of the
smaller one of `−1 and

√
ΩBZ .

Besides, we note that the Hofstadter butterfly with edge states deleted may have remaining edge state “hairs”
near the edges of the Hofstadter gaps (i.e., not a clean Hofstadter butterfly), as shown in Fig. 2(b). This is because
the momentum space edge states approaching the Hofstadter gap edges are more and more delocalized from the
momentum space boundary, thus some of such edge states cannot satisfy the criteria 〈Pκb,w〉 > Pc and thus cannot be
deleted. By making the momentum boundary radius κb larger (which is computationally more expensive) and choose
a larger edge width w, one can reduce such edge state “hairs” and improve the clearness of the Hofstadter butterfly.

F. Number of states per Brillouin zone in a fixed λ sector

Here we discuss the number of occupied states per Brillouin zone (i.e., per reciprocal lattice “unit cell”) ρK of the

Hamiltonian Hλ,αβ
Q′αQβ ,mn

in a fixed λ sector (coset) given a Fermi energy, which we used in the main text Eq. (8).

Consider a magnetic field B corresponding to flux per unit cell ϕ = BΩ = `−2Ω, where Ω = |d1 × d2| is the
zero-magnetic-field unit cell area. Assume the Fermi energy is εF , and the number of occupied states (below the
Fermi energy εF ) per zero-magnetic-field unit cell area Ω in the real space is ρ.

To find out the number of occupied states in each λ sector, we first count how many λ sectors there are. In an
infinite real space and with an infinite reciprocal lattice Q (i.e., without reciprocal lattice cutoff), the set of λ in Eq.
(43) is an infinite set, the size of which cannot be perceived easily. To make the set of λ finite, we assume the system
has a large but finite real space area Ωtot = NΩΩ (where NΩ is the number of zero-magnetic-field unit cells), and
take a finite reciprocal lattice number cutoff NQ (as we did in the numerical calculation described in Sec. II E), but
we keep the Landau level number cutoff NL → ∞. By Eq. (40), for each orbital α, each λ sector consists of the
sub-Hilbert spaces with Rτ̂ eigenvalues λ− `2τ̂ · (ẑ×Qα) with Qα = Q + pα (defined in Eq. (29)) running over all
Q within the reciprocal lattice cutoff NQ. This means each λ sector consists of the sub-Hilbert spaces of NQ different
(discrete) eigenvalues of Rτ̂ . On the other hand, for each orbital α, the total number of (discrete) Rτ̂ eigenvalues in
the system is equal to the degeneracy of a single Landau level in the free space, which is

NR =
Ωtot

2π`2
. (62)

This is because in the free space, the Landau level states of a definite LL band can be completely labeled by the
eigenvalue of the guiding center along a certain direction (here chosen to be Rτ̂ ). Since each λ sector allows NQ
different eigenvalues of Rτ̂ , and different λ sectors are orthogonal to each other in the Hilbert space, we conclude the
number of λ sectors (cosets) in our method are related by

Nλ =
NR
NQ

=
Ωtot

2π`2NQ
. (63)

Meanwhile, since there are ρ occupied states per zero-magnetic-field unit cell area Ω = |d1 × d2|, the total number
of occupied states is given by

Nocc = ρ
Ωtot

Ω
. (64)

Since the number of Rτ̂ eigenvalues is NR, we can define the number of occupied states in each Rτ̂ eigenvalue sector
as

ρK =
Nocc

NR
= ρ

2π`2

Ω
=

2π

ϕ
ρ . (65)
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Note that ρK is nothing but the LL filling fraction. On the other hand, the occupied states should evenly belong to
each λ sector, since different λ sectors have the same spectrum. Therefore, we conclude the number of states occupied
in each λ sector (in the NL →∞ and finite NQ case considered here, i.e., NQ/NL → 0) is

N (λ)
K =

Nocc

Nλ
=
Nocc

NR
NQ =

2π

ϕ
ρNQ = ρKNQ , (66)

which is independent of λ. Since NQ is the reciprocal lattice cutoff, or the number of Brillouin zones (BZs) we keep
in the reciprocal lattice (note that we assumed NL →∞ which does not give a momentum space cutoff), we see that
ρK = (2π/ϕ)ρ can be understood as the number of occupied states per BZ in a fixed λ sector.

At rational flux ϕ = 2πp/q, according to the Diophantine equation (109), we have ρ = ν/q where ν is the number
of occupied magnetic bands in the magnetic unit cell, and thus we find the number of occupied states per BZ (with
λ fixed) is ρK = (2π/ϕ)ρ = ν/p. Accordingly, the Diophantine equation (109) can be rewritten as

tν + sν
2π

ϕ
= ρK , (67)

i.e., main text Eq. (8).

Since the total number of occupied states N (λ)
K = NQρK in a λ sector is independent of λ, hereafter we simply

denote it as NK , as appears in the main text Eqs. (9) and (10).

G. Numerical determination of number of occupied states

This subsection discusses how to determine the number of occupied states NK in a gap in numerical calculations.
We note that NK here is counted below the mid-gap energy of a gap, which may disperse as a function of magnetic
field B (e.g., the inclined dashed lines in the main text Fig. 2(c)-(d)). Generically, NK counted in this way will
slightly depend on where the mid-gap energy is chosen, which determines how many in-gap edge states are included
in NK in addition to the bulk states. However, the relative error in counting NK will tend to zero as NL and NQ
increase, since the ratio between the number of in-gap edge states and the number of bulk band states will tend to
zero when the momentum space area increases.

In the main text, we have shown that in the calculation with LL cutoff NL and reciprocal cutoff NQ (in a fixed λ
sector), there are two regimes:

i) The regime ϕ/2π < NQ/NL, for which the momentum space boundary is at radius κb =
√

2NL/`, and the
momentum space bulk area is AK = 2πNL/`

2, so the number of occupied states NK = ρKAK/ΩBZ in the fixed λ
sector (note that this is different from Eq. (66) where ϕ/2π > NQ/NL) satisfies Eq. (9) in the main text, namely,

NK = NL(tνϕ/2π + sν) , (68)

where tν is the Chern number of the gap, and sν is another integer which we show in Sec. VI can be understood as
a dual Chern number for the momentum space. Accordingly, the in-gap spectral flow rate in a gap is given by

dNK
d(ϕ/2π)

= NLtν , (69)

which allows us to determine tν of a gap in this regime by counting the number of states flowing across the midgap
energy per flux number ϕ/2π, as described in the example given below main text Eq. (9) (shown in main text Fig.
2c). Further, if the number of occupied states NK in the gap at some flux ϕ is known (counted relative to some
reference point, which will be discussed below), we could also derive sν of the gap from Eq. (68).

ii) The regime ϕ/2π > NQ/NL, for which the momentum space boundary is at radius κb =
√
NQΩBZ/π, and the

momentum space bulk area is AK = NQΩBZ , so the number of occupied states NK = ρKAK/ΩBZ in the fixed λ
sector satisfies main text Eq. (10), namely,

NK = NQ(tν + 2πsν/ϕ) . (70)

Accordingly, the in-gap spectral flow rate in a gap is given by

dNK
d(2π/ϕ)

= NQsν , (71)
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which allows us to determine sν of a gap in this regime by counting the number of states (without deleting momentum
space edge states by the projector method in Sec. II E) flowing across the midgap energy per inverse flux number
2π/ϕ, as described in the example given below main text Eq. (10) (shown in main text Fig. 2d). Further, if the
number of occupied states NK in the gap at some flux ϕ is known, we could also derive tν of the gap from Eq. (70).

In either regime, finding out NK at some ϕ in the numerical results allows us to derive both tν and sν of a gap. In
numerical calculations, however, the number of occupied states NK below a gap should be counted relative to some
reference energy level where NK = 0 is defined. Therefore, we need to find out where the NK = 0 energy level is
defined, which depends on models. This is discussed below.

1. Determination of NK = 0

A generic method to find out NK = 0 is the following: first, find a gap which extends over both the small ϕ regime
ϕ/2π < NQ/NL and the large ϕ regime ϕ/2π > NQ/NL (this is the condition for this generic method to work), which
we call the reference gap. By extracting out the spectral flow rate in the small and large ϕ regimes, one can derive
tν and sν of the reference gap from Eqs. (69) and (71), respectively. Then, NK of this reference gap at any ϕ can be
determined from Eqs. (68) and (70). Then, the number of occupied states NK in any other gap j at a given ϕ can
be determined in the numerical calculation by counting the number of states from the midgap energy of the reference
gap to the midgap energy of gap j, plus the number of occupied states in the reference gap which is known. From
the reference gap, one could determine which energy level corresponds to NK = 0.

As an example, in the Hofstadter butterfly of the TBG model in the main text Fig. 2(a) and 2(b) (see Sec. III for
details), we can take the (1, 0) gap (labeled in main text Fig. 2(b)) as such a reference gap. This Hofstadter spectrum is
calculated by setting NQ = 37 and NL = 60. In the regime ϕ/2π < NQ/NL, the spectral flow rate across the mid-gap
energy of gap (1, 0) can be counted along the dashed line in Fig. 2(c) to be dNK/d(ϕ/2π) ≈ 16/0.25 = 64 = NLtν (16
levels when ϕ/2π increases from 0.25 to 0.5), so we find tν = 1 being the integer closest to 64/NL. Then in the regime
ϕ/2π > NQ/NL, there are no levels flowing in the (1, 0) gap except for some horizontal lines, which are spurious Dirac
zero modes of the TBG model and should not be counted in NK (see Sec. III B for detailed explanation). Therefore,
the spectral flow rate in this regime is dNK/d(2π/ϕ) = 0 = NQsν , which leads to sν = 0. Thus the gap is labeled by
quantum numbers (tν , sν) = (1, 0). Then, by Eq. (68), we can find, for instance, NK = NL(1× 0.5 + 0) = 30 at flux
ϕ/2π = 0.5 < NQ/NL. Therefore, the NK = 0 level can be found by counting 30 levels downwards from the midgap
energy of the (1, 0) gap at flux ϕ/2π = 0.5, which turns out to be approximately the level at zero energy (see the
main text Fig. 2(c)).

We further discuss the following two special cases, where the reference point NK = 0 can be determined more
easily:

i) Models with a kinetic energy bounded from below, e.g., a single-orbital model with a Hamiltonian H̃(r) =
ε(−i∇) +

∑
j Vje

iqj ·r with a quadratic kinetic energy ε(k) = k2/2m0 ≥ 0, where m0 is the electron effective mass. In
this case, one must have Chern number tν = 0 below the lowest energy band of the entire spectrum, i.e., when no
states are occupied at all. By Eq. (70), one then finds NK = 0 below the lowest energy band in the limit ϕ → ∞.
Since there are no states at lower energies, there should be no spectra flows below the lowest band with respect to ϕ,
so one should have NK = 0 below the lowest energy band at any flux ϕ.

ii) Models with a Dirac kinetic energy (which has no lower bound), such as the TBG model in Eq. (73) which has a
kinetic term ε(k) = vFσ

∗ ·k (where σ∗ = (σx,−σy)). In this case, if there is no LL cutoff and reciprocal lattice cutoff,
the energy spectrum of the system does not have a lower bound. With a LL cutoff NL and a reciprocal lattice cutoff
NQ, the Hamiltonian size is MNLNQ for M intrinsic orbitals (each Dirac kinetic term ε(k) = vFσ

∗ ·k has two intrinsic
orbitals). In the ϕ → ∞ limit, the energies of the eigenstates are dominated by the kinetic term ε(k) = vFσ

∗ · k
(since k is replaced by κ̂ + k0 and κ̂ ∝ `−1 =

√
B which goes to infinity as ϕ → ∞), which should give a (nearly)

particle-hole symmetric spectrum because of the particle-hole symmetry of the Dirac kinetic term. Accordingly, all
the spectral flows should be (nearly) particle-hole symmetric about the half filling, which fixes NK = 0 at the half
filling point. Therefore, in the limit ϕ→∞, one has NK = 0 at the half filling of the Hamiltonian with cutoffs NL and
NQ, e.g., the filling between the MNLNQ/2-th level and the (MNLNQ/2)+1-th level (energetically sorted). Since the
total number of levels MNLNQ does not change with respect to ϕ (for fixed NL and NQ), and NK = 0 is a reference
filling independent of ϕ, we conclude that NK = 0 is between the MNLNQ/2-th level and the (MNLNQ/2) + 1-th
level for any ϕ. In particular, for the TBG model in Eq. (73), the energy spectrum is particle-hole symmetric at all
ϕ, so the half filling point NK = 0 is at zero energy at any ϕ. We note that when further counting the number of
occupied states NK of certain gaps relative to this half filling NK = 0 point, one needs to exclude the unphysical
spurious modes due to LL cutoff NL as discussed in Sec. III B.
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III. THE EXAMPLE OF THE TBG CONTINUUM MODEL

In this section, we explain the Hofstadter spectrum calculation of the one-valley TBG continuum model in Ref. [2],
the results of which are given in the main text Fig. 2.

A. Description of the model

The model consists of the Dirac electrons of the same valley of two graphene layers, which are relatively twisted by
angle θ. Besides, we only consider one spin, namely, the model is spinless. The model can be written in real space as
a 4× 4 matrix

HTBG =

(
−ivFσ∗ · ∇

∑3
j=1 Vje

iqj ·r∑3
j=1 V

†
j e
−iqj ·r −ivFσ∗ · ∇

)
, (72)

where the upper (lower) two basis are the A and B sublattices of the upper (lower) monolayer graphene, σ∗ = (σx,−σy)
are the Pauli matrices acting on A and B sublattices of the monolayer graphene lattice, the momenta qj are given by

q1 = kθ(0,−1)T , q2 = kθ

(√
3

2
,

1

2

)T
, q3 = kθ

(
−
√

3

2
,

1

2

)T
,

and the interlayer hopping matrices

V1 = w0 (12 + σx) , V2 = w0

(
12 −

1

2
σx −

√
3

2
σy

)
, V3 = w0

(
12 −

1

2
σx +

√
3

2
σy

)
,

where 12 stands for the 2 × 2 identity matrix. The parameters are given by vF ≈ 610meV·nm, w0 = 110meV, and
kθ = |qj | = (8π/3a0) sin(θ/2), with the lattice constant a0 = 0.246nm. In the example shown in main text Fig. 2, we
take the twist angle θ = 2.2◦.

The reciprocal vectors of the TBG continuum model are given by g1 = q2 − q3 and g2 = q3 − q1. By Fourier
transforming the zero field Hamiltonian (72) into the momentum space, the Hamiltonian becomes a model in a
honeycomb reciprocal lattice, where the orbitals of layer 1 and layer 2 are located at the two different sublattices
Q1 ∈ q1 + g1Z + g2Z and Q2 ∈ −q1 + g1Z + g2Z of the honeycomb reciprocal lattice, respectively. Namely, the
origin of the momentum in layer ζ = 1, 2 is shifted by (−1)ζ−1q1, which is an example of choosing orbital-dependent
momentum origins in Eq. (29). Such a shift has the advantage of making the symmetries of the momentum space
Hamiltonian more explicit, and thus is adopted in most literatures of TBG. Since the kinetic energy for sublattices
{Q1} and {Q2} in Eq. (72) are identical, we can use a single notation Q to denote both reciprocal sublattice sites
{Q1,Q2}, i.e., the full honeycomb reciprocal lattice sites, and rewrite the Hamiltonian as

HQ′Q(k) = vFσ
∗ · (k + Q)δQ′Q +

3∑
j=1

(VjδQ′,Q+qj + h.c.) . (73)

One only needs to remember that the two different sublattices of the reciprocal lattice correspond to layers 1 and 2,
respectively. The Hamiltonian under magnetic field in our basis is then given by the substitution k → κ̂ + k0, with
κ̂ = 1√

2`
(a+a†,−ia+ ia†). In the calculation of main text Fig. 2, we set a twist angle θ = 2.2◦, take cutoffs NQ = 37

and NL = 60, and choose the central momentum k0 at the Γ point of the first TBG BZ (A different choice of k0

only affects the spectrum at extremely small magnetic fluxes |ϕ/2π| < 1/NL, in which regime our calculation reduces
to the LL calculation for the k · p model expanded at momentum k0). The same spectrum with edge states present
and with them deleted by the edge projection criteria of Eq. (61) in a larger energy range is shown in Fig. 4(a)-(b).
The edge states in Fig. 4(b) are deleted following the method described in Sec. II E, where we used edge width
w = min{`−1, 1.6

√
ΩBZ} for the edge projector Pκb,w, and the edge projection threshold Pc = 0.5. More examples of

the TBG Hofstadter spectra calculated with our method can be found in Ref. [12].
As another example, we also calculated the spectrum of the TBG Hamiltonian with a Dirac mass term added (which

can arise from hBN substrate alignment in TBG [27, 28]), i.e., a model Hamiltonian

H ′Q′Q(mD,k) = [vFσ
∗ · (k + Q) +mDσz]δQ′Q +

3∑
j=1

(VjδQ′,Q+qj + h.c.) . (74)

The calculated Hofstadter butterfly with edge states present and deleted for mD = 200meV are shown in Fig. 4(c)-(d).
We will comment more on this case of nonzero Dirac mass in Sec. III B.
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(a) (b) (c) (d)

ϕ/2π ϕ/2π ϕ/2π ϕ/2π

FIG. 4. Hofstadter butterfly and spectral flow of θ = 2.2◦ TBG with NQ = 37 and NL = 60 in a larger energy interval than
that of main text Fig. 2, where (a)-(b) are calculated for a massless Dirac kinetic term, while (c)-(d) are calculated for a Dirac
mass mD = 200meV. The horizontal axis linear coordinate is equal to ϕ/2π in the range [0, 1], and is equal to 2− 2π/ϕ in the
range [1,∞]. For convenience, we still label the horizontal axis by the values of ϕ. The edge states in (b) and (d) are deleted
following the method described in Sec. II E, where we used w = min{`−1, 1.6

√
ΩBZ} for the edge projector Pκb,w, and the edge

projection threshold Pc = 0.5.

B. Spurious zero modes

In the main text, Fig. 2(a) (see also Fig. 4(a)) shows many nondispersive horizontal levels at large fluxes ϕ, which
are roughly distributed in energies from −0.3eV to 0.3eV. In Fig. 4(c) which has a nonzero Dirac mass mD = 200meV,
these nondispersive horizontal levels are still present at large ϕ, but are distributed in an energy range −0.1eV to
0.5eV. When ϕ is small, these levels become dispersive with respect to ϕ and tend to higher energies, merging either
with the Hofstadter bulk bands or with the dispersive momentum edge states. These nondispersive horizontal levels
at large fluxes are understood as spurious zero modes of Dirac fermions due to the LL cutoff NL, which can be derived
as follows.

In the large ϕ limit, the magnetic length `→ 0, and the massless Dirac kinetic term of the TBG Hamiltonian (73)
at momentum site Q will tend to

vFσ
∗ · (κ̂+ k0 + Q) =

√
2vF
`

(
0 a− p+`/

√
2

a† − p−`/
√

2 0

)
→
√

2vF
`

(
0 a
a† 0

)
, (75)

where p± = k0x +Qx ± i(k0y +Qy). Therefore, up to error O(p±`), the Dirac kinetic term on each site Q under LL
cutoff NL has two zero energy modes:

ψ0 =

(
0
|0〉

)
, ψs =

(
|NL〉

0

)
, (76)

where we have used the fact that a|0〉 = 0 and a†|NL〉 = 0. Note that a†|NL〉 = 0 is only true because of the LL
cutoff. The first mode ψ0 is the physical Dirac zero mode, while the second mode ψs is an unphysical spurious zero
mode due to the LL cutoff NL. With a reciprocal lattice cutoff of NQ BZs, we have 2NQ spurious zero modes on the
2NQ honeycomb reciprocal lattice (since there are two Dirac cones in each BZ). These spurious zero modes are located

at radius |κ̂| =
√
〈κ̂2〉 ≈

√
2NL
` in the momentum space (main text Fig. 1(b)). For large fluxes ϕ > 2πNQ/NL, the

momentum boundary is at radius κb ≈ min{
√

2NL
` ,

√
NQΩBZ

π } =
√

NQΩBZ
π <

√
2NL
` , thus these spurious modes at

radius |κ̂| ≈
√

2NL
` are outside the momentum space boundary and are not physical states of the Hofstadter butterfly.



19

Moreover, these spurious modes on different reciprocal sites Q have zero Dirac kinetic energy, and only hop among
nearest reciprocal sites with an amplitude ≈ ψ†sVjψs = w0 = 110 meV. Therefore, at large flux ϕ, they behave as
a honeycomb tight-binding model in the reciprocal lattice with hopping amplitude w0, which has 2NQ energy levels
independent of ϕ distributed between −3w0 and 3w0. These levels give the horizontal lines at large ϕ in the main
text Fig. 2(a) (as well as Fig. 4(a)).

When a Dirac mass term mDσz is added to the TBG Hamiltonian as given in Eq. (74), one finds the spurious
zero mode ψs in Eq. (76) at each momentum site Q no longer has a Dirac zero kinetic energy; instead, it is shifted
to energy mD. Therefore, with the hopping w0 among nearest momentum sites, one expects the 2NQ spurious zero
modes to be distributed in the energy range between mD − 3w0 and mD + 3w0. This is exactly the case in Fig. 4(c).

At small ϕ, one can no longer ignore the p± terms in Eq. (75), thus the spurious modes ψs in Eq. 76 is no longer a
zero energy mode of the Dirac Hamiltonian in Eq. (75). Therefore, one expect these spurious modes to disperse with
respect to ϕ at small ϕ, in agreement with the numerical result.

When counting the number of occupied states in a fixed λ sector (in Eqs. (9) and (10) of the main text), these
unphysical spurious modes at large magnetic fields should be excluded. Further, since these spurious modes are
outside the momentum space boundary (when ϕ/2π > NQ/NL), they will be identified as edge states by the boundary
projector Pκb,w in Eq. (61) (their expectation values 〈Pκb,w〉 are close to 1), and thus will be removed in the edge-state
removed spectrum (main text Fig. 2(b), and Fig. 4(b) and (d)).

IV. BASIS COMPLETENESS AND MATRIX ELEMENTS FOR TIGHT-BINDING MODELS

The open momentum space method can also be applied to the numerical calculation of the Hofstadter butterfly
of tight-binding models, as we demonstrated in the main text Fig. 3. To understand why the method is also valid
for tight-binding models, in this section, we construct the complete and orthonormal basis for tight binding models
employed by our method. We prove that under the basis we construct, the tight-binding Hamiltonian under magnetic
field (Peierls substitution) is block diagonalized into identical blocks, and each block has matrix elements given by
the zero-magnetic-field momentum space Hamiltonian Hαβ(k) with the simple substitution k → κ̂ + k0, where k is
the quasi-momentum, k0 is an arbitrary momentum vector, κ̂ = 1√

2`
(a+ a†,−ia+ ia†), and a and a† are the Landau

level raising and lowering operators.

A. Standard Peierls substitution

We denote the Wannier orbital α in the unit cell labeled by lattice vector D ∈ d1Z + d2Z in real space as |D, α〉,
and use uα to denote the position of orbital α in a unit cell. In the continuum space, we have

〈r, α|D, α〉 = Wα(r−D − uα) , (77)

where Wα(r) is the Wannier function of orbital α, and |r, α〉 is the underlying continuum space basis at position r of
intrinsic orbital α as defined by Eq. (25). For the discussion of tight-binding models here, without loss of generality,
we shall choose the gauge where all pα = 0 in the definition of |r, α〉 in Eq. (25) (recall that pα is the momentum
space origin of orbital α, which can be chosen freely), namely,

|r, α〉 = c†α(r)|0〉 . (78)

This ensures that the Hamiltonian matrix in the real space basis is invariant under lattice vector translation Tdi
(instead of changing by a unitary transformation as shown in Eq. (30) when pα 6= 0).

We first comment that the derivation of the standard Peierls substitution [21] requires an approximation that the
Wannier orbitals |D, α〉 are infinitely localized, namely, Wα(r) = δ2(r). This is because the Peierls substitution only
picks up the gauge phase factor connecting two points of Wannier positions, and is independent of the details (shapes,
sizes, etc) of Wannier functions, which can be true only if each Wannier function is infinitely small and thus does not
feel the magnetic field inside the orbital itself. This does not require the Wannier charge density to be localized on
the site position D, instead it can be a delta function localized at any position D + uα away from the site position
D.

However, in our paper here, we shall keep the Wannier function Wα(r) in Eq. (77) generic, instead of assuming
it is a delta function. This makes our proof of the method the most generic, which applies to nonstandard Peierls
substitutions discussed in Sec. IV B, too.
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The tight-binding model in real space then generically takes the form

H =
∑
j,α,β

tαβj TαβDj+uα−uβ , (79)

where tαβj are the hopping amplitudes, and we have defined

TαβDj+uα−uβ =
∑
D

e
i
∫
cj,αβ

A(D+r)·dr|D +Dj , α〉〈D, β| (80)

as the translation operator from the Wannier orbital |D, β〉 at position D + uβ to the Wannier orbital |D +Dj , α〉
at position D + Dj + uα under the Peierls substitution of the gauge potential A(r) in the continuum space, with
Dj ∈ d1Z + d2Z, and cj,αβ being the straight line segment from uβ to Dj + uα.

—– At zero magnetic field, we can choose the gauge A(r) = 0, and the Hamiltonian can be written into the
momentum space by Fourier transformation as

Hαβ(k) =
∑
j

tαβj e−ik·(Dj+uα−uβ) , (81)

where k is the quasi-momentum which takes values in the Brillouin zone, and the basis is the Bloch basis |k, α〉 =
1
NΩ

∑
D eik·(D+uα)|D, α〉, with NΩ being the number of unit cells in real space.

—– At nonzero magnetic field, the gauge potential A(r) satisfies ∂xAy(r) − ∂yAx(r) = B, where B is a uniform
magnetic field in the continuum space. We now proceed to define a complete orthonormal basis for Hamiltonian (79)
based on the continuum space.

Before starting, we first note that the continuum space has a Hilbert space spanned by the real space basis |r, α〉
of all positions r, which is much larger than the Hilbert space of the tight binding model spanned by the Wannier
basis |D, α〉 defined in Eq. (77). In the following, we shall first define a complete basis for the continuum space; then
we project the basis into the sub-Hilbert space of the tight-binding model spanned by |D, α〉 using a projector, and
prove that the resulting projected basis forms a complete orthonormal basis for the tight-binding model.

In the continuum space, we can define the kinematic momentum operator Π = −i∇−A(r), and the guiding center

operator R = r− `2

~ ẑ×Π, as we did in Sec. I. Similar to Sec. I, we define a guiding center Rτ̂ along the τ̂ direction,

with τ̂ ·(ẑ×g1)
τ̂ ·(ẑ×g2) irrational. Moreover, we denote the reciprocal lattice of the tight-binding model as Q ∈ g1Z+ g2Z. We

can then define lowering and raising operators following the same procedure as we did in Sec. II

aQ =
`√
2

[Πx −Qx − k0,x + i(Πy −Qy − k0,y)] , a†Q =
`√
2

[Πx −Qx − k0,x − i(Πy −Qy − k0,y)] , (82)

where k0 is the center momentum which can be chosen freely. Afterwards, we can define a basis |λ,Q, n, α〉 in the
continuum space satisfying

Rτ̂ |λ,Q, n, α〉 = [λ− `2τ̂ · (ẑ×Q)]|λ,Q, n, α〉 , a†QaQ|λ,Q, n, α〉 = n|λ,Q, n, α〉 , (83)

where λ takes values in the quotient set defined in Eq. (43), namely, λ ∈ Λτ̂ = R/[`2τ̂ · (ẑ× g1)Z + `2τ̂ · (ẑ× g2)Z].
The basis definition (83) follows exactly the same derivation of the basis |λ,Qα, n, α〉 in Eq. (40) in Sec. II, except
that here we have chosen the gauge that the momentum origins of all orbitals α are at pα = 0 (see Eq. (25) for the
definition of pα, and see Eq. (78) for our gauge choice for tight binding models here), thus Qα = Q for all α (recall
the definition of Qα in Eq. (II)). As we have proved in Eq. (44), the basis |λ,Q, n, α〉 in Eq. (83) satisfies

〈λ′,Q′, n′, β|λ,Q, n, α〉 = δβαδλλ′δQ′Qδn′n , (84)

thus forms a complete orthonormal basis for the Hilbert space of the continuum space, where λ ∈ Λτ̂ = R/[`2τ̂ · (ẑ×
g1)Z + `2τ̂ · (ẑ × g2)Z] as defined in Eq. (43), Q ∈ g1Z + g2Z are the reciprocal vectors, and n ≥ 0 denotes the LL
number. We therefore have a completeness condition in the continuum space:

1

NQ

∑
λ,Q,n

|λ,Q, n, α〉〈λ,Q, n, α| = 1α =

∫
d2r|r, α〉〈r, α| , (85)

where NQ is the number of reciprocal sites Q (which tends to infinity), and 1α stands for the identity matrix in the
orbital α subspace in the continuum space.
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Next, based on the continuum space basis |λ,Q, n, α〉, we would like to define a complete basis for the Hilbert space
of the tight-binding model spanned by Wannier orbitals |D, α〉. We define the basis for the tight-binding model as

|λ, n, α〉 =
∑
D

|D, α〉〈D + uα, α|λ,0, n, α〉 , (86)

where |D, α〉 is the Wannier orbital, |D + uα, α〉 denotes the position eigenbasis at position r = D + uα (the center
of the Wannier orbital), and λ ∈ Λτ̂ = R/[`2τ̂ · (ẑ× g1)Z + `2τ̂ · (ẑ× g2)Z] as defined in Eq. (43). One may wonder
why only the continuum space states |λ,0, n, α〉 at Q = 0 are used in defining the basis (86). In fact, by Eq. (48), we
have the following identity for any lattice vector D and reciprocal vector Q (in the equation below, r is understood
as a number denoting the continuous space coordinates)

〈D + uα, α|λ,Q, n, α〉 =

∫
d2rδ2(r−D − uα)〈r, α|eiQ·r|λ,0, n, α〉 = eiQ·(D+uα)〈D + uα, α|λ,0, n, α〉

= eiQ·uα〈D + uα, α|λ,0, n, α〉 .
(87)

Thus, one can equivalently rewrite the basis definition as

|λ, n, α〉 =
1√
NQ

∑
Q,D

e−iQ·uα |D, α〉〈D + uα, α|λ,Q, n, α〉 , (88)

which is expressed using the continuum space basis of all reciprocal sites Q.
By the orthonormal relation (84) and the basis expression in Eq. (86), it is easy to see the subset of basis |λ, n, α〉

is orthonormal:

〈λ′, n′, β|λ, n, α〉 = δβα
∑
D

〈λ′,0, n′, α|D + uα, α〉〈D + uα, α|λ,0, n, α〉

= δβα〈λ′,0, n′, α|
∑
Q

eiQ·(r−uα)|λ,0, n, α〉 = δβα
∑
Q

e−iQ·uα〈λ′,0, n′, α|λ,Q, n, α〉 = δλλ′δn′nδβα ,
(89)

where in the 2nd line r is understood as the position operator (not number), and we have used Eq. (48) which implies
|λ,Q, n, α〉 = eiQ·r|λ,0, n, α〉. Besides, from the 1st line to the 2nd line we have used the following identity for each
orbital α: ∑

D

|D + uα, α〉〈D + uα, α| =
∫

d2r|r, α〉〈r, α|
∑
D

δ2(r−D − uα)

=

∫
d2r|r, α〉〈r, α|

∑
Q

eiQ·(r−uα) =
∑
Q

eiQ·(r−uα) ,
(90)

where r on the right-most hand side of the 2nd line is understood as the position operator (instead of a number).
Furthermore, by Eq. (87), we can prove the completeness of the basis (86) for the tight-binding model as follows:∑

λ,n,α

|λ, n, α〉〈λ, n, α| =
∑
λ,n,α

∑
D,D′

|D, α〉〈D + uα, α|λ,0, n, α〉〈λ,0, n, α|D′ + uα, α〉〈D′, α|

=
1

NQ

∑
λ,Q,n,α

∑
D,D′

|D, α〉e−iQ·uα〈D + uα, α|λ,Q, n, α〉〈λ,Q, n, α|D′ + uα, α〉eiQ·uα〈D′, α|

=
∑
α

∑
D,D′

|D, α〉〈D + uα, α|

 1

NQ

∑
λ,Q,n

|λ,Q, n, α〉〈λ,Q, n, α|

 |D′ + uα, α〉〈D′, α|
=

∑
D,D′,α

|D, α〉〈D + uα, α|
(∫

d2r|r, α〉〈r, α|
)
|D′ + uα, α〉〈D′, α| =

∑
D,α

|D, α〉〈D, α| .

(91)

This proves that the basis |λ, n, α〉 forms a complete orthonormal basis for the Hilbert space of the tight-binding
model spanned by Wannier orbitals |D, α〉.

Now we discuss the translation operator in Eq. (80) under magnetic field. First, we prove the following identity of
the position basis |r, α〉 in the continuum space. Assume cf0 is a path (not necessarily straight) from position r0 to
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position rf in the continuum space. By path partitioning cf0 into N small segments δrj = rj − rj−1 (1 ≤ j ≤ N),

and note that e−iΠ·δr = eiA(r)·δre−δr·∇ in the δr→ 0 limit, we can prove that

Pe−i
∫
cf0

Π·dr|r0, α〉 = lim
N→∞

N∏
j=1

e−iΠ·δrj |r0, α〉

= lim
N→∞

∫
drN |rN , α〉〈rN , α|e−iΠ·δrN

∫
drN−1|rN−1, α〉〈rN−1, α|e−iΠ·δrN−1 · · ·

∫
dr1|r1, α〉〈r1, α|e−iΠ·δr1 |r0, α〉

= lim
N→∞

N∏
j=1

eiA(r0+
∑
i≤j δri)·δrj |r0 +

N∑
j=1

δrj , α〉

=e
i
∫
cf0

A(r)·dr|rf , α〉 ,
(92)

where P stands for path ordering, and we have used the fact that e−δr·∇|r, α〉 = |r + δr, α〉. Therefore, note that the

definition of the basis |λ, n, α〉 in Eq. (86) contains the position eigenstate |D + uα, α〉 at position r = D + uα, we

can rewrite the action of the translation operator in Eq. (80) on the basis |λ, n, α〉 as

TαβDj+uα−uβ |λ, n, β
′〉 = δββ′

∑
D

e
i
∫
cαβ

A(D+r)·dr|D +Dj , α〉〈D + uβ , β|λ,0, n, β〉

=δββ′
∑
D

|D +Dj , α〉〈D +Dj + uα, β|Pe
−i

∫
cj,αβ

Π·dr|λ,0, n, β〉 ,
(93)

where notations of the form |D + uα, β〉 denotes the position basis of orbital β in the continuum space at position
D+uα (note that β need not be equal to α). In contrast, |D+Dj , α〉 denotes the Wannier orbital basis of the unit
cell at D +Dj , as we have defined. We note that in Eq. (93), from the 1st line to the 2nd line we have used the

fact that the position basis in the continuum space satisfies 〈D+uβ , β| = 〈D+Dj +uα, β|Pe
−i

∫
cj,αβ

Π·dr
, which we

have proved in Eq. (92).

We then define lowering and raising operators a = a0 = √̀
2
[Πx − k0,x + i(Πy − k0,y)] and a = a†0, where a0, a

†
0 are

the lowering and raising operators in Eq. (82) at reciprocal site Q = 0. By further defining κ̂ = 1√
2`

(a+a†,−ia+ia†),

we can rewrite the kinematic momentum as Π = κ̂+ k0, where k0 is the center momentum in Eq. (82). We can then
further simplify Eq. (93) as

TαβDj+uα−uβ |λ, n, β
′〉 = δββ′

∑
D

|D +Dj , α〉〈D +Dj + uα, β|Pe
−i

∫
cj,αβ

(κ̂+k0)·dr|λ,0, n, β〉 ,

=δββ′
∑
D

|D +Dj , α〉〈D +Dj + uα, α|Pe
−i

∫
cj,αβ

(κ̂+k0)·dr|λ,0, n, α〉 ,

=δββ′
∑
D

|D, α〉〈D + uα, α|Pe
−i

∫
cj,αβ

(κ̂+k0)·dr|λ,0, n, α〉

=δββ′Pe
−i

∫
cj,αβ

(κ̂+k0)·dr|λ, n, α〉 ,

(94)

where P stands for path ordering. From the 1st line to the 2nd line of Eq. (94), we have used the fact that the matrix

elements of the operator Pe−i
∫
cj,αβ

(κ̂+k0)·dr
(acting from the right on the state 〈D +Dj + uα, β|) only depend on

the position r = D +Dj + uα of the state (since κ̂ is defined in terms of Π which displaces r), and are independent
of the orbital index β. So we can simply change the orbital index β in the 1st line into α in the 2nd line. In the
derivation from the 3rd line to the 4-th line, we have also used the fact that the matrix elements of operator κ̂ only
depends on the LL quantum number n, so in the last line of Eq. (94) one should understand the operator κ̂ as solely

acting on the quantum number n of basis |λ, n, α〉. More concretely, the LL lowering and raising operators in κ̂ act

as a|λ, n, α〉 =
√
n|λ, n− 1, α〉 and a†|λ, n, α〉 =

√
n+ 1|λ, n+ 1, α〉.

For standard Peierls substitution, the path cj,αβ in Eq. (94) is a straight line segment (see the paragraph below

Eq. (80)), so the integral on the exponent of Pe−i
∫
cj,αβ

(κ̂+k0)·dr
is along the straight line segment from D + uβ to

D +Dj + uα. Since the matrix elements of κ̂ only depend on n when acting on |λ, n, α〉, the matrix κ̂+ k0 should
be a constant along the path of integration, and thus we can further simplify Eq. (94) into

TαβDj+uα−uβ |λ, n, β
′〉 = δββ′e

−i(κ̂+k0)·(Dj+uα−uβ)|λ, n, α〉 . (95)
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FIG. 5. The first 4 periods of Hofstadter butterfly of the tight-binding model H(k) = − cos kx − cos ky in the square lattice
calculated using our method of substitution k → κ̂ + k0, where we take a LL cutoff NL = 100. The cutoff NL breaks the
periodicity of the Hofstadter spectrum, and the larger the magnetic field B is, the less clear the Hofstadter butterfly is. For
sufficiently large LL cutoffs (e.g., NL ∼ 500), the periodicity of Hofstadter spectrum will be well-preserved in the first few
periods.

It is evident from Eq. (95) that the matrix elements of TDj+uα−uβ is diagonal in quantum number λ and independent

of λ. Therefore, we can rewrite the translation operator in a fixed λ subspace from basis |λ, n, β〉 to basis |λ, n′, α〉
(n, n′ ∈ Z) are nonnegative integers) as

Tλ,αβDj+uα−uβ = e−i(κ̂+k0)·(Dj+uα−uβ) , (96)

where κ̂ acting on the LL quantum number n (recall that Π = κ̂+ k0). Accordingly, the tight-binding Hamiltonian

in magnetic field in a fixed λ subspace from basis |λ, n, β〉 to basis |λ, n′, α〉 (n, n′ ∈ Z) takes the form

Hλ,αβ =
∑
j

tαβj Tλ,αβDj+uα−uβ =
∑
j

tαβj e−i(κ̂+k0)·(Dj+uα−uβ) , (97)

which is exactly the zero field momentum space Hamiltonian (81) with the substitution k→ κ̂+ k0.
As an example of the above method, we numerically calculate the Hofstadter butterfly of the simplest square

lattice model with one orbital per site and nearest hopping amplitude −1/2, which has a momentum space Hamil-
tonian H(k) = − cos kx − cos ky. The Hamiltonian matrix with LL cutoff NL is constructed by replacing kx by

the Hermitian matrix k0,x1NL + (a + a†)/(
√

2`) and similarly for ky, where a is a matrix with matrix elements
[a]mn = 〈m|a|n〉 =

√
nδm,n−1 (m,n are integers from 0 to NL). The cosine of a Hermitian matrix W can be calcu-

lated by first diagonalizing the matrix into W = U†DWU where DW is diagonal and U is unitary. Then cosW can
be calculated efficiently using the identity cosW = U†(cosDW )U and the fact that cosDW is simply the cosine of
each element of the diagonal matrix DW .

The spectra with cutoffs NL = 100 and NL = 500 are shown in the main text Fig. 3. Fig. 3 shows that the
higher cutoff NL is, the clearer the Hofstadter butterfly is. Furthermore, the cutoff NL breaks the periodicity of the
Hofstadter spectrum with respect to magnetic flux per unit cell ϕ. Fig. 5 shows the first 4 periods of the numerical
Hofstadter butterfly with NL = 100. In particular, the larger ϕ is, the less clear the Hofstadter butterfly is. This is
because in Eq. (97) the operator κ̂ ∝ `−1(a, a†); for a fixed cutoff NL, the error in the LL operators (a, a†) is fixed,
so the error in operator κ̂ is larger for larger ϕ (which corresponds to smaller `).

Lastly, we note that throughout our derivation, we have not used the details of the Wannier function Wα(r) in Eq.
(77). Therefore, our derivation holds generically as long as the Peierls substitution is valid, independent of the shape
of the Wannier orbitals.

B. Nonstandard Peierls substitution

In some models the Wannier orbitals cannot be approximated as localized at one position (but dominantly localizes
at several positions respecting the symmetries of the lattice), so the standard Peierls approximations are no longer
valid. However, in certain models, nonstandard Peierls substitution can be derived under certain approximations
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[12]. Accordingly, the Peierls substitution might not be along the straight line segment path cαβ , but may be along
a nonstraight path or the sum of multiple nonstraight paths from D + uβ to D + Dj + uα. For instance, in the
4-band tight-binding model for TBG in Ref. [29], the Wannier orbital is centered at AB and BA stackings of TBG but
extends to the 3 closest AA stacking centers, and it is shown to have an approximate nonstandard Peierls substitution
given by the summation of contributions of multiple broken-line paths [12].

For such a tight-binding model with nonstandard Peierls substitution, the tight-binding Hamiltonian is still of the
form of Eq. (79), except that the translation operator in Eq. (79) now reads

TαβDj+uα−uβ =
∑
D,µ

e
i
∫
c
µ
j,αβ

A(D+r)·dr
|D +Dj , α〉〈D, β| , (98)

where the phase factor involves the summation of multiple different paths (e.g., broken-lines) cµj,αβ (labeled by index

µ = 1, 2, · · · ) from position uβ to Dj + uα. For instance, in the 4-band tight-binding model for TBG studied in
[12], the Peierls substitution between the nearest neighbors is given by the summation of the gauge phase factor of 2
different paths (i.e., µ = 1, 2) from one AB site to another AB site via the nearest 2 AA sites.

Our method can still apply to such tight-binding models with nonstandard Peierls substitutions. To see this, we
first note that throughout our derivations in Sec. IV A for the standard Peierls substitution case, we do not require
at all the Wannier orbitals in Eq. (77) to be localized. Therefore, in the nonstandard Peierls substitution case here,
we can still define the eigenbasis by Eq. (86), which still satisfies the orthogonality in Eq. (89) and the completeness
in Eq. (91).

The action of the translation operator is still given by Eq. (94), except that one need to sum over all the paths cµj,αβ
(i.e., replace cj,αβ in Eq. (94) by cµj,αβ and sum over the path index µ). However, since cµj,αβ are no longer straight

paths, Eq. (94) cannot be further reduced to Eq. (95). Therefore, the translation operator in a fixed λ sector from

basis |λ, n, β〉 to |λ, n′, α〉 can be expressed by Eq. (94) as

Tλ,αβDj+uα−uβ =
∑
µ

Pe
−i

∫
c
µ
αβ

(κ̂+k0)·dr
, (99)

where κ̂ = 1√
2`

(a+a†,−ia+ia†) acts on the LL quantum number n, and P stands for path ordering. The Hamiltonian

in a fixed λ subspace then reads Hλ,αβ =
∑
j t
αβ
j Tλ,αβDj+uα−uβ , the matrix elements of which are independent of λ.

V. REVIEW OF THE DIOPHANTINE EQUATION

In this section, we briefly review the proof of the Diophantine equation.
For a lattice model with magnetic flux ϕ = 2π pq per unit cell, where p and q are two coprime numbers, the energy

spectrum forms a set of Hofstadter bands. In particular, each Hofstadter gap is characterized by two integers tν and
sν , which satisfy the Diophantine equation

tνp+ sνq = ν , (100)

where ν is an integer. In particular, tν is the Chern number of the Hofstadter gap.
Here we briefly review how the Diophantine equation is proved following Ref. [15] (See also Ref. [30] Chapter 5.3 for

a different proof). In fact, one can prove an equivalent statement, that each Hofstadter band satisfies a Diophantine
equation

σp+mq = 1 , (101)

where σ is the Chern number of the Hofstadter band, and m is another integer characterizing the band.
The proof is as follows. First, we note that a lattice Hamiltonian H (either a continuum model in Eq. (27)

or a tight-binding model as in Eq. (79) we considered) in a uniform magnetic field B = Bẑ still has translation
symmetries along the Bravais lattice vectors d1 and d2. However, the translation symmetry operators are not the
simple translation operators

Tdj = e−iΠ·dj (j = 1, 2) (102)

in magnetic field in the continuum space, since the operator Tdj do not commute with Hamiltonian H as one can
easily verify (since H contains operator Π, and [Πx,Πy] 6= 0). Instead, the (magnetic) translation symmetry operators
which commute with the Hamiltonian H are given by (for simplicity here we choose all the pα = 0 in Eq. (29)):

T̃dj = Tdje
−i(`−2ẑ×r)·dj = e−i(Π+`−2ẑ×r)·dj = e−i`

−2(ẑ×R)·dj , [T̃dj , H] = 0 , (j = 1, 2) (103)
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FIG. 6. Illustration of the gauge choices in Eq. (106) for proving the Diophantine equation, where the magnetic flux is
ϕ/2π = p/q.

where R is the guiding center operator. Namely, the translation operator Tdj and the translation symmetry operator

T̃dj differ by a unitary transformation e−i(`
−2ẑ×r)·dj . At zero magnetic field, Tdj and T̃dj become the same.

At rational flux ϕ = 2π pq per unit cell, it is straightforward to show that the translation symmetry operators satisfy

the commutation relation

T̃d1 T̃d2 = e−i2πp/qT̃d2 T̃d1 . (104)

Note that in contrast we have Td1
Td2

= ei2πp/qTd2
Td1

. One can therefore define two magnetic translation symmetry

operators T̃qd1 = (T̃d1)q and T̃d2 which commute with each other, i.e., [T̃qd1 , T̃d2 ] = 0. Since they also commute
with the Hamiltonian H, we can define the Bloch wave function eigenstates |ψn,k〉 of a Hofstadter band n of H, with
quasimomentum k defined by

T̃qd1
|ψn,k〉 = eiqd1·k|ψn,k〉 , T̃d2

|ψn,k〉 = eid2·k|ψn,k〉 . (105)

The magnetic BZ is then a parallelogram spanned by momentum vectors g1/q and g2, where gi satisfies gi ·dj = 2πδij
(i, j = 1, 2). For simplicity, we shall assume all the Hofstadter bands are nondegenerate in one magnetic BZ (namely,
at each momentum k in the magnetic BZ, the energy eigenvalues are nondegenerate), which is generically true when
there is no other symmetries (which may protect degeneracies) except for the translation symmetries. When the
Hofstadter band n has a Chern number σ, one can choose the Bloch wave function |ψn,k〉 as a continuous function of
k satisfying

|ψn,k+g1/q〉 = |ψn,k〉 , |ψn,k+g2〉 = eiσqd1·k|ψn,k〉 , (106)

as illustrated in Fig. 6. Here we do not restrict k within the magnetic BZ. One can easily verify that the above choice
gives a Berry phase σqd1 · (g1/q) = 2πσ circulating the boundary of the magnetic BZ (starting from momentum (0,0)
to (0, g2) to (g1/q, g2) to (g1/q,0) and then back to (0,0)), which is required by the Chern number σ.

By Eq. (104) and the definition of quasimomentum k in Eq. (105), the state T̃d1 |ψn,k〉 should be equal to the
Bloch state |ψn,k+pg2/q〉 up to a phase factor, and should be degenerate with the state |ψn,k〉. In consistency with
Eq. (106), we can in general choose the phase such that

T̃d1 |ψn,k〉 = eimqd1·k|ψn,k+pg2/q〉 , (107)

where m is some coefficient to be determined. First, one can prove that m ∈ Z is an integer: this is because the first

equation in (106) requires eimqd1·k|ψn,k+pg2/q〉 = T̃d1
|ψn,k〉 = T̃d1

|ψn,k+g1/q〉 = eimqd1·(k+g1/q)|ψn,k+g1/q+pg2/q〉 =

eimqd1·(k+g1/q)|ψn,k+pg2/q〉, namely, eimqd1·(g1/q) = ei2πm = 1. We can then apply T̃d1
by q times to obtain

T̃qd1
|ψn,k〉 = eimq

2d1·k|ψn,k+pg2
〉 = ei(σp+mq)qd1·k|ψn,k〉 = eiqd1·k|ψn,k〉 . (108)

Since k can take any value, we conclude that the Diophantine equation 101 for the band has to hold.
It is then straightforward to see the Diophantine equation 100 holds in a Hofstadter gap: ν is simply the number

of Hofstadter bands below the gap counted from some reference point of filling (see Sec. II G for discussion of the
reference point of filling). The Hofstadter band between the ν-th gap and the (ν − 1)-th gap then has Chern number
σ = tν − tν−1, and the other quantum number m = sν − sν−1.
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Since ν has the physical meaning of number of occupied magnetic bands, and the magnetic unit cell has an area q
times of the original unit cell, we can define the number of electrons per original unit cell as ρ = ν/q. One can then
divide the Diophantine equation by q to obtain our main text Eq. (7):

tν
ϕ

2π
+ sν = ρ , (109)

which holds even when the flux quanta ϕ/2π is irrational. The derivative of this equation with respect to ϕ gives the
Streda formula 2π dnrdϕ = tr [20].

VI. QUANTIZED LORENTZ SUSCEPTIBILITY FROM sν

In this section, we show that the quantum number sν , which can be viewed as a dual Chern number in the
momentum space, yields a quantized Lorentz susceptibility γxy = eBsν . This is analogous to the Hall conductance
given by the Chern number tν .

A. Review of the quantized Hall conductance

We first briefly review how the Chern number tν leads to a quantized Hall conductance σxy = tν
e2

h [10]. We assume
the flux per unit cell is ϕ = 2πp/q, so that we can define the magnetic BZ quasimomentum (kx, ky) by Eq. (105).
Using the Kubo formula, the Hall conductance under a uniform electric field Ey can be written as

σxy = i
∂

∂ω

∫ ∞
−∞

dω′〈Gω+ω′ ĵxGω′ ĵy〉
∣∣∣
ω→0

(110)

where ĵ is the spatially uniform current operator which is conjugate to a spatially uniform gauge field A., while
Gω = (ω − H)−1 is the Green’s function in the magnetic field B at energy ω, and H is the (first quantized) full
single-particle Hamiltonian H under magnetic field in the real space (under the position basis |r, α〉). For example,
for continuum models H is as defined in Eq. (34), while for tight-binding models H is as given in Eq. (79) embedded
into the continuum space by the infinitely localized Wannier orbital assumption (77). The coefficient σxy corresponds
to a Hall response jx = −σxydAy/dt = σxyEy, where Ey = −dAy/dt is the uniform electric field in the y direction.

We denote the Bloch eigenstates of H in the n-th band as |ψn,k〉 satisfying

H|ψn,k〉 = εn,k|ψn,k〉 , (111)

where the magnetic BZ quasimomentum k is defined by Eq. (105) using the magnetic translation symmetry operators

T̃qd1 = e−iq`
−2(ẑ×R)·d1 and T̃d2 = e−i`

−2(ẑ×R)·d2 , and εn,k is the energy of Bloch state |ψn,k〉. Since H is diagonal in
the magnetic BZ quasimomentum k, the Green’s function (in the magnetic field B) is also diagonal in k, and can be
written as

Gω =
∑
n,k

|ψn,k〉〈ψn,k|
ω − εn,k

. (112)

We comment that under the continuum space basis |λ,Qα, n, α〉 in Eq. (40) employed by our Hofstadter method, the

Bloch state |ψn,k〉 does not live in a definite λ sector. This is can be seen by noting that |ψn,k〉 is the eigenstate of T̃qd1

and T̃d2 , while we have T̃qd1Rτ̂ T̃
†
qd1

= Rτ̂+qτ̂ ·d1 = Rτ̂−p`2τ̂ ·(ẑ×g2) and T̃d2Rτ̂ T̃
†
d2

= Rτ̂+τ̂ ·d2 = Rτ̂+ p
q `

2τ̂ ·(ẑ×g1).

Since the quantum number λ ∈ Λτ̂ = R/[`2τ̂ · (ẑ × g1)Z + `2τ̂ · (ẑ × g2)Z] as defined in Eq. (43), we find that the

action of T̃qd1
preserves the coset of λ, while T̃d2

maps the sector of coset λ to the sector of coset λ+ p
q `

2τ̂ · (ẑ × g1).

Therefore, each Bloch state |ψn,k〉 must be the superposition of the degenerate eigenstates in multiple of q sectors
labeled by quantum numbers λ + mp

q `
2τ̂ · (ẑ × g1) (λ belongs to a certain set, and m = 0, · · · , q − 1). However,

the wavefunction coefficients under the basis |λ,Qα, n, α〉 will be complicated, since the basis state |λ,Qα, n, α〉 with
definite quantum numbers λ,Qα, n is not translationally invariant.

For any state preserving the translation symmetry, the expectation value of the current operator ĵ satisfies (recall
we have set charge e = 1)

〈ĵ〉 = 〈dr

dt
〉 = −i〈[r, H]〉 . (113)
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The uniform current operator ĵ preserves the translation symmetry and is thus diagonal in magnetic BZ quasimo-

mentum k. In contrast, the position operator r does not commute with translation symmetry operators T̃qd1
and T̃d2

,
thus r is not fully diagonal in magnetic BZ quasimomentum k, and accordingly [r, H] is not fully diagonal in k (see

Ref. [31]). Therefore, Eq. (113) shows that the current operator ĵ is given by the part of −i[r, H] that is diagonal in
magnetic BZ quasimomentum k, namely,

ĵ =
∑
m,n,k

ĵmk,nk|ψm,k〉〈ψn,k| , ĵmk,nk = −i〈ψm,k|[r, H]|ψn,k〉 . (114)

For a given magnetic BZ quasimomentum k (within the magnetic BZ spanned by vector g1/q and g2), we can define

a reduced magnetic BZ momentum space Hamiltonian Ĥ(k) (we label it by a hat, since it is distinguished from the
full Hamiltonian H in field in Eq. (34) for continuum models or in Eq. (79) for tight-binding models):

Ĥ(k) = P0(e−ik·rHeik·r)P0 , P0 =
q

NΩ

∑
j1,j2∈Z

T̃qj1d1+j2d2
, (115)

where k is understood as a parameter, r is the position operator (understood as
∑
α

∫
r|r, α〉〈r, α|d2r when expanded

in position basis, with α being the orbital), P0 is the projection operator into the magnetic translationally invariant

subspace, T̃d = e−i`
−2(ẑ×R)·d is the translation operator of displacement d by the guiding center operator R as

defined in Eq. (103), and NΩ is the number of zero-magnetic-field unit cells (there are NΩ/q magnetic unit cells
at magnetic flux per unit cell ϕ = 2πp/q). Note that any state with a nonzero momentum k 6= 0 in the magnetic

BZ, for which the translation operator T̃qj1d1+j2d2 has an eigenvalue ei(qj1d1+j2d2)·k, will be annihilated by P0 (since∑
j1,j2

ei(qj1d1+j2d2)·k = NΩ

q δk,0). Thus, unlike the full Hamiltonian H in the real space which has a large Hilbert space

dimension equal to the number of bands times the number of k in the magnetic BZ, the reduced Hamiltonian Ĥ(k)
is defined at a fixed k and has a smaller Hilbert dimension equal to the number of bands, which can be understood
as the full Hamiltonian H projected into the sub-Hilbert space at magnetic BZ momentum k. An explicit example of
Ĥ(k) for a tight-binding model is given in Eqs. (158) and (159), where one can see Ĥ(k) is simply the magnetic BZ

momentum space Hamiltonian under the Fourier transformed basis of the Wannier orbitals. The Hamiltonian Ĥ(k)
has eigenstates

|un,k〉 =
∑
α

∫
d2re−ik·r|r, α〉〈r, α|ψn,k〉 , Ĥ(k)|un,k〉 = εn,k|un,k〉 , (116)

where n runs over all the bands in the magnetic BZ. Note that the state |un,k〉 has is magnetically translationally

invariant, namely, T̃qd1
|un,k〉 = T̃d2

|un,k〉 = |un,k〉. Therefore, P0|un,k〉 = |un,k〉, and |un,k〉 can be understood as

the periodic part of the Bloch wave function |ψn,k〉. In particular, from the definition of Ĥ(k) in Eq. (115) and the

definition of current operator ĵ in Eq. (114), we have (calculated by inserting the position basis)

〈ψm,k|ĵ|ψn,k〉 = −i
∑
α,α′

∫
d2rd2r′〈ψm,k|r, α〉〈r, α|(rH −Hr′)|r′, α′〉〈r′, α′|ψn,k〉

=− i
∑
α,α′

∫
d2rd2r′〈um,k|r, α〉〈r, α|e−ik·r(rH −Hr′)eik·r

′
|r′, α′〉〈r′, α′|un,k〉

=〈um,k|
∂

∂k

(
P0

∫
d2rd2r′|r, α〉〈r, α|e−ik·rHeik·r

′
|r′, α′〉〈r′, α′|P0

)
|un,k〉

=〈um,k|
∂Ĥ(k)

∂k
|un,k〉 ,

(117)

where we have used the first equation in (116) and the fact that P0|un,k〉 = |un,k〉. Therefore, by carrying out the ω′

integral in Eq. (110), we arrive at

σxy = i
e2

~
∑
n,m

∫
MBZ

d2k

4π2

nF (εn,k)− nF (εm,k)

(εm,k − εn,k)2
〈ψn,k|ĵx|ψm,k〉〈ψm,k|ĵy|ψn,k〉

= i
e2

~
∑
n,m

∫
MBZ

d2k

4π2

nF (εn,k)− nF (εm,k)

(εm,k − εn,k)2
〈un,k|

∂Ĥ(k)

∂kx
|um,k〉〈um,k|

∂Ĥ(k)

∂ky
|un,k〉

= i
e2

~
∑

n∈occ,m 6∈occ

∫
MBZ

d2k

4π2

〈un,k|∂Ĥ(k)
∂kx
|um,k〉〈um,k|∂Ĥ(k)

∂ky
|un,k〉 − 〈un,k|∂Ĥ(k)

∂ky
|um,k〉〈um,k|∂Ĥ(k)

∂kx
|un,k〉

(εm,k − εn,k)2
,

(118)
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where the integral of k runs over one magnetic BZ (MBZ), nF (ε) = 1−sgn(ε)
2 is the zero temperature Fermi-Dirac

distribution function, n ∈ occ means n runs over all the occupied bands, and m 6∈ occ means m runs over all the
empty bands. Since we are in a Hofstadter gap, nF (εn,k) only depends on the band index n. Then, using the fact
that

〈um,k|
∂Ĥ(k)

∂ki
|un,k〉 = ∂ki(〈um,k|Ĥ(k)|un,k〉)− 〈∂kium,k|Ĥ(k)|un,k〉 − 〈um,k|Ĥ(k)|∂kiun,k〉

= 0− εn,k〈∂kium,k|un,k〉 − εm,k〈um,k|∂kiun,k〉 = (εn,k − εm,k)〈um,k|∂kiun,k〉 = (εm,k − εn,k)〈∂kium,k|un,k〉 ,
(119)

we can rewrite the Hall conductance as the TKNN formula [10]

σxy = i
e2

~
∑
n∈occ

∑
m6∈occ

∫
MBZ

d2k

4π2

(
〈∂kxun,k|um,k〉〈um,k|∂kyun,k〉 − 〈∂kyun,k|um,k〉〈um,k|∂kxun,k〉

)
= i

e2

~
∑
n∈occ

∑
m

∫
MBZ

d2k

4π2

(
〈∂kxun,k|um,k〉〈um,k|∂kyun,k〉 − 〈∂kyun,k|um,k〉〈um,k|∂kxun,k〉

)
= i

e2

~
∑
n∈occ

∫
MBZ

d2k

4π2

(
〈∂kxun,k|∂kyun,k〉 − 〈∂kyun,k|∂kxun,k〉

)
=
e2

~
∑
n∈occ

∫
MBZ

d2k

4π2
Fnxy(k) = tν

e2

h
,

(120)

where we have used the fact that tν in the Streda formula (Eq. (109)) is the total Chern number of occupied bands,∑
m |um,k〉〈um,k| is the identity matrix for the hatted Hamiltonian Ĥ(k) at magnetic BZ quasimomentum k, and

Fnxy(k) is the Berry curvature of the n-th band. The corresponding U(1) Berry gauge field is

An(k) = i〈un,k|∂kun,k〉 , Fnxy(k) = ∂xAny (k)− ∂yAnx(k) . (121)

B. Quantized Lorentz susceptibility from the Kubo formula

We now try to find a quantity that can be viewed as the momentum space dual of the Hall conductance. The Hall
conductance gives a current density jx = ∂H/∂kx in response to a uniform electric field Ey = dky/dt where k is the
canonical momentum. Therefore, a natural dual response can be defined by exchanging the roles of the real space
position r and the momentum k. Such a position-momentum dual response (dual to the Hall conductance response)
corresponds to a force density (force per unit cell) Fx = −∂H/∂x acting on the lattice in response to a position
pumping, i.e., velocity vy = dy/dt of the system, which is nothing but the Lorentz force. Therefore, we name the
coefficient γxy in the response

Fx = γxyvy (122)

as the Lorentz susceptibility.
We first identify the spatially uniform force operator F̂ representing the Lorentz force felt by the electrons as the

lattice moves rigidly. Recall that an electron in a magnetic field is centered at the guiding center R. In a translationally
invariant state, if the guiding centers R of the electrons drift at velocity 〈dR

dt 〉, the electrons will feel a Lorentz force

〈F̂ 〉 = Bẑ× 〈dR

dt
〉 = −iBẑ× 〈[R, H]〉 = −i〈[Π, H]〉 − iBẑ× 〈[r, H]〉 , (123)

where in the last equality we have used the definition of guiding center R = r − `2ẑ ×Π. For adiabatic processes,
the electrons are in equilibrium, so the Lorentz force 〈F̂ 〉 the electrons felt has to be balanced by a force −〈F̂ 〉 the

lattice exerts on the electrons. According to Newton’s third law, the electrons will then exert a force 〈F̂ 〉 on the

lattice. Therefore, experimentally one could measure the force felt by the lattice to find the Lorentz force 〈F̂ 〉 felt by
the electrons.

Since the force operator F̂ is spatially uniform and preserves the translation symmetry, it is diagonal in magnetic BZ
quasimomentum k. On the right hand side of Eq. (123), the operator [Π, H] is readily diagonal in magnetic BZ quasi-

momentum k, since Π and hence H both commute with the translation symmetry operators T̃qd1
= e−iq`

−2(ẑ×R)·d1
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and T̃d2
= e−i`

−2(ẑ×R)·d2 . The other operator [r, H] is not diagonal in k (Ref. [31]), but its diagonal part is simply

the current operator ĵ as we discussed in Sec. VIA. Therefore, we conclude the force operator is given by

F̂ = −i[Π, H] +Bẑ× ĵ , (124)

which is diagonal in magnetic BZ quasimomentum k. Note that here H is the full Hamiltonian defined in Eq. (34)
for continuum models or in Eq. (79) for tight-binding models (embedded in the continuum space).

In particular, if there is no periodic lattice potential for the electrons at all, H will be solely a function of Π (i.e.,

the kinetic term of electrons in the free space), and one will have 〈F̂ 〉 = −iBẑ × 〈[R, H]〉 ≡ 0 since [R,Π] = 0.
Physically, this is because without a lattice potential, the electrons cannot feel a force in respond to the movement of
the lattice and thus cannot exert a force on the lattice.

Similar to σxy which is given by the Kubo formula of the spatially uniform current operator ĵ, we can define the

Lorentz susceptibility in Eq. (122) by the Kubo formula of the spatially uniform force operator F̂ as

γxy = −i ∂
∂ω

∫ ∞
−∞

dω′〈Gω+ω′ F̂xGω′ F̂y〉 , (125)

where Gω is the Green’s function defined in Eq. (112).
In the below, we first calculate the quantized value of the Lorentz susceptibility in Sec. VI B 1, and then derive a

dual formula for the Lorentz susceptibility analogous to the TKNN formula for Hall conductance in Sec. VI B 2.

1. Calculation of the Lorentz susceptibility from the Diophantine equation

By the expression of F̂ in Eq. (124), we can rewrite the Lorentz susceptibility defined in Eq. (125) as

γxy =− ieΩ
∑

n∈occ,m 6∈occ

∫
MBZ

d2k

4π2

1

(εm,k − εn,k)2

[
〈ψn,k|F̂x|ψm,k〉〈ψm,k|F̂y|ψn,k〉 − (x↔ y)

]
=− ieΩ

∑
n∈occ,m 6∈occ

1

(εm,k − εn,k)2

∫
MBZ

d2k

4π2

[
−B2

(
〈ψn,k|ĵy|ψm,k〉〈ψm,k|ĵx|ψn,k〉 − (x↔ y)

)
− iB

(
〈ψn,k|[Πx, H]|ψm,k〉〈ψm,k|ĵx|ψn,k〉 − 〈ψn,k|ĵx|ψm,k〉〈ψm,k|[Πx, H]|ψn,k〉

− 〈ψn,k|[Πy, H]|ψm,k〉〈ψm,k|ĵy|ψn,k〉+ 〈ψn,k|ĵy|ψm,k〉〈ψm,k|[Πy, H]|ψn,k〉
)

− 〈ψn,k|[Πx, H]|ψm,k〉〈ψm,k|[Πy, H]|ψn,k〉+ 〈ψn,k|[Πx, H]|ψm,k〉〈ψm,k|[Πy, H]|ψn,k〉
]
,

(126)

where the integral of k runs over one magnetic BZ (MBZ). Note that so far everything is expressed in the eigenbasis

|ψm,k〉 of the full Hamiltonian H. The first two terms of correlations of ĵx and ĵy in Eq. (126) simply yield the Berry
curvature, which can be calculated by transforming from the eigenbasis |ψm,k〉 of the full Hamiltonian H into the

reduced basis |um,k〉 of the reduced magnetic BZ momentum space Hamiltonian Ĥ(k) as we have shown in Sec. VIA.
We now examine the remaining terms of Eq. (126) (which can be calculated simply in the eigenbasis |ψm,k〉 of the

full Hamiltonian H). Since [Π, H] is diagonal in k, and ĵ is the part of operator −i[r, H] that is diagonal in k, we

can rewrite the terms of correlations of [Πx, H] and ĵx as∑
n∈occ,m6∈occ

〈ψn,k|[Πx, H]|ψm,k〉〈ψm,k|ĵx|ψn,k〉
(εm,k − εn,k)2

−
(

[Πx, H]↔ ĵx

)
=
∑
n∈occ

∑
m6∈occ,k′

〈ψn,k|[Πx, H]|ψm,k′〉〈ψm,k′ |(−i[x,H])|ψn,k〉
(εm,k′ − εn,k)2

−
(

[Πx, H]↔ −i[x,H]
)

=
∑
n∈occ

∑
m6∈occ,k′

i(εm,k′ − εn,k)2〈ψn,k|Πx|ψm,k′〉〈ψm,k′ |x|ψn,k〉
(εm,k′ − εn,k)2

−
(

Πx ↔ x
)

=
∑
n∈occ

∑
m,k′

i〈ψn,k|Πx|ψm,k′〉〈ψm,k′ |x|ψn,k〉 −
(

Πx ↔ x
)

=
∑
n∈occ

i〈ψn,k|[Πx, x]|ψn,k〉 ,

(127)



30

where we have used the fact that
∑
m,k′ |ψm,k′〉〈ψm,k′ | is identity for the entire Hilbert space. A similar equality holds

for the terms of correlations of [Πy, H] and ĵy. Lastly, by the same derivation technique, we have∑
n∈occ,m 6∈occ

〈ψn,k|[Πx, H]|ψm,k〉〈ψm,k|[Πy, H]|ψn,k〉
(εm,k − εn,k)2

= −
∑
n∈occ

〈ψn,k|[Πx,Πy]|ψn,k〉 . (128)

Therefore, we can rewrite Eq. (126) as

γxy =eΩ
∑
n∈occ

∫
MBZ

d2k

4π2

(
−B2Fnxy(k)− iB〈ψn,k|[Πx, x]|ψn,k〉+ iB〈ψn,k|[Πy, y]|ψn,k〉 − i〈ψn,k|[Πx,Πy]|ψn,k〉

)
=eΩ

∑
n∈occ

∫
MBZ

d2k

4π2

(
−B2Fnxy(k) +B

)
= eB

(
ρ− tν

ϕ

2π

)
= eBsν ,

(129)

where we have used commutation relations [Πx, x] = [Πy, y] = −i, [Πx,Πy] = i`−2 = iB, and the Diophantine equation
rewritten in the form of Eq. (109). As we discussed in both the main text and the supplementary Sec. V, ρ = ν/q is
the number of electrons per zero-magnetic-field unit cell. This proves that the Lorentz susceptibility is quantized in
terms of sν , and corresponds to a Lorentz force per original (zero field) unit cell

Fx = γxyvy = eBsνvy . (130)

2. A formula for Lorentz susceptibility similar to the TKNN formula for Hall conductance

In Eq. (117), we know the matrix elements of the spatially uniform current operator ĵ can be calculated by ∂Ĥ(k)
∂k ,

where Ĥ(k) is the reduced Hamiltonian defined in Eq. (115). Here for the force operator F̂ , we can find a similar
expression as follows. First, we define another reduced Hamiltonian

ˆ̃
H(d) = P0(T̃−dHT̃d)P0 = P0(ei`

−2(ẑ×R)·dHe−i`
−2(ẑ×R)·d)P0 , P0 =

q

NΩ

∑
j1,j2∈Z

T̃qj1d1+j2d2 , (131)

where T̃d = T̃ †−d = e−i`
−2(ẑ×R)·d (similar to eik·r) is the translation operator generated by guiding center R, and P0

is still the projection operator into the magnetic translationally invariant subspace as defined in Eq. (115). Using the
Bloch eigenstates |ψn,k〉 of the full Hamiltonian H, we can define a set of states

|wn,d〉 = T̃−d|ψn,`−2ẑ×d〉 = ei`
−2(ẑ×R)·d|ψn,`−2ẑ×d〉 , (132)

where |ψn,`−2ẑ×d〉 is the Bloch wave function at momentum k = `−2ẑ× d. More discussions and an explicit example

of the Hamiltonian
ˆ̃
H(d) and wavefunction |wn,d〉 are given in Sec. VI C. Making use of the fact that T̃dT̃d′ =

e−i`
−2ẑ·(d×d′)T̃d′ T̃d = e−i`

−2ẑ·(d×d′)/2T̃d+d′ (since [Rx, Ry] = −i`2), we have

T̃qd1
|wn,d〉 = T̃qd1

T̃−d|ψn,`−2ẑ×d〉 = ei`
−2ẑ·(qd1×d)T̃−dT̃qd1

|ψn,`−2ẑ×d〉

= e−iqd1·(`−2ẑ×d)T̃−de
iqd1·(`−2ẑ×d)|ψn,`−2ẑ×d〉 = |wn,d〉 ,

T̃d2 |wn,d〉 = T̃d2 T̃−d|ψn,`−2ẑ×d〉 = ei`
−2ẑ·(d2×d)T̃−dT̃d2 |ψn,`−2ẑ×d〉

= e−id2·(`−2ẑ×d)T̃−de
id2·(`−2ẑ×d)|ψn,`−2ẑ×d〉 = |wn,d〉 ,

(133)

where we have used the definition of Bloch momentum in Eq. (105). Therefore, we find the states |wn,d〉 are
translationally invariant, namely,

P0|wn,d〉 = |wn,d〉 . (134)

It is then easy to see that the eigenstates of the reduced Hamiltonian
ˆ̃
H(d) are given by |wn,d〉, namely,

ˆ̃
H(d)|wn,d〉 = P0T̃−dHT̃d|wn,d〉 = P0T̃−dH|ψn,`−2ẑ×d〉

=P0T̃−dεn,`−2ẑ×d|ψn,`−2ẑ×d〉 = εn,`−2ẑ×d|wn,`−2ẑ×d〉 ,
(135)
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where εn,`−2ẑ×d are the eigenenergies at momentum k = `−2ẑ× d. In particular, we can further prove that the force
operator satisfies (recall Eq. (123))

〈ψn,`−2ẑ×d|F̂ |ψn,`−2ẑ×d〉 = −i〈ψn,`−2ẑ×d|B[ẑ×R, H]|ψn,`−2ẑ×d〉

= −i〈wn,d|`−2ei`
−2(ẑ×R)·d[ẑ×R, H]e−i`

−2(ẑ×R)·d|wn,d〉

= −〈wn,d|
∂

∂d

(
P0e

i`−2(ẑ×R)·dHe−i`
−2(ẑ×R)·dP0

)
|wn,d〉

= −〈wn,d|
∂

ˆ̃
H(d)

∂d
|wn,d〉.

(136)

Eq. (136) is then the dual analog to Eq. (117) (see Sec. VI C for an explicit example).
We then consider the periodicity of the wave function |wn,d〉 in the space of parameter d. We first note that by the

definition of the projection operator P0 in Eq. (131), one has

P0T̃d2/p =
q

NΩ
T̃d2/p

∑
j1,j2∈Z

e−i`
−2ẑ·[(qj1d1+j2d2)×(d2/p)]T̃qj1d1+j2d2 = T̃d2/pP0 , (137)

where we have used the fact that `−2ẑ · (d1 × d2) = 2πp/q. Therefore, we find

ˆ̃
H(d+ d2/p) = P0(T̃−d−d2/pHT̃d+d2/p)P0 = P0T̃−d2/pT̃−dHT̃dT̃d2/pP0 = T̃−d2/p(P0T̃−dHT̃dP0)T̃d2/p

= T̃−d2/p
ˆ̃
H(d)T̃d2/p ,

(138)

namely, the reduced Hamiltonian
ˆ̃
H(d) and

ˆ̃
H(d + d2/p) differ by a d-independent unitary transformation T̃d2/p.

Moreover, the lattice translation symmetry tells us that

ˆ̃
H(d+ d1) = P0(T̃−d−d1

HT̃d+d1
)P0 = P0T̃−dT̃−d1

HT̃d1
T̃dP0 = P0T̃−dHT̃dP0 =

ˆ̃
H(d), (139)

where we have used the fact that the full Hamiltonian satisfies [T̃d1
, H] = 0 (translational symmetry), as given in Eq.

(103). Therefore, we conclude that the eigenstates of
ˆ̃
H(d) satisfies

|wn,d+d2/p〉 = eiϕ2(d)T̃−d2/p|wn,d〉 , |wn,d+d1
〉 = eiϕ1(d)|wn,d〉 , (140)

where ϕi(d) are some d-dependent phases. This effectively defines a dual ”Brillouin zone” ΩM in the d space with

periods d1 and d2/p (which is a torus). The unitary transformation T̃−d2/p serves as an embedding matrix for mapping
state |wn,d〉 to |wn,d+d2/p〉. Note that ΩM is simple 1/p fraction of the zero magnetic field unit cell. Furthermore,
this allows us to define a U(1) Berry gauge field and its field strength for band n on the dual ”Brillouin zone” Ωm
(which is a closed manifold):

ãn(d) = −i〈wn,d|∂dwn,d〉 , f̃nxy(d) = ∂xã
n
y (d)− ∂yãnx(d) . (141)

In the following, we will show that the Lorentz susceptibility is given by a formula similar to the TKNN formula [10],
but with the usual Berry gauge field in Eq. (121) replaced by the new gauge field we defined in Eq. (141).

We first note that the Lorentz susceptibility in Eq. (126) can be re-expressed in the d space (by variable substitution
k = `−2ẑ× d) as

γxy = −ieΩ
∑

n∈occ,m 6∈occ

∫
MBZ

d2k

4π2

1

(εm,k − εn,k)2

[
〈ψn,k|F̂x|ψm,k〉〈ψm,k|F̂y|ψn,k〉 − (x↔ y)

]

=− ieBp
2πq

∑
n∈occ,m 6∈occ

∫
d∈M{qd1/p,d2/p}

d2d

[
〈ψn,`−2ẑ×d|F̂x|ψm,`−2ẑ×d〉〈ψm,`−2ẑ×d|F̂y|ψn,`−2ẑ×d〉 − (x↔ y)

]
(εm,`−2ẑ×d − εn,`−2ẑ×d)2

,

(142)

where Ω is the zero magnetic field unit cell area, MBZ stands for the magnetic BZ spanned by g1/q and g2, and
M{qd1/p,d2/p} denotes a torus with periods qd1/p and d2/p, which is nothing but the MBZ rotated by π/2 and size

scaled by a factor `2 (this can be seen by noting that d2 = Ω
2π ẑ× g1, and d1 = − Ω

2π ẑ× g2, and BΩ = `−2Ω = 2πp/q).
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Then, by Eq. (107) we know that T̃d1
|ψn,k〉 is the same as |ψn,k−pg2/q〉 up to a phase factor. Since p and q are

coprime, there exists an integer j so that jp ≡ −1(mod q), and thus T̃jd1
|ψn,k〉 = eiαk |ψn,k+jpg2/q〉 = eiα

′
k |ψn,k−g2/q〉 =

eiα
′
k |ψn,k+`−2ẑ×d1/p〉, where αk and α′k are some phase factors. Making use of the fact that [F̂ , T̃d1

] = 0 (translationally
invariant), we then have

〈ψn,`−2ẑ×d|F̂ |ψm,`−2ẑ×d〉 = 〈ψn,`−2ẑ×d|T̃−jd1
F̂ T̃jd1

|ψm,`−2ẑ×d〉 = 〈ψn,`−2ẑ×(d+d1/p)|F̂ |ψm,`−2ẑ×(d+d1/p)〉 , (143)

namely, the quantity 〈ψn,`−2ẑ×d|F̂ |ψm,`−2ẑ×d〉 invariant under displacement d → d + d1/p. Therefore, the integral
in region M{qd1/p,d2/p} in Eq. (142) is equal to the same integral in a region M{d1,d2/p} times a global factor q/p.
Note that region M{d1,d2/p} is nothing but the torus dual ”Brillouin zone” ΩM on which we defined the U(1) Berry
gauge field in Eq. (141). We can then rewrite the Lorentz susceptibility in Eq. (142) as

γxy =− ieB
2π

∑
n∈occ,m 6∈occ

∫
d∈ΩM

d2d

[
〈ψn,`−2ẑ×d|F̂x|ψm,`−2ẑ×d〉〈ψm,`−2ẑ×d|F̂y|ψn,`−2ẑ×d〉 − (x↔ y)

]
(εm,`−2ẑ×d − εn,`−2ẑ×d)2

=− ieB
2π

∑
n∈occ,m 6∈occ

∫
d∈ΩM

d2d

[
〈ψn,`−2ẑ×d|∂

ˆ̃
H(d)
∂dx
|ψm,`−2ẑ×d〉〈ψm,`−2ẑ×d|∂

ˆ̃
H(d)
∂dy
|ψn,`−2ẑ×d〉 − (x↔ y)

]
(εm,`−2ẑ×d − εn,`−2ẑ×d)2

,

(144)

where we have used Eq. (136). Then, by noting that

〈wm,d|
∂

ˆ̃
H(d)

∂di
|wn,d〉 = ∂di(〈wm,d|

ˆ̃
H(d)|wn,d〉)− 〈∂diwm,d|

ˆ̃
H(d)|wn,d〉 − 〈wm,d|

ˆ̃
H(d)|∂diwn,d〉

= 0− εn,`−2ẑ×d〈∂diwm,d|wn,d〉 − εm,`−2ẑ×d〈wm,d|∂diwn,d〉
= (εn,`−2ẑ×d − εm,`−2ẑ×d)〈wm,d|∂diwn,d〉 = (εm,`−2ẑ×d − εn,`−2ẑ×d)〈∂kiwm,d|wn,d〉 ,

(145)

we can then derive the following:

γxy =− ieB
2π

∑
n∈occ,m6∈occ

∫
d∈ΩM

d2d
(
〈∂dxwn,d|wm,d〉〈wm,d|∂dywn,d〉 − 〈∂dywn,d|wm,d〉〈wm,d|∂kxwn,d〉

)
=− ieB

2π

∑
n∈occ,m

∫
d∈ΩM

d2d
(
〈∂dxwn,d|wm,d〉〈wm,d|∂dywn,d〉 − 〈∂dywn,d|wm,d〉〈wm,d|∂dxwn,d〉

)
=− ieB

2π

∑
n∈occ

∫
d∈ΩM

d2d
(
〈∂dxwn,d|∂dywn,d〉 − 〈∂dywn,d|∂dxwn,d〉

)
=eB

∑
n∈occ

∫
d∈ΩM

d2d

2π
f̃nxy(d) ,

(146)

where f̃nxy(d) is the new Berry curvature in the d space we defined in Eq. (141). This is then a dual analogy to the
TKNN formula. In particular, our results for γxy in Sec. VI B 1 implies∑

n∈occ

∫
d∈ΩM

d2d

2π
f̃nxy(d) = sν . (147)

Therefore, sν can be viewed as a dual Chern number, where the integral is within a torus “dual magnetic Brillouin
zone” ΩM with periods d1 and d2/p.

— Eq. (147) can also be proved by the gauge choices of the Bloch wave functions in Eqs. (106) and (107) (which we
employed to prove the Diophantine equation), namely, one can fix |ψn,k+g1/q〉 = |ψn,k〉, |ψn,k+g2

〉 = e−iσqd1·k|ψn,k〉
and T̃d1

|ψn,k〉 = eimqd1·k|ψn,k+pg2/q〉 for a Hofstadter band n between the (ν − 1)-th gap and the ν-th gap, where
σ = tν − tν−1 and m = sν − sν−1. Then by Eq. (132), we find

|wn,d+d2/p〉 = T̃−d−d2/p|ψn,`−2ẑ×(d+d2/p)〉 = ei`
−2ẑ·(d2×d)/2pT̃−d2/pT̃−d|ψn,`−2ẑ×d−g1/q〉

=ei`
−2ẑ·(d2×d)/2pT̃−d2/pT̃−d|ψn,`−2ẑ×d〉 = ei`

−2ẑ·(d2×d)/2pT̃−d2/p|wn,d〉 ,

|wn,d+d1〉 = T̃−d−d1 |ψn,`−2ẑ×(d+d1)〉 = e−i`
−2ẑ·(d1×d)/2T̃−dT̃−d1 |ψn,`−2ẑ×d+pg2/q〉

=e−i`
−2ẑ·(d1×d)/2−imqd1·(`−2ẑ×d)T̃−d|ψn,`−2ẑ×d〉 = e−i`

−2ẑ·(d1×d)/2+imq`−2ẑ·(d1×d)|wn,d〉 .

(148)
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Therefore, for band n between the (ν − 1)-th gap and the ν-th gap, we find the dual Berry gauge field in Eq. (141)
satisfies ∫

d∈ΩM

d2d

2π
f̃nxy(d) =

1

2π

∮
∂ΩM

ãn(d) · dd

=
1

2π
[mq`−2ẑ · (d1 × d2/p)− `−2ẑ · (d1 × d2/p)/2 + `−2ẑ · (d1 × d2)/2p] =

mq

2πp
`−2Ω

= m = sν − sν−1 .

(149)

Summing over all occupied bands then proves Eq. (147).

C. Relation between the dual wave functions, and a model example

This subsection is devoted for a better understanding of the relation between the two wave functions |un,k〉 defined
in Eq. (116) and |wn,d〉 defined in Eq. (132). To do this, we examine their form in the real space basis |r〉. If we
denote the Bloch wave function of momentum k as |ψn,k〉, by the definition of the periodic wavefunction |un,k〉 in Eq.
(116), we have

ψn,k(r) = 〈r|ψn,k〉 , un,k(r) = 〈r|un,k〉 = e−ik·rψn,k(r) . (150)

To find the real space wave function of |wn,d〉 = T̃−d|ψn,`−2ẑ×d〉 as defined in Eq. (132), we first note that

T̃d|r〉 = e−i`
−2(ẑ×R)·d|r〉 = e−i`

−2(ẑ×r)·d−iΠ·d|r〉 = ei
∫ r+d
r

[A(r′)−`−2ẑ×r′]·dr′ |r + d〉

= ei`
−2(ẑ×d)·(r+d)ei

∫ r+d
r

A(r′)·dr′ |r + d〉 ,
(151)

which can be seen by following a derivation similar to Eq. (92), where the integral on the exponent is along the
straight line segment from r to r + d. Therefore, we find

wn,d(r) = 〈r|wn,d〉 = 〈r|T̃−d|ψn,`−2ẑ×d〉 = e−i`
−2(ẑ×d)·(r+d)e−i

∫ r+d
r

A(r′)·dr′〈r + d|ψn,`−2ẑ×d〉

= e−i
∫ r+d
r

A(r′)·dr′un,`−2ẑ×d(r + d) .
(152)

This is the explicit form of the wave function wn,d(r).
Without going into the real space position basis, we can also derive that (here r below denotes the position operator)

|wn,d〉 = T̃−d|ψn,`−2ẑ×d〉 = ei`
−2(ẑ×R)·dei`

−2(ẑ×d)·r|un,`−2ẑ×d〉 = eiΠ·d|un,`−2ẑ×d〉 , (153)

where we have used the fact that [(ẑ×R) ·d, (ẑ× r) ·d] = 0, and R− r = −`2ẑ×Π. By this relation, the dual Berry

curvature f̃nxy(d) defined in Eq. (141) can be explicitly related to the Berry curvature Fnxy(k) in Eq. (121). We have

|∂diwn,d〉 = (∂die
iΠ·d)|un,`−2ẑ×d〉+ eiΠ·d|∂diun,`−2ẑ×d〉 = eiΠ·d[i(Πi + εijdj/2)|un,`−2ẑ×d〉+ |∂diun,`−2ẑ×d〉] , (154)

where εji (i, j = x, y) is the Levi-Civita tensor (εxy = −εyx = 1). Therefore, we find the dual Berry curvature

f̃nxy(d) = −i〈∂dxwn,d|∂dywn,d〉+ i〈∂dywn,d|∂dxwn,d〉
= −i〈un,`−2ẑ×d|[Πx,Πy]|un,`−2ẑ×d〉 − i〈∂dxun,`−2ẑ×d|∂dyun,`−2ẑ×d〉+ i〈∂dyun,`−2ẑ×d|∂dxun,`−2ẑ×d〉
− 〈∂dyun,`−2ẑ×d|Πx|un,`−2ẑ×d〉 − 〈un,`−2ẑ×d|Πx|∂dyun,`−2ẑ×d〉
+ 〈∂dxun,`−2ẑ×d|Πy|un,`−2ẑ×d〉+ 〈un,`−2ẑ×d|Πy|∂dxun,`−2ẑ×d〉

= `−2 − `−4Fnxy(`−2ẑ× d) + ∂dx(〈un,`−2ẑ×d|Πy|un,`−2ẑ×d〉)− ∂dy (〈un,`−2ẑ×d|Πx|un,`−2ẑ×d〉)
= B −B2Fnxy(`−2ẑ× d) + ∂dx(〈wn,d|Πy|wn,d〉)− ∂dy (〈wn,d|Πx|wn,d〉) .

(155)

This gives the relationship between the dual Berry curvature f̃nxy(d) and the Berry curvature Fnxy(k). In particular, we
note that the two terms ∂dx(〈wn,d|Πy|wn,d〉)− ∂dy (〈wn,d|Πx|wn,d〉) in the last line of Eq. (155) are total derivatives
which do not contribute to the dual Chern number sν , since 〈wn,d|Πi|wn,d〉 are well-defined periodic functions (physical
quantities) in the dual Brillouin zone ΩM spanned by d1 and d2/p.
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1. An example

For simplicity, we consider a single-orbital tight-binding model on a square lattice with a magnetic flux per unit
cell ϕ = 2π/3. Assume the lattice vectors are d1 = (1, 0) and d2 = (0, 1), and the Wannier orbitals |Dn1,n2〉 are delta
functions at lattice sites Dn1,n2 = (n1, n2) ∈ d1Z + d2Z in the continuous space. At zero magnetic field, we assume
all the nearest bonds have hopping −t (with t being a real number), while all the longer range hoppings are zero.
We then add a uniform magnetic field B = 2πp/q = 4π/3 (so that the flux ϕ = B|d1 × d2| = 4π/3), and we adopt
the Landau gauge A(r) = (0, Bx). This correspond to p = 2 and q = 3. Accordingly, the magnetic length ` satisfies
`−2 = 4π/3.

The tight-binding Hamiltonian in magnetic field B can then be written as

H = −t
∑

n1,n2∈Z

(
|Dn1+1,n2〉〈Dn1,n2 |+ ei4πn1/3|Dn1,n2+1〉〈Dn1,n2 |+ h.c.

)
. (156)

Therefore, we have

e−ik·rHeik·r = −t
∑

n1,n2∈Z

(
e−ikx |Dn1+1,n2

〉〈Dn1,n2
|+ e−iky+i4πn1/3|Dn1,n2+1〉〈Dn1,n2

|+ h.c.
)
, (157)

where r is the position operator (instead of a parameter), while k = (kx, ky) is the momentum parameter. By Eq.
(151), the projector P0 in Eq. (131) in the Hilbert space of Wannier basis |Dn1,n2

〉 can be rewritten as

P0 =
3

NΩ

∑
j1,j2∈Z

T̃3j1d1+j2d2
=

3∑
j=1

|j〉〈j| , |j〉 =

√
3

NΩ

∑
n1,n2∈Z

|D3n1+j−1,n2
〉 , (j = 1, 2, 3). (158)

The three basis |j〉 (j = 1, 2, 3) correspond exactly to the three orbitals in a magnetic unit cell. Therefore, under the

three basis |j〉, we find the reduced momentum space Hamiltonian Ĥ(k) is given by

Ĥ(k) = P0e
−ik·rHeik·rP0 = −t

 2 cos(ky) eikx e−ikx

e−ikx 2 cos(ky + 2π/3) eikx

eikx e−ikx 2 cos(ky − 2π/3)

 . (159)

This is exactly the momentum space Hamiltonian we are familiar with.

We now consider the other reduced Hamiltonian
ˆ̃
H(d). By Eq. (151), for d = (dx, dy) we have

T̃−dHT̃d = −t
∑

n1,n2∈Z

(
|Dn1+1,n2

− d〉〈Dn1,n2
− d|+ e−i4πdx/3+i4πn1/3|Dn1,n2+1 − d〉〈Dn1,n2

− d|+ h.c.
)
, (160)

where we have used A(r) = (0, Bx) in the continuous space. We note that the Hamiltonian is transformed into a
shifted Wannier basis |Dn1+1,n2 − d〉. Note that by Eq. (151), the lattice translation operators act as

T̃3d1
|Dn1,n2

− d〉 = e−i4πdy |Dn1+3,n2
− d〉 , T̃d2

|Dn1,n2
− d〉 = |Dn1,n2+1 − d〉 . (161)

Therefore, the projector P0 in the Hilbert space of Wannier basis |Dn1+1,n2 − d〉 is

P0 =
3

NΩ

∑
j1,j2∈Z

T̃3j1d1+j2d2
=

3∑
j=1

|j,d〉〈j,d| , |j,d〉 =

√
3

NΩ

∑
n1,n2∈Z

e−i4π(3n1+j)dy/3|D3n1+j−1,n2
− d〉, (162)

where j = 1, 2, 3. Under the basis |j,d〉, we find

ˆ̃
H(d) = P0T̃−dHT̃dP0 = −t

 2 cos(4πdx/3) e−i4πdy/3 ei4πdy/3

ei4πdy/3 2 cos(4πdx/3 + 2π/3) e−i4πdy/3

e−i4πdy/3 ei4πdy/3 2 cos(4πdx/3− 2π/3)

 . (163)

Therefore, under the Landau gauge, we find
ˆ̃
H(d) takes a form analogous to Ĥ(k) with k = (4π/3)ẑ×d, except that

the basis |j,d〉 is d dependent. Therefore, if the eigenstates of Ĥ(k) are |un,k〉 =
∑3
j=1 un,j(k)|j〉, the eigenstates of

ˆ̃
H(d) will be |wn,d〉 =

∑3
j=1 un,j(

4π
3 ẑ× d)|j,d〉, in agreement with Eq. (152).

The Chern numbers of the 3 bands of Ĥ(k) can be calculated to be σn = {−1, 2,−1} (from the lowest band to

the highest band). According to Eq. (155), we find the dual Chern numbers of the 3 bands of
ˆ̃
H(d) are given by

mn = 1
3 −

2
3σn = {1,−1, 1} (from the lowest band to the highest band).
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FIG. 7. An example of tight binding model on a square lattice in a magnetic field, where Landau gauge is chosen.

D. Physical understanding of the quantized Lorentz susceptibility

The quantized Lorentz susceptibility γxy = eBsν can be easily understood from the following physical picture.
Consider a lattice model in the x-y plane moving with a velocity v = vyŷ in the ẑ direction magnetic field B, and
the Fermi level is in a Hofstadter gap ν. In the rest frame of the lattice system, the magnetic field B will move with
a velocity −v = −vyŷ, which produces an electric field E = vyBx̂. This electric field then produces a Hall current

density j̃y = −σxyvyB in the rest frame of the lattice. If we go back to the laboratory frame where the system moves
with velocity v = vyŷ, we would find a total current density

jy =
eρvy

Ω
+ j̃y =

(eρ
Ω
− σxyB

)
vy ,

where ρ is the number of occupied electron per unit cell, and Ω is the unit cell area. Therefore, the Lorentz force per
unit cell is given by

Fx = jyΩB = (eρ− σxyΩB)Bvy =

(
eρ− tν

e2

h
ΩB

)
Bvy = eB

(
ρ− tν

ϕ

2π

)
vy = eBsνvy , (164)

where we have used the Diophantine equation. Therefore, we find the Lorentz susceptibility is γxy = eBsν .
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