
 

1 

 

Gate Tunable Magneto-resistance of Ultra-Thin WTe2 Devices 

 

Xin Liu1*, Zhiran Zhang1, Chaoyi Cai1, Shibing Tian1, Satya Kushwaha2, Hong Lu1, Takashi 

Taniguchi3, Kenji Watanabe3, Robert J. Cava2
, Shuang Jia1,4*, Jian-Hao Chen1,4* 

 
1 International Center for Quantum Materials, Peking University, Beijing 100871, China 

2 Department of Chemistry, Princeton University, Princeton, USA 

3 High Pressure Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan 

4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 

 
*Xin Liu (liux23@pku.edu.cn), Shuang Jia (jiashuang@gmail.com) and Jian-Hao Chen 

(chenjianhao@pku.edu.cn) 

 

PACS: 72.80.Ga; 73.43.Qt 

Keywords: transition metal dichalcogenide; electronic device; solid-dielectric gate; 

magneto-resistance 

 

Abstract: In this work, the magneto-resistance (MR) of ultra-thin WTe2/BN heterostructures 

far away from electron-hole equilibrium is measured. The change of MR of such devices is 

found to be determined largely by a single tunable parameter, i.e. the amount of imbalance 

between electrons and holes. We also found that the magnetoresistive behavior of ultra-thin 

WTe2 devices is well-captured by a two-fluid model. According to the model, the change of 

MR could be as large as 400,000%, the largest potential change of MR among all materials 

known, if the ultra-thin samples are tuned to neutrality when preserving the mobility of 

167,000 cm2V-1s-1 observed in bulk samples. Our findings show the prospects of ultra-thin 

WTe2 as a variable magnetoresistance material in future applications such as magnetic field 

sensors, information storage and extraction devices, and galvanic isolators. The results also 

provide important insight into the electronic structure and the origin of the large MR in 

ultra-thin WTe2 samples. 

 

 

Introduction 

1T’-Tungsten ditelluride (WTe2) is a layered transition metal dichalcogenide (TMDC) with a 

distorted structure that preserves inversion symmetry in the out-of-plan direction, contrasting 

with TMDCs with 2H phases, such as 2H-MoS2 [1]. The material in its pristine bulk form is a 

semimetal [2, 3]. It exhibits rich physics such as extraordinarily large and non-saturating 

magneto-resistance (XMR) [4], superconductivity under high pressure [5, 6], and may be a 

type-II Weyl semimetal (WSM) at a particular level of electron doping [7-10]. Furthermore, 

reports on thin films of WTe2 show the tunability of magnetoresistance revealing interesting 

new phenomena such as the transition from weak anti-localization to weak localization [11], 

the depletion of holelike carriers in the suppressed-MR regime [12], long-range field effect 

[13], the topological insulator-like behavior [14], and negative longitudinal MR indicating 

WTe2 a type-II WSM [15]. The origin of the XMR in WTe2, together with its potential 
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application in magnetic field sensing and in information storage, has attracted much attention 

in the scientific and technical community [16-21]. The majority of the research in XMR has 

been carried-out in bulk WTe2 samples with near-perfect electron-hole compensation, and the 

results support the picture that the XMR arises from such near-perfect compensation of 

electrons and holes [17], i.e. a two-fluid picture. However, electrolyte gating experiments on 

thinner WTe2 samples (~70nm) have shown non-saturating XMR that deviates from the 

two-fluid theory [18]. Here, we have carried out careful experiments with solid-dielectric 

gated ultra-thin WTe2 samples (~10nm) that are far away from charge neutrality. We find that 

in this regime, the MR of the samples can still be well explained by the two-fluid model, and 

the sample shows 2D weak anti-localization effects at low temperatures. We also found that 

the change of MR of the ultra-thin WTe2 is determined largely by the density difference 

between the electron and hole carriers, pointing to possible future application of this material 

in electric-field tunable, variable sensitivity magnetic field sensors [22-24]. 

 

Device fabrication and measurement 

The ultra-thin WTe2 samples measured in this letter are mechanically exfoliated from bulk 

WTe2 crystal and transferred on to thin h-BN single crystals placed on 300nm SiO2/Si 

substrates [25]. We found that using single crystal BN substrates resulted in an increase in the 

mobility of our samples which are 10nm thick or less (see section S4 at Supporting 

information for details). WTe2 bulk crystals are synthesized using chemical vapor transport 

technique [4] and h-BN bulk crystals are grown by the method described in ref. [26]. The thin 

h-BN (thickness～15nm) surface is free of dangling bonds, greatly alleviates the influence of 

surface charge traps in the SiO2 layer, and could substantially improve quality of 

low-dimensional devices. Standard electron-beam lithography technique is used to pattern 

electrodes, consisting of 6nm Cr and 60nm Au, on the WTe2 samples to form multi-terminal 

field effect devices (FEDs). We have taken particularly careful measures to ensure that the 

samples do not expose to ambient conditions at all. The sample preparation process, device 

fabrication process and electrical transport measurement are done in inert atmosphere, or with 

the sample capped with a protection layer. The protection layer consists of 200 nm thick 

polymethyl methacrylate (PMMA) or a bilayer of 200 nm PMMA and 200 nm MMA. 

Electrical- and magneto-transport measurements were carried out in a Quantum Design 

PPMS-9 with standard lock-in technique. 
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Figure 1 Few-layer WTe2 FET device characteristics. (a) Thickness of the WTe2 FET device 

measured by atomic force microscopy (AFM). Inset shows the AFM micrograph of the device. 

The channel length (between V1 and V2) and width are 3.9 µm and 1 µm, respectively. The 

white dashed line in the inset panel marks the cross-section of the sample in (a). (b) 

Two-terminal Isd-Vsd characteristics of the device at T=1.9K without magnetic field and at 

zero back gate voltage.  

 

 

We shall focus our discussion on one device (sample A) in the main text; data for other WTe2 

devices are shown in supporting information. An atomic force microscopy (AFM) micrograph 

of a 10nm-thick WTe2 device as well as its height section profile is shown in figure 1a. Figure 

1b shows the I-V characteristics of the WTe2 field effect device at 1.9 Kelvin under zero 

magnetic field and zero back gate voltage, measured with two-probe configurations (between 

source and drain electrodes shown in the inset of figure 1a). The source-drain current (Isd) 

varies quite linearly with the applied voltage Vsd from -0.8mV to 0.8mV, with resistivity of 

4.26 × 10−4Ω∙cm, indicating an Ohmic contact to a metallic sample. Raman spectra of the 

device (see section S3 in supporting information) obtained in a Horiba Jobin Yvon LabRam 

HR Evolution system after the transport experiments showed that the WTe2 sample is indeed 

in the 1T’ phase [27] and has not degraded. 

 

 

Figure 2 Gate-dependent behavior in WTe2 thin flake. (a), (b) Gate dependence of MR and 

ρxy at T=1.9K. The colors mark different back gate voltage. Dashed lines are fits to the 

two-fluid model for MR and ρxy at Vbg=80V. (c), (d) Gate dependence of net carrier density 

(ne-nh) and mobility for electrons and holes. Dashed line in (c) is a linear fit to the data. Inset 



 

4 

 

figure in (c) shows electron and hole density as a function of back gate voltage, respectively. 

 

 

Magneto-transport mechanism of WTe2 FET devices 

Figures 2a and 2b show the longitudinal magneto-resistance 𝑀𝑅(𝐵) =

(𝜌𝑥𝑥(𝐵) − 𝜌𝑥𝑥(𝐵 = 0)) 𝜌𝑥𝑥(𝐵 = 0)⁄  and Hall resistance 𝜌xy of the sample at T=1.9K, with 

the magnetic field applied perpendicular to the sample surface (along the c axis), and at 

different back gate voltages. All measurements of magnetoresistance are done in four-probe 

configurations to eliminate contact effects. The sample exhibits a positive MR(B) and 

quasi-linear 𝜌xy(B) under all the gate voltages investigated in this experiment. For small 

magnetic field, MR(B) has a cusp-shape which will be discussed later. For magnetic fields 

larger than 1 Tesla, MR(B) can be fitted by a power law behavior, 𝑀𝑅 ∝ 𝐵𝛾, with the 

exponent γ between 1.62 and 1.69 for different gate voltages, which is smaller than the 

exponent γ~1.94 observed in an 112nm-thick sample (see section S1 in supporting 

information), and smaller than the exponent γ~2 observed bulk crystals [4]. We will show 

later in this report that weak anti-localization should be taken into account (see figure 6) and 

the exponent γ is not a constant of magnetic field for electron-hole uncompensated samples 

(see section S7 in supporting information). 

 

It has been found by transport [28-30] and ARPES [16, 17, 31, 32] experiments that bulk 

WTe2 crystals have 4-9 carrier pockets; however, researchers are just starting to examine how 

these pockets evolve as the sample is getting thinner [33]. Here we started out to analyze the 

data with the ansatz that there are two major types of carriers in the sample, one type is 

electrons and the other type is holes. We will show that this ansatz captures the majority of the 

physics in the high field magnetoresistance of ultra-thin WTe2 samples, and that it is also 

consistent with low field magnetoresistance data. 

 

In a two-fluid model [34], we have 

𝜌𝑥𝑥 =
1

𝑒

(𝑛𝑒𝑢𝑒+𝑛ℎ𝑢ℎ)+(𝑛𝑒𝑢ℎ+𝑛ℎ𝑢𝑒)𝑢𝑒𝑢ℎ𝐵2

(𝑛𝑒𝑢𝑒+𝑛ℎ𝑢ℎ)2+((𝑛𝑒−𝑛ℎ)𝑢𝑒𝑢ℎ𝐵)
2                                           

(1) 

𝜌𝑥𝑦 =
1

𝑒

(𝑛𝑒𝜇𝑒
2−𝑛ℎ𝜇ℎ

2)−(𝑛ℎ−𝑛𝑒)𝜇𝑒
2𝜇ℎ

2𝐵2

(𝑛𝑒𝑢𝑒+𝑛ℎ𝑢ℎ)2+((𝑛ℎ−𝑛𝑒)𝑢𝑒𝑢ℎ𝐵)
2 𝐵                                           

(2) 

MR =
𝜌𝑥𝑥(𝐵)−𝜌𝑥𝑥(𝐵=0𝑇)

𝜌𝑥𝑥(𝐵=0𝑇)
=

𝑛ℎ
𝑛𝑒

(𝑢𝑒+𝑢ℎ)2𝑢𝑒𝑢ℎ𝐵2

(𝑢𝑒+
𝑛ℎ
𝑛𝑒

𝑢ℎ)
2

+
𝑛ℎ
𝑛𝑒

((
𝑛ℎ
𝑛𝑒

−1)𝑢𝑒𝑢ℎ𝐵)

2                              

(3) 

where ne (nh) and ue (uh) are carrier density and mobility for electrons (holes), respectively. At 

all the gate voltages, both the MR and ρxy of the ultra-thin device can be simultaneously fitted 

by equation (3) and (2), and ne, nh, ue, uh can be extracted from the fit. Using the least squares 

method, we determine the values of the four parameters with minimum error (see section S9 

in supporting information for details). 
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Figure 2c shows the net charge carrier density n=ne-nh as a function of Vg, and the dashed line 

is a linear fit to the data. The induced charge in the sample by the silicon back gate is: 𝑛𝑒 =

𝐶𝑔∆𝑉𝑔, where e is the elementary charge and 𝐶𝑔 is the parallel-plate capacitance of the 

device per unit area. Thus from the linear fit, we obtained a gate capacitance of 𝐶𝑔 =

1.062 × 10−4 𝐹/𝑚2. Since the dielectric in our device consists of 15nm of h-BN (relative 

permittivity 𝜖ℎ−𝐵𝑁 ≈ 3.5 ) and 300nm of SiO2 ( 𝜖𝑆𝑖𝑂2
≈ 3.9 ), one can get the series 

capacitance for this multilayer system to be 𝐶𝑔
′ = (

1

𝐶𝑔
ℎ−𝐵𝑁 +

1

𝐶𝑔
𝑆𝑖𝑂2

)

−1

= 1.089 × 10−4 𝐹/𝑚2, 

in good agreement with our experimental data. The above analysis show that the longitudinal 

magnetoresistance of the device can be tuned electrostatically and that the phenomenological 

two-fluid model captures the main feature of the magneto-transport properties of our 

ultra-thin WTe2 samples. Note that the ultra-thin samples in this study are predominately 

electron-doped, with electron densities 5-10 times larger than hole densities; in comparison, 

thicker samples (the 112nm-thick sample, see section S1 in supporting information) exfoliated 

from the same bulk crystal are found to be close to charge neutrality. The imbalance between 

electrons and holes in the ultra-thin devices are likely due to unintentional doping from the 

device fabrication process; such imbalance also allows us to access the highly electron-doped 

regime in ultra-thin WTe2 samples to test the applicability of the two-fluid model [4, 18]. 

 

Figure 2d shows the gate-dependent mobility for electrons and holes. We note that the 

electron mobility decreases as the density becomes larger at T=1.9K, suggesting that charged 

impurities are not the dominating scattering source in this regime [35]. From figure 2d as well 

as from the inset of figure 2c, we find that ne and ue are being effectively tuned by the gate 

voltage while nh and uh are much less affected by Vg, which is likely caused by the fact that 

the density of states of electrons is much larger than that of holes in this highly electron-doped 

regime. 
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Figure 3 Temperature-dependent behavior of a WTe2 ultra-thin flake device. (a), (b) MR and 

Hall resistivity as a function of magnetic field at different temperatures at Vbg=0V. Dashed 

lines are fit curve to the two-fluid model for MR and ρxy at 150K. (c), (d) Temperature 

dependence of net charge carrier density (ne-nh) and the mobility of electrons and holes at 

Vbg=0V. The inset panel in (c) shows electron and hole density vs. temperature. Dashed lines 

in (d) are power law fits for 𝜇 ∝ 𝑇−𝛾, with the exponents γ≈0.61 and 0.48 for electrons and 

holes, respectively.  

 

 

Figures 3a and 3b show the temperature-dependent MR and ρxy of the device from T=1.9K to 

150K and at zero gate voltage. The cusp-shape in MR at small magnetic field diminishes 

rapidly as the temperature increases, and will be discussed in detail later. At magnetic field 

larger than two Tesla, fitting the MR by a power law behavior 𝑀𝑅 ∝ 𝐵𝛾  results in a 

temperature-dependent exponent γ that changes from ~1.69 at T=1.9K to 2 at T=150K. At the 

meantime, ρxy remains linear in B with its slope k changes monotonically at different 

temperatures. We are going to show in this letter that such temperature-dependence of γ and k 

is also well captured by the phenomenological two-fluid model. 

 

Similar to the analysis of the gate dependent magnetoresistance, the MR and ρxy of the device 

at different temperatures are fitted simultaneously by equation (3) and (2), and the 

dependencies of ne, nh, ue, uh on temperature are extracted from the fit. Figure 3c shows the 

dependence of the net carrier charge ne-nh as a function of temperature. It can be seen that by 

lowering the temperature, the sample rapidly tends to its charge neutrality on cooling from 

150K to 50K; the trend slows down below 50K and saturates from 12K to 1.9K. The 

mobilities ue and uh, on the other hand, increase following a power law of 𝜇 ∝ 𝑇−𝛼 from 
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150K to 50K and then saturate from 12K to 1.9K. This suggests a connection between the 

decrease in ne-nh and the increase of ue and uh, which is consistent with the carrier density 

dependent measurements at a fixed temperature. Temperature-dependent movement of 

chemical potential has been seen in multiple semimetal bulk crystals [31, 36-38], and has 

been attributed to be the cause of a temperature-induced Lifshitz transition for WTe2 bulk 

crystals [31]. Thus it is not surprising to see such temperature-dependent ne-nh in ultra-thin 

WTe2 samples. A fit to a power law behavior of the decreasing mobility with increasing 

temperature give an exponent α for electrons (α=0.61) and holes (α=0.48); these values are 

similar to those for few-layer black phosphorus [39] and dual-gated monolayer MoS2 [40]. 

However, they are smaller than the theoretically predicted value (α～1.52) [41] and smaller 

than our experimental data obtained from bulk WTe2 samples (α～1.30 to 1.51) (see section 

S2 in supporting information). The suppression of α is considered to be caused by a 

quenching of the characteristic homopolar mode in sandwiched ultra-thin device structures 

[40]. In the case of WTe2, this means that ultra-thin samples can preserve their mobility, thus 

preserving their response to magnetic field, much better than their bulk counterparts at room 

temperature (see section S2 in supporting information), which is good for technological 

applications. 

 

 

Figure 4 (a) Gate-voltage dependent MR plotted on a log-log scale. The orange dashed lines are 

the two-fluid model fit to the MR at Vg = -80 volts at T=1.9K, the purple dashed line is a B2 MR 

curve as a guide to the eye; the blue solid line is the difference between the MR data at Vg = -80 

volts at T=1.9K and the B2 behavior, while the wine solid line is the difference of the same data to 

the prediction of the two fluid model. (b) Temperature dependent MR plotted on a log-log scale. 

The orange dashed lines are the two-fluid model fit to the MR at Vg = 0 volts at T=150K, the 

purple dashed line is a B2 MR curve as a guide to the eye; the blue solid line is the difference 

between the MR data and the B2 behavior, while the wine solid line is the difference between the 

same data and the prediction of the two fluid model. 

 

 

Since the ultra-thin WTe2 sample is not at the charge neutral point, we expect a saturation of 

magnetoresistance for high enough magnetic field, if the transport behavior of the sample 

follows the two-fluid model. Indeed, if we look closely into the MR curves, we confirm such 

saturation at high magnetic field. Figures 4a and 4b show the gate-voltage dependent MR and 
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temperature dependent MR plotted in log-log scale. It can be seen that for all the gate voltages 

we applied at 1.9K, the MR of the sample deviates from the ~B2 functional form, while 

conforming to the prediction of the two-fluid model. In figure 4a, the blue solid line is the 

difference between the MR data at Vg = -80 volts at T=1.9K and the B2 behavior, while the 

wine solid line is the difference of the same data to the prediction of the two fluid model. A 

deviation from the B2 behavior (e.g., the saturation of MR at high magnetic field) is clearly 

observed. At higher temperature, the mobility of the carriers drops much faster than the 

increase in the net charge density of the sample, leading to a higher saturation magnetic field, 

which is out of the range of our experimental apparatus. Thus the MR data at 150K fits the 

two-fluid model and a scaled B2 functional form equally well (figure 4b). 

 

 

Figure 5 Tunable MR by carrier density in a WTe2 ultra-thin flake device. Charge carrier 

density dependence of normalized magneto-resistance, defined as (MR(n)-MR(n0))/MR(n0), 

where n = ne-nh is the net charge density and n0 = 8.2 × 1019cm-3 is the largest net charge 

density measured in this device. Dashed lines are the two-fluid model prediction of MR(ne-nh) 

curves for magnetic field of 7T, 8T and 9T. 

 

 

Figure 5 is one of the primary observations of our study. It shows the change of MR as a 

function of ne-nh at three different magnetic fields (7T, 8T, 9T) and at all temperatures from 

150K to 1.9K. (The change of MR is defined as (MR(n)-MR(n0))/MR(n0), where n = ne-nh is 

the net charge density and n0 = 8.2 × 1019cm-3 is the largest net charge density measured in our 

experiment, at T = 150K.) It can be seen that the change of MR increases monotonically as 

ne-nh decreases, regardless of temperature and magnetic field. The two-fluid model predicted 

MR(ne-nh) curves for magnetic field of 7T, 8T and 9T are also shown in figure 4, showing 
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similar insensitivity to the magnetic field applied. This property of ultra-thin WTe2 devices is 

very useful in making future tunable sensitivity magnetic field sensors, where a universal 

dependence on a single parameter (net charge carrier) is preferred. It is worth noting that such 

a curve is empirical, and it is a useful derivation from the two-fluid model. Experimentally, 

we found that for the carrier mobility about 1000 cm2/Vs or lower, and for magnetic field 9T 

or lower, such single-parameter dependence of ΔMR on ne-nh holds pretty well. 

The largest change of MR measured in our experiment is 850%, in which the 2D electron-hole 

imbalance is tuned from 8.2 × 1019cm-3 to 3.2 × 1019cm-3. If we reached charge neutrality in 

this particular device, the change of MR could be 8,400% (see section S8 in supporting 

information for the calculation). Furthermore, as fabrication techniques improve, we expect 

the mobility of ultra-thin WTe2 devices to finally approach that of bulk crystals. (Such rapid 

improvement of device fabrication techniques has been seen in the field of graphene, where it 

did not take a long time for the mobilities of graphene devices to improve from 10,000cm2/Vs 

[42] to 1,000,000cm2/Vs [25].) Using a fixed mobility value of 1.67 × 105 cm2V-1s-1 from Ref. 

[43] for both MR(p/n=1) and MR(p/n=0.1559), we project a change of MR of 400,000%. Note 

that this should be a lower bound for the estimation, as the mobility at the neutrality point 

should be much higher than when p/n=0.1559 (see figure 2d and supporting information for 

more details). Thus we expect ultra-thin WTe2 to be a very useful electric-field-tuned 

magnetoresistance material in future technological applications. 

 

 

Figure 6. WAL in WTe2 thin flake. (a) The change of conductance Δσxx(B) = σxx(B)-σxx(B=0) 

of the ultra-thin WTe2 device at T = 1.9K at largest gate voltages Vg = ±80 volts. (b) Δσxx(B) 

curves for T = 2K, 12K and 30K at gate voltage Vg = -30 volts. The dashed lines in (a) and (b) 

are weak anti-localization fit to the data between ±1T of magnetic field. (c)&(d) Phase related 

field 𝐵𝜙 as a function of back gate voltage at T = 1.9K (c) and at different temperatures at Vg 
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= -30 volts (d). 

 

 

Continuing the analysis of our observations, figure 6a shows the change of conductance 

Δσxx(B) = σxx(B)-σxx(B=0) of the ultra-thin WTe2 device at T = 1.9K, after subtracting the 

classical contribution determined by the two-fluid model, and for the largest gate voltages (Vg 

= ±80 volts) applied in experiment. The low field magneto-conductance shows a peak that can 

be strongly modified by the gate voltage. Figure 6b shows the Δσxx(B) curves for T = 2K, 12K 

and 30K, with Vg = 30 volts. It can be seen that the low field magneto-conductance 

diminishes rapidly as T increases. Above 30K, the peak in low field magneto-conductance can 

no longer be detected. The magnitude and the temperature dependence of the low field 

magneto-conductance are characteristics of two-dimensional weak anti-localization, similar to 

previously reported result in ultra-thin WTe2 devices [15, 19]. We fit our experimental data to 

the Hikami-Larkin-Nagaoka (HLN) equation [44]: 

∆𝜎𝑥𝑥(𝐵) = −
𝑒2

2𝜋2ℏ
[𝜓 (

1

2
+

𝐵𝜙

𝐵
) − 𝑙𝑛 (

𝐵𝜙

𝐵
) − 2𝜓 (

1

2
+

𝐵𝜙+𝐵𝑠𝑜

𝐵
) + 2𝑙𝑛 (

𝐵𝜙+𝐵𝑠𝑜

𝐵
) − 𝜓 (

1

2
+

𝐵𝜙+2𝐵𝑠𝑜

𝐵
) + 𝑙𝑛(

𝐵𝜙+2𝐵𝑠𝑜

𝐵
)  ]                                                     

(4) 

where 𝜓 is the digamma function, 𝐵𝑛 =
ℏ

4𝑒𝑙𝑛
2 =

ℏ

4𝑒𝐷𝜏𝑛
, 𝑛 = 𝜙, 𝑠𝑜 is the characteristic field 

related to phase coherence length (time) 𝑙𝜙 (𝜏𝜙) and spin-orbit interaction terms. D is the 

diffusion constant. In small magnetic field (B<1T), we find Bso is too large to affect ∆σxx(B). 

Hence, following the literature, we fitted ∆σxx(B) curves by setting Bso=6T [19]. Figure 6c 

shows the dependence of the fitting parameter 𝐵𝜙 on Vg at T=1.9K. It can be seen that 𝐵𝜙 

drops by 50% if Vg changes from 80 volts to -80 volts, indicating a significant increase in the 

phase coherence length of charge carriers as the sample tends to charge neutrality, consistent 

with the magnetoresistance data at higher magnetic field. 𝐵𝜙  increases linearly with 

temperature, which could be a manifestation of strong electron-electron interaction in the 

material [19, 45, 46]. 

 

 

Conclusion 

In summary, we have fabricated ultra-thin WTe2 field effect devices with solid gate dielectrics, 

and found that in electron-dominated regime, ultra-thin WTe2 samples have a gate tunable 

magnetoresistance that is consistent with the two-fluid model. We estimate that the value of 

ΔMR/MR could be as high as 400,000% within experimentally accessible parameters, a value 

much higher than other materials. The tunability of MR by a single parameter (the net charge 

density n=ne-nh) together with the insensitivity of ΔMR/MR to magnetic field and temperature, 

reveal the potential of ultra-thin WTe2 as electric-field-tuned magnetoresistance material 

which could have important application in magnetic field sensing, information storage and 

extraction, and galvanic isolation.  
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S1. Characteristics of a Bulk WTe2 Crystal. 

 

Figure S1a shows the optical image of ～112nm-thick WTe2 FET device (sample B) which is 

mechanically exfoliated onto Si substrate with 300nm SiO2. The source-drain current flows 

along the a-axis and the magnetic field is parallel to the c-axis. Longitudinal resistance ρxx is 

measured with probes V1 and V3, while Hall resistance ρxy is measured with probes V1 and V6. 

Magnetic field dependence and Hall resistance of the 112nm-thick WTe2 crystal are shown in 

figure S1b. The MR of the measured device is up to 4000% under applied magnetic field of 9T 
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and the residual resistivity ratio (RRR) is about 58.39 at B=0T. Furthermore, we make a power 

law fit to MR and the exponent is about 1.94[1, 2]. Shubnikov–de Haas oscillations are 

observed both in ρxx and ρxy shown in figure S1c and S1d, which suggests that the quality of the 

thicker sample is good. The colors mark different temperatures. 

 

S2. Temperature Dependence of Mobility in Bulk WTe2 Crystals. 

 

Figure S2 shows the dependence of mobilities ue and uh of sample B and C, respectively, as a 

function of temperature. Sample C is about 120nm thick and exfoliated from bulk WTe2 crystal, 

whose growth process is different from sample B. Both mobilities for electron and hole of 

sample B in panel S2a increase following a power law fit of 𝜇 ∝ 𝑇−𝛼 from 300K to 50K 

(100K to 15K, sample B in panel S2b) and then saturate from 10K to 2K (10K to 2K, sample 

B in panel S2a). A fit to a power law behavior of the decreasing mobility with increasing 

temperature give a larger exponent α for electrons (α=1.51, 1.455) and holes (α=1.30, 1.451) 

than WTe2 thin flakes (α=0.61 for electrons and α=0.48 for holes) in the main text. Such values 

are close to the theoretically predicted value for bulk samples α～1.52.  

 

A lower α in ultra-thin WTe2 crystals means that such samples could preserve their low 

temperature mobilities much better than their bulk counterparts at higher temperatures. The 

two-fluid model provides a strong correlation between higher charge carrier mobility and larger 

magnitude of the XMR of the samples. Such correlation is also observed in experiments on 

bulk WTe2 [3]. Thus a lower α at ultra-thin WTe2 means that the ultra-thin samples could 

preserve their response to magnetic field much better than their bulk counterparts at room 

temperature. 

 

S3. Raman Spectra of the Few-layer and Bulk WTe2 Devices. 
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Figure S2 shows Raman spectra of the few-layer (sample A, in the main text) and 112nm-thick 

WTe2 devices (sample B). Measurements are performed in a Horiba Jobin Yvon LabRam HR 

Evolution system. And we choose a non-polorized laser with wavelength of 514 nm at room 

temperature after accomplishing the transport experiments. Four prominent peaks are observed 

whose positions are A1
2=209.14, A1

5=159.96, A1
8=130.306 and A2

4= 107.995, respectively. The 

position in few-layer WTe2 device is close to that in bulk materials (whose positions are 

A1
2=207.8, A1

5=159.845, A1
8=130.19 and A2

4= 109.12). The four Raman peaks suggest the 

measured WTe2 samples are in 1T' phase [4] and it has not degraded. 

 

S4. Gate Dependence of Mobility in WTe2 Thin Flakes on Different Substrate. 
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The gate dependence of mobility in WTe2 devices (sample D and sample E) at T=2K is shown 

in Figure S3. WTe2 thin flakes are mechanically exfoliated from bulk WTe2 crystal and 

transferred on to thin h-BN single crystals (sample D) and SiO2/Si substrates (sample E), 

respectively. Sample D is about 6-nm thick and sample E on the SiO2/Si substrates is about 10-

nm thick. There is an apparent increase in the mobility in device on h-BN substrate. In addition, 

better contact is achieved in thinner WTe2 crystals on h-BN single crystal than on SiO2/Si 

substrates. 

 

S5. Gate Dependence of ρxx under Different In-plane Magnetic Fields. 
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The gate dependence of longitudinal resistance of sample A at temperature of 1.9 Kelvin under 

various in-plane magnetic fields is shown in Figure S3. We find very little MR in the in-plane 

magnetic field, which is similar to that in bulk materials [5]. 

 

S6. Temperature Dependence of Longitudinal Resistance. 

 

Figure S4 shows temperature dependence of longitudinal resistance of sample A under 0T and 

9T magnetic field with zero back gate voltage. In figure S4a, magnetic field is applied 

perpendicular to the a-axis. We see a small increase in resistivity below 12K at zero magnetic 

field for our device, and the application of 9T magnetic field does not move the turn-on 

temperature T* much higher, which is likely caused by the suppression of MR in few-layer 

WTe2 crystals. When the magnetic field is parallel to the ab plane (Fig. S4b), the MR is minimal 

for the whole temperature range of 1.9K to 250K. 

 

S7. Magnetic Field Dependence of Power-Law-Fit Exponent 
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Figure S7 shows the power law fitting MR ~ Bγ at different range of magnetic field for an 

experimental MR curve at back gate voltage -60V. It is seen in the inset panel that by fitting 

the MR between 1.4T and 4.0T, we obtained an exponent gamma=2; for MR between 

1.4T and 6T, we obtained gamma=1.92; for MR between 1.4T and 9T, we obtained 

gamma=1.8. The fitting shows that the exponent γ is not a constant of magnetic field, 

and reveals the trend of saturation of MR at high enough magnetic field. Furthermore, 

this shows that the simple mathematical expression (MR ~ Bγ) might not capture the 

physics and we use the two fluid model to fit and understand the experimental data in 

the main text. 

 

S8. Linear Extrapolation of Carrier Density and Mobility 

 
Figure S8 shows carrier density and mobility as a function of back gate voltage at temperature 

of 1.9 Kelvin. Dashed lines are linear fit to the experimental data, with specific parameters 

shown in equation (S1) to (S4). The linearity of our data is very good in the experimentally 

explored regime. We extend the linear extrapolation in ne and nh vs Vg and find that neutrality 
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will be obtained at Vbg=-620V (Figure S8a). To estimate the MR at neutrality for our device, 

we extend the linear extrapolation in μe and μh vs Vg at Vbg=-620V and obtain a change of MR 

to be 8,400%. 

𝑛𝑒 = 6.67 × 10−3 + 4.57V𝑏𝑔                             (1) 

nℎ = 3.52 × 10−4 + 0.65V𝑏𝑔                             (2) 

μ𝑒 = 873.26 − 1.83V𝑏𝑔                                 (3) 

μℎ = 572.43 − 0.58V𝑏𝑔                                 (4) 

If the mobility of pristine bulk sample (as high as 167,000 cm2V-1s-1 from ref.[3]) can be 

preserved, when the carrier density is adjusted from p/n=0.1599 to p/n=1, we use the constant 

mobility value (167,000 cm2V-1s-1) to obtain a lower bound for the change of MR in such device 

to be 402,600%. Such rapid improvement of device fabrication techniques has been seen in the 

field of graphene, where it did not take a long time for the mobilities of graphene devices to 

improve from 10,000cm2/Vs [6] to 1,000,000cm2/Vs [7]. 

 

 

S9. Simultaneous Fitting of ρxx and ρxy Curves with the Least Squares Method 

The two-fluid model gives: 

𝜌𝑥𝑥 =
1

𝑒

(𝑛𝑒𝑢𝑒+𝑛ℎ𝑢ℎ)+(𝑛𝑒𝑢ℎ+𝑛ℎ𝑢𝑒)𝑢𝑒𝑢ℎ𝐵
2

(𝑛𝑒𝑢𝑒+𝑛ℎ𝑢ℎ)
2+((𝑛𝑒−𝑛ℎ)𝑢𝑒𝑢ℎ𝐵)

2                       (5) 

𝜌𝑥𝑦 =
1

𝑒

(𝑛𝑒𝜇𝑒
2−𝑛ℎ𝜇ℎ

2)−(𝑛ℎ−𝑛𝑒)𝜇𝑒
2𝜇ℎ

2𝐵2

(𝑛𝑒𝑢𝑒+𝑛ℎ𝑢ℎ)
2+((𝑛ℎ−𝑛𝑒)𝑢𝑒𝑢ℎ𝐵)

2𝐵                      (6) 

where ne (nh) and ue (uh) are carrier density and mobility for electrons (holes), respectively. Here, 

we need to minimize the goodness-of-fit of between the experimental data of ρxx (ρxy) and 

theoretical curve from equation (S5) ((S6)) at each gate voltage and temperature.  

 

 

We first calculate the squared error of ρxx at a specific gate voltage and temperature. Since it is 

a function of four parameters, ne, nh, ue, uh, which could not be plotted in a straightforward way, 

we first determine the least squared error surface in this 4-dimensional parameter space with 
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the optimal μh and μe for each (nh, ne); e.g., we minimize the error for each point of (nh, ne) with 

the best μh and μe. Such least squared error surface could be drawn with nh (X axis) and ne(Y 

axis) and the squared error (Z axis). Then we use the same set of ne, nh, ue, uh to obtain the least 

squared error surface of ρxy. The joint least squared error of ρxx and ρxy versus nh and ne will be 

graphs similar to figure S6 (Figure S9 is obtained for Vg = 0V and T = 2K). Now we can 

determined the optimal nh, ne, μh and μe for each Vg and T from the point of such graphs that has 

the minimum squared error. 
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