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Abstract

We introduce a simple and computationally efficient method for fitting the admixture model of
genetic population structure, called ALStructure. The strategy of ALStructure is to first estimate
the low-dimensional linear subspace of the population admixture components and then search for
a model within this subspace that is consistent with the admixture model’s natural probabilistic con-
straints. Central to this strategy is the observation that all models belonging to this constrained
space of solutions are risk-minimizing and have equal likelihood, rendering any additional optimiza-
tion unnecessary. The low-dimensional linear subspace is estimated through a recently introduced
principal components analysis method that is appropriate for genotype data, thereby providing a
solution that has both principal components and probabilistic admixture interpretations. Our ap-
proach differs fundamentally from other existing methods for estimating admixture, which aim to
fit the admixture model directly by searching for parameters that maximize the likelihood function
or the posterior probability. We observe that ALStructure typically outperforms existing methods
both in accuracy and computational speed under a wide array of simulated and real human geno-
type datasets. Throughout this work we emphasize that the admixture model is a special case of
a much broader class of models for which algorithms similar to ALStructure may be successfully
employed.
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1 Introduction

Understanding structured genetic variation in human populations remains a foundational problem in

modern genetics. Such an understanding allows researchers to correct for population structure in

GWAS studies, enabling accurate disease-gene mapping (KNOWLER et al., 1988; MARCHINI et al.,

2004; SONG et al., 2015). Additionally, characterizing genetic variation is important for the study of

human evolutionary history (CAVALLI-SFORZA et al., 1988; ESTEBAN et al., 1998; LI et al., 2008).

To this end, much work has been done to develop methods to estimate what ALEXANDER et al.

(2009) term global ancestry. In the global ancestry framework, the goal is to simultaneously estimate

two quantities:

(i) the allele frequencies of ancestral populations

(ii) the admixture proportions of each modern individual

Many popular global ancestry estimation methods have been developed within a probabilistic frame-

work. In these methods, which we will refer to as likelihood-based approaches, the strategy is to fit

a probabilistic model to the observed genome-wide genotype data by either maximizing the likelihood

function (ALEXANDER et al., 2009; TANG et al., 2005) or the posterior probability (GOPALAN et al., 2016;

PRITCHARD et al., 2000; RAJ et al., 2014). The probabilistic model fit in each of these cases is the

admixture model, described in detail in Section 2.1, in which the global ancestry quantities (i) and (ii)

are explicit parameters to be estimated.

A related line of work relies on principal components analysis (PCA) and other eigen-decomposition

methods, rather than directly fitting probabilistic models; as such, we will refer to them collectively

as PCA-based approaches. These methods find many of the same applications as global ancestry

estimates while obviating a direct computation of global ancestry itself. For example, the EIGENSTRAT

method of PATTERSON et al. (2006) and PRICE et al. (2006) uses the principal components of observed

data to correct for population stratification in GWAS, avoiding altogether the estimation of admixture

proportions or ancestral allele frequencies. Similarly, HAO et al. (2016) observe that many important

applications of global ancestry really only require individual-specific allele frequencies. In a sense,

individual-specific allele frequencies are simpler than global ancestry; while global ancestry specifies

all of the individual-specific allele frequencies, the converse is not true. Therefore, HAO et al. (2016)

introduce a simple truncated-PCA method that accurately and efficiently estimates individual-specific

allele frequencies alone.

Both likelihood-based and PCA-based approaches have distinct merits and drawbacks. The PCA-

based methods are computationally efficient and accurate in practice. It is shown, for instance, that

the individual-specific allele frequencies obtained by truncated-PCA are empirically more accurate than

those obtained by likelihood-based methods (HAO et al., 2016). Another attractive feature of PCA-

based methods is that they make minimal assumptions about the underlying data-generative model.

However, as mentioned before, PCA-based methods do not provide the full global ancestry estimates

that their corresponding likelihood-based methods do. Most notably, they do not provide direct esti-

mates of admixture proportions, which are often of primary interest in some applications. Additionally,
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PCA-based methods often have weaker statistical justifications, as they are typically not based on a

probabilistic model1.

Recognizing the relative advantages of each approach, several researchers have attempted to

bridge the gap between likelihood-based and PCA-based approaches. In spirit, this is also the ap-

proach that we take in the present work, and so we briefly review previous contributions to contextual-

ize the advances made by our own method. ENGELHARDT and STEPHENS (2010) observed that fitting

the admixture model was related to PCA in the sense that both could be posed as matrix factorization

problems, which differ only in the constraints imposed on factors. They then introduced a third matrix

factorization problem, called Sparse Factor Analysis (SFA), which encourages a sparsity through a par-

ticular prior. However, since SFA does not enforce the probabilistic constraints of the admixture model

(nor the orthogonality constraints of PCA), its output cannot be directly interpreted as an estimate of

global ancestry. LAWSON et al. (2012) provided further insight into the mathematical relationship be-

tween admixture models and PCA and introduced a method for the analysis of phased haplotype data.

This method, called fineSTRUCTURE, fits a version of the admixture model in which each observed in-

dividual belongs to a single (rather than admixed) population. ZHENG and WEIR (2016) introduced a

method called EIGMIX that leverages PCA to infer admixture proportions from unphased genotype data.

While EIGMIX allows individual genomes to be derived from a mixture of multiple ancestral populations

(unlike fineSTRUCTURE), it requires a set of sampled individuals known to be derived from single an-

cestral populations. A related line of work uses PCA-based approaches to fit models of local ancestry,

in which inferences about the ancestry of individual genetic loci are desired (for example, BRISBIN et al.

(2012)).

While the aforementioned literature illustrates that PCA can be leveraged to provide information

about population structure, each approach falls short of providing complete estimates of global ances-

try under the general admixture model. The method which we introduce in the present work, called

ALStructure, does precisely this. ALStructure requires no additional assumptions (such as the exis-

tence of unadmixed individuals in ZHENG and WEIR (2016)), no specialized input (such as the unphased

haplotypes of LAWSON et al. (2012)), and provides direct estimates of admixture proportions (unlike

ENGELHARDT and STEPHENS (2010)). As such, ALStructure is the only existing PCA-based method

that can provide a direct substitute to the most popular likelihood-based approaches. As an additional

important advantage, the underlying mathematical theory which justifies ALStructure is sufficiently

general so as to apply to a class of models that subsumes the admixture model. As such, we believe

that imitable algorithms to ALStructure could be useful beyond the present genetics application.

The basic strategy of ALStructure is to eliminate the primary shortcomings of PCA-based methods

while retaining their important advantages over likelihood-based methods. In particular we extend the

approach taken in HAO et al. (2016) in two ways. First, we replace classical PCA with the closely related

method of Latent Subspace Estimation (LSE) (CHEN and STOREY, 2015). In so doing, we will make

mathematically rigorous the empirically effective truncated-PCA method of HAO et al. for estimating

individual-specific allele frequencies. Second, we use the method of alternating least squares (ALS) to

1Although TIPPING and BISHOP (1999) introduced a probabilistic interpretation of PCA for multivariate normal data, to our
knowledge no such interpretation of PCA exists when the data are binomial, as is the case in the admixture model.
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transform the individual-specific allele frequencies obtained via LSE into estimates of global ancestry.

We perform a body of simulations and analyze several globally and locally sampled human studies

to demonstrate the performance of the proposed method, showing that ALStructure typically outper-

forms existing methods both in terms of accuracy and speed. We also discuss its implementation and

the trade-offs between theoretical guarantees and run-time. We find that ALStructure is a computa-

tionally efficient and statistically accurate method for modeling admixture and decomposing systematic

variation due to population structure.

The remainder of this paper is organized as follows. Section 2 introduces the admixture model and

details the mathematical underpinnings of our approach. Section 3 summarizes the ALStructure

algorithm. A reader primarily interested in a basic understanding of the operational procedure of

ALStructure and its applications may proceed to Section 3 after reading Section 2.1, as the remainder

of Section 2 is more technical in nature. Sections 4 and 5 assess the performance of ALStructure on

a wide range of real simulated datasets.

2 Model and theory

In this section and the following we present the ALStructure method and detail some of its mathemat-

ical underpinnings. In Section 2.1, we define the admixture model : the underlying probabilistic model

assumed by ALStructure. Section 2.2 describes the overall strategy of ALStructure as an optimality

search subject to constraints rather than navigating a complex likelihood surface. Section 2.3 describes

how the constraints can be used to estimate individual-specific allele frequencies. In Section 2.4 we

present a mathematical result from CHEN and STOREY (2015) upon which the ALStructure algorithm

heavily relies. Section 2.5 describes why estimating global ancestry, given the individual-specific allele

frequencies, is equivalent to a constrained matrix factorization problem. An efficient algorithm based

on the method of alternating least squares (ALS) is also provided in this section for performing the

constrained matrix factorization. The complete ALStructure algorithm is then presented in Section 3.

Throughout this work, we adhere to the following notational convention: for a matrix A, we denote

the i row vector of A by ai•, the j column vector of A by a•j , and the (i, j) element of A by aij .

2.1 The admixture model

The observed dataX is an m×n matrix in which m (the number of SNPs) is typically much larger than

n (the number of individuals). An element xij of X takes values 0, 1, or 2 according to the number of

reference alleles in the genotype at locus i for individual j.

ALStructure makes the assumption common to all likelihood-based methods that the data are

generated from the admixture model. Under this model, the genotypes are generated independently

according to xij |fij ∼ Binomial(2, fij), where F is an m × n matrix encoding all of the binomial

parameters. Each element fij is an individual-specific allele frequency : the frequency of allele i in

individual j. F is further assumed to be of rank d, where d � n � m. d may be thought of as
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the number of ancestral populations from which the observed population is derived. F then admits a

factorization F = PQ in which P and Q have the following properties:

P ∈ Rm×d with pij ∈ [0, 1] ∀(i, j)
Q ∈ Rd×n with qij ≥ 0 ∀(i, j) and

∑
i qij = 1 ∀j

The matrices P and Q have the following interpretations: (i) each row pi• of P represents the frequen-

cies of a single SNP for each of the d ancestral populations and (ii) each column q•j ofQ represents the

admixture proportions of a single individual. Together, P andQ encode the global ancestry parameters

of the observed population; the goal of existing likelihood-based methods is to estimate these matrices.

By contrast, the truncated-PCA method of HAO et al. (2016) is focused on estimating F and not its

factors. Eq. 1 summarizes the admixture model.
F


m× n

=


P


m× d

 Q


d× n

(1)

The model introduced in PRITCHARD, STEPHENS and DONNELLY (2000), which we refer to as the

PSD model, is an important special case of the admixture model. It additionally assumes the following

prior distributions2 on P and Q:

pij ∼ Balding-Nichols(Fi, pi)

q•j ∼ Dirichlet(α)

The Balding-Nichols distribution (BALDING and NICHOLS, 1995) is a reparameterization of the Beta dis-

tribution in which Fi is the FST (WEIR and COCKERHAM, 1984) at locus i and pi is the population minor

allele frequency at locus i. Specifically, Balding-Nichols(F, p) = Beta
(
1−F
F p, 1−FF (1− p)

)
. Existing

Bayesian methods (GOPALAN et al., 2016; PRITCHARD et al., 2000; RAJ et al., 2014) fit the PSD model

specifically, while existing maximum likelihood methods (ALEXANDER et al., 2009; TANG et al., 2005)

and ALStructure require only the admixture model assumptions.

Although we focus on fitting the admixture model in the present work, it is important note that the

general strategy of the ALStructure algorithm is insensitive to the particular details of this model. The

necessary features that the theoretical underpinnings of ALStructure require are: 1) higher moments

2Other prior distributions can be used for P and Q (PRITCHARD et al., 2000), but here we refer to the PSD model as that
using the priors listed here.
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of xij are bounded, 2) F is low rank, and 3) m � n.3 For example, an imitable algorithm could be

applied to high dimensional dataX where xij |fij ∼ Poisson(fij) and F is a low rank matrix whose fac-

tors P andQ potentially have natural constraints. Because of its generality, we hope that the approach

of ALStructure will find useful application beyond the analysis of admixture.

2.2 Optimal model constraints

Most existing methods for fitting the admixture model employ various optimization techniques to search

for the maximum likelihood parameters (ALEXANDER et al., 2009; PRITCHARD et al., 2000) or the maxi-

mum a posteriori estimate (GOPALAN et al., 2016; RAJ et al., 2014). Our approach has a fundamentally

different character: rather than searching through a rough likelihood landscape in pursuit of an optimal

solution, ALStructure seeks a feasible solution to a set of optimal constraints. To be more specific, we

begin with the observation that any solution satisfying a particular set of constraints is risk-minimizing

among a class of unbiased estimators. Because any feasible solution is optimal, we can think of the

constraints themselves as being optimal. Notably, the need to maximize likelihood is altogether obvi-

ated.

The challenge of this approach is twofold. First, the constraints themselves need to be estimated

from the data: they are not directly observable. This is done through the method of Latent Subspace

Estimation (LSE) detailed in Section 2.4. Second, feasible solutions to the estimated constraints will

not typically exist. For this reason, we seek solutions that approximately satisfy the constraints, thereby

converting a feasibility problem to a least squares optimization problem. This procedure is done through

the method of Alternating Least Squares (ALS) and is detailed in Section 2.5. Throughout the remainder

of the present subsection, we detail the constraints themselves.

There are several constraints that any reasonable estimate of the parameters of the admixture

model must obey. The first is simply that the parameter estimates F̂ , P̂ , and Q̂ obey the relationship

F̂ = P̂ Q̂. We will refer to this constraint as the Equality constraint. The second obvious requirement

is that entries of matrices P̂ and Q̂ obey the probabilistic constraints of the admixture model:

pij ∈ [0, 1] ∀(i, j) (2)

qij ≥ 0 ∀(i, j) (3)∑
i

qij = 1 ∀j (4)

As we will encounter these constraints frequently, we refer to Eq. (2) as the “�" constraint, and Eq. (3)

and (4) as the “4" constraint. This is simply because the constraints on P demarcate the boundaries

of a d-dimensional unit cube (the generalization of a square) whereas the constraints on Q demarcate

a d-dimensional simplex (the generalization of an equilateral triangle). Together we refer to the � and

4 constraints as the Boundary constraints.

The final constraint we require is that the row vectors of F̂ lie in the linear subspace spanned by the

rows vectors ofQ. If we denote 〈A〉 to be the rowspace of a matrixA, we can summarize this condition

3Refer to CHEN and STOREY (2015) for a precise statement of the theoretical assumptions of LSE.
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as:

〈F̂ 〉 = 〈Q〉 (5)

We will refer to Eq. 5 as the LS (linear subspace) constraint. The LS constraint is the only nontrivial

constraint that ALStructure enforces. The fact that 〈F 〉 = 〈Q〉 is a simple consequence of the linearity

of the admixture model; indeed, all rows of F are linear combinations of rows of Q since F = PQ.

The LS constraint thus requires the same property for our estimate F̂ . It is important to note that the

LS constraint is not the same as requiring that 〈F̂ 〉 = 〈Q̂〉: this is ensured by the Equality constraint.

Rather, the LS constraint requires that the row vectors of F̂ belong to the rowspace of the trueQmatrix.

The apparent challenge of enforcing the LS constraint is that a priori, one does not have access to 〈Q〉.
However, ALStructure takes advantage of a recent result from CHEN and STOREY (2015) that 〈Q〉 can

be consistently estimated directly from the data matrixX in the asymptotic regime of interest, when the

number of SNPs m grows large. The result of CHEN and STOREY (2015) is in fact much more general

than is needed in our setting and therefore will likely be useful in many other problems. Because of its

importance to this work, we further discuss this result in the context of the admixture model in Section

2.4, and show that a modified PCA of X consistently recovers 〈Q〉.

2.3 Leveraging constraints to estimate F̂

The key step in ALStructure is to note that enforcing the LS constraint provides us with an immediate

estimate for F . To motivate our estimator, first observe that the simple estimate F̃ = 1
2X is in some

sense a reasonable approximation of F : it is unbiased since fij = 1
2 E[xij ] under the admixture model.

However, this estimate leaves much to be desired — most importantly, the estimate F̃ will in general be

of full rank (n) rather than of low rank (d) and it will have a large variance. Assuming, for now, that we

are provided with the true rowspace 〈Q〉 of F , a natural thing to try is to project the rows of 1
2X onto

this linear subspace. Below we show that this estimator has some appealing properties.

Let us denote the the operator Proj〈S〉(X) such that the rows of the matrixX are projected onto the

linear subspace 〈S〉.4 If we are given an orthonormal basis {si} of the d-dimensional linear subspace

〈S〉, then:

Proj〈S〉(X) ≡X

(
d∑
i=1

sis
T
i

)

Lemma 1 below provides us a simple condition under which estimators of F formed by such projections

are unbiased.

Lemma 1. For a rank d matrix F that admits a factorization F = PQ and a random matrixX such that
1
2 E[X] = F , any estimator of F of the form F̂ 〈S〉 ≡ 1

2Proj〈S〉(X) is unbiased if and only if 〈Q〉 ⊆ 〈S〉.

4The notation Proj〈S〉(X) typically refers to projection of the columns of X onto the linear subspace 〈S〉, but here we use
this notation to denote projection of the rows of X onto 〈S〉.
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Lemma 1 is proved in Appendix A.1. In particular we note that

F̂ ≡ F̂ 〈Q〉 (6)

is unbiased.

In addition to being unbiased, the estimator F̂ is optimal in the following sense. Among all unbiased

estimators constructed by projectingX onto a linear subspace, F̂ minimizes a matrix equivalent of the

mean squared error.

Lemma 2. For a rank d matrix F that admits a factorization F = PQ and a random matrixX such that
1
2 E[X] = F , the estimator F̂ ≡ 1

2Proj〈Q〉(X) is an unbiased estimator of F and has the smallest risk

among all unbiased estimators of the form F̃ ≡ 1
2Proj〈S〉(X). We define the risk to be the expectation

of the squared Frobenius norm:

R(F̂ ,F ) = E[||F̂ − F ||2]

= E

∑
ij

(f̂ij − fij)2


Lemma 2 is proved in detail in Appendix A.2, however the basic intuition is straightforward. Projecting

X onto a linear space 〈S〉 ⊂ 〈Q〉 is biased (by Lemma 1). While projectingX onto a space 〈S〉 ⊃ 〈Q〉
will result in an unbiased estimate of F (again, by Lemma 1), dimensions orthogonal to 〈Q〉 fit noise,

increasing the variance (and therefore the mean squared error) of the estimate.

We note that this strategy is related to the strategy taken in HAO et al. (2016) in which F was

estimated by projecting 1
2X onto the space spanned by the first d principal components. In that work, it

was observed that this simple strategy of estimating F typically outperformed existing methods. We will

see in Section 2.4 that the space spanned by the first d principal components is a good estimator for

〈Q〉 itself, but it can be improved practically and with theoretical guarantees by performing a modified

PCA. Therefore, Lemma 2 provides a theoretical justification for the empirically accurate method put

forward in HAO et al. (2016).

2.4 Latent subspace estimation

We have shown that the linear subspace 〈Q〉 can be leveraged to provide a desirable estimate of F .

However, as 〈Q〉 is a linear subspace spanned by latent variables, it is not directly observable and must

be estimated. Here we show how a general technique developed in CHEN and STOREY (2015), which

we will refer to as Latent Subspace Estimation (LSE), can be used to compute a consistent estimate of

〈Q〉 from the observed data X.

LSE is closely related to PCA, a popular technique that identifies linear combinations of variables

that sequentially maximize variance explained in the data (JOLLIFFE, 2002). As PCA is commonly used

to find low-dimensional structure in high-dimensional data, a natural approach to estimating 〈Q〉 would

be to employ SNP-wise PCA. More specifically, we might consider the linear space spanned by the first

few eigenvectors of the n× n sample covariance matrix, 1
mX

TX as an estimate of 〈Q〉.
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The LSE-based estimate of 〈Q〉 almost exactly matches this PCA-based intuition. The only differ-

ence is that LSE accounts for the heteroscedastic nature of the admixture model, as detailed in CHEN

and STOREY (2015). LSE has the theoretical advantage of asymptotically capturing 〈Q〉 in the high-

dimensional setting (i.e. as m→∞). This is what is expressed in below in Theorem 1 below: a special

case of a more general theorem from CHEN and STOREY (2015), rewritten here for the special case of

the admixture model).

Theorem 1 (CHEN and STOREY (2015)). Let us define δ̂j = 1
m

∑
i 2xij − x2ij and let D be the di-

agonal matrix with jth entry equal to δ̂j . The d eigenvectors {v1, . . . ,vd} corresponding to the top d

eigenvalues of the matrix G = 1
mX

TX −D span the latent subspace 〈Q〉 in the sense that

lim
m→∞

〈{v1, . . . ,vd}〉4〈Q〉 = ∅

with probability 1, where4 denotes the symmetric set difference. Further, the smallest n− d eigenval-

ues of G converge to 0 with probability 1.

Theorem 1 provides us with a simple procedure for estimating 〈Q〉 directly from data. One first com-

putes δ̂j and constructs the n × n matrix D. Next, an eigendecomposition of the adjusted covariance

estimate 1
mX

TX −D is computed. Finally, we estimate 〈Q〉 as

〈̂Q〉 = 〈V T
(1:d)〉 (7)

where V 1:d are the first d columns from the singular value decomposition of G.

We stress that the general form of Theorem 1 from CHEN and STOREY (2015) makes LSE applicable

to a vast array of models beyond factor models and the admixture model discussed here. As a further

benefit to the LSE methodology, it is both easy to implement and computationally appealing. The entire

computation of 〈̂Q〉 requires a single eigen-decomposition of an n × n matrix where the accuracy

depends only on large m.

2.5 Leveraging constraints to estimate P and Q

Now that we have a method for obtaining the estimate F̂ by leveraging the LS constraint, what remains

is to find estimates for P and Q. Since the estimate F̂ has several appealing properties, as outlined in

Section 2.3, the approach of ALStructure is simply to keep F̂ fixed and seek matrices P̂ and Q̂ that

obey the Equality and Boundary constraints of the admixture model. Below we discuss some of the

general properties of this approach: namely the question of existence and uniqueness of solutions. We

will briefly discuss the general problem of non-identifiability in the admixture model and provide simple

and interpretable conditions under which the admixture model is identifiable. Finally, we will provide

simple algorithms for computing P̂ and Q̂ from F̂ based on the method of Alternating Least Squares

(ALS).
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Existence, uniqueness, and anchor conditions. First we develop some terminology. We will say

that an m × n matrix A admits an admixture-factorization if the following feasibility problem has a

solution:

find: (B,C) (8)

subject to: A = BC and (�,4)

In words, the feasibility problem in Eq. 8 simply seeks a factorization of A that obeys the Equality and

Boundary constraints from Section 2.2 imposed by the admixture model. The smallest integer d for

which (B,C) is a solution to Eq. 8 withB an m× d matrix and C a d× n matrix is the admixture-rank

of A, which we denote rankADM(A). By seeking a rank d admixture-factorization of F̂ , ALStructure

converts a problem of high-dimensional statistical inference to a matrix factorization problem.

This simple approach has two apparent shortcomings:

(i) A rank d admixture-factorization of F̂ may not exist.

(ii) If a valid factorization exists, it will not be unique.

Item (i) is a technical problem; though F admits a rank d admixture factorization by assumption,

the same is not true for F̂ in general. Even though the rank of F̂ is d by construction, rank(F̂ ) 6=
rankADM(F̂ ) in general. ALStructure avoids this problem changing the feasibility problem expressed

in Eq. 8 to the following optimization problem:

minimize
(B,C)

||A−BC||

subject to: (�,4) (9)

It is important to note that (ii) is not a problem unique to ALStructure, but is a fundamental limitation

for any maximum likelihood (ML) method as well. This is because the likelihood function depends on

P̂ and Q̂ only through their product F̂ ; more formally, the admixture model is non-identifiable. One

unavoidable source of non-identifiability is that any solution (P̂ , Q̂) to the matrix factorization problem

in Eq. 8 will remain a valid solution after applying a permutation to the columns of P̂ and the rows of

Q̂. A natural question to ask is: “When is there a unique factorization F̂ = P̂ Q̂ up to permutations?"

Two important types of sufficient conditions under which unique factorizations exist up to permuta-

tions are (i) anchor SNPs and (ii) anchor individuals. We note that the concept of anchors has been

previously employed in the field of topic modeling, where anchor words are of interest (ARORA et al.,

2013). We define an anchor SNP as one that is fixed in all ancestral populations except one. The anchor

SNPs condition is then satisfied if each of the d ancestral populations has at least one corresponding

anchor SNP. Analogously we define an anchor individual as one whose entire genome is inherited from

a single ancestral population. The anchor individuals condition then satisfied if each of the d ancestral

populations has at least one corresponding anchor individual. The assumption of anchor individuals

is equivalent to the assumption of “surrogate ancestral samples" required by the EIGMIX method of

ZHENG and WEIR (2016). The fact that either a set of d anchor SNPs or d anchor individuals makes
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the admixture model identifiable up to permutations follows from a simple argument found in Appendix

A.3. For the special case of d = 3, Fig. 1 graphically displays the anchor conditions. It is important

to remember that ALStructure does not require anchors to function. Rather, anchors provide inter-

pretable conditions under which solutions provided by ALStructure, or any likelihood-based method,

can be meaningfully compared to the underlying truth.

Figure 1: Summary of sufficient conditions for a factorization F = PQ to be unique for d = 3. Axes

represent the components of the row vectors of P and the column vectors of Q respectively. (left)

Anchor SNPs: there is at least one row of P on each on each of the red lines. (right) Anchor genotypes:

there is at least one column of Q on each of the red dots.

The anchor SNP and anchor individual conditions are not necessarily the only sufficient conditions

for ensuring identifiability of the admixture model and indeed to the best or our knowledge, there is not

currently a complete characterization of conditions for which the admixture model is identifiable. We

regard this as an important open problem. In practice, ALStructure is capable of retrieving solutions

remarkably close to the underlying truth even in simulated scenarios far from satisfying the anchor

conditions, including conditions which are challenging for existing methods.

Computation. Here we present two simple algorithms for solving the optimization problem:

minimize
(P ,Q)

||F̂ − PQ||

subject to: (�,4) (10)

The first algorithm, which we call cALS (constrained Alternating Least Squares), has the advantage that

it is guaranteed to converge to a stationary point of the nonconvex objective function in (10). While

a stationary point will not generally correspond to a globally optimal solution, global optimization is

seldom possible for nonconvex problems.
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Although theoretically appealing, this algorithm relies on solving many constrained quadratic pro-

gramming problems and is consequently potentially slow. To overcome this problem, we introduce a

second algorithm called tALS (truncated Alternating Least Squares), which simply ignores the problem-

atic quadratic constraints in cALS. Though lacking a theoretical guarantee of convergence, the increase

in speed is significant and the outputs of the two algorithms are often practically indistinguishable.

We note that the general method of alternating least squares is not novel. In particular, previous

work has developed alternating least squares methods for the the problem of nonnegative matrix fac-

torization (NNMF) (LEE and SEBASTIAN, 1999; PAATERO and TAPPER, 1994). In NNMF, one seeks a

low-rank factorization A = BC in which all elements of the factors B and C are nonnegative. Al-

gorithms analogous to cALS and tALS, but with nonnegetivity constraints rather than the � and 4
constraints, have previously been considered (BERRY et al., 2007; CICHOCKI et al., 2007; GILLIS and

GLINEUR, 2012; KIM et al., 2014).

An algorithm with provable convergence. While problem (10) is nonconvex as stated, the following

two subproblems are convex:

minimize
P

||F̂ − PQ|| (11)

subject to: �

minimize
Q

||F̂ − PQ|| (12)

subject to: 4

That (11) and (12) are convex problems is clear; norms are always convex functions and � and 4 are

convex constraints. In particular (11) and (12) are both members of the well-studied class of Quadratic

Programs (QP) for which many efficient algorithms exist (BOYD and VANDENBERGHE, 2009). We pro-

pose the following procedure for factoring F̂ , which we call Constrained ALS Algorithm.

Algorithm 1 Constrained ALS Algorithm

1: procedure cALS(F̂ , d)

2: Initialize P̂ arbitrarily.

3: repeat
4: Solve (12) with P = P̂ and return Q̂.

5: Solve (11) with Q = Q̂ and return P̂ .

6: until Convergence of P̂ and Q̂

7: return (P̂ , Q̂)

Despite the original problem being nonconvex, Algorithm 1 is guaranteed to converge to a stationary

point of the objective function in (10) as a result of the following theorem from GRIPPO and SCIANDRONE

(2000).

Theorem 2. For the two block problem,

minimize
P ,Q

f(P ,Q)
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if {P i} and {Qi} are a sequence of optimal solutions to the two subproblems:

minimize
P

f(P ,Qi)

minimize
Q

f(P i,Q)

then any limit point (P ,Q) will be a stationary point of the original problem. 5

An efficient heuristic algorithm. If we remove all constraints on P and Q from Eq. 11 and 12, the

resulting optimization problems are simple linear least squares (LS).

minimize
P

||F − PQ|| (13)

minimize
Q

||F − PQ|| (14)

Our algorithm proceeds by alternating between solving the unconstrained LS problems (13) and (14).

After each step, the optimal solution will not necessarily obey the constraints of problem (10). To

keep our algorithm from converging on an infeasible point, we truncate the solution to force it into the

feasible set. More precisely, each element of the solution P ∗ to (13) is truncated to satisfy � and each

column of the solution Q∗ to (14) is projected to the closest point on the simplex defined by the 4
constraint. Simplex-projection is nontrivial, however it is a well-studied optimization problem. Here we

use a particularly simple and fast algorithm from CHEN and YE (2011). This algorithm, which we call

the Truncated ALS Algorithm, is detailed in Algorithm 2.

Algorithm 2 Truncated ALS Algorithm

1: procedure tALS(F̂ , d)

2: Initialize P̂ arbitrarily.

3: repeat
4: Solve (14) with P = P̂ , and return the simplex-projected solution Q̂.

5: Solve (13) with Q = Q̂ and return the truncated solution P̂ .

6: until Convergence of P̂ and Q̂

7: return (P̂ , Q̂)

An example dataset. Figure 2 displays the output of cALS and tALS on a dataset from the PSD

model with the parameters: m = 100 000, n = 500, k = 3, α = (0.1, 0.1, 0.1). As can be seen, the

output fits for Q provided by cALS and tALS are practically indistinguishable to the eye and are both

excellent approximations of the ground truth. The cALS algorithm performed slightly better than the

tALS algorithm (8.5 × 10−3 and 8.7 × 10−3 RMSE, respectively). However, cALS took 3.5 hours to

complete while tALS terminated in under 1.5 minutes. Because of the significant gains in efficiency,

we use tALS exclusively throughout the remainder of this paper. The analyst who requires theoretical

guarantees can, of course, use the cALS algorithm instead. Appendix B provides a more detailed

comparison between the tALS and cALS algorithms on simulated data.
5The result from GRIPPO and SCIANDRONE (2000) is actually more general than this. We reproduce the special case

above in order to make clear the connection to our problem.
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Figure 2: Biplots of the first two rows of Q (left), Q̂tALS (middle) and Q̂cALS (right). Blue points are

provided as a visual aid and delineate a common subset of individuals.

3 The ALStructure algorithm

In this section we briefly outline the entire ALStructure method whose components were motivated in

depth in Section 2. In order to fit the admixture model, we obtain estimates F̂ , P̂ , and Q̂ from the SNP

matrix X through the following three part procedure:

(i) Estimate the linear subspace 〈Q〉 from the data X.

(ii) Project 1
2X onto the estimate 〈̂Q〉 to obtain an estimate of F .

(iii) Factor the estimate F̂ subject to the Equality and Boundary constriants to obtain P̂ and Q̂.

For convenience, we detail the entire ALStructure algorithm in Algorithm 3 and annotate each of the

three steps described above. 6

We emphasize here that ALStructure’s estimate Q̂ is ultimately derived from the LSE-based

estimate of the latent subspace 〈̂Q〉. As the method of LSE is closely linked to PCA, we consider

ALStructure to be a unification of PCA-based and likelihood-based approaches.

Perhaps the most striking feature of Algorithm 3 is its brevity. One advantage of this simplicity is its

ease of implementation. Although Algorithm 3 has been implemented in the R package ALStructure,

it can clearly be reimplemented in any language quite easily. Equally important is that all of the op-

erations in Algorithm 3 are standard. The only two computationally expensive components are (i) a

single eigen-decomposition (line 6) if n is large and (ii) QR decompositions to find linear least squares

(LLS) solutions in the tALS algorithm. Both of these problems have a rich history and consequently

have many efficient algorithms. It is likely that the ALStructure implementation of Algorithm 3 can

be significantly sped up by utilizing approximate or randomized algorithms for the eigen-decomposition

and/or LLS computations. In its current form, ALStructure simply uses the base R functions eigen()

and solve() for the eigen-decomposition and LLS computations, respectively. Despite this, the current

6We note that we have decided to use the tALS function rather than the cALS function in our definition of the ALStructure
algorithm, valuing the speed advantage of tALS over the theoretical guarantees of cALS. If desired, one could of course
choose to use the cALS function instead without making any other alterations to the ALStructure.
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Algorithm 3 ALStructure

1: procedure ALStructure(X, d)

2: for j = 0 to n do . (i)

3: δ̂j ← 1
m

∑m
i=1 2xij − x2ij

4: D ← diag({δ̂1, . . . , δ̂n})
5: G← 1

mX
TX −D

6: Compute eigen-decomposition G = VWV T

7: F̂ ← 1
2Proj〈̂Q〉(X) = 1

2XV (1:d)V
T
(1:d) . (ii)

8: (P̂ , Q̂)← tALS(F̂ , d) . (iii)

9: return (F̂ , P̂ , Q̂)

implementation of ALStructure is typically faster than existing algorithms as can be seen in Sections

4 and 5 below.

The ALStructure method is a nonparametric estimator in the following ways. It makes no assump-

tions about the probability distributions of P or Q. Any random variable taking values in {0, 1} is by

necessity Bernoulli. In this vein, the assumption that xij ∼ Binomial(2, fij) is not a parametric assump-

tion per se, but rather an assumption about independence of alleles. Finally, the likelihood function is

not utilized in estimating P and Q, making ALStructure likelihood-free.

For choosing the dimensionality of the model d, we recommend utilizing the recently proposed

structural Hardy-Weinberg equilibrium (sHWE) test (HAO and STOREY, 2017). This test can perform a

genome-wide goodness of fit test to the assumptions made in the admixture model over a range of d.

It then identifies the minimal value of d that obtains the optimal goodness of fit. There are other ways

to choose d, by using the theory and methods in CHEN and STOREY (2015) or by using other recent

proposals (HAO et al., 2016; PATTERSON et al., 2006).

4 Results from simulated data

4.1 Simulated data sets

In this section we compare the performance of ALStructure to three existing methods for global ances-

try estimation, Admixture, fastSTRUCTURE and terastructure. Admixture, developed by ALEXAN-

DER et al. (2009), is a popular algorithm which takes a maximum likelihood approach to fit the admix-

ture model. Both fastSTRUCTURE (RAJ et al., 2014) and terastructure (GOPALAN et al., 2016) are

Bayesian methods that fit the PSD model using variational Bayes approaches. We abbreviate these

methods as ADX, FS, and TS in the figures. A comparison among these three methods appears in

GOPALAN et al. (2016), so we will focus on how they compare to ALStructure.

To this end, we first tested all algorithms on a diverse array of simulated datasets. The bulk of

our simulated data sets come from the classical PSD model (defined in Section 2.1) in which columns

of Q are distributed according to the Dirichlet(α) distribution and the rows of P are drawn from the
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m 105, 5× 105

n 5× 102, 103, 5× 103, 104

d 3, 6, 9

α-prototypes

(10, 10, 10)

(1, 1, 1)

(0.1, 0.1, 0.1)

(10, 1, 0.1)

Table 1: Parameters of all simulated datasets

Balding-Nichols distribution. We varied the following parameters in our simulated datasets: m, n, d,

and α. Of particular note is the variation of α. For this we used four α-prototypes: α1 = (10, 10, 10),

α2 = (1, 1, 1), α3 = (0.1, 0.1, 0.1), and α4 = (10, 1, 0.1). These four prototypes were chosen because

they represent four qualitatively different distributions on the Dirichlet simplex as shown in Fig. 3: α1

corresponds to points distributed near the center of the simplex, α2 corresponds to points distributed

evenly across the simplex, α3 corresponds to points distributed along the edges of the simplex, and α4

corresponds to an asymmetric distribution in which points are concentrated around one of the corners

of the simplex.

Figure 3: Examples of typical random samples from the four different α-prototypes. As can be seen,

only α2 and α3 approximately obey the “anchor-individuals" condition.

When we produced datasets with d > 3, we extended the prototypes in the natural way; for example

for d = 6, the α4 is becomes (10, 10, 1, 1, 0.1, 0.1). Table 1 lists all of the parameters we used to

generate data under the Dirichlet model, for a total of 96 distinct combinations.

The parameters of the Balding-Nichols distributions from which rows of the P matrix were drawn

were taken from real data, following the same strategy taken in GOPALAN et al. (2016). Specifically, Fi
and pi were estimated for each SNP in the Human Genome Diversity Project (HGDP) dataset (CAVALLI-

SFORZA, 2005). Then for each simulated dataset,m random samples are taken (with replacement) from

the HGDP parameter estimates.

In addition to simulating Q matrices from the classical Dirichlet(α) distribution with many different

17

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted March 27, 2019. . https://doi.org/10.1101/240812doi: bioRxiv preprint 

https://doi.org/10.1101/240812
http://creativecommons.org/licenses/by-nd/4.0/


parameters α, we also simulated data from the spatial model of admixture developed in OCHOA and

STOREY (2016). We deliberately chose to study this model because it is ill-suited for ALStructure;

while ALStructure relies on the estimation of the d-dimensional linear subspace 〈Q〉, the columns of

Q produced under the spatial model lie on a one-dimensional curve within 〈Q〉. Despite this funda-

mentally challenging scenario, we see that ALStructure is often capable of recovering an accurate

approximation.

4.2 Results from the PSD model

In order to give a representative picture of the relative performance of ALStructure against existing

algorithms, we first plot the fits of all of the algorithms for two particular data sets out of the total 96

model data sets: (i) the data set in which ALStructure performs the best and (ii) the data set in which

ALStructure performs the worst, according to mean absolute error (defined below).

In Fig. 4a, we see that all four algorithms perform very well for the data set in which ALStructure

performs best, which comes from the α3-prototype. In Fig. 4b, the dataset was generated from the

α4-prototype. We see that while ALStructure certainly deviates substantially from the truth, so does

every algorithm. Both fastSTRUCTURE and terastructure provide results that are qualitatively very

different from the truth; where fastSTRUCTURE compresses all columns of Q onto a single edge of

the simplex, terastructure spreads them out through the interior of the simplex. Both Admixture

and ALStructure provide solutions qualitatively similar to the truth. While the points in the Admixture

solution extend much further along the edge of the simplex than the true model, the ALStructure

solution spreads into the interior of the simplex more than the true model.

Fig. 5 provides a comprehensive summary of the performance of ALStructure against the existing

algorithms on all simulated datasets. The top panels of Fig. 5 summarize the accuracy of each of the

four algorithms, according to two metrics: root mean squared error (RMSE) and mean absolute error

(MAE).

RMSE ≡

√√√√ 1

dn

d∑
k=1

n∑
j=1

(q̂kj − qkj)2

MAE ≡ 1

dn

d∑
k=1

n∑
j=1

|q̂kj − qkj |

The bottom left panel of Fig. 5 shows mean per-observation log-likelihood, 1
mn

∑m
i=1

∑n
j=1 logP (xij |f̂ij),

on all simulated data sets. (To obtain full data log-likelihoods, multiple these numbers bymn.) It is inter-

esting to note that ALStructure performs comparably to other methods from the likelihood perspective

despite the fact that it is the only method which does not explicitly utilize the likelihood function. How-

ever, we emphasize that likelihood is an imperfect metric of model fit for two reasons. First, because of

the highly non-identifiable nature of the admixture model as discussed in Section 2.5, many models are

equivalent from the likelihood perspective. Therefore, if one is primarily concerned about the accuracy
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(a) Dataset with best ALStructure fit. (b) Dataset with worst ALStructure fit.

Figure 4: Model fits by ALStructure, Admixture, fastSTRUCTURE, and terastructure on the two

particular simulated datasets. Each point represents a column of the Q matrix and is plotted by the

first and second coordinates. Blue points are plotted as a visual aid and delineate a common subset of

individuals.

19

.CC-BY-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted March 27, 2019. . https://doi.org/10.1101/240812doi: bioRxiv preprint 

https://doi.org/10.1101/240812
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: Summary of performance of ALStructure and existing algorithms. The points are colored by

α-prototype.

of admixture estimates, the RMSE or MAE metrics may be more suitable. Second, in high-dimensional

models it has been demonstrated that high likelihood may yield far inferior estimates (EFRON, 2013).

Starting with Stein’s Paradox (STEIN, 1956), it has been shown in many settings that the maximum like-

lihood estimator for several parameters may be uniformly worse in accuracy than methods that leverage

shared information in the data.

The bottom right panel of Fig. 5 shows the distributions of run times for each algorithm on all

modeled datasets. Due to the size of the simulated datasets and our computational constraints, each

algorithm did not terminate on each of the 96 datasets. In Fig. 5, we plot only the datasets for which all

four algorithms successfully terminated. See Appendix C for more details. It is clear that ALStructure

is competitive with respect to both model fit and time. ALStructure outperforms all methods according

to both RMSE and MAE. With respect to time, ALStructure is clearly favored (one should note that the

y-axis is on the log scale).
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4.3 Results from the spatial model

As a challenge to ALStructure, we simulate data from a model developed in OCHOA and STOREY

(2016), which we will refer to as the spatial model. This model mimics an admixed population that was

generated by a process of diffusion in a one-dimensional environment. There are d unmixed ancestral

populations equally spaced at positions {x0, x0+1, . . . , x0+ d− 1} on an infinite line. If all populations

begin to diffuse at time t = 0 at the same diffusive rate, then population i will be distributed as a

Gaussian with mean µi = x0 + i− 1 and standard deviation σ. Therefore, under the Spatial model, an

individual sampled from position x will have admixture proportions:

(q1(x), q2(x), . . . , qd(x)) =

(
f(µ1,σ)(x)∑d
i=1 f(µi,σ)(x)

,
f(µ2,σ)(x)∑d
i=1 f(µi,σ)(x)

, . . . ,
f(µd,σ)(x)∑d
i=1 f(µi,σ)(x)

)
(15)

where f(µ,σ) denotes the Gaussian distribution with parameters (µ, σ).

Although this is just a special case of the admixture model, one would expect the spatial model

to be particularly challenging for ALStructure because the admixture proportions belong to a one-

dimensional curve parameterized by x, and ALStructure necessitates the estimation of a d-dimensional

linear subspace in Rn. The challenge is much more pronounced when the populations are highly ad-

mixed (large σ). Fig. 6 shows the model fits provided by ALStructure. Indeed, for large values of σ

(σ = 2), ALStructure fails to correctly capture the admixture proportions. However, for smaller values

of σ (σ = {1, 0.5}), it can be seen that the fits provided by ALStructure are excellent. In all simulations

m = 105, n = 103, and d = 3.

We note that GOPALAN et al. (2016) tested Admixture, fastSTRUCTURE, and terastructure on

data drawn from the spatial model (which they refer to as “Scenario B”). They showed this model posed

a significant challenge for all three methods, but found that terastructure performed the best.
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Figure 6: ALStructure fits of datasets from the Spatial model. (left) Stacked barplots of ALStructure

fits. (right) Bi-plots of ALStructure fits. The parameter σ was set to 0.5, 1, and 2 for the top, middle and

bottom rows, respectively. Blue points are plotted as a visual aid and delineate corresponding columns

of Q and Q̂.
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Dataset m n d m× n

TGP 1229310 1815 8 ∼ 2.2× 109

HGDP 550303 940 10 ∼ 5.2× 108

HO 372446 2251 14 ∼ 8.4× 108

Table 2: Dataset parameters.

Method Admixture fastSTRUCTURE terastructure ALStructure

TGP -0.7097 -0.7136 -0.7130 -0.7100

HGDP -0.7494 -0.7536 -0.7608 -0.7505

HO -0.7467 -0.7515 -0.7534 -0.7477

Table 3: The mean per-observation log-likelihood of each dataset under each method’s fit.

5 Applications to global human studies

Here we apply ALStructure and existing methods to three globally sampled human genotype datasets:

the Thousand Genomes Project (TGP), Human Genome Diversity Project (HGDP), and Human Origins

(HO) datasets (CAVALLI-SFORZA, 2005; LAZARIDIS et al., 2014; THE 1000 GENOMES PROJECT CON-

SORTIUM, 2015). Table 2 summarizes several basic parameters of each of the datasets and Appendix

D details the procedures used for building each dataset. Although we recommend using sHWE from

HAO and STOREY (2017) for choosing d, here we take directly from GOPALAN et al. (2016) the number

of ancestral populations d so that our results are easily comparable to those.

Fig. 7 shows scatterplots of the first two rows of Q̂ for each of the three datasets provided by each

of the four fits. To disambiguate the inherent non-identifiability (see section 2.5), we ordered the rows of

the fits Q̂ by decreasing variation explained: s2i = ||Xq̂
T
i• ||2. Perhaps the most striking aspect of Fig. 7

is the difference between the fits produced by each method. With the notable exception that Admixture

and ALStructure have similar fits for the TGP and HGDP datasets, every pair of comparable scat-

terplots (i.e., within a single row of Fig. 7) are qualitatively different. Fig. 11 of Appendix F displays

the same data represented as stacked barplots of the admixture proportions. In this representation

too, qualitative differences between the fits are also evident. Table 3 shows the mean per-observation

log-likelihood of the fits provided by each of the four methods. Supplementary Fig. 12 shows that the

distributions of per-observation likelihood are nearly indistinguishable across all methods.

Next we compare the performance of ALStructure to existing methods both in terms of efficiency

and accuracy. Unlike in the case of simulated datasets where the ground truth is known, here we

cannot directly compare the quality of model fits across methods. Instead, we assess the quality of

each method by its performance on data simulated from real data fits. For concreteness, we briefly

outline the process below:

(i) Fit each dataset with each of the four methods to obtain 12 model fits.
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(ii) Simulate datasets from the admixture model using parameters obtained in the previous step.

(iii) Fit each of the 12 simulated datasets with each of the four datasets (48 fits) and compute error

measures.

The process above treats each of the four methods symmetrically, evaluating each method based on

its ability to fit data simulated from both its own model fits as well as every other methods’ model fits.

Fig. 8 summarizes the performance of each method with respect to both model fit and efficiency

on data simulated from the above described process. As with the results on simulated datasets from

Section 4.2, it is clear that ALStructure is competitive with respect to both model fit and time. Both

Admixture and ALStructure outperform fastSTRUCTURE and terastructure by all quality of fit met-

rics. ALStructure far outperforms all methods with respect to time (one should note that the y-axis is

on the log scale).

In Appendix E we compare the performance of ALStructure to pre-existing methods on an ad-

ditional non-global dataset from BASU et al. (2016). In this dataset, individuals are sampled from 18

modern Indian subpopulations. India’s genetic admixture is of particular interest because of its long

history of sociocultural norms promoting endogamy. We find that each of the four methods produce

admixture estimates qualitatively similar to each other for this dataset (see supplementary Figure 10).

One possible explanation for this observed similarity is that the genetic history of India more closely

mimics the admixture model than does global genetic history, as suggested by LAWSON et al. (2018).
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Figure 7: Bi-plots of the first two rows of Q (ranked by variation explained) of the fits of the TGP

(top), HGDP (middle), and HO (bottom) datasets for each algorithm. Individuals are colored by coarse

subpopulation from which they are sampled.
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Figure 8: Summary of performance of ALStructure and preexisting algorithms on data simulated from

real model fits. The points are colored by dataset.
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6 Discussion

In this work we have introduced ALStructure, a new method to fit the admixture model from observed

genotypes. Our method attempts to find common ground between two previously distinct approaches to

understanding genetic variation: likelihood-based approaches and PCA-based approaches. ALStructure

features important merits from both. Like the likelihood-based approaches, ALStructure is grounded in

the probabilistic admixture model and provides full estimates of global ancestry. However, operationally

the ALStructure method closely resembles PCA-based approaches. In particular, ALStructure’s

estimates of global ancestry are derived from a consistent PCA-based estimate that captures the un-

derlying low-dimensional latent subspace. In this way, ALStructure can be considered a unification of

likelihood-based and PCA-based methods.

Because ALStructure is operationally similar to PCA-based methods, it is computationally efficient.

Specifically, the only computationally expensive operations required by the ALStructure algorithm are

singular value and QR decompositions. Both of these computations have been extensively studied and

optimized. Although ALStructure already performs favorably compared to preexisting algorithms in

computational efficiency, it is likely that by applying more sophisticated matrix decomposition techniques

ALStructure may see significant improvements in speed. Although extremely simple, ALStructure

typically outperforms preexisting algorithms both in terms of accuracy and time. This observation holds

under a wide array of datasets, both simulated and real.

The usefulness of PCA-based approaches has been increasingly recognized in related settings,

such as the mixed membership stochastic block model (RUBIN-DELANCHY et al., 2017) and topic mod-

els (KE and WANG, 2017). The basic approach we have presented is quite general. In particular, the

set of models that satisfy the underlying assumptions of LSE is large, subsuming the admixture model

as well as many other probabilistic models with low intrinsic dimensionality. Consequently, we expect

that the ALStructure method can be trivially altered to apply to many similar problems beyond the

estimation of global ancestry.
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Appendices

A Additional mathematical details

A.1 Proof of Lemma 1

First we show that F̂ is unbiased. Note that:

E[F̂ ] =
1

2
E[Proj〈Q〉(X)]

=
1

2
Proj〈Q〉(E[X])

= Proj〈Q〉(F )

= F

Between the first and second line, we note that the projection operator is linear and take advantage of

linearity of expectation. Between the second and third line, we used the observation that 1
2 E[X] = F .

Finally, Proj〈Q〉F = F since all rows of F belong to 〈Q〉. From an identical argument one can see that

for projection onto any other subspace 〈S〉, the corresponding estimator F̂ 〈S〉 ≡ 1
2Proj〈S〉(X) will have

the property that

E[F̂ 〈S〉] = Proj〈S〉(F )

It is clear that if 〈Q〉 ⊆ 〈S〉, then E[F̂ ]〈S〉] = Proj〈S〉(F ) = F since the projection operator acts as the

identity operator for vectors belonging to the subspace 〈S〉.
Next we show that the converse is true: E[Proj〈S〉] = F implies 〈Q〉 ⊆ 〈S〉. To do do this, we prove

the contrapositive statement. If 〈Q〉 6⊆ 〈S〉 then E[F̂ S ] 6= F . This can be seen by noting that each

row in F̂ = Proj〈Q〉(F ) is a vector in the linear subspace 〈Q〉 projected into the linear subspace 〈S〉;
rows of F̂ therefore belong to the linear subspace 〈Q〉 ∩ 〈S〉. Unless 〈Q〉 ⊆ 〈S〉, then the dimension of

〈Q〉 ∩ 〈S〉 is strictly less than d, the dimension of 〈Q〉 and the rank of F . Therefore, if 〈Q〉 6⊆ 〈S〉, the

rank of E[F̂ S ] will be less than the rank of F , implying E[F̂ S ] 6= F .

A.2 Proof of Lemma 2

Note that we can write the squared Frobenius norm as follows:

L(F , F̂ ) ≡ ||F̂ − F ||2

= Tr[(F̂ − F )T (F̂ − F )]

= Tr[F̂
T
F̂ ]− 2Tr[F̂

T
F ] + Tr[F TF ] (16)

First let us compute the risk of our projection estimator F̂ . Suppose we have an orthonormal basis {vi}
of 〈Q〉. Using the definition of F̂ from Eq. 6 and the fact that the rows of both F belong to 〈Q〉, we note
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that we can write any row of either matrix in terms of the basis vectors {vi}:

f i• =
∑
j

〈fTi• ,vj〉vTj (17)

f̂ i• =
1

2

∑
j

〈xTi• ,vj〉vTj (18)

By rewriting the matrices F̂ and F with respect to the basis {vi} and using Eqs. 17 and 18, it is a

straightforward calculation to show that

Tr[F TF ] =
m∑
i=1

k∑
j=1

〈fTi• ,vj〉2

Tr[F̂
T
F̂ ] =

m∑
i=1

k∑
j=1

〈1
2
xTi• ,vj〉2

Substituting this result into Eq. 16 and taking expectations, we have the following expression for our

loss function:

R(F , F̂ ) = E[L(F , F̂ )]

= E
[
Tr[F̂

T
F̂ ]− 2Tr[F̂

T
F ] + Tr[F TF ]

]
= E

[
Tr[F̂

T
F̂ ]− Tr[F TF ]

]
=

m∑
i=1

k∑
j=1

E

[
〈1
2
xTi• ,vj〉2

]
− 〈fTi• ,vj〉2

=
1

4

m∑
i=1

k∑
j=1

Var[〈xTi• ,vj〉] (19)

By studying Eq. 19, we can see the estimator F̂ has several favorable properties. First note that the

risk is a sum of m × k nonnegative numbers since Var[Z] ≥ 0 for any random variable Z. If we were

to project onto a larger subspace 〈S〉 ⊃ 〈Q〉, we would add terms to Eq. 19 and consequently increase

our risk. If we were to project onto a smaller subspace 〈S〉 ⊂ 〈Q〉, then the risk may decrease, however

our new estimator will now be biased by Lemma 1. From these observations, we conclude that F̂ is

optimal in the sense described in the Lemma 2.

A.3 Proof of sufficiency of anchors

Here we show that either a set of anchor SNPs or a set of anchor individuals is sufficient to specify a

unique factorization F = PQ up to the non-identifiability associated with row permutations.

Proposition 1.

For a rank d matrix F with a factorization F = PQ, if there is a set S of d rows of P such that for each

i ∈ {1, 2, . . . , d} there exists a row vector pi• ∈ S such that pi• = δiei for δi 6= 0, then the factorization

is unique up to permutation. When such a set S exists, we say that we have “anchor SNPs."
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Proof. Let us denote the matrixD = diag(δ1, δ2, . . . , δd). Without loss of generality, let us assume that

S is the first d rows of P and are ordered such that

P =

(
D

A

)
for some (m− d)× d matrixA. Then there is a uniqueQ for this F matrix (up to permutation) which is

Q =D−1F 1:d

The matrix A is also uniquely determined by F once Q is fixed. To see this, note that

f j• = pj•Q

where f j• and pj• denote the j row of F and P respectively. Since f j• is fixed and Q is unique under

the anchor SNP assumption, there is a unique solution for pj• by the linear independence of the rows

of Q.

The interpretation of the anchor SNPs assumption is that every ancestral population has at least

one SNP that appears only in it. Presence of such an SNP is therefore a guarantee that the individual

is a member of a particular population. Note that an identical argument could be made when we have

a set S of d columns of Q that have exactly one nonzero entry at unique locations. When such a set

exists, we say that we have “anchor individuals." Under the admixture model, the simplex constraint

requires that the nonzero entry of each anchor genotype is exactly one. In this scenario, there exists

at least one individual from each ancestral population whose entire genome was inherited by a single

ancestral population. We summarize these results in the following corollary and visualize the anchor

SNP and anchor genotype scenarios in Fig. 1.

Corollary 1. Whenever a rank d matrix F admits a factorization F = PQ such that there are either a

set of anchor SNPs or a set of anchor genotypes, the factorization is unique up to permutation.

B tALS and cALS comparisons

Fig 9 displays the Q̂ estimates of the tALS and cALS algorithms on simulated data from each of the

four α-prototypes described in Section 4.1. For each of these datasets, m = 105, n = 500, d = 3.

We see that estimates provided by the tALS and cALS algorithms agree very well with each other for

all α-prototypes. However, the run times are substantially different between these two methods, as

displayed in Table 4: tALS terminates in minutes while cALS terminates in hours. Notably, the run times

of thetALS algorithm also appear to be less sensitive to the α-prototype than the cALS algorithm. Most

notably, the cALS algorithm takes an order of magnitude longer to run on the α4 prototype than any

of the other α-prototypes. These observations support our preference for the tALS algorithm over the

cALS algorithm.

Under α2 and α3, the estimates provided by tALS and cALS also agree very well with the true Q

matrices. This is not the case under α1 and α4, where both algorithms provide substantially different
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α1 α2 α3 α4

RMSE(Q, Q̂tALS) 6.2× 10−2 1.4× 10−2 8.7× 10−3 1.9× 10−1

RMSE(Q, Q̂cALS) 6.3× 10−2 1.5× 10−2 8.5× 10−3 2.2× 10−1

RMSE(Q̂tALS, Q̂tALS) 4.2× 10−3 2.3× 10−3 5.7× 10−4 3.9× 10−2

tALS run time 2.6 min 1.4 min 1.5 min 2.8 min

cALS run time 4.1 hr 3.0 hr 3.5 hr 36.8 hr

Table 4: RMSE between true and estimated Q matrices for each method and each α-prototype (rows

1 and 2). RMSE between two estimated Q matrices (row 3). Run time (rows 4 and 5).

results than the ground truth. However, because both of these α-prototypes lack a complete set of

anchor SNPs, the model may well be unidentifiable.

Figure 9: Biplots of the first two rows ofQ (top), Q̂tALS (middle) and Q̂cALS (bottom) for each of the four

α-prototypes.

C Simulation details

Due to time and computational constraints, each algorithm did not terminate on each of the 96 datasets

generated for the simulations. In all, 326 of the 384 total simulations terminated during the one week

time limit with a budget of 300 GB. Admixture completed 81 simulations, fastSTRUCTURE completed
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80 simulations terastructure completed 81 simulations, and ALStructure completed 84 simulations.

For the sake of comparison, Fig. 5 only shows the datasets for which all algorithms terminated.

D HGDP, TGP, and HO dataset details

In Section 5 we analyze human genotype data from globally-sampled individuals. These data come

from three public sources: HGDP (CAVALLI-SFORZA, 2005), TGP (THE 1000 GENOMES PROJECT

CONSORTIUM, 2015), and HO (LAZARIDIS et al., 2014). The various pre-processing steps are detailed

below for each dataset.

TGP: The 1000 Genomes Project dataset (TGP) samples globally from 26 populations and is available

here: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_

chip/. Related individuals and SNPs with minor allele frequency < 5% are removed. The dimensions

of this dataset are 1,716 individuals and 520,036 SNPs.

HGDP: The Human Genome Diversity Project dataset (HGDP) samples globally from 51 populations

and is available here: http://www.hagsc.org/hgdp/files.html. Individuals with first- or second-

degree relatives and SNPs with minor allele frequency < 5% are removed. The dimensions of this

dataset are 940 individuals and 550,303 SNPs.

HO: The Affymetrix Human Origins dataset (HO) samples globally from 147 populations and is avail-

able here: http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets.html. Nonhuman or

ancient samples and SNPs with < 5% minor allele frequency are removed. The dimensions of this

dataset are 2,248 individuals and 372,446 SNPs.

E Application to a non-global dataset

In this appendix we apply ALStructure and preexisting methods to a dataset from BASU et al. (2016).

In this dataset, individuals from 18 mainland Indian subpopulations are sampled. Following BASU et al.

(2016), we set d = 4 for each method. Figure 10 plots the first two rows of Q output from Admixture,

fastSTRUCTURE, terastructure, and ALStructure, respectively. As in the results from Section 5,

rows of Q are ordered according to variation explained.

As can be seen, the estimated admixture proportions produced by each method are all qualita-

tively similar. Table 5 shows the likelihood of the data from each method, with each method perform-

ing similarly. The methods ranked by decreasing mean log-likelihood are: Admixture, ALStructure,

fastSTRUCTURE, terastructure.
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Figure 10: Bi-plots of the first two rows ofQ (ranked by variation explained) of the fits of the BASU et al.

(2016) dataset for each algorithm. Individuals are colored by the subpopulation from which they are

sampled.

Method Admixture fastSTRUCTURE terastructure ALStructure

Mean log-likelihood -0.7360 -0.7369 -0.7373 -0.7365

Table 5: Mean log-likelihood from of each method applied to BASU et al. (2016) dataset
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F Supplementary figures

Figures start on the next page.
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Figure 12: (left) The distribution of likelihoods for each element of X for each method and dataset.

(right) The same as (left) except on a log-scale.
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