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ABSTRACT

We propose Secure Pick Up (SPU), a convenient, lightweight, in-

device, non-intrusive and automatic-learning system for smartphone

user authentication. Operating in the background, our system im-

plicitly observes users’ phone pick-up movements, the way they

bend their arms when they pick up a smartphone to interact with

the device, to authenticate the users.

Our SPU outperforms the state-of-the-art implicit authentica-

tionmechanisms in threemain aspects: 1) SPU automatically learns

the user’s behavioral pa�ern without requiring a large amount of

training data (especially those of other users) as previous methods

did, making it more deployable. Towards this end, we propose a

weighted multi-dimensional Dynamic Time Warping (DTW) algo-

rithm to effectively quantify similarities between users’ pick-up

movements; 2) SPU does not rely on a remote server for provid-

ing further computational power, making SPU efficient and usable

even without network access; and 3) our system can adaptively

update a user’s authentication model to accommodate user’s be-

havioral dri� over time with negligible overhead.

�rough extensive experiments on real world datasets, we demon-

strate that SPU can achieve authentication accuracy up to 96.3%

with a very low latency of 2.4 milliseconds. It reduces the number

of times a user has to do explicit authentication by 32.9%, while

effectively defending against various a�acks.
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1 INTRODUCTION

Mobile devices such as smartphones and tablets are rapidly becom-

ing our means for entering the Internet and online social networks.

�ey also store sensitive and personal information, such as email

addresses or bank account information of users. �e hardware of

today’s mobile devices is quite capable with multi-core gigahertz

processors, and gigabytes of memory and solid-state storage. �eir

relatively low cost, ease of use and ‘always on’ connectivity pro-

vide a suitable platform for many day-to-day tasks involving fi-

nancial transactions and sensitive data, making mobile devices at-

tractive a�ack targets (e.g., see a�acks against the Apple iOS and

Google Android platforms in [24]).

Passwords are currently one of themost common forms for user

authentication in mobile devices. However, they suffer from sev-

eral weaknesses. Passwords are vulnerable to guessing a�acks

[2, 14, 22, 39, 40] or password reuse [7]. �e usability issue is also a

serious factor, since users do not like to have to enter, and reenter,

passwords [32, 35]. A recent study in [5] shows that 64% of users

do not use passwords or PINs as an authentication mechanism on

their smartphones.

Recently, more andmore smartphones are equippedwith finger-

print scanners, making authentication through fingerprints quite

popular. However, suchmechanisms also suffer from several weak-

nesses. It is possible to trick the scanner by using a gelatin print

mold over a real finger. In addition, the response time for the fin-

gerprint scanner to unlock the smartphone is o�en more than one

second [27], degrading the usability of fingerprint-based authenti-

cation.

Other biometric-based authenticationmechanisms (e.g., via face

and keystroke dynamics) are also unreliable and vulnerable to forgery

a�acks [36, 37]. For instance, an a�acker can obtain a photo of

the targeted user (e.g., via Facebook) and present it in front of the

camera to spoof face recognition on smartphones. Furthermore,

these authentication mechanisms require frequent user participa-

tion, hindering their deployment in real world scenarios. Hence, it

is important to design secure and convenient authentication meth-

ods for smartphone users, the topic of this paper.

Behavior-based authenticationmechanisms are recently proposed

to implement convenient and implicit authentication which does

not require frequent user participation and can reduce the user’s

efforts (e.g., the number of times) needed to unlock their smart-

phones. Behavior-based authentication is increasingly gaining pop-

ularity since mobile devices are o�en equipped with sensors such

as accelerometer, gyroscope, magnetometer, camera, microphone,

GPS and so on. Implicit authentication relies on a distinguishable

behavioral pa�ern of the user, which is accomplished by build-

ing the users’ profiles [4, 6, 9, 10, 15–20, 26, 29, 32, 38, 43]. If a

newly-detected user behavior is consistent with the behavior pro-

file stored in the smartphone, the device will have high confidence

that no explicit authentication action is required. Otherwise, if

the newly-detected behavior deviates significantly from the stored

behavior profile, alternative explicit authentication mechanisms

should be triggered, such as requiring the user to enter a password,

PIN or checking his/her fingerprint.

Existing behavior-based authentication systems exploitmachine

learning techniques to achieve good security performance [4, 10,
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18, 19, 38, 43]. However, these systems have several limitations

for real world user authentication: 1) they need a large amount of

training data (including other users’ data) to learn an authentica-

tion classifier, which may violate users’ privacy and thus hinder

users’ motivation to utilize these systems; 2) their training process

is usually computationally complicated, which requires additional

computational services, e.g., cloud computing, thus requiring users

to trust the remote server and always have network connection; 3)

their system updating process for capturing the user’s behavioral

dri� over time is also quite complex.

Other behavior-based authentication mechanisms exploit spe-

cific contexts of users’ behavior, e.g., how do users walk [26], and

how do users answer a phone call [6], for authentication. However,

their corresponding experiments require users to follow restricted

pa�erns for authentication, e.g., walk straight ahead at the same

speed [26] or answer a call when the phone is on a table in front of

a user [6]. �ese constraints are unrealistic for extracting effective

behavior pa�erns of users, making these systems impractical for

real world authentication.

To address these issues, we propose a lightweight, in-device,

non-intrusive and automatic-learning authentication system, called

Secure Pick Up (SPU), which can be broadly deployed in real world

mobile devices. Our system aims to utilize a simple and general be-

havioral pa�ern of smartphone users, the way people bend their

arms when they pick up a phone to interact with the device, to

implicitly authenticate the users. For a smartphone that installs

our SPU application, the device starts extracting a user’s pick-up

pa�ern from his/her arm movements when picking up a phone,

and then the system determines whether the current user is legit-

imate or not. If the user’s current behavior conforms to the estab-

lished behavior profile stored in the smartphone, the user passes

the authentication and can have access to the smartphone. If the

user’s current behavior deviates from the established behavior pro-

file, the device would present explicit authentication challenges,

e.g., input of a password, PIN or fingerprint. If these backup ex-

plicit authentication mechanisms pass, the user is allowed access

to the smartphone and the user’s profile stored in the smartphone

is updated consequently; otherwise, the user is denied access. �is

paper aims to answer the question of whether we could build and

deploy such a model in a practical, convenient and secure manner

on today’s mobile devices. Our key contributions include:

• Wedesign a behavior-based implicit authentication system, SPU,

by exploiting users’ behavioral pa�erns recorded by smartphone

sensors when they bend their arms to pick up a phone. SPU can

automatically learn a user’s behavioral pa�ern in an accurate,

efficient and stealthy manner. Furthermore, SPU does not re-

quire a large amount of training data of other users as previous

work did, making our system easier to deploy in real world ap-

plications.

• Our system (including the profile updating process) can be im-

plemented efficiently and entirely on personal smartphones. It

does not require any additional computational services, e.g., cloud

computing. To the best of our knowledge, it is the first using

only a device’s resources for implicit authentication, making

SPU efficient and usable even without network access. For in-

stance, our system can adaptively update the user’s authenti-

cation model over time with rather low overhead, consuming

negligible power of 2%.

• We propose an effective Dynamic Time Warping (DTW) algo-

rithm to quantify similarities between users’ pick-up pa�erns.

More specifically, wemodify the traditional DTWalgorithm and

propose a weighted multi-dimensional DTW technique to ac-

commodate the multiple dimensions of sensor data in our set-

ting, and to further improve authentication performance. Exten-

sive experimental results verify the effectiveness of our method

which can achieve high accuracy up to 96.3% in 2.4 milliseconds.

Furthermore, we demonstrate that SPU can reduce a user’s ef-

forts by 32.9% to unlock his/her smartphone providing a more

user-friendly experience and encouraging more users to protect

access to their devices.

• Finally, our system is robust to various types of a�ackers, in-

cluding the serious ones that observe victims’ behaviors many

times. For instance, our SPU can achieve 0% false acceptance

rate (FAR) and 18% false rejection rate (FRR) for authenticating

smartphone users under the worst case mimicry a�acks (edu-

cated a�acks).

2 SYSTEM DESIGN

�e main objective of our SPU system is to increase the conve-

nience for smartphone users by reducing their efforts (e.g., the

number of times) to unlock the smartphone while guaranteeing

their security through preventing unauthorized access to the smart-

phone. We now describe the threat model, design goals, key ideas

and system architecture for SPU.

2.1 �reat Model

Compared to personal computers, smartphones are more easily

lost or stolen, giving a�ackers more opportunity to obtain the sen-

sitive data stored in the smartphones. We assume that the a�ack-

ers have physical access to the smartphone and can even moni-

tor and mimic the user’s pick-up behavior. �erefore, they can

launch mimicry a�acks, to impersonate the legitimate user’s be-

havior. Specifically, we consider three different levels of a�acks as

follows.

• Random A�ack (RA): With no prior knowledge of the user’s

pick-up behavior, a RA a�acker randomly picks up the smart-

phone and wishes to pass the authentication system. �is is

equivalent to a brute force a�ack against text-based password

schemes.

• Context-Aware A�ack (CAA): In a context-aware a�ack, an ad-

versary knows the place where the user picks up his/her smart-

phone, but has not observed how the user does it.

• Educated A�ack (EA): In an educated a�ack, an adversary has

observed how and where the user picks up his/her smartphone.

In our SPU system, we consider a single-user model, which is in

line with current smartphone usage scenarios. Formulti-user mod-

els, our system can be generalized in a straightforward manner to

incorporatemultiple profiles (e.g., family members, guests) for pro-

gressive authentication as discussed in [21, 25]. Furthermore, we
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assume the availability of low-cost sensors inmobile devices for de-

tecting a user’s presence and behavior. Indeed, the sensors used in

our implementation are the accelerometer and gyroscope, which

are widely available in today’s mobile devices. As more sensors

become pervasive, they can easily be folded into our system.

2.2 Design Goals

Our system is designed to increase the convenience of smartphone

users while guaranteeing their security, through implicitly authen-

ticating the users in an unobtrusive manner. Furthermore, the

whole authentication process should be implemented stealthily and

efficiently. Overall, our design goals for the SPU system are:

• Accurate: the authentication system should not incorrectly au-

thenticate a user.

• Rapid Enrollment and Updating: creating new user accounts or

updating pick-up profiles for existing users should be quick.

• Rapid Authentication: the response time for the authentication

system must be short, for the system to be usable in reality.

• Implicit: the authentication system should neither interrupt user-

smartphone interactions nor need explicit user participation dur-

ing the authentication process.

• Unobtrusive: the authentication system should be completely

unobtrusive and should not invade the user’s privacy; the user

should be comfortable when using our system.

• Light-weight: the authentication system should not require in-

tensive computations.

• Device only: the authentication system should work efficiently

and entirely on mobile devices only even without network ac-

cess. It should not depend on auxiliary training data of other

users or additional computational capabilities, e.g., cloud com-

puting.

2.3 Key Ideas

Our SPU system is designed to achieve all the design goals in Sec-

tion 2.2. To increase the convenience for users and detect unautho-

rized access to the smartphone as soon as possible, it is required

that we authenticate the users when they start using the smart-

phone. �erefore, we consider using the users’ arm movements

when they pick up their smartphones as a distinguishable behavior

to authenticate the users. Our key idea stems from the observation

that users’ behavioral pa�erns are different from person to person

when they start using their smartphones, from the time they pick

up the phone to the time they press the home bu�on or power but-

ton. More specifically, we extract the ‘pick-up signal’ from the

user’s arm movements measured by sensors (accelerometer and

gyroscope) embedded in the smartphone.

To extract users’ pick-upmovements, we first define a particular

user action and call it a ‘trigger-action’. Here, we utilize the ‘wake

up’ signal of a smartphone such as pressing the home bu�on or

power bu�on in the sleep mode, as the trigger action 1. Whenever

a trigger-action is performed, we extract the pick-up signal from

the measurements of the accelerometer and gyroscope (described

below). �at is to say, our system authenticates the user only when

1In our experiments, we used the home bu�on or power bu�on as the ‘trigger-action’.
Our method can be easily integrated with new trigger-actions, e.g., the automatic
wake-up feature in the iphone 7.
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Figure 1: A real world instance of a user’s pick-up move-

ment. When a wake up signal is detected (home button or

power button is pressed in the sleepmode) corresponding to

the end point tend , we backtrack the sensor measurements

to find the begin point tbeдin a�er detecting a flat signal last-

ing a period of tf .

the smartphone is triggered to wake up from the sleep mode. Note

that there is no necessity to authenticate the user when the smart-

phone is locked.

Figure 1 shows a real world instance for the extracted signal

stream that describes a user’s pick-up movements from measure-

ments collected by the accelerometer. When our system detects

the home bu�on signal or power bu�on signal during the sleep

mode, we record the time as the end of the pick-up signal tend ,

and back-track the accelerometer measurements to construct the

pick-up signal. If we detect a flat signal lasting for a time period of

tf , we consider the end time of the flat signal as the beginning of

the pick-up signal tbeдin as shown in Figure 1.

In order to backtrack the pick-up signal, we need to record the

entire time-series measurements of the accelerometer and gyro-

scope, while the smartphone is in the sleep mode. In Section 6, we

will show that this sensor measurement process is efficient, only

costing an additional 2% in power consumption of the smartphone.

Note that we only consider authenticating pick-up movements

from a stable state in our SPU system. We will show in Section 5.2

that this type of pick-upmovement (from a stable state) constitutes

the most important pick-up characteristic of users.

A�er extracting the pick-up signal, we propose aweightedmulti-

dimensional Dynamic TimeWarping algorithm to effectively quan-

tify similarities between users’ pick up movements for authenti-

cation (detailed process will be discussed in Section 4.2.2). More

specifically, we modify the traditional DTW algorithm to accom-

modate themulti-dimensional sensor data in our se�ing, to further

improve authentication performance.

We will show the distinguishable properties of users’ pick-up

pa�erns in Section 5. We will show that the pick-up signals are

still distinguishable even under impersonation a�acks in Section

5.3. Furthermore, our SPU system can significantly reduce users’

efforts to unlock their smartphones as will be discussed in Sec-

tion 5.4.

Unlike previous work, our SPU does not require a large amount

of training data for learning a complex authentication classifier,

3



SPU User’s Profile

Explicit Authentication

(Password, Fingerprint)

Compare

PassBlock

Close 

Enough

CorrectNot 

Correct

Not Close 

Enough Update

SPU

Extract Pick-up Signals

Accelerometer Gyroscope

Figure 2: �e flowchart of our SPU system.

and any additional computational capability of cloud servers, there-

fore more users would be motivated to use our system. In addi-

tion, our system can be easily combined with the state-of-the-art

re-authentication systems [15, 16, 19, 38] to further improve the

security of the smartphone.

2.4 System Architecture

Our system is designed for today’s smartphoneswhich are equipped

with rich sensing capabilities. It could also be generally applied to

tablets and other types of wearable devices such as smartwatches.

Figure 2 shows the flowchart of our SPU system. System operation

is in four phases:

Enrollment: When a user first enrolls in our SPU system, he/she

is asked to pick up his/her smartphone in the same way as in

his/her normal life. Our system then establishes the user’s pick-

up profile by extracting the pick-up signal and storing it in the

smartphone.

Extractingpick-up signals: Our system keepsmonitoring and

recording the measurements of the accelerometer and gyroscope

when the smartphone is in the sleep mode until it is picked up.

We extract the pick-up signals from these sensor measurements in

the enrollment phase and a�erwards (detailed process discussed in

Section 2.3).

Authentication: A�er extracting the pick-up signal, we com-

pare the new incoming measurements (signal) with the user’s pick-

up profile stored in the smartphone byutilizing our proposedweighted

multi-dimensional DTWtechnique (will be discussed in Section 4.2.2).

Post-Authentication: If the pick-up signal is authenticated as

coming from the legitimate user, this testing passes and the current

user can access the information and resources in the smartphone.

Otherwise, the smartphone would request an explicit authentica-

tion, e.g., password, PIN or fingerprint, from the current user. We

emphasize, however, that the desired response to such situations

is a ma�er of policy. Furthermore, the stored user’s profile will be

updated to accommodate the user’s behavioral dri� if the correct

explicit authentication is provided. Otherwise, no access to the

smartphone is allowed.

3 DATA COLLECTION

3.1 Sensor Selection

�ere are various built-in sensors in today’s smartphones, from

which we aim to choose a small set of sensors that can accurately

represent a user’s pick-up behavioral pa�ern. In this paper, we

consider the following two sensors that are commonly embeded in

current smartphones: the accelerometer and the gyroscope [11].

�ese two sensors represent different levels of information about

the user’s behavior, and are o�en called a 6-axis motion detec-

tor. �e accelerometer records larger motion pa�erns of users

such as how they move their arms or walk [26], while the gyro-

scope records fine-grained motions of users such as how they hold

the smartphone [42]. Furthermore, these sensors do not require

the user’s permission when requested by mobile applications [12],

making them useful for background monitoring as in our implicit

authentication systems.

3.2 Dataset Collection

We utilize the open-source Android system as our implementation

platform. We develop an Android application to implement SPU

on Andriod smartphones. Note that our methods are not limited

to this platform and can be easily applied to other platforms such

as the Apple iOS platform on an iPhone.

In our experiments, each data sample is a time-series measure-

ment collected by the accelerometer and gyroscope, which cap-

tures the user’s behavioral pa�ern when picking up the smart-

phone. In our user study, we consider three experimental scenarios

and describe the detailed se�ings for each experiment as follows.

All the participants were shown the app that is installed in their

phones. All of the participants volunteered to participate in our

experiments. �ere is no security breach on users’ data in smart-

phones since we collect data and do the authentication a�empts

offline.

�e first experiment was conducted under a lab se�ing, aim-

ing to provide fundamental intuition for our SPU system. We col-

lected sensor data from 24 users whose detailed demographics are

described in Section 5.1. We asked each user to pick up the smart-

phone in 6 different places while si�ing or standing 2. For each sce-

nario, we collected 10 samples of the pick-up movement for each

user, under the 12 situations (6 places × 2 user states). �erefore,

we collected 2, 880 (i.e., 24 × 12 × 10) pick-up samples in total. We

will describe the detailed analysis for the first experiment in Sec-

tion 5.1.

�e second experiment was conducted under a more realistic

se�ing which is designed to verify the effectiveness of our SPU

system in real world applications. �e same 24 users were invited

to install our application on their own smartphones and use them

freely in their normal lives for a week. From the collected data, we

extracted 3, 115 pick-up movement samples for these users. We

will analyze the overall authentication performance of our system

in real world scenarios in Section 5.2.

22 places are at a user’s right hand side, another 2 places are in front of the user, and
another 2 places are at a user’s le� hand side. In each of these three directions, one
place is close while the other place is far.
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Our third experiment was designed to analyze the security per-

formance of SPU in defending against multiple a�acks (e.g., imper-

sonation a�acks) as discussed in Section 2.1. In this experiment,

we randomly select 6 out of the 24 users as victims and randomly

select 12 out of the other 18 users (different from the victims) as

adversaries. �e experimental se�ing is the same as the first ex-

periment. �e only difference is that the adversaries are trying to

mimic the victims under different levels of prior knowledge. Specif-

ically, these adversaries perform the three a�acks in Section 2.1

respectively, and the detailed a�ack processes are described as fol-

lows:

• Random A�ack (RA): �e random a�acker tries to use the vic-

tim’s smartphone without knowing any information about the

victim. In total, we collected 12 × 6 × 10 = 720 samples3 of the

pick-up signals under the random a�ack.

• Context-Aware A�ack (CAA): We provided a context-aware at-

tacker who is informed of the place where the victim picked up

the smartphone. Note that these a�ackers have not observed

how the victim picked up the smartphone. We also collected

720 pick-up samples under the context-aware a�ack.

• Educated A�ack (EA): �e victim user’s behavior was recorded

by a VCR and is clearly visible to the a�acker. �e a�acker was

asked to watch the video and mimic the victim’s behavior to

the best of his/her ability. In total, we also collected 720 pick-up

samples under the educated a�ack.

We will discuss the security analysis for the third experiment in

Section 5.3.

4 SPU AUTHENTICATION ALGORITHMS

We now describe the design of our authentication algorithmwhich

aims to achieve the design goals in Section 2.2.

Previous implicit authentication algorithms exploitmachine learn-

ing techniques to achieve good authentication performance [4, 10,

18, 19, 26, 38, 43]. However, we identify characteristics that the

smartphone implicit authentication exhibits that are notwell aligned

with the requirements of machine-learning techniques. �ese in-

clude: 1) lack of training data especially those of other users; 2)

fundamental limitations in computation capabilities for the train-

ing process and the updating process.

To overcome these challenges, we aim to design an implicit,

lightweight and in-device authentication algorithm by matching

the new incoming pick-up signal with the pick-up profile stored

in the smartphone, instead of the complicated machine learning

techniques of previous methods. Furthermore, the time duration

of a pick-up movement varies across time and across users, and

typically is within the range of 0.5 to 4 seconds. �erefore, our

matching process should also automatically cope with time defor-

mations and different speeds associated with time-dependent sen-

sor data.

Towards these goals, we consider using the dynamic time warp-

ing technique [23] to carefully measure the distance between two

time-series sensor data which may vary in time or speed. In DTW,

the sequences are warped in a nonlinear fashion to match each

other. It has been successfully applied to compare different speech

3In our experiments, we considered 12 a�ackers, 6 victims and 10 repeated iterations
for each user’s pick-up movement.

pa�erns in automatic speech recognition and other applications

in the data mining community. Furthermore, we propose an effec-

tive weighted multi-dimensional DTW to accommodate our set-

ting where the collected sensor data are of multiple dimensions,

thus taking the different distinguishing power of each sensor di-

mension into consideration.

4.1 Data Pre-processing

Our system keeps monitoring and collecting the measurements

of the accelerometer and gyroscope in the background, while the

smartphone is in sleep mode. When the wake up signal (e.g., home

bu�on or power bu�on is pressed in the sleep mode) is detected,

our SPU records the time as the ending of the pick-up signal and

back-tracks the collected data to find the beginning of the pick-up

signal, as described earlier in Section 2.3.

4.2 DTW-based Authentication Algorithm

4.2.1 One-Dimensional DTW. DTW is a well-known technique

to find the optimal alignment between two given (time-dependent)

sequencesX := (x1, x2, . . . ,xN ) of lengthN ∈ N andY := (y1,y2, . . . ,yM )

of length M ∈ N under certain restrictions. While there is a sur-

feit of possible distance measures for time-series data, empirical

evidence has shown that DTW is exceptionally difficult to beat.

Ding et al. in [8] tested the most cited distance measures on 47

different datasets, and no method consistently outperforms DTW.

�erefore, in our system, we utilize DTW to measure the distance

between users’ pick-up signals.

DTW calculates the distance of two sequences using dynamic

programming [1]. It constructs an N -by-M matrix, where the (i, j)-

th element is the minimum distance (called local distance) between

the two sequences that end at points xi and yj respectively. An

(N ,M)-warping pathp = (p1,p2, · · · ,pL) is a contiguous set of ma-

trix elements which defines an alignment between two sequences

X and Y by aligning the element xnl of X to the element yml
of

Y . �e boundary condition enforces that the first elements of X

and Y as well as the last elements of X and Y are aligned to each

other. �e total distance dp (X ,Y ) of a warping path p between X

and Y with respect to the local distance measure d is defined as

dp (X ,Y ) =
∑L
l=1

d(xnl ,yml
). �erefore, the DTW for one dimen-

sional time-series data can be computed as

DTW1(X ,Y ) = mindp (X ,Y ) (1)

4.2.2 Multi-dimensional DTW. Different from the popular one-

dimensional signal (such as speech signal), each pick-up signal in

our se�ing is multi-dimensional (6 dimensions in total including

3 dimensions for accelerometer and 3 dimensions for gyroscope),

which is a practical challenge for applying the DTW algorithm

to our system. In order to address this challenge, we develop a

weighted multi-dimensional DTW by carefully analyzing the dis-

tinguishing powers of different sensor dimensions.

Baseline Approach: We first consider an existing approach to

process multi-dimensional signals [33] with DTW as the baseline

approach. Consider two k-dimensional time-series signals X :=

[X1,X2, . . . ,Xk ] andY := [Y1,Y2, . . . ,Yk ], whereXi andYi are one

5
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(d) Accelerometer x :signal a�er DTW
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(e) Accelerometer y :signal a�er DTW
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(f) Accelerometer z:signal a�er DTW
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(g) Gyroscope x :original signal
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(h) Gyroscope y :original signal
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(i) Gyroscope z:original signal
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(j) Gyroscope x :signal a�er DTW
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(k) Gyroscope y :signal a�er DTW
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(l) Gyroscope z:signal a�er DTW

Figure 3: �e visualization of pick-up signals extracted from the accelerometer and gyroscope on three different dimensions.

We randomly select two pick-up signals from the same user (red solid and blue dashed dark lines) and a pick-up signal from

another user (green light lines). We observe that the distance between two pick-up signals corresponding to the same user is

smaller than that from a different user, which lays the foundation for our implicit authentication algorithm. We also observe

that different dimensions of sensors may have different powers to distinguish users. For instance, the accelerometer is better

than gyroscope in matching the same user’s pick-up signals and differentiating different user’s patterns, which demonstrates

the necessity of our proposed weighted multi-dimensional DTW algorithm.
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dimensional time-series signals for each i . Assuming that each di-

mensional signal is independent of each other, the DTW algorithm

under the multiple dimensions se�ing can be computed as the av-

erage over each dimension where

DTWk (X ,Y ) =
1

k

k∑

i=1

DTW1(Xi ,Yi ) (2)

WeightedMulti-dimensionalDTW:However, the above base-

line approach considers each dimensional signal as contributing

equally to the final matching performance, which is an unrealistic

assumption. In real world scenarios as in our se�ings, different di-

mensions corresponding to different sensors may have varying de-

grees of influence on the matching performance, since they reflect

different levels of a user’s behavioral characteristics. �erefore, we

propose our weighted multi-dimensional DTW for discriminating

the distinguishing powers of different sensor dimensions as:

DTWk (X ,Y ) =

k∑

i=1

wiDTW1(Xi ,Yi ) (3)

wherewi is the weight for the i-th dimensional signal.

Figure 3 further demonstrates the various distinguishing power

for each sensor dimension. We randomly select two pick-up sig-

nals corresponding to the same user and one pick-up signal corre-

sponding to another user and compute the distance between these

signals a�er implementing the one-dimensional DTW according

to Eq. 1. From Figure 3, we observe that the distance between two

pick-up signals corresponding to the same user is much smaller

than that from a different user, which lays the basic foundation for

our implicit authentication algorithm. We also observe that the

accelerometer is more powerful than the gyroscope in matching

the same user’s pick-up signals and differentiating different users’

pick-up signals, which demonstrates the empirical necessity of our

proposed weighted DTW algorithm. �e reason is that a user’s

pick-up movement is dominated by the translation which is rele-

vant to the accelerometer, while the rotation relevant to the gyro-

scope is less significant.

We further analyze theweights for each dimension of accelerom-

eter and gyroscope by varying their weights from 0.1 to 0.9 on

the axis of x,y,z with summation equal to one. We observe that

when each dimension corresponding to the same sensor is equally

weighted, the overall authentication performance is the best (with

highest authentication accuracy). In addition, we also vary the

weights from 0.1 to 0.9 on the accelerometer and the gyroscope

with summation equal to one. We observe that the best perfor-

mance (highest authentication accuracy) is achieved when the ra-

tio between the weight of the accelerometer and that of the gyro-

scope is 0.6 to 0.4. Our observations further demonstrate that the

accelerometer is more informative than the gyroscope in improv-

ing the authentication performance.

In summary, our SPU system realizes implicit, lightweight and

in-device authentication for smartphone users, which consists of

sensor data collection, pick-up signal extraction andweightedmulti-

dimensional DTW processing. If the distance (computed by our

multi-dimensional DTW) between two time-series signals is close

enough (less than a threshold θ), the user passes the authentica-

tion and can have access to the smartphone. �e detailed process
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Figure 4: �e demographics of users in our experiments.

for selecting a proper distance threshold θ will be described in Sec-

tion 5.2.1.

4.3 System Updating

�e updating process in previous authentication mechanisms usu-

ally involves retraining the authentication classifiers, which is com-

putationally complicated and typically requires additional comput-

ing power such as the use of cloud computing. In comparison, we

develop an efficient and lightweight updating process to accommo-

date the user’s pick-up behavioral dri� over time.

Our system would automatically update the user’s profile in the

device whenever the user fails the implicit authentication but suc-

cessfully passes the subsequent explicit authentication. Our up-

dating process is implemented by averaging the currently stored

pick-up profile and the newly-detected pick-up signal. �e key

challenge for this updating process is that the previous profile and

the newly-detected instance may not be of the same length. To

solve this problem, we utilize our multi-dimensional DTW algo-

rithm to first scale the two signals to the same length and then av-

erage them to obtain the updated user’s profile for future authen-

tication. We will show the effectiveness of our system updating

process in Section 5.2.

5 EXPERIMENTS

To verify the effectiveness of our SPU system, we carefully analyze

our collected data (as discussed in Section 3.2) and evaluate the

authentication performance of SPU under different experimental

scenarios and different system parameters. More specifically, the

objectives for our experimental analysis are: 1) to provide empiri-

cal confirmation of our system that people’s armmovements while

they pick up the smartphone can be utilized as a distinguishable

behavioral pa�ern for authentication, as will be discussed in Sec-

tion 5.1; 2) to investigate the overall authentication performance

of SPU under real world usage scenarios, as will be discussed in

Section 5.2; 3) to understand the influence of different system pa-

rameters on our system, as will be discussed in Section 5.2.1; 4)

to verify the effectiveness of our system updating process (recall

Section 4.3), as will be discussed in Section 5.2.2; 5) to demonstrate

the robustness of our system in defending against various imper-

sonation a�acks, as will be discussed in Section 5.3; 6) to verify

the necessity of combining the accelerometer and gyroscope in our

system, as will be discussed in Section 5.4.
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Figure 5: �e heat map of applying weighted multi-dimensional DTW to our dataset. �e average DTW distances between

different pick-up signals in 12 contexts is collected for all 24 users from (a) the same user, and (b) different users. We can see

that the DTW distances from the same user are much lower than that from different users, thus verifying the fundamental

intuitions of our proposed algorithm.

5.1 Fundamental Intuition for Our System

Our first experiment was conducted under a lab se�ing (as de-

scribed in Section 3.2), aiming to demonstrate the fundamental in-

tuition and empirical confirmation for our SPU system. In this ex-

periment, we asked each of the 24 users to pick up his/her smart-

phone in 6 different places while si�ing or standing and repeat

each movement for 10 iterations. Figure 4 shows the demograph-

ics of the 24 users in our experiments. �e average age of the par-

ticipants is 34.3 years old while the median is 31 years old. �ere

are 14 males and 10 females.

A�er extracting the pick-up signals according to Section 2.3,

we measure the distance between any two pick-up instances by

exploiting the weighted multi-dimensional DTW technique as de-

scribed in Section 4.2.2. In our algorithm, the weights for the ac-

celerometer signal and the gyroscope signal are selected as 0.6 and

0.4 respectively, and each of the 3 dimensions of the same sensor

is weighted equally (recall analysis in Section 4.2.2).

Figure 5(a) shows the average DTW distances of any two in-

stances of pick-up signals corresponding to the same user. Both

the x-axis and y-axis represent the 12 different pick-up scenar-

ios (6 different places and 2 user states, i.e., si�ing or standing).

Lighter squares represent smaller DTW distances. In Figure 5(a),

we observe the smallest DTWdistances along the diagonal squares

since they represent the distances between two pick-up signals cor-

responding to the same place and user state. By comparing the

diagonal squares and the non-diagonal squares in Figure 5(a), we

know the DTW distances across different pick-up scenarios do not

vary drastically, demonstrating the robustness of our system under

different context scenarios.

Figure 5(b) shows the average DTW distances of any two in-

stances of pick-up signals corresponding to different users. From

Figure 5, we observe that the DTW distances between pick-up sig-

nals corresponding to the same user are much lower than that be-

tween different users, which lays the fundamental intuition for our

system that utilizes users’ pick-up movements as distinguishable

behavioral pa�erns for authentication.

5.2 Realistic Usage Scenario

Our second experiment was conducted under a more realistic set-

ting, where the same 24 users (shown in Figure 4) were invited

to install our SPU application on their own smartphones and use

them freely in their normal lives for a week (7 days)4.

From the collected data, we extracted 3, 115 pick-up signals ac-

cording to Section 2.3. �at is to say, we can detect 18.54 (i.e.,

3115/7/24) pick-up samples for each user per day (with standard

deviation 10.54). We also recorded the number of times users un-

lock their smartphones, which is 8, 736 in a week. �erefore, the

average number of times each user unlocks his/her smartphone is

52 (i.e., 8736/7/24) per day (with standard deviation 27.31).

Note that our system does not detect all the movements when

the users try to unlock their smartphones, since we only extract

pick-up signals starting from a stable state. In our experiment, we

can detect 35.6% (i.e., 18.54/52, which correspond to the pick-up

signals starting from a stable state) of users’ pick-up movements

when they try to unlock their smartphones. �erefore, we can

save more than one third of the time that users need to unlock

their smartphones explicitly. Furthermore, we also compute the

DTW distance between other types of pick-up signals (e.g., pick-

ing up the smartphone from a bag or from a pocket) to investigate

whether there are other pick-up pa�erns of users that can be uti-

lized for authentication. Our observations show that the distance

between other types of pick-up signals (not from a stable state)

corresponding to the same user is very large, demonstrating that

other types of pick-up signals can not be utilized as distinguish-

able pa�erns for user authentication. �erefore, the pick-up move-

ments starting from a stable state which are extracted by our SPU

system, constitute the most important pick-up characteristics of

users. Our following experimental analysis are implemented on

these detected pick-up movement samples.

5.2.1 Determining the Distance Threshold. A significant chal-

lenge in implementing our system is how to select a proper value

for the distance threshold θ between the newly-detected pick-up

4We also let them use our application for another week for evaluating our system
updating mechanism as discussed in Section 5.2.2.
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Figure 6: (a) FAR, FRR and (b) accuracy, varying with differ-

ent distance threshold θ . We observe that when θ = 3.1, the

FRR is 0% and FAR is less than 10%. When θ = 2.8 the FRR is

7.6% and FAR is 0%, resulting in an authentication accuracy

higher than 96.3%. �erefore, θ can tradeoff the usability of

our system (lower FRR) and users’ security (lower FAR)

signal and the stored pick-up profile of the user, which is an impor-

tant system parameter to balance the trade-off between the usabil-

ity of our system and the security of smartphone users. A smaller

θ provides higher security, while a larger θ would result in be�er

usability.

Here, we utilize false acceptance rate (FAR) and false rejection

rate (FRR) asmetrics to quantify the authentication performance of

our system. FAR is the fraction of other users’ data that is misclas-

sified as the legitimate user’s. FRR is the fraction of the legitimate

user’s data that is misclassified as other users’ data. For security

protection, a large FAR is more harmful to the smartphone users

than a large FRR. However, a large FRR would degrade the conve-

nience of using our system. �erefore, we aim to investigate the

influence of the distance threshold θ in balancing FAR and FRR, in

order to choose a proper θ for our system.

Figure 6(a) shows the FAR and FRR with varying values of the

distance threshold θ . We observe that FAR is less than 10% and

FRR is 0% when θ = 3.1. �e FAR drops to 0% and FRR increases to

7.6% when θ = 2.8. �erefore, θ is a trade-off between the usabil-

ity of our system (lower FRR) and the security of smartphone users

(lower FAR). In Figure 6(b), we observe that the authentication ac-

curacy is higher than 96.3% when θ is around 2.8. Combining Fig-

ure 6(a) and Figure 6(b), we choose θ = 2.8 in our experiments

from now on and in our published system, aiming at minimizing

FAR and maximizing the security of the smartphone users.

5.2.2 Incorporating the System Updating Process. In order to

verify the effectiveness of our system updating process as described

in Section 4.3, we let the same 24 users use their smartphones

freely for another week. More specifically, we randomly divided

the users into two groups. �e 12 users in the first group installed

our SPUapplicationwhich incorporates the updating process, while

the other group installed another version of SPU without the up-

dating process. A�er careful analysis, we observed that the users

in the first group needed to explicitly unlock their smartphones (at

the same time, their pick-up profiles would be updated in the SPU

system) 17 times per day on average. For the other group without

system updating, the users needed to explicitly unlock their smart-

phones 35 times per day on average. We can see that incorporat-

ing the system updating process can further reduce 52% of times
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Figure 7: �e FAR and FRR of SPU under various imperson-

ation attacks.

for users to unlock the smartphones. �ese observations show the

effectiveness of our system updating process and the advantage of

our system in increasing smartphone users’ convenience.

5.3 Security Analysis

In our third experimental se�ing as described in Section 3.2, we

aim to evaluate how robust our SPU system is in defending against

various types of impersonation a�ackers (random a�ack, context-

aware a�ack and educated a�ack).

For each of the three a�acks, we computed FAR and FRR curves

under different distance thresholds θ as shown in Figure 7, based

on which we have the following observations: 1) SPU can effec-

tively defend against random a�acks. Here, ‘random’ a�ack indi-

cates a brute force a�ack where the a�acker picks up the smart-

phone randomly without knowing any information about the vic-

tim. 2) When the distance threshold θ = 2.5, the FAR becomes 0%

for all the three a�acks and the corresponding FRR is 18%. Note

that the FRR curve for the three a�acks are the same since it eval-

uates the ratio that the victim is rejected by our system, which is

irrelevant to the a�acker’s capability. 3) Furthermore, the user can

defend against different levels of a�acks by adjusting the distance

threshold θ . �ese results suggest that our SPU system is more

robust against random (brute force) a�acks than other types of im-

personation a�acks (context-aware a�acks and educated a�acks)

since these advanced a�ackers usually have access to partial infor-

mation about the user’s pick-up movements (recall Section 2.1 and

Section 3.2).

In summary, SPU can defend against most realistic a�acks ro-

bustly and effectively. Even with a strong a�acker (i.e., an insider

a�acker), our system performs gracefully.

5.4 Further Experiments

We further demonstrate the necessity and advantages of combin-

ing the common sensors, acclerometer and gyroscope, in our SPU

system. In Table 1, we observe that using the combination of ac-

celerometer and gyroscope can achieve be�er performance than

using each sensor individually, with the authentication accuracy

up to 96.3%. Furthermore, our SPU can reduce the number of ex-

plicit authentications a user must do by 32.9% (i.e., 35.6% × (1 −

7.6%)) on average, where 35.6% is the ratio of detected pick-up sig-

nals (recall Section 5.2) and 7.6% is the FRR by using the combina-

tion of accelerometer and gyroscope.
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Table 1: �e authentication accuracy by using accelerometer and

gyroscope with distance threshold θ = 2.8.

Accuracy FAR FRR

Accelerometer 90.9 % 6.4% 11.8%

Gyroscope 85.2 % 13.7% 15.2%

Acc+Gyr 96.3 % 0% 7.6%

Table 2: �eauthenticationaccuracy byusing threemotion sensors

with distance threshold θ = 2.8.

Accuracy FAR FRR

Magnetometer 36.7% 54.4% 62.4%

Acc+Mag 67.2% 37.2% 48.7%

Gyr+Mag 54.8% 41.9% 57.1%

All three sensors 72.5% 27.6% 34.4%

Next, we went a step further to investigate whether our SPU

system could benefit from more sensors than just the accelerom-

eter and gyroscope. More specifically, we analyze the authentica-

tion performance of SPU when incorporating the measurements

of a magnetometer and its combinations with the accelerometer

and gyroscope. We consider the magnetometer since we can con-

struct the popular 9-axis motion detector of the smartphone by

combining the 3-axis measurements of magnetometer with the 3-

axis measurements of each of accelerometer and gyroscope. An

interesting observation shown in Table 2 is that incorporating the

magnetometer into our SPU system does not improve the overall

authentication accuracy - in fact, it degrades the authentication

accuracy! Using more sensors is not always be�er! �e reason

is that the magnetic field is rather sensitive to the direction of the

smartphone, which makes it vary significantly when the same user

picks up the smartphone in different directions - thus degrading

the overall authentication performance.

�ese observations substantiate our choice of using only the ac-

celerometer and gyroscope in our system.

6 OVERHEAD ANALYSIS

We now evaluate the system overhead of SPU on personal smart-

phones to demonstrate the applicability of our system in real world

scenarios. In our source code, the DTW algorithm is implemented

in the C language by using the Native Development Kit (NDK) in

Android 5.1. We test our system on a Google Nexus5 with 2.3GHz,

Krait 400 processor, 16GB internal storage and 2GB RAM, using

Android 5.1.

6.1 Power Consumption

�ere are four different testing scenarios: 1) Phone is locked and

SPU is off; 2) Phone is locked and SPU keeps running; 3) Phone is

under use and SPU is off; 4) Phone is under use and SPU is running.

For cases 1) and 2), the test time is 12 hours each. We charge the

smartphone ba�ery to 100% and check the ba�ery level a�er 12

hours. �e average difference of ba�ery charged level from 100%

is reported in Table 3. For cases 3) and 4), the phone under use

means that the user keeps unlocking and locking the phone. Dur-

ing the unlocked time, the user keeps typing notes. �e period of

Table 3: �e power consumption under four different scenarios.

Scenario
Power

Consumption

1) Phone locked, SPU off 1.1%

2) Phone locked, SPU on 2.9%

3) Phone unlocked periodically, SPU off 1.5%

4) Phone unlocked periodically, SPU on 3.5%

Figure 8: Cumulative distribution function of decision-

making time in SPU. We can find that more than 90% of

decision-making processes can be completed within 2 mil-

liseconds and all the processes can be finishedwithin 2.4mil-

liseconds.

unlocking and locking is two minutes and the test time in total is

60 minutes.

Table 3 shows the result of our power consumption test on bat-

tery usage. We find that in cases 1) and 2), the SPU-on mode con-

sumes 1.8% more ba�ery power than the SPU-off mode each hour.

We believe the extra cost in ba�ery consumption caused by SPU

will not affect user experience in daily use. For cases 3) and 4), SPU

consumes 2% more ba�ery power performing 30 SPU implicit au-

thentications in one hour, which is also an acceptable cost for daily

usage.

6.2 Response Time

Figure 8 shows the cumulative distribution function of decision-

making time in SPU authentication. We find that more than 90%

of the decision-making computations can be completed within 2

milliseconds and all can be finished within 2.4 milliseconds. �is

result shows that the latency caused by the SPU system for au-

thentication is low enough to be user-friendly and reasonable for

normal usage.

7 RELATED WORK

User authentication is one of the most important issues in smart-

phone security. Password-based authentication approaches are based

on possession of secret information, such as passwords or PINs.

Biometric-based approaches make use of distinct personal features,

such as fingerprint or iris pa�erns. Behavior-based authentica-

tion identifies a user based on his/her behavioral pa�ern that is

observed by the smartphone. Compared with the password-based

and the biometric-based authentication, the behavior-based authen-

tication is more convenient for smartphone users with good re-

silience to forgery a�acks.
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7.1 Password-based Authentication

�e objective of most password-based authentication mechanisms,

e.g., PIN or passwords, is to secure the phone from unwanted ac-

cess. However, these methods require frequent participation of the

user. �is o�en leads to interruptions to the smartphone user, e.g.

continuously prompting him/her with some challenges. As a re-

sult, many smartphone users tend to completely remove such au-

thentication methods [35]. Our SPU system can overcome these

weaknesses, which increases the convenience for smartphone users

while guaranteeing their security, as shown in Section 5.

7.2 Biometric-based Authentication

Biometric-based authentications study static physical features of

humans. Currently, there are many different physiological biomet-

rics for authentication, such as face pa�erns, fingerprints [13], and

iris pa�erns [28]. Biometric-based authentication systems involve

an enrollment phase and an authentication phase. A user is en-

rolled by providing his/her biological data such as fingerprint or

iris pa�ern. �e system extracts these pa�erns from the provided

data and stores the extracted pa�erns for future reference. Dur-

ing the authentication phase, the system compares the observed

biological data against the stored data to authenticate a user.

However, biometric-based authentications also require frequent

user participation, and hence is also an explicit authenticationmech-

anism. For example, fingerprint authentication always requires

the user to put his/her finger on the fingerprint scanner. On av-

erage, the response time is longer than 1 second [27], which is also

much longer than the 2.4 milliseconds of our SPU system. Hence,

unlike our implicit SPU authentication, these biometric-based ap-

proaches requiring user compliance are not as convenient as our

SPU system.

7.3 Behavior-based Authentication

Another thread of authentication researchmeasures the behavioral

pa�erns of the user, where a user is identified based on his/her

behavioral pa�erns, such as hand-writing pa�ern [10, 38], gait [26]

and GPS location pa�erns [4].

With the increasing development of mobile sensing technology,

collecting measurements through sensors built within the smart-

phone and other devices is now becoming not only possible, but

quite easy through, for example, Android sensor APIs. Mobile

sensing applications, such as the CMU MobiSens[41], run as ser-

vices in the background and can constantly collect sensors’ data

from smartphones. Sensors can be either hard sensors (e.g., ac-

celerometers) that are physically-sensing devices, or so� sensors

that record information of a phone’s running status (e.g., screen

on/off). �erefore, sensor-based implicit authentication mecha-

nisms have becomevery popular and applicable for behavior-based

authentication.

In [4], an n-gram geo-based model is proposed for modeling a

user’s mobility pa�ern. �ey use the GPS sensor to detect abnor-

mal activities (e.g., a phone being stolen) by analyzing a user’s loca-

tion history, and their algorithm can achieve 86.6% accuracy. How-

ever, the access to GPS require users’ permissions, and cannot be

done implicitly.

Nickel et al. [26] exploited a user’s walking pa�ern to authen-

ticate a smartphone user by using the k-NN algorithm. Conti et

al. [6] utilized the user’smovement of answering a phone call to au-

thenticate a smartphone user. Shrestha et al.[34] utilized a tapping

pa�ern to authenticate a user when the user does an NFC trans-

action. However, their experiments had strict restrictions on the

users’ behavior where the users have to walk or answer a phone

call following a specific script (e.g., walk straight ahead at the same

speed [26] or answer the phone which is on a table in front of a

user [6]). �ese restrictions are impractical for a real use.

Users’ behavior on a touch screen is one of the most popular

research directions in behavior-based authentication [3, 10, 19, 31,

38]. Trojahn et al. [38] developed a mixture of a keystroke-based

and a handwriting-based method to realize authentication by using

the screen sensor. �eir approach has achieved 11% FAR and 16%

FRR. Frank et al. [10] studied the correlation between 22 analytic

features from touchscreen traces and classified these features us-

ing k-NN and SVM. Li et al. [19] proposed another behavior-based

authentication method where they exploited five basic movements

(sliding up, down, right, le� and tapping) and their related combi-

nations, as the user’s behavioral pa�ern features, to perform au-

thentication. However, touch screen based authentications may

suffer from a simple robotic a�ack [30].

SenSec [43] constantly collects data from the accelerometer, gy-

roscope and magnetometer, to construct gesture models while the

user is using the device. SenSec has shown that it can achieve 75%

accuracy in identifying owners and 71.3% accuracy in detecting

the adversaries. Lee et al. [18] monitored the users’ general behav-

ioral pa�erns and utilized SVM techniques for user authentication.

�eir results show that the authentication accuracy can be higher

than 90% by using a combination of sensors. However, these meth-

ods require a large amount of privacy sensitive training data from

other users, and significant external computation power for learn-

ing the behavior models, unlike our in-device SPU authentication

method.

In fact, almost all the existing behavior-based authentication

mechanisms [4, 10, 18, 19, 26, 38, 43] heavily rely on a powerful

remote server to share the tasks and take a relatively long time

to complete the authentication process. In comparison, our SPU

is a lightweight, in-device, non-intrusive and automatic-learning

authentication system, which would increase the convenience for

smartphone users while enhancing their security.

8 DISCUSSION AND FUTURE WORK

Our SPU system increases the convenience for smartphone users

while enhancing their security. We will make SPU open source

so�ware, suitable for extensions with future research and experi-

ments.

Future research can include more context-detection techniques

to detect fine-grained pick-up pa�erns for users and embed it with

SPU to further increase the convenience and security for smart-

phone users.

Users’ pick-up pa�erns may vary when they are using other

types of devices, e.g., tablets or smartwatches. It would be an in-

teresting future direction to extend SPU to these mobile devices.
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Furthermore, the combination of multiple devices may possibly

provide be�er authentication performance for the SPU system.

9 CONCLUSION

We proposed a novel system, Secure Pick Up (SPU), to implicitly

authenticate smartphone users in a lightweight, in-device, non-

intrusive and automatic-learning manner. Unlike previous work,

SPU does not require a large amount of training data (especially

those of other users) or any additional computational power from

a remote server, which makes it more deployable and desirable for

many users.

Our key insight is that the user’s phone pick-up pa�ern is dis-

tinguishable from others, using smartphone sensor measurements.

We propose a weighted multi-dimensional dynamic time warping

algorithm to effectively measure the distance between pick-up sig-

nals in order to determine the legitimate user versus others.

Extensive experimental analysis shows that our system achieves

authentication accuracy up to 96.3% with negligible system over-

head (2% power consumption). Furthermore, our evaluation shows

that SPU can reduce by 32.9% the number of explicit authentica-

tions a user must do, and can defend against various imperson-

ation a�acks effectively. Overall, SPU offers a novel feature in the

design of today’s smartphone authentication and provides users

with more options in balancing the security and convenience of

their devices.
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