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Abstract
Quantum computing is a rapidly growing field with the potential to change how we solve
previously intractable problems. Emerging hardware is approaching a complexity that requires
increasingly sophisticated programming and control. Scaffold is an older quantum programming
language that was originally designed for resource estimation for far-future, large quantum
machines, and ScaffCC is the corresponding LLVM-based compiler. For the first time, we provide a
full and complete overview of the language itself, the compiler as well as its pass structure. While
previous works Abhari et al (2015 Parallel Comput. 45 2–17), Abhari et al (2012 Scaffold: quantum
programming language https://cs.princeton.edu/research/techreps/TR-934-12), have piecemeal
descriptions of different portions of this toolchain, we provide a more full and complete
description in this paper. We also introduce updates to ScaffCC including conditional
measurement and multidimensional qubit arrays designed to keep in step with modern quantum
assembly languages, as well as an alternate toolchain targeted at maintaining correctness and low
resource count for noisy-intermediate scale quantum (NISQ) machines, and compatibility with
current versions of LLVM and Clang. Our goal is to provide the research community with a
functional LLVM framework for quantum program analysis, optimization, and generation of
executable code.

1. Introduction

Quantum programming languages and compilers will play a critical role in achieving practical quantum
computation [3]. In this paper, we detail Scaffold [2], a programming language built for hybrid classical and
quantum computing, its architecture and future development. Both the Scaffold compiler infrastructure,
ScaffCC, and benchmarks have been used broadly in academic research projects [4–6]. However, there does
not exist a single description of the entire Scaffold toolchain. This paper documents the overall
infrastructure as well as our tool’s most recent updates.

Scaffold exists among a wide set of different programming languages built for quantum programming
[3]. As in to classical programming, there are declarative, functional and imperative solutions for quantum
programming. Languages, Quipper [7], Microsoft’s Q# [8] and QuaFL [9], are functional languages, and, in
the case of Quipper and Q# are built on existing languages, simplifying language implementation and initial
costs. These functional languages benefit from clearly defined type systems, in the case of Q#, with
extensions for quantum gates and guarantees about certain states. Unfortunately, Q# only offers an interface
to their own simulator, and not to any sort of quantum assembly languages [10]. Quipper provides similar
benefits for checking correctness, but also fails to provide and interface to quantum assembly languages,
instead using its own simulator [11]. Declarative frameworks, such as Qiskit [12] and Cirq [13] which are
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Figure 1. Framework comparison: an example of how increasing the number of qubits in a circuit stresses Cirq and Qiskit.

both built on top of Python, provide a decent foothold in developing smaller scale quantum circuits.
However, these frameworks face problems as the size of the program grows. These frameworks tend to be
more focused on how circuits will work in current simulators and on small scale quantum computers, and
while they have good support for demonstrating noise models and connectivity between qubits, they
struggle to handle larger programs due to the computational overhead associated with increased circuit size.
For example, building and analyzing circuits of 100 or greater qubits can take a significant amount of time.
This can be seen in figure 1, where building, decomposing and outputting the OpenQASM for an adder and
a square root circuit can take significantly longer for Cirq and Qiskit when compared to Scaffold. Finally,
QCL and Scaffold follow the imperative model. QCL and Scaffold are both based on C, with QCL relying
on matrices and matrix operations to express quantum data and operations. On the other hand, Scaffold
was designed to scale and takes a much simpler approach, using arrays of qubits and displaying the
operations as gates—a powerful strategy in terms of both program optimization and analysis. Furthermore,
since the heuristics of an imperative language are straight forward, it is easy to add further compiler
optimizations to the existing compilation framework, which becomes increasingly important as programs
grow in size. With these strategies, we can create a much more efficient program with increased compiler
scalability and flexibility.

We will give a background introduction of Scaffold, and a thorough examination of the structure of the
compiler that gives Scaffold, as a programming language, its capabilities. Finally, we describe an extensive
update in which we added more support for compilation to OpenQASM [14] and a compiler restructuring
which better utilizes the power of the LLVM infrastructure to give the developers a simpler and more
accessible way to enhance this language based to their needs. We also describe how NISQ oriented tools
have been added to supplement with the main compiler. The current distribution for Scaffold can be found
at https://github.com/epiqc/ScaffCC, which also includes detailed technical aspects, such as how to add a
pass, an in-depth user manual, and build instructions.

2. Scaffold history and language features

Several features distinguish Scaffold from other quantum computing languages. Besides supporting several
different target quantum assembly languages, Scaffold provides critical quantum computing functionalities
to allow for programming in the quantum space.

2.1. History
Scaffold was built with an emphasis on expressing complex quantum algorithms in a concise manner.
Complicated components of quantum algorithms, such as a quantum oracle or repeatable sets of quantum
circuitry, would be easily expressible and easy to understand. Scaffold programs did not have a strong
emphasis on running executable quantum programs, but rather, focused on creating a framework where the
program could be analyzed and manipulated. Through the integration of different quantum components in
a modular structure, it would be easy to create, model, and manipulate larger programs with many qubits.
Additionally, by leveraging the analysis capabilities of Clang and LLVM, the ScaffCC (Scaffold compiler)
framework was designed to handle large programs. ScaffCC was designed to perform optimizations under
the assumption that most, if not all, program inputs would be known at compilation time.
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Since the language was meant to express algorithms in a concise way, the compiler was designed to be
flexible for the purpose optimizing and analyzing the program, with the aim of finding, and potentially
decreasing, resource usage. This was done through different optimizations, such as inserting uncomputation
into the program to save ancilla qubits, or attempting to take advantage of natural commutative circuit
features and removing operations accordingly. Like most compiler optimizations, the goal was to make
these programs less resource intensive; however, since there was no machine to run programs on, the goal
was not for these programs to be run directly on machines. While the Scaffold compiler has the ability to
generate quantum assembly code, this feature was not emphasized. For example, quantum error correction
will require conditional execution on measurement, which was not originally supported by Scaffold in
quantum assembly generation. Beyond conditional measurement on a single qubit, quantum assembly
languages support arraywise qubit measurement as well. We remedy such shortcomings in this paper by
updating our code generation for IBM’s OpenQASM quantum assembly specification.

Scaffold was developed as a C-style language so that its abstraction was not too far removed from the
hardware and quantum circuitry that has been traditionally used to describe quantum programs. This
assisted in making the translation from Scaffold to quantum assembly more viable and acted as a stepping
stone to programs that could run on future quantum machines. In line with the attempts to integrate
Scaffold into a C-style language, it was built on top of Clang, allowing for the C syntax to be leveraged in a
new quantum context. While this allows for any aspect of C-code to be used, only the basic aspects needed
for quantum algorithms, such as simple conditionals, for loops, and declarations have been thoroughly
tested.

Previously, Scaffold circuits relied on simple hardware gates. However, here are many benefits to control
flow constructs that can be used to more easily design circuits. As a simple example, the addition of
for-loops and conditionals allow for classical components to alter program results. Additionally, control
flow constructs, specifically module calls, allow for the removal of several different boilerplate operations.
By taking advantage of these constructs, Scaffold is able to minimize arithmetic operations, reducing the
amount of computation associated with each operation in a quantum circuit and making it easier to ensure
that the results are correct. Furthermore, the insertion of reversible computations into Scaffold programs
with simple function annotations, greatly improves the ability to design and test algorithms that require
these operations.

As quantum computing has evolved into the NISQ-era, Scaffold too is evolving to meet the necessary
requirements of new quantum algorithms, especially those that need to be run on actual quantum
computers (with eventual error correction functionality planned for the future). This has meant finding any
deficiencies in the current quantum assembly code generation, improving the existing optimization
algorithms, and developing new algorithms to ensure that Scaffold is able to both maintain its current
functionality as well as work on a smaller scale for this new era of quantum computing.

2.2. Syntax
A critical feature of Scaffold is its similarity to the C family language, which is widely used in classical
programming, in terms of program structure, standard library availability and use of classical data types.
Quantum computing components in Scaffold also mimic C-style variable declarations and function calls.
This make the implementation of quantum computing algorithms a smoother, more familiar programming
experience. Scaffold developers are also able to create and add modules and gates based on their needs for
research or practical use and are not restricted to the built in library.

2.2.1. Data types
Quantum registers. Scaffold provides several native data types for quantum programming. In Scaffold, we
have qbit and abit quantum registers, each with a specific use. As in C and C++ arrays, a qbit or
abit variable indicates a single qubit, but can be adapted with bracket notation, as in example 4 to
represent an one-dimensional or multidimensional array of qubits. These data types act in the same way
except that an abit is provisioned for representing an ancilla quantum register. These qubits are only used
during a part of computation process, whereas the qbit is used for registers that hold data for the
computation throughout the entire circuit. While not an explicit requirement, separate qbit and abit
data types allow programmers to differentiate which registers hold the data that is integral to the circuit
from the registers that can be used as a ‘scratchpad’ of sorts. Later on, we see how that this has advantages
when performing optimizations.

Classical registers. Apart from the qbit and abit, Scaffold provides the cbit data type to represent
classical bits which are used to store the result of measurement of quantum registers. The cbit is classical
i.e. it can ultimately only hold a 0 or 1 value in each register, making it different from the quantum focused
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Example 1. All-gates.scaffold.

1 int main (){
2 qbit q[3];
3 cbit c[1];
4

5 X (q[0]);
6 Y (q[0]);
7 Z (q[0]);
8 H (q[0]);
9 T (q[0]);

10 S (q[0]);
11 Tdag (q[0]);
12 Sdag (q[0]);
13 Rx (q[0], 3.14159);
14 Ry (q[0], 3.14159);
15 Rz (q[0], 3.14159);
16 PrepX (q[0], 0);
17 PrepZ (q[0], 0);
18 c[0] = MeasX (q[0]);
19 c[0] = MeasZ (q[0]);
20

21 CNOT (q[0], q[1]);
22 Toffoli (q[0], q[1], q[2]);
23 Fredkin (q[0], q[1], q[2]);
24

25 return 0;
26 }

qbits and abits. Since it serves a critical function in quantum computing process as the measurement
destination, we give it this special classification.

C data types. Scaffold also allows programmers declare classical data types to do classical
computation or pass as arguments in classical/quantum functions. Valid primitive data types cover
those commonly used in C language, such as int, float, char. Casting between different data type is
also viable in Scaffold with the intention of providing C familiarity, but is constrained to classical data
types.

2.3. Quantum gates
Besides quantum registers, another unique feature in Scaffold is a library of built-in quantum gates which
are specific actions on quantum registers to perform quantum computations. A quantum gate can take both
quantum and classical type parameters. Such an example are the rotation gates Rx, Ry, and Rz which take a
quantum register and a value to rotate the register by around a specific axis. Example 1 lays out all the
built-in gates supported by the Scaffold compiler, which incorporates the mostly common used quantum
gates. In the future, as more control over quantum hardware is developed, we expect to develop more
complex gates. Scaffold also provides flexibility to users who wish to create and define a new gate by adding
a module to the Scaffold infrastructure.

Built-in Gates. Pauli-X gate, Pauli-Y gate, Pauli-Z gate, Hadamard gate, T gate (phase shift gate where
Φ = π/4), S gate (phase shift gate where Φ = π/2), T dagger gate, S dagger gate, Arbitrary rotation gate
from X, Y , Z axis, single bit preparation gate (initialize to 0), Measurement gate, CNOT gate, Toffoli gate
and Fredkin (Control Swap) gate.

Measurement. Measurement in quantum programs allow us to determine the state of the quantum bits
within a program since they cannot be observed directly. Scaffold includes the ability to both measure a
single qubit value, or multiple qubit values at once. When performing these measurements, the output is a
cbit, or array of cbits that matches the dimensions of the qubits measured by the gate. A simple
example of a Scaffold program that performs examples of both of these styles of measurement after being
run through an H gate are shown in example 2. It should be noted that we must ‘dereference’ both the
qbit and cbit arrays to perform this operation. This dereferencing is performed due to our handling of
the underlying LLVM instructions. If dereferencing did not occur, it is much more difficult to discern the
difference between measuring a single bit versus measuring the entire array. This design detail allows for
much simpler compilation strategies later on.

When measuring the qubit, a 1 or 0 is written into each cbit. It is important to note that once these
classical bits are written to once, they cannot be written to again due to the fact that it will overwrite the
data in the quantum circuit.
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Example 2. Measurement on quantum datatypes to
classical datatypes.

1 int main (){
2 qbit one_qbit[1];
3 cbit one_cbit[1];
4

5 H(one_qbit);
6 one_cbit[0] = MeasZ(one_qbit[0]);
7

8 qbit many_qbits[4];
9 cbit many_cbits[4];

10

11 H(many_qbits);
12 ∗many_cbits = MeasZ(∗many_qbits);
13

14 return 0;
15 }

Example 3. An example of using measurement in conditional
operations in Scaffold.

1 int main(){
2 qbit one_qbit[1];
3 cbit one_cbit[1];
4 H(one_bit);
5

6 one_cbit[0] = MeasZ(one_qbit);
7 if(one_cbit[0] == 1) X(one_qbit);
8

9 qbit many_qbits[3];
10 cbit many_cbits[3];
11

12 H(many_qbits);
13 ∗many_cbits = MeasZ(∗many_qbits);
14 if(∗many_cbits == 1) X(many_qbits);
15 if(∗many_cbits == 2) Y(many_qbits);
16 if(∗many_cbits == 3) Z(many_qbits);
17 }

2.4. C constructs in Scaffold
As previously mentioned, Scaffold is modeled on C, which allows for the integration of the C control flow
into the program.

Loops. For loops are almost directly comparable to their C counter parts. It is as simple as iterating over
an array of qubits or classical bits by increasing some index and applying gates to the qubits. A For loop is
the main style of loop that Scaffold uses due to limitations in the compilation framework. Loop unrolling is
used extensively to optimize the program; while loops are not as conducive to this effort and may not act as
expected within a Scaffold program as they can be difficult to accurately unroll.

Conditionals. We can use conditionals on any normal C data type as would normally be done in a C
program. But, there are special cases when dealing with quantum data types. In Scaffold we can only use
conditionals on classical bits. Once we measure the quantum data, as mentioned before, we can perform
conditional operations depending on the determined value.

Conditionals can be performed on both single cbits and arrays of cbits. When performing on a
single cbit it is obvious that the value can either be a simple 0 or 1 and we can condition on this check.
However, for arrays, it becomes more complicated. We take the sum of the values across the array and
condition on value of the sum. In example 3 we measure a 1 by 3 two-dimensional array which can have
values of integer 0 to 7 (2 to the power of 3). We can then perform different operations accordingly, in this
case apply an X, Y , or Z gate to the entire set of quantum registers. Once again, we pay attention to the fact
that when we are interacting with the qbit and cbit arrays we dereference the array to accurately identify
and optimize for this situation.

2.4.1. Modules
Quantum data types and quantum gates are the building blocks to writing a quantum computing program.
The structure of a Scaffold program is similar to that of a C program with some additional features to more
adeptly handle quantum programming.
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Example 4. GHZ State with 4 Qubits algorithm.

1 scaff_module GHZN (qbit ∗qbits, const int n){
2 H(qbits[0]);
3 for (int i = 1; i < n; i++){
4 CNOT(qbits[i − 1], qbits[i]);
5 }
6 }
7

8 int main (){
9 qbit qbits[4];

10 GHZN(qbits, 4);
11 return 0;
12 }

A Scaffold program is comprised of modules, which wrap a sequence of classical and quantum
instructions, and gate prototypes that define placeholders for quantum gates. In the context of a resulting
quantum circuit, prior to any sort of decomposition, a module can be thought of as a function, but is used
as a more complex quantum gate.

Like a C program, every Scaffold program has a main module, which is the entry point for the Scaffold
compiler. A module is the Scaffold equivalent of a function call. When compiled to a target assembly
language, these modules are either referenced via a specific instruction or inlined as necessary. Within a
Scaffold program, a module defined with the keyword scaff_module before the name of the module,
and any arguments needed. Like a C function, these modules can be declared with a prototype before their
definition later in the program.

Example 4 is a simple example of a quantum computing algorithm in Scaffold using modules.
These modules allow for the creation of more complex sets of instructions throughout the circuit,

reducing the visual complexity of a program and lends modularity to the program so that common pieces
could be used throughout the circuit and between programs.

3. ScaffCC

In a higher level quantum computing program, we expect to interweave quantum computing components
with classical computing methods. Up to the point where instructions are sent to a quantum machine, the
programming and compilation process takes place on a classical machine. To aid this process, ScaffCC, the
compiler for Scaffold, harnesses the classical LLVM open-source infrastructure to compile the quantum
program to a desired representation. Through LLVM intermediate representations and modifications to the
Clang code parsing functions, the compiler is able to distinguish quantum instructions from classical
instructions. The classical Scaffold elements are handled by the classical machine and compiler, whereas the
quantum operations will be translated into low level quantum machine language and sent to the targeted
quantum hardware.

This transformation is performed included in a set of compiler commands that are accessed through the
scaffold.sh script included in the repository. Running scaffold.sh <scaffold_file> will
generate QASM file as well as a resource file after passing the Scaffold file through the various optimizations
and transformations necessary to create the resources and assembly files. Various flags, such as -b, -f, -o,
-T, -R for OpenQASM generation, flattened QASM, optimized QASM, Toffoli decomposition and rotation
decomposition respectively can be denoted as compilation options.

3.1. ScaffCC functionality
Quantum computing is still at an infant stage in the sense that there is no clear path toward scalable,
fault-tolerant quantum hardware. However, ScaffCC works to balance the priorities of both near term and
long term quantum programs. In the near term, NISQ (noisy intermediate scale quantum) [15] machines
provide our first look into physically realized quantum machines and can be used to develop higher level
quantum computing components. However, NISQ machines are heavily resource constrained. Besides
translating the language, the ability to analyze and optimize a program to not only use less error prone
patterns, but also use less resources is crucial. ScaffCC utilizes the LLVM toolchain to perform code analysis
and optimization on the Scaffold language, which provides a handy gadget to its developers, especially for
research purposes. In the future, there will hopefully be larger scale quantum computers that are able to
handle the algorithms that Scaffold was initially designed to express and analyze. As this becomes more
viable, there will be opportunity to expand upon the initial features of Scaffold so that it continues
functioning as a valid optimizer and code generator for many types of quantum programs.
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3.1.1. Transformation
Similar to a compiler for classical computing, a well-designed quantum compiler should be able to adapt to
generating code for different hardware targets. Support for complex gate decomposition, such as Toffoli and
Fredkin gates, are built into ScaffCC since not every quantum computer has the same set of built in gates
[16]. Decomposition of multidimensional quantum registers are also inherited in some passes to adapt to
the rules of different quantum low level languages. This is also necessary since multidimensional registers
are not supported in all quantum assembly languages or architectures.

3.1.2. Optimization
Due to the scarcity of resources associated with quantum hardware in NISQ era, optimization in quantum
computing has been a popular area of research [17, 18]. Since some target quantum back ends do not have
support for external gate definitions, Scaffold also offers the ability to integrate optimization methods for
quantum computing in addition to classical C/C++ optimization routines, such as loop unrolling and
function inlining.

3.1.3. Resource count
As mentioned above, it is critical to know how many resources are consumed by an algorithm, as each
quantum operation is expensive and error prone. There are mainly two kinds of resources to consider when
writing quantum programs, number of quantum registers and number of quantum gates. Scaffold provides
resources estimation for both of them from several different perspectives as a built in output option for the
compiler. In the latest ScaffCC update, we also have the option to leverage IBMQ resource counting to
estimate the resources used by a particular program. Analysis of these quantum resources from multiple
perspectives would not only be useful to algorithm builders but would also benefit researchers working in
quantum hardware to examine the difference between theoretical measurement and actual count from a real
machine’s perspective. Section 4 provides further explanation of this process.

3.1.4. QASM generation
One of the main feature of Scaffold is generating quantum machine assembly language. Currently,
Scaffold targets QASM and OpenQASM. Due to and broad use of OpenQASM, we enhance
OpenQASM generation in this update to support conditional statements and multidimensional
variables for quantum registers. We have a detailed documentation of the transformation strategy in
sections 4 and 6.

3.2. LLVM, Clang and ScaffCC
A critical component of ScaffCC is its connection to the LLVM infrastructure. LLVM [19] provides a clean
solution and toolchain for building compilers for higher level programming languages. Clang [20], one of
LLVM’s main subprojects, provides a language front end framework for the C family of languages that uses
LLVM for the following compilation. Scaffold is built using Clang as a foundation, blending in quantum
computing components with classical structures, which not only offers familiarity of C-style languages to
developers but also provides a powerful foundation to explore opportunities of combining classical
computing method in quantum computing.

3.2.1. Clang and LLVM adjustments
Scaffold-specific keywords have been added into Clang and LLVM has been adapted to support new
quantum data types, structures and gates. ScaffCC uses various LLVM features to express the quantum data
types, built in gates and reversible arithmetic gates that have been added, allowing for specific LLVM IR to
be generated for later analysis by the passes. Building ScaffCC on top of Clang allows for Scaffold to act as a
C variant and perform overloading of functions. Thus, various quantum data types can be molded to act
similar to classical data types such as classical bits interacting with if statements.

Since LLVM does not contain support for quantum data types, we have defined LLVM representations
for qbits, abits, and cbits throughout the entire LLVM infrastructure. To avoid collisions with
frequently used data type, the memory size keywords i1 is used to represent cbits, i8 to represent abits
and i16 for qbits. This design makes it easier for developers to debug program memory allocation.

Building on these data types, we also have the set of gates that can operate on different integer types.
Having these gates defined within the LLVM IRs allows for both traditional optimizations and for custom
optimizations for programs resulting in a smoother compilation framework. Rather than having specially
defined headers to define the gate set, the gates are built directly into the program allowing the gates remain
in place between a Scaffold program it is associated quantum assembly. This also allows the resource
counting to occur after compilation.

7
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Figure 2. Scaffold routine: yellow passes are mandatory, the blue passes are optional, passes with numbers on the right feature
Scaffold and will be further discussed in section 4.

3.2.2. ScaffCC pass structure

Each piece of the transformation from Scaffold code to quantum assembly in ScaffCC is achieved through
carefully scheduled LLVM compiler passes. ScaffCC utilizes on the LLVM framework to perform resources
estimation, optimization and QASM generation. Each intermediate transformation of the code is a pass,
allowing the compiler to move from step to step, and the programmer to choose which transformations
they believe to be best for the program. This classical structure also provides more autonomy to Scaffold
developers and thus more possibilities to extend the language.

Throughout the ScaffCC toolchain, all the Scaffold code is compiled to LLVM IR for further analysis and
transformation. The LLVM IR inherits the relationship of elements in various instructions and lays out the
program flow from a general hardware’s perspective. The order of these passes can be seen in figure 2.

Following the initial conversion to the LLVM IR through the general C and C++ compilation pipeline
with no optimizations, ScaffCC conducts several transformations based on the targeted machine language.
The first creates new calls to handle storing classical bit values. This is necessary so that the classical bits will
not be regarded as dead code as the rest of the compilation continues. Following this initial preprocessing,
the program is passed several standard operations including function cloning, loop unrolling, instruction
combining, constant propagation and dead code elimination until no further changes are made to the
program. This is important for compilation since most quantum assembly languages do not have the ability
to make conditional jumps, or even jumps, when executing. They expect a single flow of instructions, so it
is necessary to flatten the program before translation. When they are passed through the compilation script,
a program uses the information in the program to design the resulting assembly, in order for all the
information to be present at time of translation, constant propagation must also be in place.

From here, there are various transformation passes that remove the LLVM Scaffold features and replace
them with their prototype with both an implementation and an actual function call that will be translated
later on in the program. At this stage, various optimizations for the quantum program can also be used.

Finally, we are able to use the resulting version of the LLVM IR to produce quantum assembly
language, or a resource count for the program. Both of these processes will be detailed further so that we
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can get a clearer sense of how the intermediate representation can be converted into executable quantum
assembly.

4. Scaffold passes implementations

As mentioned in the previous section there are many possible options for combining of Scaffold passes. We
gave a short description of the ScaffCC passes, but will be digging in much deeper throughout this section
to describe a more in-depth compilation pipeline for a quantum program.

4.1. RKQC
The RevKit for quantum compilation (RKQC) pass was developed in order to remove a lot of the
boilerplate for general arithmetic needed for quantum circuits. Many classical operations can be
decomposed into reversible operations using only NOT, CNOT and Toffoli gates, and are utilized by many
quantum algorithms. These decompositions can be tedious, and can be easily expanded through this pass.
This pass encompasses the following arithmetic functions: assign value of 0 to register a, assign value of 1 to
register a, assign value of register b to register a, swap two registers, assign register a to the sum of registers
a and b.

To support RKQC integration into Scaffold as a set of built in operations, there are intrinsics baked into
the ScaffCC variant of LLVM that represent these arithmetic functions. Once an RKQC intrinsic is found, it
is replaced with the a call to decomposed version of the function. These decomposed versions are defined as
functions elsewhere in the program. However, for many of these operations, the computation cannot be
performed in place, that is, they require ancilla values. For example, when the value of a qubit b is assigned
to a qubit a the target qubit a must be reset to 0 by canceling out itself. This is done by copying out to an
ancilla qubit with a CNOT, perform a CNOT from the ancilla to qubit a, then performing a CNOT from b
to a with another CNOT gate. These three operations, with the creation of the ancilla, are defined within
the generated LLVM IR, replacing the declaration of the RKQC function. These functions will then be
inlined with the rest of the user created modules later on in the compilation process.

4.2. Decomposition
Just as not all types of instructions are available across every classical processor, not all operations are
available in the same set up across all of the different variations of quantum computers. For example, IBM’s
superconducting machine supports a gate library of X, Y , Z, H, S, CNOT and T gates; whereas some
trapped ion machines support XX gates and rotation gates. As decompositions for complex gates must be
defined accordingly [16]. As more gates are introduced into the built in Scaffold library, understanding the
various decompositions needed for each type of hardware when compiling to quantum assembly is
necessary.

This pass runs over the program following any loop unrolling and function cloning so that we have a
mostly flattened version of the program, except for functions that are outlined rather than embedded in the
program. Once a decomposable gate is found, ScaffCC retrieves a valid decomposition, and using the same
values that were given to the gate, it reconstructs a new version of that gate that uses simpler components
that are available on the hardware. This newly constructed set of gates replaces the original gate that was in
the program. Contrary to the RKQC pass, there is no need to insert extra ancilla into the circuit.
Additionally, the instructions are directly replaced, there is no outlining of the decomposition. While
potentially expensive, it more directly mirrors the ultimate result of the compiled program, reduces
complexity in code generation later on, and provides more accurate resource counts.

At present, ScaffCC has built in supports Toffoli and Fredkin gate decompositions, and are the main
gates that are decomposed by these passes. They also each have one main decomposition into CNOTs which
are generally supported on current quantum machines. In the future, more gates will be supported by
similar passes. Additionally, different decomposition options will be made available, or potentially provided
by the user as a compiled Scaffold program in order to make decomposition even more flexible and
applicable to different quantum architectures.

4.3. Function reversal
The ability to uncompute after computation can be an important optimization for a quantum program. By
reversing computation, we can free ancilla qubits, that is, return them to their initial state, to be used again.
However, inserting these reversible sections can be difficult, since we must maintain correctness of the
program and use the correct reversible operations, even within user generated modules.

Once again this pass walks through the program tree looking for the _reverse_ prefix on called
functions. This can be done naively using a visitor from the LLVM framework and looking for the prefix as
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a substring of the name at the front of the function call. Once one of these is found, it is another matter of
inserting the reversed set of instructions into the circuit.

For each function, the reversed function is created when it is needed, and then cached for later use. The
creation of these reverse functions is performed by first cloning a function and iterating over each
instruction within the function. Since the user defined functions are constructed from the built in Scaffold
instrinsics and user generated modules, each of the constituent calls to these instructions must also have an
inverse to be inserted. For the built in calls, this is simply a matter of defining what operation is the inverse.
For most, such as the X, Y , Z or CNOT gates, it simply the same gate again. For the parameterized gates,
such as the rotation gates, it is the same gate, but the parameter is inverted. For a small number of gates, S
and T, we use the Sdag and Tdag respectively as the inverse. When a user defined function is encountered,
we recurse, and perform the same process to develop the reverse module for the user defined function.
Once each inverse is created, the original instruction is removed from the cloned function, leaving only the
inverse instruction.

While a relatively simple construction, it significantly reduces the tediousness of creating inverses,
especially if many different instructions need to be reversed or the uncomputation is complicated.

4.4. Resource estimation
This pass is run after the loop unrolling and function cloning pass, and if needed, the reverse pass. Starting
from the leaf functions, we keep track of the number of resources used in each call to a gate. When these are
built in Scaffold intrinsics, this is easy, we are able to simply increase a counter. For user defined modules,
this becomes more difficult, each external call must be tracked as well. By performing this analysis from the
bottom up, we are able to most efficiently capture the called modules, since, whenever they are encountered,
we can simply add the resources in the module to the program as a whole.

The resource counter is also able to track other metrics about the program, such as the number of
overall qubits used, the total number of ancilla used—counting ancilla that have been uncomputed and
reused as two separate ancilla (gross ancilla count), and the number of ancilla used where these are not
counted as separate qubits (net ancilla count). To search for the number of qubits used in the circuit, we
simply look for allocations of i16, where have been designated for the standard qubit type. If it is an array,
we also track the size of the array. We can then extrapolate the number of new qubits needed per function.
We can do the same for the gross ancilla qubit count, except look for the i8 type. For the instance where we
track the number of ancilla, where we want to reuse the ancilla, we search for the prefix afree which lets
us know that the function also frees the ancilla qubits, and we can subtract this value from the current net
qubit count at that point.

4.5. Combining passes
From the descriptions of these passes, there are instances where it becomes clear that the use of these passes
is not stateless. There is a particular order that must be employed to ensure that we maintain correctness. At
present, the toolchain constructed such that each pass removes another piece of Scaffold abstraction. There
is nothing, except logical checks within each pass that gleams necessary information as necessary, that
would prevent each the passes from being run in a different order. For example, we could run the
decomposition pass prior to the RKQC pass, but this would result in potentially unperformable instructions
in the resulting code since the expansion of RKQC passes can involve gates that would normally be
decomposed. Similarly, for function reversal, it is possible that if decomposition is not done prior to
inserting the uncomputed version of the circuit, there could be instances where invalid gates are introduced
into the assembly language that are not covered by the hardware.

It is important to keep the interplay between the different passes in mind as new features are
introduced. A different order can drastically change the result of a program, and potentially lead to
erroneous results.

5. Pass creation

ScaffCC is designed to be expanded by the research and user community. In particular, the LLVM
infrastructure provides ready support to incorporate their own optimization strategies for quantum
compilation in the Scaffold toolchain through the use of LLVM passes. This flexibility,and infrastructure
already in place greatly reduces the complexity of the system. Using LLVM as a jumping off points provides
many classical program analysis tools that do not have to be rewritten from scratch. That being said,
developers can set their own rules to deal with instructions in an LLVM pass and add them into the
compilation routine. Below we provide an overview of creating LLVM passes for Scaffold. First, we explain
the relationship between LLVM, Clang and ScaffCC.
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Example 5. dataRepresentation struct with its member functions.

1 struct dataRepresentation{
2 Value ∗ instPtr;
3 argtype type;
4 bool isPtr;
5 vector<int> index; // in the reverse order
6 vector<int> dimsize; // sizes of dimensions vector
7

8 /∗ Classical inst. ∗/
9 int intvalue;

10 double doubvalue;
11 bool isclassical();
12 string val();
13

14 /∗ Quantum inst. ∗/
15 bool isqbit();
16 bool iscbit();
17 void printQregistername();
18 string registertype();
19 string cbitarraystring();
20

21 dataRepresentation() : instPtr(NULL), type(undef), isPtr(false), index({}),
22 dimsize({}){}
23

24 string getname(){
25 string name = instPtr- > getname();
26 replace(name.begin(), name.end(), ’.’, ’_’);
27 return name; }
28 void printdebugmode();
29 };

5.1. Adding a pass to the ScaffCC toolchain
Based on what kind of transformation is needed, an LLVM pass, based on the same visitor structure in the
LLVM library can be used to walk over the Scaffold program to find information and transform
information accordingly. How to create a particular pass is more closely detailed in the GitHub
documentation for Scaffold. In general, a transformation or analysis is performed by iterating over the
instructions in the program after defining a class that inherits from the ModulePass class. In order for the
pass to actually be run on the program, the RunOnModule method for the class must be defined. The
passes described in section 4 are good examples for how we can use Scaffold program features to determine
how to make decisions for what to optimize based on the purpose of each pass.

Each pass must be added to the LLVM Scaffold library, and integrated into the build system as well. This
is a matter of registering the pass with the pass manager via the LLVM API, adding the source program file
into the CMakeLists.txt as well as adding this file in the Scaffold section of the LLVM Transforms file.
Then using the opt, the pass can be loaded to analyze a piece of LLVM IR: opt -S -load
LLVMScaffold.dylib -PassName in.ll -o out.ll. Once again, more detailed instructions
can be found on the GitHub page. This is nearly identical to the methods used today for LLVM
transformations, allowing optimizations to be easily added and reworked in a compilation strategy as
necessary.

5.2. Data representation in ScaffCC
During compilation, the compiler does not discern quantum computing tasks until Scaffold associated
LLVM passes. To avoid duplicate code for discerning between classical and quantum computing instructions
in the pass, we designed a dataRepresentation structure, it is definition can be seen in example 5.
The dataRepresentation structure can represent either classical or quantum allocated register(s). Its
member functions can detect the kind of data type it belongs to, store its value and return the variable
name. Developers who first work with Scaffold might also find it helpful in understanding the structural
representation of Scaffold data types since this struct provides the API foundation of Scaffold pass creation.

5.3. Debug mode
As algorithms and programs increase in size and complexity, it is easy to get lost in the intricacies of LLVM,
and debugging whether the compiler is working as expected gets trickier. Therefore, to make the
development process a smooth experience, we have debug mode in every built-in Scaffold pass. In this
update, we especially make the debug mode of GenOpenQASM pass more detailed and better informed.
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Example 6. Here we demonstrate how C-Style control flow, such as for loops, and modules, can
greatly reduce the difficulty of code written and needed, while increasing readability when
compared to the generated OpenQASM code.

1 OPENQASM 2.0;
2 include ‘qelib1.inc’;
3 qreg data[5];
4 h data[2];
5 t data[0];
6 t data[1];
7 t data[2];
8 cx data[1], data[0];
9 cx data[2], data[1];

1 scaff_module maj(qbit ∗a){ 10 cx data[0], data[2];
2 Toffoli(a[0], a[1], a[2]); 11 tdg data[1];
3 CNOT(a[2], a[0]); 12 t data[2];
4 CNOT(a[0], a[1]); 13 cx data[0], data[1];
5 } 14 tdg data[0];
6 15 tdg data[1];
7 scaff_module uma(qbit ∗a){ 16 cx data[2], data[1];
8 CNOT(a[2], a[1]); 17 cx data[0], data[2];
9 CNOT(a[2], a[0]); 18 cx data[1], data[0];

10 Toffoli(a[0], a[1], a[2]); 19 h data[2];
11 } 20 cx data[2], data[0];
12 21 cx data[0], data[1];
13 int main(){ 22 cx data[2], data[3];
14 int adder_size = 2; 23 cx data[2], data[1];
15 qbit data[2∗2 + 1]; 24 cx data[2], data[0];
16 int i; 25 h data[2];
17 for(i = 0;i < 2∗adder_size-2;i+ = 2) 26 t data[0];
18 maj(&data[i]); 27 t data[1];
19 CNOT(data[i], data[i + 1]); 28 t data[2];
20 for(i = i − 2;i>=0;i− = 2) 29 cx data[1], data[0];
21 uma(&data[i]); 30 cx data[2], data[1];
22 } 31 cx data[0], data[2];

32 tdg data[1];
33 t data[2];
34 cx data[0], data[1];
35 tdg data[0];
36 tdg data[1];
37 cx data[2], data[1];
38 cx data[0], data[2];
39 cx data[1], data[0];
40 h data[2];

When writing a pass for Scaffold, it is a good start to rely on debug mode and try to figure out how ScaffCC
works through every LLVM instruction. The debug modes attempt to give a more detailed description to
the programmer as to what each step the pass is taking to change or analyze the program. By analyzing
these debug statements, it is the hope that the transformations are more explicit and easier to understand to
an outside user. To turn on debug mode, an environmental variable can be set to debug all Scaffold passes,
or a separate variable for each pass can be set to debug an individual single pass.

6. Translating Scaffold to OpenQASM

OpenQASM [14] is one of the most broadly used quantum computing assembly languages due to the
fact that IBM Q experience—a popular online platform that runs circuits on quantum backends—
requires OpenQASM executable programs. Analogous to LLVM IR in classical computing, OpenQASM
is an intermediate representation of a series of instructions related to a quantum circuit. While
OpenQASM allows general classical computations, it does so in a limited way. For example, a loop with
quantum computations is not permitted in OpenQASM. In example 6, we can see how we can greatly
reduce the construction of an adder through the use of loops. Thus, Scaffold is a higher level quantum
computing language in the sense that it allows more complex syntax and its compiler generates
corresponding complex executable code. We motivate this with example 6, which greater reduces the
necessary effort to build the Cucarro Adder [21]. In this Scaffold update, we add support to
multidimensional quantum registers and conditional statements, a vital part in error correction, and
which is also integrated into the compiler.
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Figure 3. Multidimensional Scaffold program as circuit.

6.1. Qubit and classical bit declaration
There are disparities in quantum register declaration between OpenQASM and Scaffold. The defined LLVM
IR structure is used in this case to resolve the difference. Although the naming rules are more restricted in
OpenQASM than in Scaffold, such as limited ability to use special character in OpenQASM, we still manage
to preserve the variable name and pass them through various transformations and optimizations as well as
throughout the program. Lastly, based on the final IR, ScaffCC generates corresponding OpenQASM for
declaring essential quantum registers with 1D size, as OpenQASM only supports quantum registers of
arbitrary single dimension size.

Another difference between OpenQASM and Scaffold is that we do not denote the ancilla type in
OpenQASM. Since ancilla qubits are normal qubits, we do not require this special notation after our
optimizations have been completed. When dealing with classical registers, we can handle them in the same
way we do for the quantum registers. We simply look for the classical bit allocations in the LLVM IR, and
emit the classical register declaration as needed in the OpenQASM language.

6.2. Multidimensional quantum registers
As quantum algorithms get more complicated, high dimensional variables for quantum registers will be
needed to make the program neat and more organized. Due to OpenQASM only allowing one-dimensional
arrays of quantum registers and the specificity of conditional use on cbit, we decided to apply different
decomposition methods to qbits and cbits. Rather than relying on the assembly language to have these
multidimensional arrays, we are able to create special structures that keep track of each multidimensional
value. As OpenQASM only allows for 1D arrays, we deconstruct the larger, higher dimensional arrays into
smaller 1D arrays following a special naming scheme to be followed throughout the program. For example,
in a two by two multidimensional qbit array qarray, we call the first subarray qarrayx0 and the
second by qarrayx1. We use x rather than a character such as an underscore since OpenQASM does not
support special characters in the variable names. Example 7 shows functional examples of from a Scaffold
program to its compiled OpenQASM equivalent. Additionally, an example of the resulting circuit can bee
seen in figure 3. We can see how this feature can be uniquely helpful if there are blocks of qubits in a circuit
that need to be acted on in the same way. In example 8 we demonstrate how we can efficiently represent a
2D architecture, and apply operations across each connection according to the coupling activation concept
developed by Google [22] when compared to the necessary verbosity needed without multidimensional
arrays. Coupler activation is performed by applying operations to every other connection horizontally,then
vertically, and then repeating with the missing connections. With one-dimensional arrays, this could get
very tedious, as each row of the architecture is declared separately and expressed with a different data
structure. With this new feature, such architectures are more clearly expressed. While in our example we
could conceivably achieve much of these same results by performing each of these operations, with some
amount of index calculation, within a function, having multidimensional arrays allows us to bypass
function inlining step and only worry about constant propagation within loop unrolling. Additionally, to
achieve a similar result with only one-dimensional arrays of qubits, each row must be defined individually
outside of any function if they are to be used multiple times. These arrays cannot be defined inside the
function to reduce the code size, as they cannot be returned from the function and reused. The multiple
definition scenario is not scalable for large architectures, and multidimensional arrays makes addressing
many sets of qubits much simpler.
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Example 7. Here we have a two by three qbit array and two by two cbit array, and in OpenQASM, we
decompose to two arrays with three elements and give the first one the name of qx0 and the second one qx1 to
represent the first 3 qbit array and the second 3 qbit array in Scaffold program. Note that for cbit, because we
have element-wise measurement in the source code, in OpenQASM, it is necessary to decompose to single element
array for each cbit.

1 OPENQASM 2.0;
2 include ‘qelib1.inc’;
3 qreg qx0[3];

1 int main (){ 4 qreg qx1[3];
2 qbit q[2][3]; 5 creg cx0x0[1];
3 cbit c[2][2]; 6 creg cx0x1[1];
4 7 creg cx1x0[1];
5 Toffoli(q[0][0], q[0][1], q[0][2]); 8 creg cx1x1[1];
6 Fredkin(q[1][0], q[1][1], q[1][2]); 9 ccx qx0[0], qx0[1], qx0[2];
7 10 //Decompose Fredkin(q0, q1, q2)
8 c[0][0] = MeasX(q[0][0]); 11 cx qx1[1], qx1[2];
9 c[0][1] = MeasX(q[0][1]); 12 ccx qx1[0], qx1[1], qx1[2];

10 c[1][0] = MeasX(q[1][0]); 13 cx qx1[1], qx1[2];
11 c[1][1] = MeasZ(q[1][1]); 14 h qx0[0];
12 return 0; 15 measure qx0[0] −> cx0x0[0];
13 } 16 h qx0[1];

17 measure qx0[1] −> cx1x0[0];
18 h qx1[0];
19 measure qx1[0] −> cx0x1[0];
20 measure qx1[1] −> cx1x1[0];

6.3. Basic gates
The C-style design of Scaffold, and compilation strategy employed by ScaffCC makes implementing basic
gates an easy task. By the time we have completed our optimizations, the LLVM IR is very similar to single
gate instructions with the addition of loads and stores that are not reduced. OpenQASM does not require
these loads and stores, so we are able to go over any basic call to a gate and emit it as the instruction in
OpenQASM in keeping with our naming scheme for the generated qubits. This is not a particularly difficult
problem, we simply must make sure that we have the correct translation from Scaffold syntax and semantics
to OpenQASM.

6.4. User defined modules
Compiling the user defined modules is only slightly a step up in complexity from the basic quantum gates.
We must ensure that we inline each of these modules into their respective locations from the bottom up.
Since we performed the necessary constant propagation in the static case and will have generated the proper
amount of levels in the dynamic case, this will resolve recursive issues, allowing for the entire program to be
inlined and outputted as OpenQASM as detailed above. This is necessary only because it streamlines the
more universal use of the OpenQASM code as not all versions of OpenQASM support user defined gates.

6.5. Conditional statements
Due to the constraints of OpenQASM only allowing conditional statements on array-wise measurement,
consistency in the usage of cbits between bitwise and arraywise measurement is important. This is why
we do not allow using both bit-wise and array-wise measurement for the same cbit variable in a given
program. Having conditional statements as whole is important as it is the basis for error correction;
however, by having support for both array-wise and bit-wise measurement, we offer the user both
fine-grained access off of the value of a measurement on a particular qubit, or a more broadly scoped
version if a certain is taken based on the result of an array of qubits.

Condition on bit-wise measurement. As mentioned above, OpenQASM only allows array-wise
measurement, so in the compilation phase, ScaffCC decomposes cbit arrays that are measured on the
bitwise level to single element cbit arrays in OpenQASM so that they can be measured. Example 9 gives
an demonstration of how Scaffold translates these bitwise measurements to OpenQASM, with the circuit
generated depends on the measured value of a specific bit in a cbit array.

Condition on array-wise measurement. Although OpenQASM supports array-wise quantum
operations, we were especially careful when designing this feature in Scaffold. While it might be intuitive to
use pointers to reference the entire array, like in C, pointer variables represent the address of the variable.
However, quantum registers do not exist on classical machines, so traditional classical memory addresses
may not exist. Currently, we come up with a solution which overloads the pointer to a quantum data type.
This overloading is to recognize the different pointer styles, so that we do misinterpret the qubits and
classical bits being passed into the measurement or conditional. The downside of this approach is that the
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Example 8. This Scaffold code demonstrates how the newly added multidimensional registers can greatly reduce the amount of copy-
paste programming necessary to produce the same program. Here, we can represent a 2D architecture, and very simply demonstrate the
staggered coupler activation performed by Google [22] both with and without multidimensional arrays for our quantum registers.

23 scaff_module width_wise(qbit ∗mesh,
24 int start,
25 int end){
26 int j;
27 for(j = start; j < end; j+ = 2)
28 CNOT(mesh[j], mesh[j + 1]);
29 }
30 scaff_module height_wise(qbit ∗mesh_0,
31 qbit ∗mesh_1,
32 int width){
33 int i;
34 for(i = 0; i < width; i++)
35 CNOT(mesh_0[i], mesh_1[i]);
36 }
37 int main(){
38 qbit mesh_0[10];

1 int main(){ 39 qbit mesh_1[10];
2 int width = 10; 40 qbit mesh_2[10];
3 int height = 10; 41 qbit mesh_3[10];
4 qbit mesh[10][10]; 42 qbit mesh_4[10];
5 43 qbit mesh_5[10];
6 int i, j; 44 qbit mesh_6[10];
7 for(i = 0; i < height; i++) 45 qbit mesh_7[10];
8 for(j = 0; j < width − 1; j+ = 2) 46 qbit mesh_8[10];
9 CNOT(mesh[i][j], mesh[i][j + 1]); 47 qbit mesh_9[10];

10 48 width_wise(mesh_0, 0, 9);
11 for(i = 0; i < height − 1; i+ = 2) 49 width_wise(mesh_1, 0, 9);
12 for(j = 0; j < width; j++) 50 width_wise(mesh_2, 0, 9);
13 CNOT(mesh[i][j], mesh[i + 1][j]); 51 width_wise(mesh_3, 0, 9);
14 52 width_wise(mesh_4, 0, 9);
15 for(i = 0; i < height; i++) 53 width_wise(mesh_5, 0, 9);
16 for(j = 1; j < width; j+ = 2) 54 width_wise(mesh_6, 0, 9);
17 CNOT(mesh[i][j], mesh[i][j + 1]); 55 width_wise(mesh_7, 0, 9);
18 56 width_wise(mesh_8, 0, 9);
19 for(i = 1; i < height; i+ = 2) 57 width_wise(mesh_9, 0, 9);
20 for(j = 0; j < width; j++) 58 height_wise(mesh_0, mesh_1, 10);
21 CNOT(mesh[i][j], mesh[i + 1][j]); 59 height_wise(mesh_2, mesh_3, 10);
22 } 60 height_wise(mesh_4, mesh_5, 10);

61 height_wise(mesh_6, mesh_7, 10);
62 height_wise(mesh_8, mesh_9, 10);
63 width_wise(mesh_0, 1, 8);
64 width_wise(mesh_1, 1, 8);
65 width_wise(mesh_2, 1, 8);
66 width_wise(mesh_3, 1, 8);
67 width_wise(mesh_4, 1, 8);
68 width_wise(mesh_5, 1, 8);
69 width_wise(mesh_6, 1, 8);
70 width_wise(mesh_7, 1, 8);
71 width_wise(mesh_8, 1, 8);
72 width_wise(mesh_9, 1, 8);
73 height_wise(mesh_1, mesh_2, 10);
74 height_wise(mesh_3, mesh_4, 10);
75 height_wise(mesh_5, mesh_6, 10);
76 height_wise(mesh_7, mesh_8, 10);
77 }

pointer data type, representing a quantum register, from a classical computing perspective, the quantum
register is not using any stored values, and may be optimized out, causing and incorrectly generated
program. On the other hand, if we had just used the OpenQASM variable names to refer to an array—there
might be collisions with gate names such as X, Y and Z, thus limiting Scaffold’s naming conventions. Due
to this dissimilarity in array referencing between the two computing methods, we create a pointer to
represent the entire array of quantum registers. Furthermore, this method simplifies the ability to
distinguish array-wise pointer use and element-wise pointer use (indextoanelementinanarray) in the LLVM
intermediate representation.

We can see an example of this array-wise measurement from Scaffold to OpenQASM in example 10 and
the corresponding circuit in figure 4.
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Example 9. Transformation of bitwise conditional measurement from Scaffold to
OpenQASM. For an if condition on single a cbit(line 11, 12), in order to get the
cbit array values, the array must be decomposed at the start of the compilation phase.
The compiler would know which quantum register is to be used before compiling the
program to assembly language so that it is able to generate the correct allocation
instructions.

1 int main () {
2 qbit q[3]; 1 OPENQASM 2.0;
3 cbit c[2]; 2 include ‘qelib1.inc’;
4 3 qreg q[3];
5 X(q[0]); 4 creg cx0[1];
6 Z(q[1]); 5 creg cx1[1];
7 6 x q[0];
8 c[0] = MeasX(q[0]); 7 z q[1];
9 c[1] = MeasZ(q[1]); 8 h q[0];

10 9 measure q[0] −> cx0[0];
11 if(c[0] == 1) X(q[0]); 10 measure q[1] −> cx1[0];
12 if(c[1] == 0) Z(q[1]); 11 if(cx0 == 1 ) x q[0];
13 12 if(cx1 == 0 ) z q[1];
14 return 0; 13

15 }

Example 10. In this example, we show the transformation of array-wise
measurement in Scaffold into array-wise measurement in OpenQASM. We perform
measurement on qbit array q, and store the result in cbit array syn—both of
which are arrays with 3 registers. Then we call an X gate on a qbit element in q
based on the measurement result of syn.

1 int main() {
2 qbit q[3];
3 qbit a[2]; 1 OPENQASM 2.0;
4 cbit c[3]; 2 include ‘qelib1.inc’;
5 cbit syn[3]; 3 qreg q[3];
6 4 qreg a[2];
7 X(q[0]); 5 creg c[3];
8 6 creg syn[3];
9 CNOT(q[0], a[0]); 7 x q[0];

10 CNOT(q[1], a[0]); 8 cx q[0], a[0];
11 CNOT(q[1], a[1]); 9 cx q[1], a[0];
12 CNOT(q[2], a[1]); 10 cx q[1], a[1];
13 11 cx q[2], a[1];
14 ∗syn = MeasZ(∗q); 12 measure q −> syn;
15 13 if(syn == 1) x q[0];
16 if(∗syn == 1) X(q[0]); 14 if(syn == 2) x q[2];
17 if(∗syn == 2) X(q[1]); 15 if(syn == 3) x q[1];
18 if(∗syn == 3) X(q[2]); 16 measure q -> c;
19

20 ∗c = MeasZ(∗q);
21 }

7. Scaffold-NISQ

As we enter the noisy intermediate-scale (NISQ) era involving quantum devices equipped with 50–100
qubits, increasing emphasis has been placed on developing small-scale versions of NISQ programs. In
particular, the focus has been on designing NISQ algorithms and compilation techniques that may
eventually be able to perform faster calculations than classical computers, with applications of these
algorithms ranging from simulating the physics of entanglement to machine learning. This involves both
taking into account certain properties of machines such as connectivity [23], noisy qubits and connections
[5, 24]. In line with this focus, we have created ScaffCC-NISQ—a lightweight version of ScaffCC designed
specifically with NISQ applications in mind, with the goal of allowing faster and easier distribution,
installation and usage of the compiler. Streamlining much of the original ScaffCC’s functionality, the NISQ
version compiles Scaffold programs to flattened QASM, hierarchical QASM and OpenQASM, as it does
with the original version, but also features a series of NISQ benchmarks and a new resource estimator pass.
These features are a built-in pipeline within the Scaffold scripts. It features a subset of the existing ScaffCC
compilation passes and an updated set of compilation steps in accordance with the recent ScaffCC update.
These particular features have been added to not only make the compiler easier to use, but provide an
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Figure 4. Arraywise conditionals as a circuit.

environment where NISQ strategies can be developed by providing these external resources to accurately
describe and check the new developments.

7.1. NISQ benchmarks and IBM Q simulator
Similar to ScaffCC, the NISQ version allows for further optimizations and passes to be added to the LLVM
framework, providing developers and researchers with increased flexibility. In order to ensure that these
compiler modifications do not impact the reliability or accuracy of its functionality, ScaffCC-NISQ features
a series of Scaffold NISQ benchmarks. A provided testing script first compiles these deterministic
benchmarks to OpenQASM after which, it connects to IBM Q Experience’s quantum simulator back-ends
to run the circuits and generate output that is checked to ensure correctness. If all the NISQ tests pass,
developers can be assured that their compiler optimizations and additions have not changed the existing
compiler capabilities. Additionally, comparison against some of these basic benchmarks allows a
programmer to further ensure that any pass additions had adversely affected certain resources in the
compiled program.

7.2. IBMQ backend simulator
IBM’s high powered simulator allows for compiled OpenQASM code to be tested and run by simulating
quantum behavior on classical computers. Through IBM Q Experience, these quantum simulators are
provided as a cloud service available to the public, making it easy to prototype circuits and estimate their
corresponding noise responses. ScaffCC-NISQ’s resource estimation pass and the test script that validates
the existing NISQ benchmarks both rely on IBM’s quantum simulator to run OpenQASM circuits and
return results. As a result, in order to avail of these features, a user must create and provide their IBMQ
credentials by saving them in the nisq_benchmarks/config/Config_IBMQ_experience.py
file. ScaffCC-NISQ then uses these credentials to connect to one of IBMQ’s available backend simulators. It
does so by converting the compiled OpenQASM file to a quantum object before passing it to IBMQ’s
simulator which returns the output associated with the circuit.

7.3. Resource count
The resources associated with a program, such as the number of qubits and the error correction required by
a high number of gates (which require more qubits), significantly affect the cost of running that program
on a physical device. As a result, ScaffCC-NISQ first relies on known classical compiler algorithms, such as
loop unrolling and procedure cloning to flatten out Scaffold programs, and then builds upon IBMQ’s
resource estimation capabilities in order to approximate the depth, width, size, number of operations and
number of tensor factors associated with a Scaffold program. IBMQ estimates these resources by building a
directed acyclic graph from the quantum circuit, decomposing instructions and expanding operation nodes.
This updated ScaffCC-NISQ pass is much simpler than its predecessor and is able to provide a more
granular understanding of the resources required such as number of tensor factors unlike ScaffCC’s pass
which only provides information about number of gates and time-steps. The aim behind this pass is to help
reduce these significant costs linked to program resources as well as allow for an early comparison between
different programs. Furthermore, the addition of this pass helps make certain that the resources associated
with a quantum algorithm running on a limited NISQ processor are mostly being dedicated to solving the
main problem instead of on overhead associated with hardware mapping [13].
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8. LLVM version update

Both ScaffCC and ScaffCC-NISQ have undergone a version upgrade to the latest LLVM 8.0.1 version. As a
result, both compilers now benefit from updated LLVM bug fixes as well as increased hardware and software
compatibility. The most significant changes to arise from LLVM’s version upgrade involve the ability to run
a single pass of the code generation pipeline, and to stop or start the code generation pipeline at a given
point—allowing for more sophisticated debugging techniques. This does not cause any serious issues or
changes in the usage of Scaffold or ScaffCC except that it brought about the changes from a module
keyword to scaff_module as module become a keyword within Clang. Additionally it necessitated the
update of several passes, mostly when referring to the LLVM Contexts of certain instructions. Furthermore,
both ScaffCC and ScaffCC-NISQ are now built using CMake as opposed to the traditional Make installation
methodology that LLVM used to rely on. We hope that in the future, this large update will allow us to stay
more in-keeping with the current LLVM version with minimal effort.

9. Future directions

Scaffold, as it stands, is a decent proof of concept that allows for the manipulation of quantum systems
within a familiar C-style environment. It sits between declarative models such as IBM’s Qiskit or Google’s
Cirq, and the more high level abstractions with more robust type checking, such as Microsoft’s Q#. The
main benefit to Scaffold over these other languages is the native ability to produce OpenQASM and
optimize over several passes. But we do have a vision for how we can continue to improve the compiler for
general use.

9.1. Improvement of the pass system
Since we have the benefit of a dynamic back-end where we are able to implement several different
optimizations available to the compiler, it makes the most sense to leverage that advantage. The most
obvious way to do this is to make creating a pass for Scaffold much more accessible.

While helpful, the LLVM APIs are not so concerned with quantum features of the system, but rather
program structure. Creating a general pass that surfaces more familiar features of a quantum system to a
programmer rather using than the LLVM APIs may allow for simpler optimization experience for quantum
programs. If we can find a way to abstract these structural features as quantum analogs, or conversely,
quantum features to a more traditional programming analog it could be useful in expanding the
optimization passes for the compiler in the future.

9.2. Dynamic optimization application
As new passes are added, we must find a way to combine these various optimizations such that they do not
counteract or detract from one another. A secondary piece to additional passes would be a method to
determine which passes might be more helpful through various heuristics of the program. This could be
implemented as a non-code changing pass, simply to collect information about the circuit in order to gain
general information about which optimizations to run rather than simply running them all in sequence.

Another possible solution is running this pass multiple times over the resulting code, providing different
pre and post conditions that must be met for various passes. As certain conditions are met, we can mark
passes as available to be run with once again with various heuristics for which passes could be more
beneficial to the overall performance of the program on the quantum hardware.

9.3. Debugging
Due to the nature of quantum computing, no framework has any real ability to step through a program,
especially as they are being simulated. There have been some efforts through using assertions [4]. If we able
to properly annotate the generated QASM code as it is compiled, in combination with other quantum
debugging tools, we may be able to offer insight into programs as they are run or simulated in order to
identify potential bugs or missed assertions in the running program.

10. Conclusion

Just as the power of quantum computing is difficult to comprehend prior to having tangible results, it is
difficult to create abstractions and tools for a technology that is still being developed. Nevertheless, we hope
that Scaffold provides a sound abstraction to begin programming quantum algorithms. Beyond being a
sound abstraction, Scaffold’s compiler has been designed to be flexible, and incorporate new algorithms and
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ideas as they are developed without having to upend the compiler. Using the LLVM infrastructure ScaffCC
uses classical tools to bridge a quantum gap to create a step-by-step chain that helps develop a better
programming experience and a more optimized program.
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