
Model Reductions with Special CSP Data

S. H. Lam∗

Princeton University, Princeton, N.J. 08544, U.S.A.

June 11, 2013

Abstract

The model reduction methodology of computational singular per-
turbation (CSP) is enhanced for chemical kinetics problems. The lead-
ing order converged CSP-refined fast basis vectors are obtained ana-
lytically by exploiting the special format of the given reaction-specific
chemical kinetics data. The leading order net reaction rates of the
fast reactions (after they are exhausted) are also obtained analyti-
cally. Taking advantage of these leading order analytical results, a
new model reduction strategy is advocated. The implementation of
this new strategy is very straightforward, and extraction of general
insights on the reaction system is also easier.
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1 Statement of the problem

Consider the following general initial-value problem:

dy

dt
= g(y; ε), y(t = 0) = ŷ, (1)

where both y and g are N -dimensional column vectors, all components of
g(y; ε) are given algebraic functions of y, and ε is a small dimensionless
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parameter. The arbitrary y initial value is denoted by ŷ. We are interested
in model reductions when Eq.(1) is known to be stiff in the small ε limit.

For chemical kinetics problems, the right hand side of Eq.(1) is usually
given in the following form:

g(y; ε) =
R∑

r=1

αrΩ
r(y; kr), (2)

where R is the number of reactions in the reaction system, and each term
in the summation represents a chemically/physically meaningful chemical
reaction. The αr’s are N -dimensional column vectors; their elements are
proportional to the stoichiometric coefficients of the r-th reaction, and their
physical dimensions are identical to that of the corresponding elements of y.
For chemical kinetics, the αr’s do not depend on y. However, the subsequent
developments remain valid so long as ∂αr/∂y is non-singular in the small ε
limit. Usually, R is much bigger than N—so many αr’s are linearly depen-
dent. The Ωr(y; kr)’s and the kr’s are the net reaction rate and the kinetic
rate parameter of the r-th reaction, respectively. The physical dimensions
of all the Ωr(y; kr)’s are reciprocal time. Usually, Ωr(y; kr) is proportional
to kr, depends on y nonlinearly, and contains some thermodynamics param-
eters (e.g. equilibrium constants). For the developments in this paper, the
αr’s and the Ωr(y; ε)’s do not need to honor any other restrictions such as
law of mass action, conservation of atomic elements, etc..

Eq.(1) is stiff when M > 0 reactions are much faster than all others. The
stiffness of Eq.(1) is symbolically represented by the dimensionless parameter
ε in g(y; ε). The classical methodology to deal with the singular nature of the
problem in the small ε limit is to apply the quasi-steady approximation (QSA)
and/or the partial equilibrium approximation (PEA) [1]. However, such pen-
cil and paper exercises cannot handle very large reaction systems. The goal
of computational singular perturbation (CSP) [2, 3, 4, 5] is to translate the
classical singular perturbation procedures into programmable algorithms so
that model reductions can be computationally done for very large systems.
The present paper executes the main CSP algorithms analytically in terms
of the chemically/physically meaningful αr’s and the Ωr(y; kr)’s, and ob-
tains insightful model reduction formulas which are programmable. A new
strategy of computational model reductions will be advocated.
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2 The CSP reduced model

CSP utilizes the concept of basis vectors to do model reductions. When
there are M linearly independent fast reactions in the reaction system, CSP
formally introduces a dimensionless N × N fast subspace projection matrix
Qfast(M) as follows [4, 5]:

Qfast(M) ≡
M∑

m=1

ambm, (3)

where the am’s and the bm’s are linearly independent (column and row) basis
vectors which can completely span the M -dimensional fast subspace. They
are—by definition—orthonormal to each other:

bm � am′ = δm
m′ , m,m′ = 1, . . . ,M, (4)

where � is the inner product operator and δm
m′ is the Kronecker Delta.

CSP uses this Qfast(M) to partition the right-hand side of Eq.(1):

g(y; ε) = gfast(y; ε) + gslow(y; ε), (5a)

gfast(y; ε) ≡ Qfast(M)� g(y; ε), (5b)

gslow(y; ε) = g(y; ε)− gfast(y; ε). (5c)

It is duly noted that Eqs.(5a,b,c) are exact for any chosen Qfast(M). The
model reduction quality of any chosen Qfast(M) is eventually to be adjudi-
cated by how well it decouples the fast and slow reaction groups. During the
initial fast transients, gfast(y; ε) is expected to be dominant in Eq.(5a) when
initial condition ŷ is arbitrary. After the fast reactions are “exhausted,”
the gfast(y; ε) of a good quality Qfast(M)’s is expected to rapidly decay to
O(ε) in comparison to gslow(y; ε) so that its neglect can be justified. The
CSP-derived reduced model is then:

dy

dt
= gslow(y; ε) +O(ε), gfast(y(t = O(ε); ε) = O(ε). (6)

The notation O(ε) is used to denote any entity which is known to be negligible
in the ε→ 0 limit. A good quality Qfast(M) should also significantly reduce
the stiffness of the original problem. In addition, the solution y(t) of Eq.(6)
is expected to automatically stay inside the slow subspace defined by:

gfast(y(t); ε) = O(ε), t > O(ε). (7)
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CSP provides iterative refinement procedures to find good quality Qfast(M)
for completely general g(y; ε). The present paper focuses on chemical ki-
netics problems, and exploits the fact that each additive terms in g(y; ε) as
displayed in Eq.(2) are physically/chemically meaningful to knowledgeable
investigators.

In early versions of CSP [2, 3, 4], basis vectors of both the fast and slow
subspaces were involved. The above summary follows the 1994 version [5]—
in which only the fast subspace basis vectors are involved. See §6.5 of [5],
and see [6] for some interesting applications of CSP on biochemical systems.

A new CSP-based model reduction strategy shall be advocated in §7 later.

3 Reaction-specific CSP data

Eq.(2) clearly associates the column vector αr with the r-th reaction. We
now associate the following row vector βr with the r-th reaction:

βr ≡ τ r ∂Ωr(y; kr)

∂y
= βr(y), r = 1, . . . , R, (8a)

where τ r, a most interesting reaction-specific finite scalar with time as its
physical dimension, is defined by:

τ r ≡ 1
∂Ωr

∂y
�αr

= τ r(y; kr), r = 1, . . . , R. (8b)

For chemical kinetics problems, the τ r(y; kr)’s are usually negative. We next
define Γr

r′(y), a R×R matrix with O(1) dimensionless elements, by:

Γr
r′(y) ≡ βr �αr′ , r, r′ = 1, . . . R. (9)

Note that in general Γr
r′(y) 6= 0 when r 6= r′, while Γr

r(y) = 1 is always
honored by Eq.(8b), the definition of τ r(y; kr).

Note that whenever Ωr(y; kr) ∝ kr is true (and αr is independent of kr),
then βr(y) is independent of kr, and τ r(y; kr) ∝ 1/kr.

4 Exploitation of the CSP data

The τ r(y; kr) data is most interesting. If the r-th reaction is the only
reaction in the reaction system, then it is easy to show that dΩr/dt = Ωr/τ r,
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and that this solo reaction will be exhausted when t >> |τ r(y; kr)| provided
τ r(y; kr) is negative. Thus |τ r(y; kr)|, which has time as its physical dimen-
sion, is an intrinsic time scale of the r-th reaction. The smaller |τ r(y; kr)|
is, the faster the intrinsic speed of the r-th reaction. Thus, at any time t, we
can order the R reactions in ascending order of their |τ r(y(t); kr)|’s so that
r = 1 is intrinsically the fastest reaction of them all at that time. We as-
sume this is done on the fly. Ordering reactions this way is much easier (but
admittedly less theoretically definitive) than ordering by eigenvalues—which
physical dimensions are reciprocal time—of the Jacobian matrix ∂g/∂y [7, 8].

Mathematically, the stiffness of Eq.(1) is associated with a large gap in
the values of the τ r(y; kr)’s. Such gap separates the fast and slow reactions.
When the ratio of two successive values of τ r(y; kr) is a small number, this
ratio is a tentative estimate of the small parameter ε in g(y; ε).

When some of the given αr’s are linearly dependent, tampering with the
linear dependencies will affect the formulas for the Ωr(y; kr)’s, the βr(y)’s,
the τ r(y; kr)’s, and therefore also the ranked order of the reactions. Thus, the
needed set of linearly independent fast reactions is most likely non-unique
when some of the given αr’s are linearly dependent. This non-uniqueness
issue will be discussed later.

For the sake of simplicity, we assume that the chosen set of M fast
α1, . . . ,αM are linearly independent, and that all the fast τm(y; km)’s are
negative. In addition, we also assume that the linear dependency number for
each αr in the reaction system is not large (see last paragraph of §6.2 later).
The fast subspace is then M -dimensional (with M < N) and is stable. Thus
the original g(y; ε) can be rewritten exactly as follows:

g(y; ε) =
M∑

m”=1

αm”Ωm”(y; km”) +
R∑

n=M+1

αnΩn(y; kn). (10)

It is important to emphatically point out here that this is not a good quality
fast-slow partition for g(y; ε)—the mere fact that |τM | << |τM+1| is no
guarantee that the first summation term on the right hand side of Eq.(10)
would become negligible after the fast transients are over.

It is intuitively obvious that the fast αm(y)’s are excellent choices for the
am(y)’s:

am(y) = αm(y), m = 1, . . . ,M. (11a)

This chosen set of αm(y)’s must be linearly independent. We next choose
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the bm(y)’s to be some linear combinations of the fast βm(y)’s:

bm(y) =
M∑

m′=1

Θm
m′(y)βm′

(y), m = 1, ...,M, (11b)

where Θm
m”(y), a M ×M dimensionless matrix, is uniquely determined by

imposing bm � am” = δm
m”:

Θm
m”(y) =

(
Γm”

m (y)
)−1

, m,m” = 1, . . . ,M. (11c)

This chosen set of βm’s must also be linearly independent. Hence, all ele-
ments of the Θm

m′(y) matrix are O(1) dimensionless numbers.
Using Eqs.(11a,b) in Eq.(3), we obtain the following analytical formula:

Qfast(M) =
M∑

m,m′=1

αm(y)Θm
m′(y)βm′

(y). (12)

This recommended Qfast(M) is programmable. When M is a large number,
efficient numerical inversion algorithms are needed to update Θm

m′(y(t)) on
the fly.

5 CSP credentials of this Qfast(M)

The CSP step #1 bm-refinement procedure was given by Eq.(17a) of [5]:

bm
o (y) ≡

M∑
m′=1

τm
m′

(
dbm′

dt
+ bm′ � ∂g

∂y

)
, m = 1, . . . ,M. (13)

where τm
m′(y) is a M ×M matrix. Since the time dependence of bm′

(t) arises
only through its dependence on y(t), we have:

dbm′

dt
=
∂bm′

∂y
� dy

dt
=
∂bm′

∂y
� g, m′ = 1, . . . ,M. (14)

With the help of Eq.(14), we can rewrite Eq.(13) as follows:

bm
o (y) ≡

M∑
m′=1

τm
m′
∂(bm′ � g)

∂y
, m = 1, . . . ,M. (15)
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Using Eq.(11b) for bm(y), Eq.(10) for g(y; ε), and choosing

τm
m′(y) = Θm

m′(y)τm′
(y; km′), m,m′ = 1, . . . ,M, (16)

Eq.(15) straightforwardly yields:

bm
o (y) = bm(y) +O(ε), m = 1, . . . ,M. (17)

In other words, the bm(y)’s as given by Eq.(11b) are the converged CSP
iterants—to leading order in the small ε limit—of the fast row basis vec-
tors. A nominal estimate of ε in the O(ε) above is |τM/τM+1|. Since all the
reaction-specific τm′

(y; km′)’s are negative and small, the real part of all the
eigenvalues of τm

m′(y) are also expected to be negative and small.
The CSP step # 2 am-refinement procedure was given by Eq.(18b) of [5].

It can similarly be demonstrated that the am’s as chosen by Eq.(11a) are
also the converged CSP iterants—to leading order in the small ε limit—of
the fast column basis vectors.

Thus the Qfast(M) as given by Eq.(12) has excellent CSP credentials in
the small ε limit.

6 The quality of this Qfast(M)

UsingQfast(M) as given by Eq.(3) in Eq.(5b), the CSP-partitioned gfast(y; ε)
is:

gfast(y; ε) = Qfast(M)� g(y; ε) =
M∑

m=1

αmf
m, (18a)

fm(y) ≡ bm � g(y; ε), m = 1, . . . ,M. (18b)

In order for gfast(y; ε) to become small in the slow epoch, the chosenQfast(M)
must guarantee that the fm(y)’s will become small when the fast reactions
are exhausted.

Using Eq.(11b) for bm and Eq.(10) for g(y; ε) in Eq.(18b) and taking
advantage of Eq.(11c), we obtain the following exact formula for fm(y):

fm(y) =
M∑

m′=1

Θm
m′βm′ �

(
M∑

m”=1

αm”Ωm”(y; km) +
R∑

n=M+1

αnΩn(y; kn)

)
= Ωm(y; km)− Ωm

∞(y; kslow), m = 1, . . . ,M, (18c)
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where kslow denotes the slow reaction rates kM+1, . . . , kR, and

Ωm
∞(y; kslow) ≡ −

R∑
n=M+1

(
M∑

m′=1

Θm
m′Γm′

n

)
Ωn(y; kn), m = 1, . . . ,M. (18d)

Note that Eq.(18d) is clearly programmable, and that only slow reactions
contribute to Ωm

∞(y; kslow).
How does Ωm evolve with time? To find out, we formally take the time

derivative of Ωm′
to obtain:

dΩm′

dt
=
∂Ωm′

∂y
� dy

dt
=
βm′

τm′ � g, m′ = 1, . . . ,M. (19)

Multiplying Eq.(19) by τm
m′ as given by Eq.(16) and summing over m′, we

obtain another exact equation for fm with the help of Eq.(11b) and Eq.(18b):

M∑
m′=1

τm
m′
dΩm′

dt
= fm, m = 1, . . . ,M. (20)

Eliminating fm from Eq.(20) using Eq.(18c), we obtain:

M∑
m′=1

τm
m′
dΩm′

dt
= Ωm − Ωm

∞(y; kslow), m = 1, . . . ,M. (21)

This is an exact differential equation for Ωm, and it is the heart
of this paper. When the real part of all eigenvalues of τm

m′ are negative,
Eq.(21) says Ωm → Ωm

∞(y; kslow) as time marches on. The quality of this
approximation depends on the smallness of τm

m′—which is dependent on the
quality of the chosen Qfast(M).

6.1 The gfast and gslow partitions of this Qfast(M)

Eliminating fm from Eq.(18a) using Eq.(18c) or Eq.(20), we have:

gfast(y; ε) =
M∑

m=1

αm [Ωm(y; km)− Ωm
∞(y; kslow)] , (22a)

=
M∑

m,m′=1

αmτ
m
m′
dΩm′

dt
. (22b)
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• Eq.(21) tells us that gfast(y; ε) is expected to become small as time
marches on.

Using Eq.(22a) in Eq.(5c), we have:

gslow(y; ε) =
M∑

m=1

αmΩm
∞(y; kslow) +

R∑
n=M+1

αnΩn(y; kn), (23a)

=
R∑

n=M+1

αslow
n Ωn(y; kn), (23b)

where
αslow

n (y) ≡ αn −Qfast(M)�αn. (23c)

• Eq.(23a) says gslow(y; ε) is simply the original g(y; ε) as given by Eq.(2)
or Eq.(10), except that Ωm

∞(y; kslow) is used whenever Ωm(y; km) is
needed,

• Eq.(23b) showcases the αslow
n (y)’s—which describe the effective stoi-

chiometries of the slow reactions in gslow(y; ε).

Eqs.(22a,b) and Eqs.(23a,b,c) are exact for any Qfast(M). Whenever
gfast(y; ε) and gslow(y; ε) are both kept, the formulation is exact. All M
fm(y)’s in gfast(y; ε) should be separately computed and monitored. The
quality of the chosen Qfast(M)’s is manifested by the smallness of gfast(y; ε)
calculated via Eq.(22a) or Eq.(22b) after the fast transients are over.

The time evolution of the first term on the right hand side of Eq.(10) is
also governed by Eq.(21). But there is no reason to expect that this term
would become small after the fast transients are over.

6.2 The ε of any Qfast(M)

We can formally define the dimensionless parameter ε by:

ε ≡ |τ
fast|
|τ slow|

. (24)

where |τ fast| is the slowest relevant time scale of the fast reaction group,
and |τ slow| is the fastest relevant time scale of the slow reaction group. The
ratio of the intrinsic time scales |τM/τM+1| previously used to rank order the



Accepted to appear in Combustion and Flame, 2013 10

reactions was only a tentative estimate of this ε. The magnitude of the real
part of the largest eigenvalue of τm

m′ is probably a better choice for τ fast than
τM . See §13 of [7]. An interesting question is: what would be a better choice
for τ slow than τM+1?

Two exact alternative representations of gslow(y; ε) were derived in §6.1.
Eq.(23a) provides R time scales: M new τm

∞’s from the first summation and
R−M original τn’s from the second summation. Eq.(23b) provides another
set of R−M new τn

slow’s—which are different from the original τn’s because
Eq.(23b) uses the new and different αslow

n ’s. These new slow time scales could
be mathematically useful/meaningful in their own rights on some issues—e.g.
the stiffness of gslow(y; ε). Should one of these new slow time scales be the
correct choice for τ slow?

From the mathematical vantage point, the critical issue is the smallness
of the left hand side of Eq.(21) after the fast reactions are exhausted. This
depends on the estimated smallness of the elements of τm

m′ relative to the
time scale of Eq.(21)’s forcing term, Ωm

∞(y(t); kslow). In other words, the
mathematically correct choice for τ slow should be the smallest of the new
τm
∞’s of the Ωm

∞(y; kslow)’s calculated by Eq.(8b) using Eq.(18d).
Whenever computing the inverse of Γm

m′ is problematic, some of the αm’s
and/or the βm’s above the tentative τ r gap must be either linearly dependent
or nearly so. The set of fast reactions to be chosen to use in Qfast(M) is
then not unique nor definitive. The competitive merits of the different non-
unique reduced models can be adjudicated via their ε values as calculated by
Eq.(24) above. For example, the best quality Qfast(M) is most likely to be
that provided by partitioning g(y; ε) using the eigenmodes of ∂g/∂y. The
generality and simplicity of the recommended partitioning procedure here are
achieved by conceding and carefully monitoring the fast-slow mode mixings.

7 A new model reduction strategy

The paper and pencil analysis in §6 used the values of the reaction-specific
τ r(y)’s to identify the M linearly independent fast reactions on the fly. The
M×M matrices Θm

m′(y) and τm
m′(y) are programmable and can be computed

on the fly. When the eigenvalues of the latter are sufficiently small (and
negative), the fm’s defined by Eq.(18b) are expected to become small after
the fast transients are over.

At this point, we may simply neglect the fm terms after verifying that
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they are indeed negligible numerically. Neglecting negligible terms is the
classical paper and pencil strategy to do singular perturbation, and the re-
sulting reduced models are totally correct [7]. However, we advocate here a
new CSP-based model reduction strategy which takes full advantage of the
fact that numerical computations are involved:

1. Do not use the given algebraic formulas of the fast reactions’ Ωm(y; ε)
to compute the Ωm’s needed for the evaluation of gfast(y; ε). The infor-
mation contained in the given algebraic Ωm(y; ε) formula have already
been fully exploited in the derivation of Eq.(21).

2. Use some implicit integration algorithm for the numerical integration
of Eq.(21) to obtain the Ωm(t)’s and the dΩm(t)/dt’s. For example, use
backward finite difference for dΩm/dt. Use Eq.(18d) to compute the
Ωm
∞(y; kslow)’s needed by Eq.(21).

3. Use the Ωm(t)’s or the dΩm(t)/dt’s from item #2 above to compute
gfast(y; ε) from Eq.(22a) or Eq.(22b). Either route is fine. Include this
gfast(y; ε) in Eq.(5a) in the numerical integration of Eq.(1) to obtain
y(t). Explicit integration algorithm is fine here. Setting Ωm(y; km) =
Ωm(t) yields M algebraic “equations of state”—which could be used to
reduce the number of dependent variables.

Item #2 above is the heart of this new strategy. It is easy to show that the
use of implicit integration algorithm for Eq.(21) resolves the stiffness issue
caused by gfast(y; ε) in the original problem. Note that item #3 advocates
gfast(y; ε) be kept in g(y; ε). Thus nothing is neglected in this new strat-
egy. Essentially, the new strategy tacitly tolerates whatever inadequacies the
implicit integration algorithms may have—knowing full well that the terms
affected by their use are small and unimportant.

Output files for the fm(t)’s and the Ωm
∞(t)’s should be generated. When-

ever fm(t) is not small in comparison to Ωm
∞(t), that m-th fast reaction is

currently active, and thus must be playing a major role in the current re-
action dynamics—particularly for those species identified by the m-th CSP
radical pointer. See §6.4 of [4].

Whenever a currently small fm(t) is no longer small, this change of status
is correctly dealt with by the new strategy effortlessly without ceremony.
When the identities of the fast reactions are time dependent, a more inclusive
Qfast(M) which includes several marginally fast reactions could be useful. It
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is also possible to skip over the fast transients if the time-resolved details
of the fast decays are not of interest. Note that Eq.(22b) can be used to
perform the so-called CSP radical correction procedure [3, 4].

For reacting flow problems, the right hand side of Eq.(1) would contain
diffusion terms. So long as the estimated time scales of the diffusion processes
(laminar or turbulent) are much larger than |τ fast|, these terms would be
inside the gslow partition. See §7.5 of [4] on how these diffusion terms should
be handled.

After the fast transients, the current dynamics is dictated by reactions
with the smallest |τn

slow|’s. Reactions with finite but very large |τn
slow|’s—

computed from Eq.(23b) using αslow
n ’s—should only be ignored after their

numerical contributions to gslow have been found to be negligible numerically.

8 Concluding remarks

For chemical kinetics problems, the reaction-specific stoichiometric coeffi-
cients and the kinetic rate data contain useful information for doing model
reductions. Subroutines for αr(y), βr(y), and τ r(y; kr) should be included
for every reaction in chemical kinetics databases so that tentative values of
M and |τM/τM+1|—for any reaction system of interest—can easily be deter-
mined, and that CSP data such as Γm

r (y), Θm
m′(y), Qfast(M), τm

m′(y), and
most importantly, Ωm

∞(y; kslow) and αslow
n (y), can be routinely made avail-

able. The quality of the resulting CSP-derived reduced model can be and
should be directly assessed numerically.

The main scientific value of model reductions is the insights it can provide
on the system of interest. Knowledgeable investigators can inspect the CSP-
derived analytical formulas and computed numbers to extract informative
answers to questions such as what roles do the r-th reaction play at time t,
which kr’s must be known accurately and which kr’s could tolerate sloppiness,
etc.

It is worthwhile to point out again that numerical solutions computed
from the new strategy’s reduced models are formally exact—the only con-
cession made is the use of implicit finite difference to deal with Eq.(21).
Of course, the option to trade off some exactness for some reduction of the
amount of needed computations is always available.
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