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Abstract

We introduce a scheme for molecular simulations, the Deep Potential Molecular Dynamics

(DeePMD) method, based on a many-body potential and interatomic forces generated by a care-

fully crafted deep neural network trained with ab initio data. The neural network model preserves

all the natural symmetries in the problem. It is “first principle-based” in the sense that there are

no ad hoc components aside from the network model. We show that the proposed scheme provides

an efficient and accurate protocol in a variety of systems, including bulk materials and molecules.

In all these cases, DeePMD gives results that are essentially indistinguishable from the original

data, at a cost that scales linearly with system size.

∗Electronic address: wang˙han@iapcm.ac.cn
†Electronic address: weinan@math.princeton.edu
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Molecular dynamics (MD) is used in many disciplines, including physics, chemistry, bi-

ology, and materials science, but its accuracy depends on the model for the atomic interac-

tions. Ab initio molecular dynamics (AIMD) [1, 2] has the accuracy of density functional

theory (DFT) [3], but its computational cost limits typical applications to hundreds of

atoms and time scales of ∼100 ps. Applications requiring larger cells and longer simulations

are currently accessible only with empirical force fields (FFs) [4–6], but the accuracy and

transferability of these models is often in question.

Developing FFs is challenging due to the many-body character of the potential energy.

Expansions in 2- and 3-body interactions may capture the physics [7] but are strictly valid

only for weakly interacting systems. A large class of potentials, including the embedded

atom method (EAM) [8], the bond order potentials [9], and the reactive FFs [10], share the

physically motivated idea that the strength of a bond depends on the local environment,

but the functional form of this dependence can only be given with crude approximations.

Machine learning (ML) methodologies are changing this state of affairs [11–20]. When

trained on large datasets of atomic configurations and corresponding potential energies and

forces, ML models can reproduce the original data accurately. In training these models, the

atomic coordinates cannot be used as they appear in MD trajectories because their format

does not preserve the translational, rotational, and permutational symmetry of the system.

Different ML models address this issue in different ways. Two successful schemes are the

Behler-Parrinello neural network (BPNN) [13] and the gradient-domain machine learning

(GDML) [19]. In BPNN symmetry is preserved by mapping the coordinates onto a large

set of two- and three-body symmetry functions, which are, however, largely ad hoc. Fixing

the symmetry functions may become painstaking in systems with many atomic species.

In GDML the same goal is achieved by mapping the coordinates onto the eigenvalues of

the Coulomb matrix, whose elements are the inverse distances between all distinct pairs

of atoms. It is not straightforward how to use the Coulomb matrix in extended periodic

systems. So far GDML has only been used for relatively small molecules.

In this letter we introduce an NN scheme for MD simulations, called Deep Potential

Molecular Dynamics (DeePMD), which overcomes the limitations associated to auxiliary

quantities like the symmetry functions or the Coulomb matrix. In our scheme a local refer-

ence frame and a local environment is assigned to each atom. Each environment contains a

finite number of atoms, whose local coordinates are arranged in a symmetry preserving way
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following the prescription of the Deep Potential method [3], an approach that was devised to

train an NN with the potential energy only. With typical AIMD datasets this is insufficient

to reproduce the trajectories. DeePMD overcomes this limitation. In addition, the learning

process in DeePMD improves significantly over the Deep Potential method thanks to the

introduction of a flexible family of loss functions. The NN potential constructed in this way

reproduces accurately the AIMD trajectories, both classical and quantum (path integral),

in extended and finite systems, at a cost that scales linearly with system size and is always

several orders of magnitude lower than that of equivalent AIMD simulations.

In DeePMD the potential energy of each atomic configuration is a sum of “atomic en-

ergies”, E =
∑

iEi, where Ei is determined by the local environment of atom i within a

cutoff radius Rc and can be seen as a realization of the embedded atom concept. The envi-

ronmental dependence of Ei, which embodies the many-body character of the interactions,

is complex and nonlinear. The NN is able to capture the analytical dependence of Ei on the

coordinates of the atoms in the environment in terms of the composition of the sequence of

mappings associated to the individual hidden layers. The additive form of E naturally pre-

serves the extensive character of the potential energy. Due to the analyticity of the “atomic

energies” DeePMD is, in principle, a conservative model.

Ei is constructed in two steps. First, a local coordinate frame is set up for every atom

and its neighbors inside Rc [35]. This allows us to preserve the translational, rotational,

and permutational symmetries of the environment, as shown in Fig. 1, which illustrates the

format adopted for the local coordinate information ({D ij}). The 1/Rij factor present in

D ij reduces the weight of the particles that are more distant from atom i.

Next, {D ij} serves as input of a deep neural network (DNN) [22], which returns Ei in

output (Fig. 2). The DNN is a feed forward network, in which data flow from the input

layer to the output layer (Ei), through multiple hidden layers consisting of several nodes

that input the data dinl from the previous layer and output the data doutk to the next layer.

A linear transformation is applied to the input data, i.e., d̃k =
∑

l wkld
in
l + bk, followed by

action of a non-linear function ϕ on d̃k, i.e., doutk = ϕ
(
d̃k
)
. In the final step from the last

hidden layer to Ei, only the linear transformation is applied. The composition of the linear

and nonlinear transformations introduced above provides the analytical representation of Ei

in terms of the local coordinates. The technical details of this construction are discussed

in the supplementary materials (SM). In our applications, we adopt the hyperbolic tangent
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FIG. 1: (color online). Schematic plot of the neural network input for the environment of atom i,

taking water as an example. Atom j is a generic neighbor of atom i. (ex, ey, ez) is the local frame

of atom i. ex is along the O-H bond. ez is perpendicular to the plane of the water molecule. ey

is the cross product of ez and ex. (xij , yij , zij) are the Cartesian components of the vector Rij

in this local frame. Rij is the length of Rij . The neural network input D ij may either contain

the full radial and angular information of atom j, i.e., D ij = {1/Rij , xij/R2
ij , yij/R

2
ij , zij/R

2
ij}, or

only the radial information, i.e., D ij = {1/Rij}. We first sort the neighbors of atom i according

to their chemical species, e.g. oxygens first then hydrogens. Within each species we sort the atoms

according to their inverse distances to atom i, i.e., 1/Rij . We use {D ij} to denote the sorted input

data for atom i.

for ϕ and use 5 hidden layers with decreasing number of nodes per layer, i.e., 240, 120,

60, 30, and 10 nodes, respectively, from the innermost to the outermost layer. It is known

empirically that the hidden layers greatly enhance the capability of neural networks to fit

complex and highly nonlinear functional dependences [23, 24]. In our case, only by including

a few hidden layers could DeePMD reproduce the trajectories with sufficient accuracy.

We use the Adam method [5] to optimize the parameters wkl and bk of each layer with

the family of loss functions

L(pε, pf , pξ) = pε∆ε
2 +

pf
3N

∑
i

|∆F i|2 +
pξ
9
||∆ξ||2. (1)

Here ∆ denotes the difference between the DeePMD prediction and the training data, N

is the number of atoms, ε is the energy per atom, F i is the force on atom i, and ξ is the

virial tensor Ξ = −1
2

∑
iRi ⊗ F i divided by N . In Eq. (A13), pε, pf , and pξ are tunable

prefactors. When virial information is missing from the data, we set pξ = 0. In order to

minimize the loss function in Eq. (A13) in a well balanced way, we vary the magnitude of
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FIG. 2: (color online). Schematic plot of the DeePMD model. The frame in the box is the zoom-in

of a DNN. The relative positions of all neighbors w.r.t. atom i, i.e., {Rij}, is first converted to

{D ij}, then passed to the hidden layers to compute Ei.

the prefactors during training. We progressively increase pε and pξ and decrease pf , so that

the force term dominates at the beginning, while energy and virial terms become important

at the end. We find that this strategy is very effective and reduces the total training time

to a few core hours in all the test cases.

To test the method, we have applied DeePMD to extended and finite systems. As repre-

sentative extended systems, we consider (a) liquid water at P = 1 bar and T = 300 K, at

the PI-AIMD level, (b) ice Ih at P = 1 bar and T = 273 K, at the PI-AIMD level, (c) ice Ih

at P = 1 bar and T = 330 K, at the classical AIMD level, and (d) ice Ih at P = 2.13 kbar

and T = 238 K, which is the experimental triple point for ice I, II, and III, at the classical

AIMD level. The variable periodic simulation cell contains 64 H2O molecules in the case of

liquid water, and 96 H2O molecules in the case of ices. We adopt Rc = 6.0 Å and use the full

radial and angular information for the 16 oxygens and the 32 hydrogens closest to the atom

at the origin, while retaining only radial information for all the other atoms within Rc. All

the ice simulations include proton disorder. Deuterons replace protons in the simulations

(c) and (d). The PBE0+TS [26, 27] functional is adopted in all cases. As representative fi-

nite systems we consider benzene, uracil, napthalene, aspirin, salicylic acid, malonaldehyde,

ethanol, and toluene, for which classical AIMD trajectories with the PBE+TS functional

[27, 28] are available [36]. In these systems, we set Rc large enough to include all the atoms,

and use the full radial and angular information in each local frame.

We discuss the performance of DeePMD according to four criteria: (i) generality of

the model; (ii) accuracy of the energy, forces, and virial tensor; (iii) faithfulness of the
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TABLE I: The RMSE of the DeePMD prediction for water and ices in terms of the energy, the

forces, and/or the virial. The RMSEs of the energy and the virial are normalized by the number

of molecules in the system.

System Energy [meV] Force [meV/Å] Virial [meV]

liquid water 1.0 40.4 2.0

ice Ih (b) 0.7 43.3 1.5

ice Ih (c) 0.7 26.8 -

Ice Ih (d) 0.8 25.4 -

trajectories; (iv) scalability and computational cost. We refer to the SM for full details on

the DeePMD implementation and the training datasets.

Generality. Bulk and molecular systems exhibit different levels of complexity. The

liquid water samples include quantum fluctuations. The organic molecules differ in compo-

sition and size, and the corresponding datasets include large numbers of conformations. Yet

DeePMD produces satisfactory results in all cases, using the same methodology, network

structure, and optimization scheme. The excellent performance of DeePMD in systems so

diverse suggests that the method should be applicable to harder systems such as biological

molecules, alloys, and liquid mixtures.

Accuracy. We quantify the accuracy of energy, forces, and virial predictions in terms of

the root mean square error (RMSE) in the case of water and ices (Tab. I), and in terms

of the mean absolute error (MAE) in the case of the organic molecules (Tab. II). No virial

information was used for the latter. In the water case, the RMSE of the forces is comparable

to the accuracy of the minimization procedure in the original AIMD simulations, in which

the allowed error in the forces was less than 10−3 a.u.. In the case of the molecules, the

predicted energy and forces are generally slightly better than the GDML benchmark.

MD trajectories. In the case of water and ices, we perform path-integral/classical

DeePMD simulations at the thermodynamic conditions of the original models, using the

i-PI software [2], but with much longer simulation time (300 ps). The average energy Ē,

density ρ̄, radial distribution functions (RDFs), and a representative angular distribution

function (ADF), i.e., a 3-body correlation function, are reproduced with high accuracy. The

results are summarized in Tab. III. The RDFs and ADF of the quantum trajectories of water
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TABLE II: The MAE of the DeePMD prediction for organic molecules in terms of the energy and

the forces. The numbers in parentheses are the GDML results [19].

Molecule Energy [meV] Force [meV/Å]

Benzene 2.8 (3.0) 7.6 (10.0)

Uracil 3.7 (4.0) 9.8 (10.4)

Naphthalene 4.1 (5.2) 7.1 (10.0)

Aspirin 8.7 (11.7) 19.1 (42.9)

Salicylic acid 4.6 (5.2) 10.9 (12.1)

Malonaldehyde 4.0 (6.9) 12.7 (34.7)

Ethanol 2.4 (6.5) 8.3 (34.3)

Toluene 3.7 (5.2) 8.5 (18.6)

TABLE III: The equilibrium energy and density, Ē and ρ̄, of water and ices, with DeePMD and

AIMD. The numbers in square brackets are the AIMD results. The numbers in parentheses are

statistical uncertainties in the last one or two digits. The training AIMD trajectories for the ices

are shorter and more correlated than in the water case.

System Ē[eV/H2O] ρ̄[g/m3]

liquid water -467.678(2) [-467.679(6)] 1.013(5) [1.013(20)]

ice Ih (b) -467.750(1) [-467.747(4)] 0.967(1) [0.966(6)]

ice Ih (c) -468.0478(3) [-468.0557(16)] 0.950(1) [0.949(2)]

ice Ih (d) -468.0942(2) [-468.1026(9)] 0.986(1) [0.985(2)]

are shown in Fig. 3. The RDFs of ice are reported in the SM. A higher-order correlation

function, the probability distribution function of the O-O bond orientation order parameter

Q6, is additionally reported in the SM and shows excellent agreement between DeePMD

and AIMD trajectories. In the case of the molecules, we perform DeePMD at the same

temperature of the original data, using a Langevin thermostat with a damping time τ = 0.1

ps. The corresponding distributions of interatomic distances are very close to the original

data (Fig. 4).

Scalability and computational cost. All the physical quantities in DeePMD are sums

of local contributions. Thus, after training on a relatively small system, DeePMD can be
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FIG. 3: Correlation functions of liquid water from DeePMD and PI-AIMD. Left: RDFs. Right:

the O-O-O ADF within a cutoff radius of 3.7 Å.

FIG. 4: Interatomic distance distributions of the organic molecules. The solid lines denote the

DeePMD results. The dashed lines denote the AIMD results.

directly applied to much larger systems. The computational cost of DeePMD scales linearly

with the number of atoms. Moreover, DeePMD can be easily parallelized due to its local

decomposition and the near-neighbor dependence of its “atomic energies”. In Fig. 5, we

compare the cost of DeePMD fixed-cell simulations (NV T ) of liquid water with that of

equivalent simulations with AIMD and the empirical FF TIP3P [30] in units of CPU core

seconds/step/molecule.

While in principle the environmental dependence of Ei is analytical, in our implementa-

tion discontinuities are present in the forces, due to adoption of a sharp cutoff radius, limi-

tation of angular information to a fixed number of atoms, and abrupt changes in the atomic

lists due to sorting. These discontinuities are similar in magnitude to those present in the
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FIG. 5: Computational cost of MD step vs. system size, with DeePMD, TIP3P, PBE+TS and,

PBE0+TS. All simulations are performed on a Nersc Cori supercomputer with the Intel Xeon CPU

E5-2698 v3. The TIP3P simulations use the Gromacs codes (version 4.6.7) [31]. The PBE+TS

and PBE0+TS simulations use the Quantum Espresso codes [32].

AIMD forces due to finite numerical accuracy in the enforcement of the Born-Oppenheimer

condition. In both cases, the discontinuities are much smaller than thermal fluctuations and

perfect canonical evolution is achieved by coupling the systems to a thermostat. We further

note that long-range Coulomb interactions are not treated explicitly in the current imple-

mentation, although implicitly present in the training data. Explicit treatment of Coulombic

effects may be necessary in some applications and deserves further study.

In conclusion, DeePMD realizes a paradigm for molecular simulation, wherein accurate

quantum mechanical data are faithfully parametrized by machine learning algorithms, which

make possible simulations of DFT based AIMD quality on much larger systems and for much

longer time than with direct AIMD. While substantially more predictive than empirical FFs,

DFT is not chemically accurate [37]. In principle DeePMD could be trained with chemically

accurate data from high-level quantum chemistry [33] and/or quantum Monte Carlo [34],

but so far this has been prevented by the large computational cost of these calculations.

DeePMD should also very useful to coarse grain the atomic degrees of freedom, for ex-

ample, by generating an NN model for a reduced set of degrees of freedom while using the

full set of degrees of freedom for training. The above considerations suggest that DeePMD

should enhance considerably the realm of AIMD applications by successfully addressing the

dilemma of accuracy versus efficiency that has confronted the molecular simulation commu-

nity for a long time.
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Appendix A: Supplementary Materials

1. Training/Testing Data

a. water and ice

The data used for training and/or testing are extracted from the AIMD simulations

summarized in Tab. IV. All the simulations adopt a time step of 0.48 fs. The PI-AIMD sim-

ulations use the CPMD codes of Quantum Espresso [9] for the DFT part and are interfaced

with the i-PI code [2] for the path-integral part. The generalized Langevin equation with

color noise [1] in i-PI requires 8 beads for a converged representation of the Feynman paths.

The classical AIMD simulations use the CPMD codes of Quantum Espresso and adopt the

Nosé-Hoover thermostat [7] for thermalization. The Parrinello-Rahman technique [8] for

variable cell dynamics is adopted in all cases. The training datasets include 95000 snapshots

(from 105000 total snapshots) randomly selected along the liquid water trajectory, 19500

snapshots (from 24000 total snapshots) randomly selected along the ice (b) trajectory, 9500

snapshots (from 12000 total snapshots) randomly selected along the ice (c) trajectory, and

9500 snapshots (from 12000 total snapshots) randomly selected along the ice (d) trajectory.

The remaining snapshots in the database are used for testing purposes.
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TABLE IV: Equilibrated AIMD trajectories (traj.) for liquid water (LW) and ice Ih.

System PI/classical N P [bar] T [K] traj. length [ps]

LW path integral 64 1.0 300 6.2

ice (b) path integral 96 1.0 273 1.5

ice (c) classical 96 1.0 330 6.0

ice (d) classical 96 2.13k 238 6.0

b. molecules

The data and their complete description for the organic molecules (benzene, uracil,

napthalene, aspirin, salicylic acid, malonaldehyde, ethanol, and toluene) can be found at

http://quantum-machine.org/. For each molecule, 95000 snapshots, randomly selected from

the database, are used to train the DeePMD model. The remaining snapshots in the database

are used for testing purposes.

2. Implementation of the method

The TensorFlow r1.0 software library (http://tensorflow.org/) is interfaced with our

C++ codes for data training and for calculating the energy, the forces, and the virial.

a. network input data

We consider a system consisting of N atoms. The global coordinates of the atoms, in the

laboratory frame, are {1, R2, . . . , RN}, where Ri = {xi, yi, zi} for each i. The neighbors of

atom i are denoted by N (i) = {j : |Rij| < Rc}, where Rij = Ri − Rj, and Rc is the cut-off

radius. The neighbor list N (i) is sorted according to the scheme illustrated in Fig. 1. In

extended systems, the number of neighbors at different snapshots inside Rc fluctuates. Let

Nc be the largest fluctuating number of neighbors. The two atoms used to define the axes

of the local frame of atom i are called the axis-atoms and are denoted by a(i) ∈ N (i) and

b(i) ∈ N (i), respectively. In general we choose two closest atoms, independently of their

species, together with the center atom, to define the local frame. Thus, in all the water

cases, we choose the other two atoms belonging to the same water molecule. We apply the
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same rule to the organic molecules, but in this case we exclude the hydrogen atoms in the

definition of the axis-atoms.

Next, we define the rotation matrix R(Ria(i), Rib(i)) for the local frame of atom i,

R(Ria(i), Rib(i)) =


e[Ria(i)]

e[Rib(i) − (Ria(i) ·Rib(i)Ria(i)]

e[Ria(i) ×Rib(i)]


T

, (A1)

where e[x] ≡ x
||x|| . In this local frame of reference, we obtain the new set of coordinates:

R′ij =
{
x′ij, y

′
ij, z

′
ij

}
= {xij, yij, zij}R(Ria(i), Rib(i)), (A2)

and we define R′ij = ||R′ij||. Then the spacial information for j ∈ N (i) is

Dij ≡


{
D0
ij, D

1
ij, D

2
ij, D

3
ij

}
=
{

1
R′ij
,
x′ij
R′2ij
,
y′ij
R′2ij
,
z′ij
R′2ij

}
, full radial and angular information;{

D0
ij

}
=
{

1
R′ij

}
, radial information only.

When α = 0, 1, 2, 3, full (radial plus angular) information is provided. When α = 0, only

radial information is used. Note that for j ∈ N (i), Dα
ij is a function of the global coordinates

of three or four atoms:

Dα
ij =

D
α
ij(Ri, Ra(i), Rb(i)), for j = a(i) or j = b(i);

Dα
ij(Ri, Ra(i), Rb(i), Rj), otherwise.

This formula is useful in the derivation of the formulae for the forces and the virial tensor

given below.

The neural network uses a fixed input data size. Thus, when the size of N (i) is smaller

than Nc, we temporarily set to zero the input nodes not used for storing the Dα
ij. The nodes

set to zero are still labeled by Dα
ij.

The Dα
ij are then standardized to be the input data for the neural networks. In this

procedure, the Dα
ij are grouped according to the different atomic species. Within each group

we calculate the mean and standard deviation of each Dα
ij by averaging over the snapshots

of the training sample and over all the atoms in the group. Then we shift the Dα
ij by their

corresponding means, and divide them by their corresponding standard deviations. Because

of the weight 1/R in the Dα
ij and because the unoccupied nodes are set to zero, some standard

deviations are very small or even zero. This causes an ill-posed training process. Therefore,

after the shift operations, we divide by 0.01 Å−1 the Dα
ij with standard deviation smaller

than 0.01 Å−1. For simplicity, we still use the same notation for the standardized Dα
ij.
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b. deep neural network for the energy

For atom i, the “atomic energy” is represented as

Ei = Nw(i)({Dα
ij}j∈N (i),α), (A3)

where Nw(i) is the network that computes the atomic contribution to the total energy, and

w(i) are the weights used to parametrize the network, which depend on the chemical species

of atom i.

In this work, Nw(i) is constructed as a feedforward network in which data flows from the

input layer as {Dα
ij}, through multiple fully connected hidden layers, to the output layer as

the atomic energy Ei. More specifically, a feedforward neural network with Nh hidden layers

is a mapping

Ni({Dα
ij}) = Lout

i ◦ L
Nh
i ◦ L

Nh−1
i ◦ · · · ◦ L1

i ({Dα
ij}), (A4)

where the symbol “◦” denotes function composition. Here Lpi is the mapping from layer

p− 1 to p, a composition of a linear transformation and a non-linear transformation

d pi = Lpi (d
p−1
i ) = ϕ

(
W p

id
p−1
i + bpi

)
. (A5)

The d pi ∈ RMp denote the values of neurons in layer p and Mp the number of neurons. The

weight matrix W p
i ∈ RMp×Mp−1 and bias vector bpi ∈ RMp are free parameters of the linear

transformation that are to be optimized. The non-linear activation function ϕ is in general

a component-wise function, and here it is taken to be the hyperbolic tangent, i.e.,

ϕ(d1, d2, . . . , dM) = (tanh(d1), tanh(d2), . . . , tanh(dM)). (A6)

The output mapping Lout
i is a linear transformation,

Lout
i (dNhi ) = W out

i dNh−1 + bouti , (A7)

with weight vector W out
i ∈ R1×MNh and bias bouti ∈ R being free parameters to be optimized

as well. On the whole, all the free parameters associated with atom i are

w(i) = {W 1
i , b

1
i ,W

2
i , b

2
i , · · · ,W

Nh
i , bNhi ,W out

i , bouti }. (A8)

It should be stressed that, to guarantee the permutational symmetry, atoms of the same

species share the same parameters w.
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c. forces and virial tensor

The total potential energy is the sum of the Ei. Thus the forces are

Fi = −∇RiE = −
∑
j

∇RiEj = −
∑
j

∑
k∈N (j)

∇RiNw(j)({Dα
jk}k∈N (j),α)

= −
∑
j

∑
k∈N (j)

∑
α

∂Nw(j)

∂Dα
jk

∇RiD
α
jk

= −
∑
k∈N (i)

∑
α

∂Nw(i)

∂Dα
ik

∇RiD
α
ik −

∑
j 6=i

∑
k∈N (j)

∑
α

δ(i− a(j))
∂Nw(j)

∂Dα
jk

∇RiD
α
jk

−
∑
j 6=i

∑
k∈N (j)

∑
α

δ(i− b(j))
∂Nw(j)

∂Dα
jk

∇RiD
α
jk −

∑
j 6=i

∑
k∈Ñ (j)

∑
α

δ(i− k)
∂Nw(j)

∂Dα
jk

∇RiD
α
jk

= −
∑
k∈N (i)

∑
α

∂Ei
∂Dα

ik

∇RiD
α
jk −

∑
j 6=i

∑
k∈N (j)

∑
α

δ(i− a(j))
∂Ej
∂Dα

jk

∇RiD
α
jk

−
∑
j 6=i

∑
k∈N (j)

∑
α

δ(i− b(j)) ∂Ej
∂Dα

jk

∇RiD
α
jk −

∑
j 6=i

∑
k∈Ñ (j)

∑
α

δ(i− k)
∂Ej
∂Dα

jk

∇RiD
α
jk,

where Ñ (j) = N (j)\{a(j), b(j)}.

The virial tensor is defined as Ξαβ = −1
2

∑
iRiαFiβ, where the indices α and β indicate

Cartesian components in the lab reference frame. Due to the periodic boundary conditions,

one cannot directly use the absolute coordinates Riα to compute the virial tensor. Rather, in

the AIMD framework, the virial tensor is defined with an alternative but equivalent formula,

i.e.,

Ξαβ = −1

2

∑
γ

∂E

∂hαγ
hγβ, (A9)

where h is the cell tensor. In our framework, due to the decomposition of the local energy

Ei, one computes the virial tensor by:

Ξαβ = −1

2

∑
i,j

x(i,j)α f
(i,j)
β . (A10)

x
(i,j)
α is the α-th component of the vector oriented from the i-th to the j-th atom in the

difference:

x(i,j)α = x(i)α − x(j)α . (A11)
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f
(i,j)
β is the β-th component of the negative gradient of Ei w.r.t. xj, i.e.,

f
(i,j)
β = −∂Ei

∂xβj
. (A12)

Together with the energy representation described above, all the quantities needed for

training and MD simulations, although complicated, have been analytically defined. In

particular, it is noted that the derivatives of the total energy with respect to the atomic

positions, appearing in both the forces and the viral tensor, are computed by the chain

rule through the backpropagation algorithm, provided by TensorFlow. To make it work, we

additionally implement the computation of∇RiD
α
jk in C++ and interface it with TensorFlow.

d. Training Details

During the training process, one minimizes the family of loss functions defined in the

paper:

L(pε, pf , pξ) = pε∆ε
2 +

pf
3N

∑
i

|∆F i|2 +
pξ
9
||∆ξ||2. (A13)

The network weights are optimized with the Adam stochastic gradient descent method [5].

An initial learning rate rl0 = 0.001 is used with the Adam parameters set to β1=0.9,

β2=0.999, and ε=1.0×10−8, which are the default settings in TensorFlow. The learning

rate rl decays exponentially with the global step:

rl = rl0d
−cs/ds
r , (A14)

where dr, cs, and ds are the decay rate, the global step, and the decay step, respectively.

In this paper, the batch size is 4 in all the training processes. The decay rate is 0.95. For

liquid water, the training process undergoes 4000000 steps in total, and the learning rate is

updated every 20000 steps. For molecules, the training process undergoes 8000000 steps in

total, and the learning rate is updated every 40000 steps.

We remark that, for the prefactors, a proper linear evolution with the learning rate speeds

up dramatically the training process. We define this process by:

p = plimit(1−
rl
rl0

) + pstart(
rl
rl0

), (A15)
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in which pstart is the prefactor at the beginning of the training process, and plimit is approxi-

mately the prefactor at the end. We define pstart for the energy, the forces, and the virial as

pestart, pfstart, and pvstart, respectively. Similarly, we define plimit for the energy, the forces,

and the virial as pelimit, pflimit, and pvlimit, respectively. In this paper, we use the following

scheme: pestart = 1, pelimit = 400;

pfstart = 1000, pflimit = 1,
(A16)

for both water and the molecules, andpvstart = 1, pvlimit = 400, for liquid water and ice (b);

pvstart = 0, pvlimit = 0, for ice (c) and (d) and the molecules.
(A17)

The above scheme is based on the following considerations. Each snapshot of the AIMD

trajectories provides 1 energy, 3N forces, and 6 independent virial tensor elements. The

number of force components is much larger than the number of energy and virial tensor

components. Therefore, matching the forces at the very beginning of the training process

makes the training efficient. As the training proceeds, increasing the prefactors of the energy

and the virial tensor allows us to achieve a well balanced training in which the energy, the

forces, and the virial are mutually consistent.

In the original Deep Potential paper [3], only the energy was used to train the network,

requiring in some cases the use of Batch Normalization techniques [4] to deal with issues

of overfitting and training efficiency. Adding the forces and/or the virial tensor provides a

strong regularization of the network and makes training significantly more efficient. Thus

Batch Normalization techniques are not necessary within the DeePMD framework.

e. DeePMD details

In the path-integral/classical NPT simulations of liquid water and ice, we integrate

our codes with the i-PI software. The DeePMD simulations are performed at the same

thermodynamic conditions, and use the same temperature and pressure controls, of the

corresponding AIMD simulations. All DeePMD trajectories for water and ice are 300 ps

long and use the same time step of the AIMD simulations.
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FIG. 6: The comparison between the DeePMD RDFs and the AIMD RDFs of ice Ih (b).
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FIG. 7: The comparison between the DeePMD RDFs and the AIMD RDFs of ice Ih (c).

We use our own code to perform the constant temperature MD simulations of the or-

ganic molecules. In each DeePMD simulation the temperature is the same of that of the

corresponding AIMD simulation. The time step and time length of the trajectories in these

simulations are the same of those in the corresponding AIMD trajectories.

3. Additional Results

The radial distribution functions (RDFs) of ice Ih (b), (c) ,and (d) are reported in Figs. 6,

7, and 8, respectively.

The probability distribution function of the O-O bond orientation order parameter Q6

is reported in Fig. 9. The bond orientation order parameter for oxygen i, as proposed in
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FIG. 8: The comparison between the DeePMD RDFs and the AIMD RDFs of ice Ih (d).

Ref. [6], is defined by

Ql(i) =
[ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2
] 1

2
, (A18)

where

q̄lm(i) =

∑
j∈Ñb(i) s(rij)qlm(j)∑

j∈Ñb(i) s(rij)
, qlm(i) =

∑
j∈Nb(i) s(rij)Ylm(r̂ ij)∑

j∈Nb(i) s(rij)
, (A19)

and Ñb(i) = Nb(i) ∪ {i}. The Ylm(· · · ) denotes the spherical harmonic function, the Nb(i)

denotes the set of oxygen neighbors of oxygen i, and the s(rij) is a switching function defined

by

s(r) =


1, r < rmin;

1

2
+

1

2
cos
(
π

r − rmin
rmax − rmin

)
, rmin ≤ r < rmax;

0, r ≥ rmax.

(A20)

In this work we take rmin = 0.31 nm and rmax = 0.36 nm.
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