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We derive the Hamiltonian for trilayer moiré systems with the Coulomb interaction projected
onto the bands near the charge neutrality point. Motivated by the latest experimental results, we
focus on the twisted symmetric trilayer graphene (TSTG) with a mirror-symmetry with respect to
the middle layer. We provide a full symmetry analysis of the non-interacting Hamiltonian with a
perpendicular displacement field coupling the band structure made otherwise of the twisted bilayer
graphene (TBG) and the high velocity Dirac fermions, and we identify a hidden non-local symmetry
of the problem. In the presence of this displacement field, we construct an approximate single-
particle model, akin to the tripod model for TBG, capturing the essence of non-interacting TSTG.
We also derive more quantitative perturbation schemes for the low-energy physics of TSTG with
displacement field, obtaining the corresponding eigenstates. This allows us to obtain the Coulomb
interaction Hamiltonian projected in the active band TSTG wavefunctions and derive the full many-
body Hamiltonian of the system. We also provide an efficient parameterization of the interacting
Hamiltonian. Finally, we show that the discrete symmetries at the single-particle level promote the
U (2) × U (2) spin-valley symmetry to enlarged symmetry groups of the interacting problem under
different limits. The interacting part of the Hamiltonian exhibits a large U (4)×U (4)×U (4)×U (4)
symmetry in the chiral limit. Moreover, by identifying a new symmetry which we dub spatial
many-body charge conjugation, we show that the physics of TSTG is symmetric around charge
neutrality.

I. INTRODUCTION

As a result of its chemical versatility, an impressive
number of stable carbon allotropes has been synthesized
and investigated. One of the newest addition to the
family, twisted bilayer graphene (TBG), has generated
a lot of excitement in the condensed matter community.
The resulting van der Waals heterostructure obtained by
stacking two graphene layers with a small relative twist
has been theoretically shown to host flat bands at certain
so-called magic angles [1–3]. Subsequent experimental
studies have revealed various correlated insulating and
superconducting phases in TBG near the first magic an-
gle θTBG ≈ 1.05◦, using both transport [4–17] and spec-
troscopy [18–25] experiments. In turn, these findings
have inspired a wealth of theoretical investigations into
the rich physics of TBG [26–107].

Such progress on both the experimental and theoretical
fronts has triggered a large effort into extending the fam-
ily of moiré superlattices, promoting them as some of the
most promising platforms to engineer strongly correlated
quantum phases [108]. The main driving force in investi-
gating moiré materials beyond TBG is often the different
band tunability properties of the former. Consequently,
the extension to twisted multilayer graphene has already
been widely studied theoretically [40, 109–126]. Later
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experiments have also revealed equally intriguing super-
conducting and insulating phases in moiré systems with
three [127–134] or four [109, 135–138] graphene layers.

Among the simplest moiré graphene systems beyond
TBG, twisted symmetric trilayer graphene (TSTG) [115,
120] has been recently experimentally realized in
Refs. [130, 131]. TSTG is comprised of three AAA-
stacked graphene layers in which the middle layer is
twisted slightly relative to the top and bottom ones. For
this type of stacking, which was shown to be energet-
ically favorable [110], the system is mirror-symmetric
with respect to reflections in the plane of the middle
graphene layer. As such, TSTG decouples into mirror-
symmetry sectors in the absence of interactions [115]
and can be thought of as being comprised of a “TBG-
like” contribution with an interlayer coupling effectively
enhanced by a factor of

√
2 [115], and a high-velocity

Dirac fermion [110]. The renormalized interlayer cou-
pling of the TBG fermions leads to a rescaling of the
first magic angle by the same amount, yielding θTSTG ≈
1.56◦ in agreement with the recent experimental observa-
tions [130, 131]. However, despite being independent at
the single-particle level, the two mirror-symmetry sectors
of TSTG are coupled by the electron-electron interac-
tions, pointing to a potentially richer correlated physics
compared to TBG. Moreover, the TBG and Dirac cone
contributions can be hybridized by the application of
a perpendicular displacement field [110, 116, 130, 131].
This provides another knob to experimentally tune the
TSTG band structure.
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To unveil the above-mentioned richness, we here in-
vestigate both the single-particle Bistritzer-MacDonald
model and the interaction Coulomb Hamiltonian for
TSTG at the first magic angle, with or without displace-
ment field. The main result of this paper is to derive
expressions and effective models, as well as the symme-
tries of the interacting TSTG Hamiltonian under differ-
ent limits. For this purpose, we discuss the discrete sym-
metries of the single-particle problem and show how they
promote the U (2)×U (2) valley-spin rotation symmetry
to enhanced rotation symmetries of the interacting prob-
lem. We uncover new non-local hidden symmetries of the
system at both the single-particle and many-body level.
At the same time, we also provide a series of approxima-
tions for the single-particle energy spectrum of TSTG in
the presence of displacement field and show how it can
be obtained in terms of the TBG flat band wave func-
tions, whose properties have been extensively studied in
Refs. [36, 37, 85, 86]. Despite the addition of a Dirac
degree of freedom, we find the symmetries of the many-
body TSTG Hamiltonian to be enhanced from those of
TBG.

The article is organized as follows. In Section II, we re-
view the single-particle TSTG Hamiltonian and derive a
low-energy approximation. We then investigate its sym-
metries (including the hidden non-local symmetries) in
Section III under various limits with or without displace-
ment field. Section IV focuses on the single-particle en-
ergy spectrum. We show that an approximate tripod
model correctly captures the salient features of TSTG
and we derive the single-particle projected Hamiltonian.
Section V is devoted to the interacting Hamiltonian, de-
riving the expression of the projected Coulomb interac-
tion for the TSTG model. Finally, we discuss in Sec-
tion VI the symmetries of the fully interacting projected
TSTG Hamiltonian in several limits.

II. SINGLE-PARTICLE HAMILTONIAN

First, we outline the derivation of a Bistritzer-
MacDonald model for TSTG [3]. A more detailed ex-
position is provided in Appendix A 1. The main result
of this section is to show that the TSTG Hamiltonian
can be thought as a sum between a TBG Hamiltonian
(with renormalized interlayer hopping amplitudes) and
an independent Dirac cone Hamiltonian. Furthermore,
we show that the hybridization between the TBG and
Dirac cone fermions can be tuned by the addition of a
perpendicular displacement field [130, 131].

A. Notations

In the case of graphene, the twisted trilayer geometry
was considered theoretically in Refs. [115, 120]. Through-
out this paper, however, we will follow the notation of
Refs. [36–38, 69, 85, 86, 99]. We take â†p,α,s,l to rep-

FIG. 1. The Moiré Lattice of TSTG. Panel (a) illustrates
the BZs of the graphene layers, which are plotted in blue for
the top (l = 3) and bottom (l = 1) layers and in orange for
the middle layer (l = 2). The K (K′) point are located at
K+ (−K+) for the top and bottom layer and at K− (−K−).
When the twist angle θ is small, an approximate translation
symmetry arises, allowing us to define the MBZ (dashed black
hexagon). The Q± lattices are shown in panel (b). Inside the
first MBZ (defined as the hexagonal region around ΓM ) we
have plotted the regions Aiη defined in Eq. (9) as filled blue
(η = +) and orange (η = −) circular sectors.

resent the fermion operator in the plane wave basis for
graphene layer l = 1, 2, 3 (corresponding to the bottom,
middle, and top layers, respectively). The momentum p
is measured from the Γ point of the monolayer graphene
Brillouin Zone (BZ), as shown in Fig. 1a, α = A,B is
the sublattice index, and s =↑, ↓ denotes the projection
of the electron spin along the ẑ direction. Within each
graphene layer, the low-energy physics is concentrated
around the two valleys, K andK ′, labeled by η = ±1 and
located at momenta ηKl. Owing to the mirror-symmetric
arrangement of the graphene layers, we can introduce
K+ ≡ K1 = K3 to be the K point in the bottom and
top layer graphene BZ (l = 1, 3), and K− ≡ K2, to be
the K point of the middle layer graphene BZ (l = 2).

For convenience, we define the momenta qj =

Cj−1
3z (K+ −K−), where j = 1, 2, 3 and C3z represents

the three-fold rotation transformation around the ẑ axis.
We can then define a moiré BZ (MBZ) for the TSTG
moiré lattice Q0 = ZbM1 + ZbM2, which is generated by
the reciprocal vectors bMi = q3 − qi (i = 1, 2). We also
define two shifted momentum lattices Q± = ±q1 + Q0,
which together form a honeycomb lattice, as seen in
Fig. 1b. We can then introduce the low-energy fermion
operators defined on the moiré lattice as â†k,Q,η,α,s,l ≡
â†ηKl+k−Q,α,s,l for Q ∈ Qη,l with k measured from the
ΓM point, and Qη,l = Qη for l = 1, 3 and Qη,l = Q−η for
l = 2.

The expression of the TSTG single-particle Hamilto-
nian in terms of the â† operators given in Eq. (A10) of
Appendix A1 can be simplified by introducing a basis
transformation: in the absence of a perpendicular dis-
placement field, a TSTG sample is symmetric under mir-
ror mz reflections with respect to the middle graphene
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layer plane. This allows us to define a set of mirror-
symmetric and mirror-antisymmetric operators, which
are respectively given by

ĉ†k,Q,η,α,s =

{
1√
2

(
â†k,Q,η,α,s,3 + â†k,Q,η,α,s,1

)
Q ∈ Qη

â†k,Q,η,α,s,2 Q ∈ Q−η
,

(1)
and

b̂†k,Q,η,α,s =
1√
2

(
â†k,Q,η,α,s,3 − â

†
k,Q,η,α,s,1

)
Q ∈ Qη.

(2)

B. Hamiltonian

When written in with the aid of the b̂† and ĉ† oper-
ators, the single-particle Hamiltonian can be separated
into three terms

Ĥ0 = ĤTBG + ĤD + ĤU . (3)

In Eq. (3), the mirror-symmetric low-energy operators
give rise to the term

ĤTBG =
∑

k∈MBZ
η,α,β,s

Q,Q′∈Q±

[
h

(η)
Q,Q′ (k)

]
αβ
ĉ†k,Q,η,α,sĉk,Q′,η,β,s,

(4)
which is similar to the ordinary TBG Hamiltonian [85,
115], but with a tunneling amplitude which is rescaled
by a factor of

√
2, corresponding to

h
(η)
Q,Q′ (k) = hD,ηQ (k) δQ,Q′ +

√
2hI,ηQ,Q′ . (5)

The first-quantized Hamiltonians hD,ηQ (k) and hI,ηQ,Q′

from Eq. (5), whose exact forms are given in Appendix
A 1, denote a Dirac cone contribution with Fermi velocity
vF folded inside the first MBZ and an interlayer hopping
term, respectively. In particular, there are two parame-
ters w0 and w1 in hI,ηQ,Q′ , which correspond to the inter-
layer hoppings at the AA and AB/BA stacking centers,
respectively. Generically, one has 0 ≤ w0 < w1 due to lat-
tice relaxation and corrugation effects [46, 58, 86, 89, 92].
At the same time, the mirror-symmetric operators, which
are only defined for Q ∈ Qη, correspond to a solitary
Dirac cone contribution

ĤD =
∑

k∈MBZ
η,α,β,s

∑
Q∈Qη

[
hD,ηQ (k)

]
αβ
b̂†k,Q,η,α,sb̂k,Q,η,β,s. (6)

Additionally, in Eq. (3), we have introduced a perpendic-
ular displacement field, which is equivalent to an onsite
potential of U/2, 0, −U/2 in the top, middle, and bottom
layers, respectively. The displacement field contribution
couples the TBG-like and the Dirac cone fermions giving
rise to

ĤU =
∑

k∈MBZ
η,α,s

∑
Q∈Qη

U

2

(
b̂†k,Q,η,α,sĉk,Q,η,α,s + h.c.

)
, (7)

which explicitly breaks the mirrormz symmetry. In what
follows, we will find it convenient to employ dimension-
less units in which momentum (k) and energy (E) are
rescaled according to

k→ k

kθ
, E → E

vF kθ
, (8)

where kθ = |K+ −K−|. This essentially amounts to set-
ting vF = 1, as well as |qi| = 1 (i = 1, 2, 3).

C. Low-energy approximation

The low-energy physics of TSTG with displacement
field near the magic angle arises from the interplay be-
tween the almost flat (i.e. with a bandwidth much smaller
than one, in non-dimensional units) bands of ĤTBG and
the MBZ-folded high-velocity Dirac cone bands of ĤD.
The only states of ĤD which can efficiently perturb and
hybridize the flat-band modes of the TBG-like sector are
the ones which have an energy significantly smaller than
one. As a low-energy approximation, we can thus restrict
ourselves to the momentum points where

∣∣∣hD,ηQ (k)
∣∣∣� 1

in Eq. (6), which is equivalent to Q ∈ {ηqi} and k be-
longing to one of the three zones Aiη (where i = 1, 2, 3)
defined for each valley η as

Aiη = {k ∈ MBZ | |k− ηqi| ≤ Λ} . (9)

Effectively, we consider the Dirac cone contribution in
the MBZ only within a small distance Λ from the Dirac
points of ĤD, as shown in Fig. 1b. Typically, the cutoff
Λ is smaller than the gap between the TBG active and
passive bands, but bigger than the bandwidth of the flat
bands of ĤTBG. For 0 ≤ U ≤ 0.3, we find that Λ ≤ 0.2
(see Appendix D2). With these approximations, we can
write the Dirac cone Hamiltonian projected into the low-
energy degrees of freedom as

HD =
∑

η,α,β,s

3∑
i=1

∑
k∈Aiη

[
hD,ηηqi (k)

]
αβ
b̂†k,ηqi,η,α,sb̂k,ηqi,η,β,s,

(10)
which is denoted without the “hat” to distinguish it from
the unprojected ĤD.

III. SYMMETRIES OF THE SINGLE-PARTICLE
HAMILTONIAN

This section outlines the symmetries of the TSTG
single-particle Hamiltonian from Eq. (3). The reader is
referred to Appendix B for a more in-depth discussion.
In the case of zero displacement field, TSTG is symmetric
under mirror reflections with the mirror plane parallel to
the graphene layers, enabling us to discuss the symme-
tries of the system for each independent mirror-symmetry
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sector. Finally, we identify which symmetries of TSTG
survive the hybridization between the Dirac cone and
TBG fermions in presence of the applied displacement
field.

A. Symmetry transformations

Due to its negligible spin-orbit coupling, single-layer
graphene admits a series of spinless symmetry trans-
formations, some of which are inherited by the single-
particle TSTG Hamiltonian from Eq. (3). To keep the
discussion general, we can consider the action of these
transformations on a generic fermion operator f̂†k,Q,η,α,s
defined on the moiré lattice (where f̂† = b̂†, ĉ†). The uni-
tary discrete symmetry transformations C2z, C3z, and
C2x respectively denote a two-fold rotation around the
ẑ axis, a three-fold rotation around the ẑ axis, and a
two-fold rotation around the x̂ axis. Their action on the
moiré lattice fermion operators is given by

C2z f̂
†
k,Q,η,α,sC

−1
2z =

∑
β

(σx)βα f̂
†
−k,−Q,−η,β,s,

C3z f̂
†
k,Q,η,α,sC

−1
3z =

∑
β

(
eiη

2π
3 σz

)
βα
f̂†C3zk,C3zQ,η,β,s

,

C2xf̂
†
k,Q,η,α,sC

−1
2x =

∑
β

(σx)βα f̂
†
C2xk,C2xQ,η,β,s

.

(11)

We also introduce the spinless mirror symmetry mz

acting on the two fermion flavors as

mz ĉ
†
k,Q,η,α,sm

−1
z = ĉ†k,Q,η,α,s,

mz b̂
†
k,Q,η,α,sm

−1
z = −b̂†k,Q,η,α,s.

(12)

Finally, we define the action of the spinless anti-unitary
time-reversal operator

T f̂†k,Q,η,α,sT
−1 = f̂†−k,−Q,−η,α,s. (13)

The above operators represent commuting symmetries
of the single-layer graphene Hamiltonian. In addition,
there are three useful transformations which give rise to
anticommuting symmetries, reflecting a relation between
the positive and negative energy spectra of the Hamilto-
nians: a unitary particle-hole symmetry P and two chiral
transformations C and C ′, the latter two being only valid
for different limits of the values of w0/w1 (respectively
w0 = 0 and w1 = 0). Their action on the moiré lattice
fermions is given by

P f̂†k,Q,η,α,sP
−1 = ζQf̂

†
−k,−Q,η,α,s,

Cf̂†k,Q,η,α,sC
−1 = (σz)βα f̂

†
k,Q,η,β,s,

C ′f̂†k,Q,η,α,sC
′−1 = ζQ (σz)βα f̂

†
k,Q,η,β,s,

(14)

where ζQ = ±1 for Q ∈ Q±.

B. Symmetries in different limits

We now briefly outline the symmetries of the single-
particle Hamiltonian from Eq. (3). The reader can find
a more in-depth discussion in Appendix B. We will first
consider the case without displacement field and discuss
the symmetries of the system for each mirror-symmetry
sector individually. Finally, we will explore how the intro-
duction of a non-zero U breaks or preserves the various
symmetries from the U = 0 case.

1. Symmetries in the U = 0 case

In the absence of displacement field, the Hamilto-
nian ĤTBG is symmetric under C2z, C3z, C2x, mz, and
T [85]. In comparison, the mirror-antisymmetric sec-
tor ĤD has only the C2z, C3z, mz, and T symmetries
(i.e. it is not symmetric under C2x). Each graphene
layer has an SU (2) spin-rotational symmetry, owing to
the negligible spin-oribt coupling. In conjunction with
the charge U (1) symmetry of each graphene valley, this
leads to a U (2) × U (2) continuous symmetry for each
of the two Hamiltonians ĤD and ĤTBG. As the two
mirror-symmetry sectors are decoupled in the absence
of displacement field, this results in a flavor-valley-spin
[U (2)×U (2)]ĉ× [U (2)×U (2)]b̂ symmetry for Ĥ0 when
U = 0. Here and in what follows, we will always employ
[. . . ]f̂ to denote the continuous symmetry groups that act
only within a certain fermion flavor f̂ = b̂, ĉ.

Besides the above commuting symmetries, the mirror-
symmetric sector Hamiltonian is particle-hole symmet-
ric [85, 86] {

ĤTBG, P
}

= 0. (15)

For some parameter choices, it also has a chiral sym-
metry:

{
ĤTBG, C

}
= 0, for w0 = 0 (the first chiral

limit) or
{
ĤTBG, C

′
}

= 0, for w1 = 0 (the second chiral
limit) [37, 87].

In contrast, the mirror-antisymmetric sector Hamilto-
nian is not particle-hole symmetric, but anticommutes
with the combined C2xP transformation{

ĤD, C2xP
}

= 0. (16)

Moreover, as opposed to ĤTBG, ĤD always satisfies the
chiral symmetry, anticommuting with both C and C ′ ir-
respective of w0 and w1. When acting on the b̂† opera-
tors, the two chiral operators are however identical up to
a valley-charge rotation, as shown in Appendix B 1, and
hence they do not generate distinct symmetries.

The projected Dirac cone Hamiltonian HD features
another low-energy non-crystalline symmetry L, obey-
ing {HD, L} = 0. To define its action, we first note
that due to the Bloch periodicity property b̂†k,Q,η,α,s =
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C2z C3z C2x mz T P C2xP mzC2xP C C′ mzC mzC
′

ĤTBG 3 3 3 3 3 3 3 3 3(w0 = 0) 3(w1 = 0) 3(w0 = 0) 3(w1 = 0)

ĤD 3 3 7 3 3 7 3 3 3 3 3 3

Ĥ0 3 3 7 7 3 7 7 3 7 7 3(w0 = 0) 3(w1 = 0)

TABLE I. Commuting (C2z, C3z, C2z, mz, T ) and anticommuting (P , C2xP , mzC2xP , C, C′, mzC, mzC
′) symmetries of the

TSTG Hamiltonain under different limits. The presence or absence of a given symmetry is respectively indicated by 3or 7.
Some transformation denote symmetries only for some given parameter choices (which are specified in parentheses). For Ĥ0,
we indicate the symmetries for U 6= 0. The symmetries for the case U = 0 can be deduced from the symmetries of ĤTBG and
ĤD.

b̂†k−G,Q+G,η,α,s, the projected Dirac cone Hamiltonian
from Eq. (10) can be cast into a simpler, albeit less sym-
metric form

HD =
∑

η,α,β,s

∑
k

|k−ηq1|≤Λ

[
hD,ηηq1

(k)
]
αβ
b̂†k,ηq1,η,α,s

b̂k,ηq1,η,β,s,

(17)
with Λ ≤ 0.2. The action of the L operators can be
defined as

Lb̂†δk+ηq1,Q,η,α,s
L−1 = b̂†−δk+ηq1,Q,η,α,s

, (18)

for any |δk| ≤ Λ. Since L maps δk + ηq1 to −δk +
ηq1, two momentum points which are not related by any
crystalline symmetry, it represents an emerging effective
low-energy symmetry of ĤD.

2. Symmetries in the U 6= 0 case

The introduction of a displacement field breaks the
C2x and mz symmetries of TSTG and only C2z, C3z,
and T remain good symmetries of Ĥ0. The flavor-valley-
spin [U (2)×U (2)]ĉ× [U (2)×U (2)]b̂ rotation symmetry
is also broken to a valley-spin U (2) × U (2) symmetry
in the U 6= 0 case (see Appendix B 2). The combined
particle-hole transformation mzC2xP remains a good an-
ticommuting symmetry of Ĥ0, obeying{

Ĥ0,mzC2xP
}

= 0. (19)

Finally, the TSTG Hamiltonian in the presence of dis-
placement breaks the chiral transformations C and C ′,
but preserves the combined operations mzC and mzC

′,
having a (modified) chiral symmetry for the same param-
eter choices as ĤTBG.

C. Summary of symmetries

In the absence of displacement field the TSTG Hamil-
tonian splits into mirror-symmetry sectors for which both
the commuting and the anticommuting symmetries can
be individually discussed. The addition of displacement
field breaks the mz symmetry and couples the b̂† and
ĉ† fermion flavors (see Appendix B 2). This effectively

breaks some of the symmetry transformations of Ĥ0 in
the U = 0 case to combined operations for U 6= 0, as
shown in Table I.

IV. SINGLE-PARTICLE SPECTRUM

This section focuses on understanding the low-energy
single-particle spectrum of TSTG with or without a per-
pendicular displacement field. While the main results
are presented here, the more detailed exposition can be
found in Appendix D. After introducing the energy band
basis for TSTG, we show how a non-zero U hybridizes the
TBG and Dirac cone fermions by building a simplified tri-
pod model [3]. For the experimentally relevant values of
the displacement field [130], corresponding to U < 0.3,
we can develop a perturbation theory in U for the hy-
bridization between the two mirror-symmetry sectors of
TSTG. The final result of this section is an expression
for the low-energy projected TSTG Hamiltonian.

A. Energy band basis

For the low-energy spectrum of TSTG, it is useful
to introduce the energy band basis for the two mirror-
symmetry sectors (see also Appendix A 2) of the system.
For each band n (where n > 0 denotes the n-th conduc-
tion band, while n < 0 labels |n|-th valence band), we de-
fine the single-particle wave functions uĉQα;nη (k) and cor-
responding band energies εĉn,η (k) for the first-quantized
TBG Hamiltonian h(η)

Q,Q′ (k) from Eq. (4) according to

∑
Q′,β

[
h

(η)
Q,Q′ (k)

]
αβ
uĉQ′β;nη (k) = εĉn,η (k)uĉQα;nη (k) .

(20)
Similarly, the single-particle wave functions ub̂Qα;nη and
corresponding band energies εb̂n,η (k) of the Dirac Hamil-
tonian hD,ηQ (k) from Eq. (6) must obey

∑
β

[
hD,ηQ (k)

]
αβ
ub̂Qβ;nη (k) = εb̂n,η (k)ub̂Qα;nη (k) , (21)
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FIG. 2. The low-energy band structure of TSTG in the pres-
ence of a perpendicular displacement field. The blue lines
show the TSTG energy spectrum near charge neutrality for
valley η = +, computed by numerical diagonalization of the
Hamiltonian in Eq. (3) along high symmetry momentum lines.
The tunneling parameters w0 and w1, as well as the displace-
ment field U are specified inside each panel. Additionally, in
panel (a) we illustrate schematically the four plane waves of
the tripod model from Eq. (25). We also highlight in yellow
the A1

+ region as defined in Eq. (9), where the hybridization
between the TBG active bands and the Dirac Hamiltonian
is significant. The quantitative (qualitative) features of the
TSTG band structure for U = 0.1 (U = 0.3) are accurately
captured by the approximate dispersion of the tripod model
in Eq. (26), shown in red.

allowing us to define the energy band basis for both
mirror-symmetry sectors of TSTG

ĉ†k,n,η,s =
∑

Q∈Q±,α

uĉQα;nη (k) ĉ†k,Q,η,α,s,

b̂†k,n,η,s =
∑

Q∈Qη,α

ub̂Qα;nη (k) b̂†k,Q,η,α,s.
(22)

The commuting and anticommuting symmetries pre-
sented in Section III impose certain relations between the
single-particle TSTG wave functions. Throughout this
paper, we adopt the gauge-fixing convention presented
in Appendix C and in Ref. [37] to fix the relative phase
of the energy band operators and corresponding wave
functions in Eq. (22).

B. An approximate tripod model for TSTG

We now consider a simplified model for the low-energy
physics of TSTG near the KM point at k = q1. We em-
ploy the TBG tripod model [3] that we further modify by
coupling with a Dirac cone Hamiltonian, as required by
Eqs. (6) and (7). Focusing on the η = + valley and re-
stricting to the fourQ-points (i.e. four plane wave states)
mandated by the tripod model (see Fig. 2a), we write the

single-particle eigenstates of TSTG as

|Ψ (k)〉 =
∑
α

[
3∑
i=0

(
ψi,α (k) ĉ†k,Qi,+,α,s

)
+ ψD,α (k) b̂†k,Q0,+,α,s

]
|0〉 ,

(23)

with Qi = q1 + qi for i = 1, 2, 3 and Q0 = q1. The first-
quantized Hamiltonian acting on the ten-dimensional
spinor

ΨT(k) =
(
ψT0 (k) , ψT1 (k) , ψT2 (k) , ψT3 (k) , ψTD (k)

)
(24)

is given by

HTri =


δk · σ T ′1 T ′2 T ′3

U
2 1

T ′1 h(1) (δk) 0 0 0
T ′2 0 h(2) (δk) 0 0
T ′3 0 0 h(3) (δk) 0
U
2 1 0 0 0 δk · σ

 ,

(25)
where we have introduced the shorthand notation
h(i) (δk) = (δk− qi) · σ for i = 1, 2, 3 and δk = k − q1.
In Eq. (25), we have denoted the two-dimensional Pauli
vector by σ = (σx, σy) and defined the rescaled tunnel-
ing matrices T ′i = Ti

√
2 (for i = 1, 2, 3), with Ti being

given in Eq. (A9). The 10 × 10 Hamiltonian matrix in
Eq. (25) cannot be solved analytically. However, we are
interested in the low-energy physics of TSTG near the
KM point, for which δk ∼ E � 1 (where δk = |δk| and
E is the energy of the state at δk), as can be seen in
Fig. 2. Thanks to a series of justified approximations de-
tailed in Appendix D1, we can analytically obtain the
low-energy dispersion relation near KM

E = ±
δk
(
3w′20 + 2

)
±
√

9δk2 (w′20 + 2w′21 )
2

+ U2∆

2∆
,

(26)
where ∆ =

(
3w′20 + 3w′21 + 1

)
and w′0,1 = w0,1

√
2. We

plot the approximate dispersion relation of Eq. (26) in
Fig. 2: the simplified tripod model qualitatively and
quantitatively matches the low-energy spectrum of Ĥ0

obtained from numerical diagonalization with a large
number of Q points. Note that a similar tripod model
was derived in Ref. [117] but only for U = 0.

C. The low-energy spectrum of TSTG

The low-energy physics of TSTG with displacement
field arises from the interplay between the almost-flat
bands of ĤTBG and the Dirac cone bands of ĤD with
which they are coupled by ĤU . We are interested in a
quantitative perturbation theory for the single-particle
wave functions of TSTG in the presence of a non-zero
displacement field. Ideally, we would also like to express
the low-energy eigenstates of Ĥ0 only in terms of the
eigenstates of ĤTBG: while they cannot be analytically
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computed in the entire MBZ, their properties have been
extensively studied in Refs. [36, 37, 85, 86].

In Appendix D2, we show that rather than starting
from the full TSTG Hamiltonian in Eq. (3) and then
projecting into its low energy states, an excellent approx-
imation is to start from the TBG Hamiltonian projected
into the active bands (HTBG) which is then hybridized
with the Dirac cone fermions. For valley η = + (η = −),
the Hamiltonian HTBG + ĤD + ĤU leads to close to the
exact (i.e. with an overlap higher than 99%) eigenstates
around the KM (K ′M ) point within a radius Λ for both
the active and the Dirac cone bands. It also captures
the correct eigenstates at ΓM for the active TBG bands,
which are not changed much by the introduction of the
displacement field. Note that around ΓM , this method
will not give the correct eigenstates for the Dirac cone
bands (which are, however, at high energy and do not
contribute to the low-energy physics). Indeed, the high
Fermi velocity of the Dirac cone bands implies that they
hybridize with the higher energy (passive) bands of ĤTBG

that we neglect in the projection (see Fig. 2).
Using only three plane wave states (i.e. threeQ points)

for the mirror-antisymmetric fermions (an approximation
which was justified numerically in Appendix A 1), we can
write the low-energy single-particle eigenstates of Ĥ0 for
valley η, spin s, and band labeled by m as

|Ψη,s,m (k)〉 =

[
3∑
i=1

∑
α

(
ψη,s,mi,α (k) b̂†k,ηqi,η,α,s

)

+
∑
|n|=1

φη,s,mn (k) ĉ†k,n,η,s

 |0〉 , (27)

where we have defined the three two-component spinors
on the sublattice space, ψη,s,mi (k) (for i = 1, 2, 3), and
the two-component spinor in the space of the n = ±1
TBG active bands, φη,s,m (k). When acting on the eight-
dimensional spinor

ΨT (k) =
(
ψT1 (k) , ψT2 (k) , ψT3 (k) , φT (k)

)
, (28)

we obtain the following analytical expression for the low-
energy the 8× 8 first-quantized TSTG Hamiltonian

H8×8 =


Eη U†η1 (k) U†η2 (k) U†η3 (k)

Uη1 (k) hD,ηηq1
(k) 0 0

Uη2 (k) 0 hD,ηηq2
(k) 0

Uη3 (k) 0 0 hD,ηηq3
(k)

 . (29)

For the sake of brevity, in Eq. (28), we have suppressed
the η, s, and m indices. In addition, in Eq. (29) the
2 × 2 diagonal energy matrix for the TBG active bands
in valley η is given by

Eη (k) =

(
εĉ+1,η (k) 0

0 εĉ−1,η (k)

)
(30)

whereas the 2× 2 displacement field perturbation matri-
ces can be written in terms of the TBG wave functions
defined in Eq. (20)

[Uηi (k)]α,n =
U

2
uĉηqiα;nη (k) , (31)

for i = 1, 2, 3. As anticipated in Section IIC, there are
two regions of interest in the BZ for the low-energy spec-
trum of H0 and hence of H8×8: away and near the Dirac
points of the MBZ. In deriving the single-particle pro-
jected TSTG Hamiltonian, we will now consider each of
them individually.

D. Single-particle projected TSTG Hamiltonian

We first provide the final expression of the single-
particle projected TSTG Hamiltonian. We then sketch
its derivation, with the detailed proof given in Appendix
D2. The single-particle projected TSTG Hamiltonian
reads

H0 = HTBG +HD +H
(b̂ĉ)
U +H

(ĉ)
U , (32)

where we have introduced the single-particle projected
TBG [37] and Dirac Hamiltonians, which are respectively
given by

HTBG =
∑
|n|=1
η,s

k∈MBZ

εĉn,η (k) ĉ†k,n,η,sĉk,n,η,s, (33)

HD =
∑
|n|=1
η,s
|δk|≤Λ

εb̂n,η (δk) b̂†δk+ηq1,n,η,s
b̂δk+ηq1,n,η,s. (34)

Note that HD is only defined on a small region (|δk| ≤
Λ ≤ 0.2) of the MBZ as a consequence of the high Fermi
velocity of the Dirac cone bands for which

εb̂±1,η (δk) = ±|δk|. (35)

Eq. (32) also incorporates the effects of a non-zero dis-

placement field through the contributions H(b̂ĉ)
U (mixing

the TBG and Dirac bands) and H(ĉ)
U (mixing the two ac-

tive TBG bands within each valley and spin). These last
two terms in Eq. (32) capture the effects of the perpen-
dicular displacement field in the two regions of the MBZ
and will be derived below.

1. Perturbation theory away from the Dirac points

Away from the Dirac points, i.e. when k ∈ Cη, where

Cη =

(
MBZ \

3⋃
i=1

Aiη

)
, (36)
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the hybridization between the eigenstates of ĤD and the
active bands of ĤTBG is suppressed by the difference in
their energies. We can eliminate the ψi spinors of Eq. (29)
by writing them in terms of φ

ψi = (E − hi)−1
Uiφ, (37)

where we have suppressed the valley indices and made
the k-dependence implicit. In addition we have also in-
troduced the shorthand notation hi ≡ hD,ηηqi (k). Eq. (29)
can thus be cast as a non-linear eigenvalue equation[

E +

3∑
i=1

U†i (E − hi)−1
Ui

]
φ = Eφ. (38)

We expect the energy of the active bands to be only
slightly changed by the hybridization with the Dirac cone
Hamiltonian in the region Cη and have |E| � |hi| =
|k− ηqi|. We can therefore ignore the E dependence in
the denominator of the second term of Eq. (38) 1. This
affords a major simplification as the Hamiltonians hi can
be readily inverted to give a linear eigenvalue equation[

E +

3∑
i=1

U†i h
−1
i Ui

]
φ = Eφ. (39)

We show in Appendix D2b that the amplitude of the
mirror-antisymmetric operators is small enough in this
region, validating an approximation even at large values
of U : for k ∈ Cη, the displacement field only induces
mixing between the active TBG bands. This contribution
is captured by the effective Hamiltonian

H
(ĉ)
U =

∑
|n|,|m|=1

η,s

∑
k∈Cη

Bηnm (k) ĉ†k,n,η,sĉk,m,η,s, (40)

where the matrix Bηnm is given in Eq. (D29) of Ap-
pendix D2 b and represents a second-order contribution
in U . For small enough displacement fields (i.e. when
U2/|k− ηqi| is much smaller than the bandwidth of the
TBG flat bands), the active band states will not be sig-
nificantly perturbed.

2. Perturbation theory near the Dirac points

Near any of the three Dirac points in the MBZ, the
mixing between the TBG active bands and the Dirac
cone Hamiltonian is significant. If k is near the j-th Dirac
point in the MBZ (i.e. k ∈ Ajη), we will have |hj | � 1,
but |hi| ≈

√
3, for i 6= j. This implies that while the hy-

bridization between the TBG active bands and the j-th

1 Alternatively, we can expand (E − hi)
−1 to linear order in E,

and still end up with an analytically solvable equation. In this
paper, we will ignore this linear contribution.

Dirac Hamiltonian is relevant, there is little to no mixing
with the Dirac cone bands stemming from the other two
Dirac points of ĤD in the MBZ. We can therefore ap-
proximate ψi ≈ 0 for i 6= j and write the single-particle
TSTG wave functions for k ∈ Ajη as

|Ψη,s,m (k)〉 =

[∑
α

(
ψη,s,mj,α (k) b̂†k,ηqj ,η,α,s

)
+

∑
|n|=1

φη,s,mn (k) ĉ†k,n,η,s

 |0〉 . (41)

In this region all four bands arising from the hybridiza-
tion between the TBG active bands and the Dirac cone
Hamiltonian are relevant for the low energy of TSTG.
The corresponding first-quantized Hamiltonian reads

H4×4 =

(
Eη (k) U†ηj (k)

Uηj (k) hD,ηηqj (k)

)
. (42)

In Appendix D2 c, we present a series of approximations
which renders this 4 × 4 Hamiltonian exactly solvable
in the (first) chiral limit. In the general case, we will
write the projected displacement field Hamiltonian in this
region of the MBZ in the energy band basis as

H
(b̂ĉ)
U =

∑
η,s

|n|,|m|=1
|δk|≤Λ

[
Nη
mn (δk) b̂†kη,m,η,sĉkη,n,η,s + h.c.

]
, (43)

where kη ≡ δk + ηq1 and the displacement field overlap
matrix Nη

mn is defined in Eq. (D43) of Appendix D2 c.

V. MANY-BODY TSTG HAMILTONIAN

This section introduces the interacting Hamiltonian for
TSTG. We only quote the main results here; the com-
plete derivations are relegated to Appendix F. We start
by writing the Coulomb repulsion Hamiltonian in terms
of the moiré lattice fermion operators introduced in Sec-
tion II. Next, we show how the expression of the interac-
tion Hamiltonian can be simplified by employing fermion
operators corresponding to each mirror-symmetry sec-
tor. Using the energy band bases for the TBG and Dirac
single-particle Hamiltonians defined in Section IVA, we
project the interaction Hamiltonian in the low-energy
TSTG eigenstates. Finally, we write the expression for
the fully-interacting TSTG Hamiltonian which is shown
to have a spatial many-body charge-conjugation symme-
try.
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A. Coulomb interaction in TSTG

The (unprojected) low-energy interaction Hamiltonian
governing electron-electron repulsion in TSTG reads

ĤI =
1

2Ωtot

∑
G∈Q0
q∈MBZ
l,l′

V l,l
′
(q + G) δρlG+qδρ

l′

−G−q, (44)

where Ωtot is the total area of the TSTG sample and we
have defined the Fourier transformation of the relative (to
the single-layer graphene charge neutral point) electron
density operators corresponding to layer l to be

δρlG+q =
∑
η,α,s

∑
k∈MBZ
Q∈Qη,l

(
â†k,Q,η,α,s,lâk−q,G+Q,η,α,s,l

−1

2
δq,0δG,0

)
.

(45)

In Eq. (44), V l,l
′
(q + G) represents the Fourier transfor-

mation of the screened Coulomb potential V l,l
′
(r) gov-

erning the repulsion between two electrons located re-
spectively in layers l and l′ and separated by a distance
r, measured in the plane of the single layer graphene.
In the definition of the relative density operators from
Eq. (45), we are effectively ignoring the inter-valley scat-
tering processes, which are suppressed by the decay of
the Coulomb potential in momentum space on a scale
much smaller than the inter-valley separation of single
layer graphene (see Appendix F 1 a).

For the typical gated arrangement used in experi-
ments [130, 131], the interlayer distance (typically 3Å)
in TSTG is much smaller than the gate separation ξ
(usually 10 nm) enabling us to neglect the dependence of
V l,l

′
(q + G) on the layer indices l and l′ (see Appendix

F 1 b) and write the screened Coulomb interaction as

V l,l
′
(q) ≈ V (q) =

2πe2

ε

tanh (ξ|q|/2)

|q|
. (46)

This allows for a significant simplification, since the in-
teraction Hamiltonian can now be written in terms of
the relative density operators corresponding to the two
mirror-symmetry sectors

δρĉG+q =
∑

k∈MBZ
Q∈Q±
η,α,s

(
ĉ†k,Q,η,α,sĉk−q,G+Q,η,α,s −

1

2
δq,0δG,0

)
,

δρb̂G+q =
∑

k∈MBZ
Q∈Qη
η,α,s

(
b̂†k,Q,η,α,sb̂k−q,G+Q,η,α,s −

1

2
δq,0δG,0

)
,

(47)

We can thus separate the interaction Hamiltonian from
Eq. (44) into three contributions

ĤI = ĤI,TBG + ĤI,D + ĤI,TBG−D. (48)

The first and second terms in Eq. (48) respectively repre-
sent the interaction Hamiltonians for ordinary TBG and
for Dirac cone fermions

ĤI,TBG =
1

2Ωtot

∑
q∈MBZ
G∈Q0

V (q + G) δρĉG+qδρ
ĉ
−G−q, (49)

ĤI,D =
1

2Ωtot

∑
q∈MBZ
G∈Q0

V (q + G) δρb̂G+qδρ
b̂
−G−q. (50)

The third term corresponds to the Coulomb interaction
between the TBG and Dirac cone fermions

ĤI,TBG−D =
1

2Ωtot

∑
q∈MBZ
G∈Q0

V (q + G)

×
[
δρĉG+qδρ

b̂
−G−q + h.c.

]
.

(51)

Notice that the decomposition in Eq. (48) is valid even
when the mz symmetry is broken in the presence of a
perpendicular displacement field U 6= 0.

B. Interaction projected Hamiltonian

Having derived the interaction Hamiltonian in the
TSTG mirror-symmetry basis defined in Eqs. (1) and (2),
we now turn our attention to projecting it in the low-
energy TSTG single-particle eigenstates. As shown in
Appendix F 2, the projected interaction Hamiltonian
(henceforth denoted without a hat) reads

HI =
1

2Ωtot

∑
G∈Q0
q∈MBZ

(
Oĉq,G +Ob̂q,G

)† (
Oĉq,G +Ob̂q,G

)
(52)

where we have introduced the operators

Oĉq,G =
√
V (q + G)

∑
k∈MBZ
|n|,|m|=1

η,s

M ĉ,η
mn (k,q + G)

×
(
ĉ†k+q,m,η,sĉk,n,η,s −

1

2
δq,0δm,n

)
.

(53)

and

Ob̂q,G =
√
V (q + G)

∑
|δk|,|δk+q|≤Λ
|n|,|m|=1

η,s

M b̂,η
mn (kη,q + G)

×
(
b̂†kη+q,m,η,sb̂kη,n,η,s −

1

2
δq,0δm,n

)
,

(54)

with kη ≡ δk + q1. Note that the expression of Oĉq,G
is identical to the one corresponding to ordinary TBG
derived in Ref. [37]. Additionally, the operators Of̂q,G
commute with each other, i.e.

[
Ob̂q1,G1

, Oĉq2,G2

]
= 0, and
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obey Of̂−q,−G = O†f̂q,G, for f̂ = ĉ, b̂. In Eqs. (53) and (54),
the form factors M ĉ,η

mn and M b̂,η
mn are defined in terms of

the single-particle TBG and Dirac cone single-particle
wave functions introduced in Section IVA as

M f̂ ,η
mn (k,q + G) =

∑
α

Q∈Q±

u∗f̂Q−Gα;mη (k + q)uf̂Qα;nη (k) ,

(55)
for f̂ = ĉ, b̂.

For the mirror-symmetric operators, the projection in
the TSTG low-energy modes is equivalent to restricting
the summation in Eq. (53) to the active TBG bands.
For the Dirac cone fermions, we additionally restrict the
momenta in Eq. (54) to lie near the Dirac points of
HD located at ηq1 for valley η. The TBG form-factors
M ĉ,η
mn (k,q + G) were shown to decay exponentially with
|G| [36]. As such, only a few moiré reciprocal vectors G
contribute to the summation in Eq. (52): the reciprocal
vectors G for which |G| = 0,

√
3. On the other hand,

the Dirac cone form factors M b̂,η
mn (k,q + G) vanish com-

pletely for any non-zero reciprocal vector G, provided
that the cutoff Λ is small enough (as shown in Appendix
F 2).

Finally, we note that the projected interaction Hamil-
tonian in Eq. (52) is a sum of positive semidefinite oper-
ators, and hence is itself positive semidefinite [26], simi-
larly to the case of TBG [28, 37].

C. Many-body projected TSTG Hamiltonian

The expression of the interaction projected TSTG
Hamiltonian Eq. (52) can finally be combined with the
projected single-particle Hamiltonian from Eq. (32) to
yield the many-body projected TSTG Hamiltonian

H = H0 +HI . (56)

Investigating the symmetries ofH under various different
limits forms the object of Section VI. For now, we will
only mention thatH features a spatial many-body charge
conjugation symmetry P defined by the action of the
single-particle anti-unitary transformation

U = mzC2xC2zTP (57)

followed by the interchange of the creation and annihi-
lation fermion operators (see Appendix G1 for details).
The many-body projected HamiltonianH is invariant un-
der the action of P, i.e.

PHP−1 = H (58)

In particular, P maps a many-body state with Ne elec-
trons to a state with −Ne electrons, where number of
electrons is measured with respect to the TSTG charge
neutral point. As a consequence of the charge con-
jugation symmetry P, the eigenspectrum of the fully-
interacting projected TSTG Hamiltonian is symmetric
about the charge neutral point.

Finally, we note that the projected interaction Hamil-
tonian from Eq. (52) is not normal ordered. The dif-
ference between HI and its normal-ordered form :HI : is
given by a quadratic contribution ∆HI , up to a con-
stant term, i.e. HI =:HI : +∆HI + const.. By pro-
jecting the many-body TSTG Hamiltonian, we are effec-
tively restricting ourselves to the 2N low-energy fermion
modes distributed symmetrically around the charge neu-
tral point. As shown in Appendix F 4 and similarly to
TBG [37], ∆HI = 1

2

(
HN

HF −H
−N
HF

)
, where HN

HF repre-
sents the Hartree-Fock potential in the projected energy
eigenstates contributed by the occupied eigenstates bel-
low the filling N . The quadratic contribution ∆HI can
therefore be thought as the effective potential arising in
the projected many-body Hamiltonian from the energy-
eigenstates which have been projected away. More im-
portantly though, ∆HI is essential for the existence of
the experimentally observed P symmetry in TBG [21],
as :HI : alone lacks a spatial many-body charge conjuga-
tion symmetry.

VI. EXACT SYMMETRIES OF THE
MANY-BODY HAMILTONIAN

The single-particle TSTG Hamiltonian features a
flavor-valley-spin [U (2)×U (2)]ĉ × [U (2)×U (2)]b̂ rota-
tion symmetry in the U = 0 case, which gets broken to a
valley-spin U (2)×U (2) symmetry upon the introduction
a perpendicular displacement field. Under various limits
which will be discussed below, these symmetries are not
only inherited by the many-body projected Hamiltonian,
but also promoted to enlarged continuous groups of ei-
ther the interaction Hamiltonian HI , or of the full kinetic
and interaction Hamiltonian, as a consequence of the dis-
crete symmetries presented in Section III and Appendix
B.

The aim of this section is to outline the symmetries
of the many-body projected Hamiltonian from Eq. (56).
A more detailed exposition is given in Appendix G. As
in Section III, we will first consider the case without a
perpendicular displacement field, and show that enlarged
continuous symmetries arise for each individual mirror-
symmetry sector. Finally, we will explore the effects of
the perpendicular displacement field on the aforemen-
tioned continuous symmetries.

Hereafter, we shall use ζa, τa, and sa to denote the
identity matrix (a = 0) and Pauli matrices (a = x, y, z)
in the energy band n = ±1, valley η = ±, and spin s =↑, ↓
subspaces, respectively, for each mirror-symmetry sector.
We will also rely on the results of Ref. [37], and make
use of the gauge-fixing conventions detailed in Appendix
C, as well as on the resulting gauge-fixed forms of the
single-particle (Appendix E) and interaction (Appendix
F 3) projected Hamiltonians.
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A. Symmetries in the absence of displacement field

In the absence of a perpendicular displacement field,
the many-body projected Hamiltonian preserves the C2z,
C3z, mz and T symmetries of the single-particle TSTG
Hamiltonian. Moreover, the two fermion flavors belong-
ing to the two mirror-symmetry sectors remain uncoupled
at the single-particle level and can (in principle) be indi-
vidually rotated in the band, valley, and spin subspaces.
We will therefore define two independent sets of genera-
tors corresponding respectively to the mirror-symmetric
and mirror-antisymmetric fermion operators,

Sabĉ =
∑

k∈MBZ
m,η,s
n,η′,s′

(
sabĉ
)
mηs,nη′s′

ĉ†k,m,η,sĉk,n,η′,s′ , (59)

Sab
b̂

=
∑
|δk|≤Λ
m,η,s
n,η′,s′

(
sab
b̂

)
mηs,nη′s′

b̂†kη,m,η,sb̂kη′ ,n,η′,s′ , (60)

where we have defined kη ≡ δk+ηq1 and kη′ ≡ δk+η′q1.
In Eqs. (59) and (60), the sabĉ (sab

b̂
) Hermitian matrices

defined on the band, valley, and spin subspaces form a
certain representation for the Lie algebra of the continu-
ous symmetry group pertaining to the mirror-symmetric
(mirror-antisymmetric) flavor. The two indices a and
b, indexing the generator Sabĉ (Sab

b̂
) take different val-

ues depending on the continuous symmetry of the TSTG
many-body Hamiltonian in the limit considered, but are
unrelated to the band, valley, or spin Pauli matrix in-
dices. We note that the generators Sabĉ acting on the
mirror-symmetric sector preserve momentum. On the
other hand, Sab

b̂
preserves momentum only if the matrix

sab
b̂

is diagonal in valley space.
The generators from Eqs. (59) and (60) commute

with the many-body TSTG Hamiltonian in different
limits, and additionally commute with each other, i.e.[
Sabĉ , S

cd
b̂

]
= 0. In what follows, we will analyze the

various terms of the many-body TSTG Hamiltonian in
the absence of displacement field and determine the Lie
algebra representation matrices sabĉ and sab

b̂
and the cor-

responding continuous symmetry groups.

1. Continuous symmetries of the mirror-antisymmetric
sector

The δk-preserving symmetries of the single-particle
Dirac Hamiltonian (where δk is the momentum measured
from the Dirac points of HD, located at ηq1 in valley
η) enforce certain relations between the single-particle
eigenstates ub̂Qα;nη (k). Using the gauge-fixing conven-
tions of Appendix C 4, it can be shown (see Appendix
F 3 a) that the C2zT , C2zL, and C2zT symmetries restrict
the form factors M b̂ (k,q + G) to the following parame-

terization in the band and valley subspaces

M b̂,η
mn (kη,q + G) =

1∑
j=0

(Mj)mη,nη α
b̂
j (δk,q + G) , (61)

where αb̂j (δk,q + G) represent real scalar functions and
we have defined M0 = ζ0τ0 and M1 = iζyτ0. In Ap-
pendix G3, we show that Eq. (61) implies that the
Ob̂q,G operators, governing the Coulomb interaction of
the Dirac cone fermions in Eq. (52), have an enlarged
[U (4)×U (4)]b̂ symmetry. More specifically, we can de-
fine two sets of independent generators

Sab
b̂± =

∑
|δk|≤Λ
m,η,s
n,η′,s′

(
sab
b̂±

)
mηs,nη′s′

b̂†kη,m,η,sb̂kη′ ,n,η′,s′ , (62)

which obey [
Sab
b̂±, O

b̂
q,G

]
= 0, (63)

for a, b = 0, x, y, z, with the corresponding representation
matrices being given by

sab
b̂± =

1

2

(
ζ0 ± ζy

)
τasb. (64)

As a consequence of its large Fermi velocity, the single-
particle contribution HD cannot be ignored (i.e. unlike
the mirror-symmetric sector [37], there is no flat limit for
the mirror-antisymmetric one). Selecting only the subset
of generators from Eq. (63) that additionally commute
withHD, we conclude that the mirror-antisymmetric sec-
tor enjoys a [U (4)]b̂ symmetry whose generators obey[

Sab
b̂
, Ob̂q,G

]
=
[
Sab
b̂
, HD

]
= 0, (65)

for a, b = 0, x, y, z. The representation matrices of the
[U (4)]b̂ group are simply given by

sab
b̂

= ζ0τasb. (66)

and correspond to full U (4) rotations in the combined
valley and spin subspaces.

2. Continuous symmetries of the mirror-symmetric sector

The continuous symmetries of the mirror-symmetric
sector depend on the properties of the single-particle
Hamiltonian HTBG and the Oĉq,G operators defined in
Eq. (53). These have been derived and extensively dis-
cussed in Refs. [26–28, 37]. As such, we will only enu-
merate these continuous symmetries pertaining to the
mirror-symmetric sector of TSTG, with a more in-depth
discussion being given in Appendix G4.

The physically relevant limits of the projected TSTG
Hamiltonian are the same as those arising in ordinary
TBG [37]:
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1. The chiral-flat limit. In the (first) chiral-flat limit,
we neglect the single-particle dispersion of the TBG
fermions. The many-body TSTG Hamiltonian then
simply becomes H = HD + HI . As discussed in
Section VIA1, the dispersion of the high-velocity
Dirac fermions implies that the contribution HD

cannot be ignored. Additionally, we take the chi-
ral condition w0 = 0 to hold exactly. It follows
that the mirror-symmetric sector enjoys an en-
larged [U (4)×U (4)]ĉ symmetry [28, 37] generated
by the 32 operators Sabĉ± (see Appendix G4 a) for
which the representation matrices read

sabĉ± =
1

2

(
ζ0 ± ζy

)
τasb, (67)

for a, b = 0, x, y, z.

2. The nonchiral-flat limit. The nonchiral-flat limit is
obtained by relaxing the chiral condition from the
previous case, but still ignoring the dispersion of
the TBG active bands, i.e. H = HD + HI . As
shown in Appendix G4b, the mirror-symmetric
sector has a [U (4)]ĉ symmetry [26, 37] generated
by the operators in Eq. (59) for a, b = 0, x, y, z.
The corresponding representation matrices read

s0b
ĉ = ζ0τ0sb, sxbĉ = ζyτxsb,

sybĉ = ζyτysb, szbĉ = ζ0τzsb,
(68)

for b = 0, x, y, z, and form a subset of the ones given
in Eq. (67) for the chiral-flat limit, but are different
from either sabĉ+ or sabĉ−.

3. The chiral-nonflat limit. In the (first) chiral-nonflat
limit, we assume the chiral condition w0 = 0 to
hold, but we no longer ignore the dispersion of
the TBG active bands. As such, the full many-
body TSTG Hamiltonian is restored, meaning that
H = HD + HTBG + HI . In this case, the TBG
fermions enjoy a [U (4)]ĉ symmetry [37] which is dif-
ferent from the one in the nonchiral-flat limit (see
Appendix G4 c). The generators of this symmetry
are given in Eq. (59) for a, b = 0, x, y, z, with the
representation matrices

sabĉ = ζ0τasb (69)

corresponding to full U (4) rotations in the com-
bined valley and spin subspaces.

4. The nonchiral-nonflat case. Finally, moving away
from the chiral condition and taking into consid-
eration effects of the non-zero dispersion of the
TBG active bands corresponds to the nonchiral-
nonflat case. The many-body TSTG Hamilto-
nian given by H = HD + HTBG + HI has only a
[U (2)×U (2)]ĉ valley-spin rotation symmetry (see
Appendix G4d). The generators of this symme-
try are also given in Eq. (59) for a = 0, z and

b = 0, x, y, z, and have the following representation
matrices

s0b
ĉ = ζ0τ0sb, szbĉ = ζ0τzsb, (70)

for b = 0, x, y, z. They correspond to indepen-
dent spin-charge rotations in the two valleys of the
mirror-symmetric sector.

B. Exact symmetries in the presence of
displacement field

When U 6= 0, the TSTG many-body projected Hamil-
tonian is symmetric under the C2z, C3z and T symme-
tries. Additionally, the projected displacement field con-

tribution H(b̂ĉ)
U couples the two mirror-symmetry sector

fermions, which can no longer be rotated independently
in the band, valley, or spin subspaces. As such, we prove
in Appendix G5, that the generators of continuous sym-
metries of H in the presence of displacent field must have
the form

Sab =
∑
m,η,s
n,η′,s′

[ ∑
k∈MBZ

(
sab
)
mηs,nη′s′

ĉ†k,m,η,sĉk,n,η′,s′

+
∑
|δk|≤Λ

(
sab
)
mηs,nη′s′

b̂†kη,m,η,sb̂kη′ ,n,η′,s′

 ,
(71)

where the representation matrix sab is diagonal in valley
space. Note that the action of the generator in the two
mirror-symmetry sectors is identical (i.e. they generate
the same rotations in the valley and spin subspaces).

Under any of the relevant limits of the many-body pro-
jected TSTG Hamiltonian, the generators from Eq. (71)
must, at the very least, obey the following commutation
relations[

Sab, Ob̂q,G

]
=
[
Sab, Oĉq,G

]
=
[
Sab, HD

]
= 0, (72)

in addition to commuting with the projected displace-

ment field contributions H(b̂ĉ)
U and H

(ĉ)
U . As a result,

a non-zero displacement field breaks the symmetry of
TSTG to the trivial U (2) × U (2) spin-valley rotation
symmetry. The corresponding generators from Eq. (71)
are given simply by

s0b
ĉ = ζ0τ0sb, szbĉ = ζ0τzsb, (73)

for b = 0, x, y, z.

C. Summary

In the absence of displacement field the TBG and Dirac
cone fermions are uncoupled at the single-particle level.
As a result, the many-body projected TSTG Hamiltonian
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Operator / Hamiltonian Flat band limit Chiral limit (w0 = 0) Continuous symmetry

Ob̂q,G – – [U (4)×U (4)]b̂
Oĉq,G – yes [U (4)×U (4)]ĉ
Oĉq,G – no [U (4)]ĉ
HI yes yes [U (4)×U (4)]ĉ × [U (4)×U (4)]b̂
HI yes no [U (4)]ĉ × [U (4)×U (4)]b̂
HD +HI yes yes [U (4)×U (4)]ĉ × [U (4)]b̂
HD +HI yes no [U (4)]ĉ × [U (4)]b̂
HD +HTBG +HI no yes [U (4)]ĉ × [U (4)]b̂
HD +HTBG +HI no no [U (2)×U (2)]ĉ × [U (4)]b̂

HD (+HTBG) +H
(b̂ĉ)
U +H

(ĉ)
U +HI no / yes no / yes U (2)×U (2)

TABLE II. Continuous symmetries of the many-body projected TSTG Hamiltonian under different limits. We list the continuous
symmetry groups corresponding to the two interaction operators Ob̂q,G and Oĉq,G, the projected interaction Hamiltonian HI , as
well as TSTG many-body Hamiltonians under different relevant limits. In the absence of displacement field, the two fermions
flavors corresponding to different mirror-symmetry sectors can be independently rotated in the band, valley, and spin subspaces.
As such, the continuous symmetry group for TSTG is the direct product of the continuous symmetry groups corresponding to
each individual mirror-symmetry sector. Following to introduction of displacement field, the global TSTG symmetry is broken
to the trivial U (2)×U (2) group.

inherits both the symmetries the many-body projected
TBG Hamiltonian [37] to which those of an interacting
Dirac cone Hamiltonian are added, for a full symmetry of
up to [U (4)×U (4)]ĉ × [U (4)×U (4)]b̂ of the projected
interaction Hamiltonian HI . The introduction of a per-
pendicular displacement field breaks the symmetries of
the system to the trivial U (2) × U (2) symmetry, which
corresponds to independent spin-charge rotations in the
two TSTG valleys. For completeness, the enlarged band,
valley, and spin rotation symmetries of TSTG under dif-
ferent physically relevant limits are presented in Table II.

VII. DISCUSSION

The first part of this article was focused on the single-
particle TSTG Hamiltonian. After reviewing a BM
model for TSTG, we have derived the discrete crystalline
symmetries of the system both with and without a per-
pendicular displacement field. In the absence of displace-
ment field, we have uncovered a hidden anticommut-
ing symmetry of the single-particle Hamiltonian, valid
in the low-energy limit. The corresponding operator L
maps the high-velocity Dirac fermions from momentum
δk + ηq1 to −δk + ηq1 in valley η, and hence denotes
a non-local symmetry of the problem. We have also de-
rived a series of approximations for the TSTG single-
particle spectrum near charge neutrality, starting with
a simplified tripod model which captured the essence of
the TSTG band structure in the presence of displacement
field. Finally, we provided more quantitiative perturba-
tion schemes for the low-energy TSTG spectrum. They
enabled us to obtain the TSTG eigenstates in the entire
MBZ in terms of the TBG flat band wave functions, thus
setting the stage for deriving the projected interaction
Hamiltonian.

In the second half of the paper, we introduced the
Coulomb interaction Hamiltonian projected in the low-

energy TSTG single-particle eigenstates. We showed
that the electron-electron repulsion is comprised of three
terms, corresponding to the interaction between the TBG
fermions, the interaction between the Dirac electrons,
and a term denoting the interaction between the TBG
and high-velocity Dirac fermions. We then analyzed the
symmetries of the many-body projected TSTG Hamil-
tonian. As a result of the local and non-local discrete
symmetries at the single-particle level, we showed that
the spin-valley U (2)×U (2) symmetry gets promoted to
enlarged symmetry groups, up to a full [U (4)×U (4)]ĉ×
[U (4)]b̂ symmetry of the many-body projected Hamilto-
nian in the chiral-flat limit for U = 0 (see Table II). More-
over, we have shown that in the absence of displacement
field, the enhanced rotation groups feature both local and
non-local generators.

With the TSTG projected many-body Hamiltonian in
hand, including its symmetries and derived gauge-fixing
conditions, we have paved the way for understanding
TSTG beyond the single-particle paradigm. Even in the
absence of displacement field, the interaction naturally
spoils the naive picture of decoupled TBG and high-
velocity Dirac fermions [63]. In light of the recent experi-
ments [130, 131], this naturally raises questions about the
fate of the insulating TBG phases, both with and with-
out a perpendicularly applied displacement field. Such a
study will be the core of our forthcoming work [139].
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d. [U (2)×U (2)]ĉ symmetry in the nonchiral-nonflat case 59

5. Symmetries of the projected many-body TSTG Hamiltonian with displacement field 59



19

Appendix A: Single-particle Hamiltonian

In this appendix, we provide a detailed derivation of the TSTG single-particle Hamiltonian presented in Section II.
We explain how the TSTG Hamiltonian splits into a TBG-like contribution coupled to a high-velocity Dirac cone
Hamiltonian by an externally applied displacement field. Finally, we introduce the energy-band basis which will be
employed in writing the single-particle projected Hamiltonian in Section IVD.

1. Derivation of the single-particle Hamiltonian

Let â†p,α,s,l represent the fermion operator in the plane wave basis of graphene layer l. The momentum p is measured
from the Γ point of the monolayer graphene Brillouin Zone (BZ), α = A,B represents the sublattice index, s =↑, ↓
is the spin index, and l = 1, 2, 3 denotes the layer index (respectively corresponding to the lower, middle, and upper
layers). Focusing on TSTG, we define K+ as the K point in the top and bottom layer graphene BZ (l = 3, 1), and
K− as the K point in the middle layer graphene BZ (l = 2). K+ and K− differ by a twist angle θ. For concreteness,
we assume K± is along the direction with an angle ±θ/2 to the x̂ axis, as depicted in Fig. 1a. Each graphene layer
contains two valleys K and K ′, labeled by η = ±1 and located at momenta ηK±, corresponding to two (decoupled)
valleys of the moiré single-particle Hamiltonian.

For later use, we also introduce the 2D momenta

q1 = (K+ −K−) = kθ (0, 1)
T
, q2 = C3zq1 = kθ

(
−
√

3

2
,−1

2

)T
, q3 = C2

3zq1 = kθ

(√
3

2
,−1

2

)T
, (A1)

whose coordinates are given in the (kx, ky) basis and where kθ = |K− −K+| = 2|K+| sin(θ/2) corresponding to the
twist angle θ. We can then define the MBZ for the TSTG moiré lattice, which is generated by the reciprocal vectors

bM1 = q3 − q1 , bM2 = q3 − q2 . (A2)

To concentrate on the low energy physics of the two valleys, we define Q0 = ZbM1 + ZbM2 as the triangular moiré
reciprocal lattice generated by the reciprocal basis vectors bM1 and bM2. We also define two shifted momentum
lattices Q+ = q1 +Q0 and Q− = −q1 +Q0, which together form a honeycomb lattice (as seen in Fig. 1b). We then
introduce the low-energy fermion operators â†k,Q,η,α,s,l defined as

â†k,Q,η,α,s,l ≡ â
†
ηKl+k−Q,α,s,l for Q ∈ Qη,l (A3)

with k ∈ MBZ and k = 0 representing the ΓM point. In addition, for a fixed valley η, we have introduced the notation

Qη,l =

{
Qη for l = 1, 3

Q−η for l = 2
, (A4)

and also denoted Kl = K+ for l = 1, 3 and Kl = K− for l = 2. Because of the staggered trilayer structure, there are
twice as many fermion operators in the lattice Qη (â†k,Q,η,α,s,l, with l = 1, 3) than there are in lattice Q−η (â†k,Q,η,α,s,2).
It is also worth noting that the low-energy fermions operators are not periodic in k, but obey the Bloch periodicity
property

â†k,Q,η,α,s = â†k−G,Q+G,η,α,s, (A5)

for any G ∈ Q0.
Within each valley η, we introduce the first-quantized momentum space intra-layer Hamiltonian hD,ηQ (k) defined

in sublattice space by

hD,+Q (k) = vF (k−Q) · σ,

hD,−Q (k) = σxh
D,+
−Q (−k)σx,

(A6)

where vF represents the Fermi velocity of the single graphene layer. hD,ηQ (k) represents a Dirac cone Hamiltonian
that has been folded inside the first MBZ (k ∈ MBZ). In this paper, we employ dimensionless units, akin to the
momentum and energy rescaling relation defined in Eq. (8) of Section II B, namely

k→ k

kθ
, E → E

vF kθ
. (A7)
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We also define the first-quantized Hamiltonian hI,ηQ,Q′ describing the inter-layer tunneling between two adjacent
graphene sheets as

hI,+Q,Q′ (k) =

3∑
j=1

TjδQ,Q′+qj ,

hI,−Q,Q′ (k) = σxh
I,−
−Q,−Q′ (−k)σx,

(A8)

where the tunneling matrices Tj are given by

Tj = w0σ0 + w1

[
σx cos

2π (j − 1)

3
+ σy sin

2π (j − 1)

3

]
. (A9)

Here σ0 and σ = (σx, σy) represent the 2× 2 identity matrix and Pauli matrices in the sublattice space, while w0 ≥ 0
and w1 ≥ 0 are the interlayer hoppings at the AA and AB stacking centers of two consecutive graphene sheets,
respectively. Generically, in realistic systems w0 < w1 due to lattice relaxation and corrugation effects [46, 58, 86, 89,
92]. Note that hI,ηQ,Q′ vanishes unless Q and Q′ belong to different shifted momentum lattices. We can now write the
single-particle Hamiltonian for TSTG using the low-energy operators

Ĥ0 =
∑

k∈MBZ

∑
η,α,β,s

 ∑
l∈{1,3}

∑
Q∈Qη

[
hD,ηQ (k)

]
αβ
â†k,Q,η,α,s,lâk,Q,η,β,s,l +

∑
Q∈Q−η

[
hD,ηQ (k)

]
αβ
â†k,Q,η,α,s,2âk,Q,η,β,s,2

+
∑

l∈{1,3}

∑
Q∈Q−η
Q′∈Qη

[
hI,ηQ,Q′

]
αβ
â†k,Q,η,α,s,2âk,Q′,η,β,s,l +

∑
l∈{1,3}

∑
Q∈Qη

Q′∈Q−η

[
hI,ηQ,Q′

]
αβ
â†k,Q,η,α,s,lâk,Q′,η,β,s,2

+
U

2

∑
l∈{1,3}

(l − 2) δα,β
∑

Q∈Qη

â†k,Q,η,α,s,lâk,Q,η,β,s,l

 . (A10)

In Eq. (A10), we have introduced a perpendicular displacement field, which is equivalent to an onsite potential of
U/2, 0, −U/2 in the top, middle, and bottom layers, respectively. When U = 0, the system is symmetric with respect
to mirror reflections perpendicular to the ẑ axis (to be defined later as a symmetry). Therefore, Eq. (A10) can be
simplified significantly by working in the mirror-symmetric and mirror-antisymmetric bases. The mirror-symmetric
operators are given by

ĉ†k,Q,η,α,s =

{
1√
2

(
â†k,Q,η,α,s,3 + â†k,Q,η,α,s,1

)
Q ∈ Qη

â†k,Q,η,α,s,2 Q ∈ Q−η
, (A11)

while the mirror-antisymmetric ones are given by

b̂†k,Q,η,α,s =
1√
2

(
â†k,Q,η,α,s,3 − â

†
k,Q,η,α,s,1

)
Q ∈ Qη. (A12)

The low-energy operators corresponding to the two mirror-symmetry sector inherit the Bloch periodicity property
from Eq. (A5) and obey

b̂†k,Q,η,α,s = b̂†k−G,Q+G,η,α,s,

ĉ†k,Q,η,α,s = ĉ†k−G,Q+G,η,α,s,
(A13)

for any G ∈ Q0. When written in the mirror-symmetry sector basis, the Hamiltonian of TSTG splits into three terms

Ĥ0 = ĤTBG + ĤD + ĤU . (A14)

In Eq. (A14), the mirror-symmetric low-energy operators ĉ†k,Q,η,α,s give rise to the term

ĤTBG =
∑

k∈MBZ

∑
η,α,β,s

∑
Q,Q′∈Q±

[
h

(η)
Q,Q′ (k)

]
αβ
ĉ†k,Q,η,α,sĉk,Q′,η,β,s, (A15)



21

-4

-2

0

2

4

0.990

0.992

0.994

0.996

0.998

1.000

-2

-1

0

1

2

0.990

0.992

0.994

0.996

0.998

1.000

FIG. 3. The effects of the three-Q approximation on the single-particle spectrum of TSTG in the presence of displacement
field for valley η = + in the non-chiral limit. The blue line in panels (a) and (c) shows the low-energy spectrum of Ĥ0 (which
we dub the unapproximated spectrum) obtained by employing |Q+| = |Q−| = 330 points in the expression for ĤTBG, ĤD, and
ĤU for two values of the displacement field U in the non-chiral limit (w0/w1 = 0.8). In panels (b) and (d), we approximate
the spectrum by reducing the number of Q points used in ĤD and ĤU to just three, as discussed in Appendix A1. The bands
in panels (b) and (d) are colored according to the overlap between the approximated (|Ψapp〉) and the unapproximated (|Ψ〉)
single-particle wave functions: the overlap is always higher than 0.99, thus justifying this approximation. In panels (a) and (c),
the red lines denote the energy bands near the KM point obtained with the tripod model from Appendix D1, which is seen to
qualitatively predict the main features of the spectrum. The parameter values are indicated as in inset in the lower-left side of
each plot.

which is similar to the ordinary twisted bilayer graphene (TBG) Hamiltonian, but with a rescaled tunneling amplitude,
corresponding to the first-quantized Hamiltonian

h
(η)
Q,Q′ (k) = hD,ηQ (k) δQ,Q′ +

√
2hI,ηQ,Q′ . (A16)

At the same time, the mirror-symmetric b̂†k,Q,η,α,s operators, which are only defined for Q ∈ Qη, give rise to a solitary
Dirac cone contribution, folded inside the first MBZ

ĤD =
∑

k∈MBZ

∑
η,α,β,s

∑
Q∈Qη

[
hD,ηQ (k)

]
αβ
b̂†k,Q,η,α,sb̂k,Q,η,β,s, (A17)

while the third term in Eq. (A14) couples the TBG-like and the Dirac cone degrees of freedom

ĤU =
∑

k∈MBZ

∑
η,α,s

∑
Q∈Qη

U

2

(
b̂†k,Q,η,α,sĉk,Q,η,α,s + ĉ†k,Q,η,α,sb̂k,Q,η,α,s

)
, (A18)

The Dirac cone and the TBG-like single-particle Hamiltonians are independent, unless the mirror symmetry is broken
by the addition of a displacement field (U 6= 0).

It is worth noting that in practice, we always take a finite number of lattice points inside the Q± sublattices. As
explained in Ref. [36], we only consider the Q points with |Q| smaller than a certain cutoff value, thus ensuring that
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FIG. 4. The effects of the three-Q approximation on the single-particle spectrum of TSTG in the presence of displacement field
for valley η = + in the chiral limit. The meaning of the panels is the same as Fig. 3. The overlap between the approximated
and unapproximated single-particle wavefunction is always higher than 0.99.

all the discrete symmetries of the system are preserved. In what follows, we will denote the number of Q points in
lattice Qη by |Qη|. The influence that the cutoff |Qη| has on the energy spectrum of the TBG Hamiltonian from
Eq. (A15) was extensively discussed in Ref. [36]. In principle, while one could use the same cutoff in defining the
Dirac Hamiltonian, a further approximation is justified in this case: we can restrict to considering only three Q points
in the Dirac Hamiltonian expression from Eq. (A17). This approximation (which we will henceforth call the three-Q
approximation) can be understood by remembering that we are interested in the low-energy physics of TSTG, which
arises from the interplay between the almost-flat (i.e. with a small bandwidth ω � vFkθ) bands of TBG and the
Dirac cone bands of ĤD. The flat bands of ĤTBG from Eq. (A15) have essentially zero energy with a small bandwidth
ω, hence the only eigenstates which can efficiently perturb the flat band modes of ĤTBG are the ones which have an
energy significantly smaller than one. Since the MBZ forms a hexagon defined by the vertices ±qi (for i = 1, 2, 3), the
only possibility for

∣∣∣hD,ηQ (k)
∣∣∣� 1, with k ∈ MBZ is for Q to be one of the ηqi points (for i = 1, 2, 3) in each valley η.

We explore the effects of the three-Q approximation on the one-particle energy spectrum in Figs. 3 and 4 for both
the non-chiral (w0 6= 0) and the chiral (w0 = 0) limits, respectively. Taking the case when the same Q± sublattice
cutoff in employed for both ĤTBG and ĤD as a reference, there is no discernible difference in the spectra when the
three-Q approximation is employed.

Moreover, even with Q ∈ {ηqi}, the low energy condition
∣∣∣hD,ηQ (k)

∣∣∣ � 1 is only true for |k−Q| ≤ Λ � 1, where

k ∈ MBZ. As depicted in Fig. 1b, we will therefore introduce three zones Aiη (where i = 1, 2, 3) inside the first MBZ
for each valley η, which are defined as

Aiη = {k ∈ MBZ | |k− ηqi| ≤ Λ} . (A19)

Typically, the cutoff Λ will be much smaller than 1, but bigger than the bandwidth ω of the flat bands of ĤTBG.
A physical cutoff is to take Λ as the gap between the flat bands and the passive bands of ĤTBG. With these
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approximations, we can write the Dirac cone Hamiltonian projected into the low-energy degrees of freedom as

HD =
∑

η,α,β,s

3∑
i=1

∑
k∈Aiη

[
hD,ηηqi (k)

]
αβ
b̂†k,ηqi,η,α,sb̂k,ηqi,η,β,s. (A20)

To emphasize that the Hamiltonian HD is projected into low-energy modes with the cutoff Λ, we have omitted the
hat to differentiate it from the unprojected Dirac cone Hamiltonian ĤD.

2. Single-particle eigenstates

In the absence of a displacement field, the single-particle Hamiltonian Ĥ0 is a sum of two commuting terms, ĤTBG

and ĤD, which can therefore be individually diagonalized. For this purpose, we introduce the energy band basis,
which is defined according to

ĉ†k,n,η,s =
∑

Q∈Q±,α

uĉQα;nη (k) ĉ†k,Q,η,α,s,

b̂†k,n,η,s =
∑

Q∈Qη,α

ub̂Qα;nη (k) b̂†k,Q,η,α,s,
(A21)

where uĉQα;nη (k) and ub̂Qα;nη (k) are the eigenstate wave functions of energy band n of the first quantized single-
particle Hamiltonians h(η)

Q,Q′ (k) and hD,ηQ (k), respectively. For each valley and spin, we shall use the integer n > 0 to
denote the n-th conduction band and use the integer n < 0 to label the |n|-th valence band. They obey∑

Q′,β

[
h

(η)
Q,Q′ (k)

]
αβ
uĉQ′β;nη (k) = εĉn,η (k)uĉQα;nη (k) ,

∑
β

[
hD,ηQ (k)

]
αβ
ub̂Qβ;nη (k) = εb̂n,η (k)ub̂Qα;nη (k) ,

(A22)

where εĉn,η (k) and εb̂n,η (k) are the single-particle energies of the eigenstates uĉQα;nη (k) and ub̂Qα;nη (k), respectively.
Owing to the Bloch periodicity property of Eq. (A13), we can generalize the eigenstate wave functions outside the
first MBZ using the following embedding relations

uf̂Qα;nη (k + G0) = uf̂Q−G0α;nη (k) , (A23)

ensuring that the energy band basis is defined periodically inside the MBZ, namely

f̂†k,n,η,s = f̂†k+G0,n,η,s
, (A24)

for f̂† = b̂†, ĉ† and any MBZ reciprocal lattice vector G0 (G0 ∈ Q0).

Appendix B: Symmetries of the single-particle Hamiltonian

In this appendix, we extensively discuss the symmetries of the single-particle Hamiltonian from Eq. (A14) summa-
rized in Section III. It is instructive to consider the mirror-symmetric U = 0 case first, as the Hamiltonian splits into
two independent terms, namely ĤTBG and ĤD, which correspond respectively to the mirror-symmetric and mirror-
antisymmetric sectors. For ĤTBG, the various symmetries have been derived and discussed in Refs. [37, 85, 86, 120]
whose notation and conventions we will follow. In addition to the crystalline symmetries, for ĤD, we also discuss the
emergence of a low-energy effective symmetry, which is incompatible with a crystalline lattice Q0.

In the presence of displacement field, Ĥ0 can no longer be split into commuting contributions; the symmetries must
be discussed for the entire Hamiltonian.
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1. Symmetries in the U = 0 case

1. Discrete symmetries. Since graphene has zero spin-orbit coupling (SOC), we can define a set of spinless sym-
metries for TSTG: the spinless unitary discrete symmetries C2z, C3z, C2x, mz, and the spinless anti-unitary
time-reversal symmetry T . As discussed in Section IIIA, the mirror-symmetric term ĤTBG is symmetric under
C2z, C3z, C2x, mz, and T , while the mirror-antisymmetric term has only the C2z, C3z, mz, and T symmetries
(i.e. it is not symmetric under C2x).
We denote the action of a spinless symmetry operator g on the two flavors of fermions as

gĉ†k,Q,η,α,sg
−1 =

∑
Q′η′β

[
Dĉ (g)

]
Q′η′β,Qηα

ĉ†gk,Q′,η′,β,s,

gb̂†k,Q,η,α,sg
−1 =

∑
Q′η′β

[
Db̂ (g)

]
Q′η′β,Qηα

b̂†gk,Q′,η′,β,s,
(B1)

where Dĉ(g) and Db̂(g) are the representation matrices of the symmetry operator g in the space of indices
{Q, η, α} for each fermion operator. We denote gk to be the momentum obtained after acting the transformation
g on momentum k. In particular, C2zk = Tk = −k. The representation matrices for the discrete symmetries of
TSTG are given by [37, 85, 86]

[D (C2z)]Q′η′β,Qηα = δQ′,−Qδη′,−η (σx)βα , (B2)

[D (C3z)]Q′η′β,Qηα = δQ′,C3zQδη′,η

(
eiη

2π
3 σz

)
βα
, (B3)

[D (T )]Q′η′β,Qηα = δQ′,−Qδη′,−ηδβ,α, (B4)[
Dĉ (C2x)

]
Q′η′β,Qηα

= δQ′,C2xQδη′,η (σx)βα , (B5)

where D(g) stands for both Dĉ(g) and Db̂(g). The representation matrices for the mirror mz symmetry are
different for the two fermion flavors[

Dĉ (mz)
]
Q′η′β,Qηα

= δQ′,Qδη′,ηδβ,α,
[
Db̂ (mz)

]
Q′η′β,Qηα

= −δQ′,Qδη′,ηδβ,α. (B6)

In particular, the combined symmetry C2zT does not change k (C2zTk = k) and has the representation matrix

[D(C2zT )]Q′η′β,Qηα = [D(C2z)D(T )]Q′η′β,Qηα = δQ′,Qδη′,η (σx)βα . (B7)

Note that the C2x transformation exchanges the two Q± sublattices, i.e. it maps Q ∈ Q± to C2xQ ∈ Q∓,
without exchanging the valleys. Because the mirror-antisymmetric operators b̂†k,Q,η,α,s at a given valley η only
exist for Q ∈ Qη, the action of C2x on them can not be defined. Therefore, C2x is not a symmetry of ĤD.

2. [U (2)×U (2)]ĉ × [U (2)×U (2)]b̂ spin-charge rotation symmetry. In the single-particle Hamiltonian of TSTG
for U = 0, the two valleys η = ± and the two fermion flavors (b̂† and ĉ†) are decoupled. At the same time,
monolayer graphene has zero (negligible) SOC, implying that in each valley, the SU (2) spin for each fermion
flavor can be freely rotated. Together with the charge U (1) symmetry of each valley-flavor, this leads to a global
[U (2)×U (2)]ĉ × [U (2)×U (2)]b̂ symmetry. The 16 generators of this symmetry are given by

Ŝabĉ =
∑
α,η
s,s′

∑
k∈MBZ
Q∈Q0

(τa)ηη(sb)ss′ ĉ
†
k,Q,η,α,sĉk,Q,η,α,s′ , (B8)

Ŝab
b̂

=
∑
α,η
s,s′

∑
k∈MBZ
Q∈Qη

(τa)ηη(sb)ss′ b̂
†
k,Q,η,α,sb̂k,Q,η,α,s′ , (B9)

where a = 0, z and b = 0, x, y, z. We have defined τa and sa (a = 0, x, y, z) to be the 2 × 2 identity and Pauli
matrices in the valley and spin spaces, respectively.

3. Particle-hole transformations. In addition to the above symmetries, one can also define a unitary particle-hole
(PH) transformation P [85]. The action of the unitary PH transformation on the mirror-symmetric fermions is
given by

P ĉ†k,Q,η,α,sP
−1 =

∑
Q′η′β

[
Dĉ (P )

]
Q′η′β,Qηα

ĉ†−k,Q′,η′,β,s, (B10)
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with the representation matrix [
Dĉ (P )

]
Q′η′β,Qηα

= δQ′,−Qδη′,ηδβ,αζQ, (B11)

where

ζQ =

{
+1 Q ∈ Q+

−1 Q ∈ Q−
. (B12)

Note that P transforms creation operators to creation operators (rather than annihilation operators), and
exchanges the two Q± sublattices, mapping Q ∈ Q± to −Q ∈ Q∓. In addition, the PH transformation obeys

P 2 = −1, [P,C3z] = 0, {P,C2x} = 0, {P,C2z} = 0, {P, T} = 0, [P,mz] = 0. (B13)

The PH transformation anticommutes with ĤTBG defined in Eq. (A15){
P, ĤTBG

}
= 0 (B14)

and hence does not represent a commuting symmetry of the Hamiltonian, but rather a relation between the
positive and negative spectra of ĤTBG. At the same time, because P exchanges the two Q± sublattices, without
exchanging the valleys, its action cannot be defined on the b̂† operators, and therefore, ĤD is not PH-symmetric.
Nevertheless, one can still introduce a combined transformation C2xP , whose action

C2xP f̂
†
k,Q,η,α,s (C2xP )

−1
=
∑

Q′η′β

[D (C2xP )]Q′η′β,Qηα f̂
†
−C2xk,Q′,η′,β,s

, (B15)

can be defined for both fermion flavors f̂† = b̂†, ĉ†. Its representation matrix is the same for both symmetry
sectors

[D (C2xP )]Q′η′β,Qηα = δQ′,−C2xQδη′,η (σx)βα ζQ (B16)

and is consistent with the representation matrices for the mirror-symmetric fermions of both P and C2x, defined
in Eqs. (B5) and (B11), respectively. The transformation C2xP represents an anticommuting symmetry of both
ĤTBG and ĤD {

C2xP, ĤTBG

}
=
{
C2xP, ĤD

}
= 0 (B17)

and satisfies (C2xP )
2

= 1.

4. Chiral symmetries. Besides PH, we can define two other anticommuting transformations C and C ′, which
are known as the first and second chiral transformations [37, 87], respectively. Their action on the b̂† and ĉ†

operators is given by

Xf̂†k,Q,η,α,sX
−1 =

∑
Q′η′β

[D (X)]Q′η′β,Qηα f̂
†
k,Q′,η′,β,s, (B18)

where f̂† = b̂†, ĉ† and X = C,C ′. The representation matrices for the two chiral operators are given by

[D (C)]Q′η′β,Qηα = δQ′,Qδη′,η (σz)βα ,

[D (C ′)]Q′η′β,Qηα = δQ′,Qδη′,η (σz)βα ζQ,
(B19)

where ζQ is defined in Eq. (B12). Similarly to the PH transformation, the chiral transformation reflects a
relation between the positive and negative spectra of the Hamiltonian. For the TBG-like contribution, ĤTBG is
symmetric under the chiral transformation only for specific parameter choices, namely{

C, ĤTBG

}
= 0 if w0 = 0,{

C ′, ĤTBG

}
= 0 if w1 = 0.

(B20)
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The mirror-antisymmeric sector Hamiltonian ĤD always has the chiral symmetry{
C, ĤD

}
=
{
C ′, ĤD

}
= 0. (B21)

Note however that in the case of ĤD, the first and second chiral transformations are equivalent up to a valley-
charge rotation. To see this, consider the representation matrix for CC ′ which is given by [D (CC ′)]Q′η′β,Qηα =

δQ′,Qδη′,ηδβ,αζQ. Since ĤD is defined in only one Q± sublattice for each valley, [D (CC ′)]Q′η′β,Qηα =

δQ′,Q (τz)η′η δβ,α, when acting on the b̂† operators, implying that the two transformations are indeed equiv-
alent up to a valley-charge rotation.
The two chiral symmetry operators satisfy

C2 = 1, {C,C2z} = 0, [C, T ] = 0, [C,P ] = 0, {C,C2zT} = 0, {C,C2zP} = 0,

C ′2 = 1, [C ′, C2z] = 0, {C ′, T} = 0, {C ′, P} = 0, {C ′, C2zT} = 0, {C ′, C2zP} = 0,
(B22)

as well as [C ′, C] = 0.

5. Effective low-energy symmetry L. In this paper, we will be primarily interested in the low energy physics of
ĤD. Consider therefore a simple h (δk) = δk · σ Dirac Hamiltonian. Letting δk = k− q1, we see that h (δk) is
exactly equivalent to hD,+q1

(k). The Hamiltonian h (δk) has three distinct “symmetries”

h (δk) = −h (−δk) , (B23)

σzh (δk)σ−1
z = −h (δk) , (B24)

σxh (δk)σ−1
x = h∗ (δk) . (B25)

We first note that Eq. (B24) is equivalent to the first chiral symmetry of ĤD (given by the operator C), while
Eq. (B25) is equivalent with the C2zT symmetry of ĤD. Eq. (B23) however, represents a new emerging symmetry
of ĤD which we will discuss below.
In Figs. 3 and 4 of Appendix A 1, we saw that an excellent approximation for ĤD in the low-energy limit is
given by Eq. (A20), where for the b̂†k,Q,η,α,s operators we have considered only three Q points and the nearby k

points in the MBZ. The Bloch periodicity property from Eq. (A13) allows us to recast the projected Dirac cone
Hamiltonian HD into a slightly simpler, albeit less symmetric form

HD =
∑

η,α,β,s

∑
k

|k−ηq1|≤Λ

[
hD,ηηq1

(k)
]
αβ
b̂†k,ηq1,η,α,s

b̂k,ηq1,η,β,s. (B26)

Note that the price we payed for including only one Q point is that k now takes values outside the first MBZ,
unlike the displacement field Hamiltonian ĤU given in Eq. (A18), which is defined inside the first MBZ.
We can now introduce the operator L which implements the emerging low-energy symmetry of the Dirac Hamil-
tonian corresponding to Eq. (B23). Its action is only specified on the b̂†δk+ηq1,ηq1,η,α,s

operators from Eq. (B26),
for |δk| ≤ Λ and can be written as

Lb̂†δk+ηq1,Q,η,α,s
L−1 =

∑
Q′η′β

[D (L)]Q′η′β,Qηα b̂
†
−δk+η′q1,Q′,η′,β,s

, (B27)

where the representation matrix is given by

[D (L)]Q′η′β,Qηα = δQ′,Qδη′,ηδβ,α. (B28)

We stress the fact that the action of this operator is only defined for b̂†δk+ηq1,Q,η,α,s
, where Q = ηq1, as shown

schematically in Fig. 5a. If instead we chose to formulate our problem in terms of the b̂† operators of Eq. (A20),
δk+ηq1 and −δk+ηq1 need to be brought in the first MBZ by using Eq. (A13). This however results in a more
complicated, yet equivalent form of the action of L on the b̂† operators, which, for completeness, we include
below. Defining Θ to be the angle between δk and ηq1 measured in the clockwise direction, we must have

Lb̂†δk+ηq2,ηq2,η,α,s
L−1 = b̂†−δk+ηq1,ηq1,η,α,s

0 ≤ Θ < π/3,
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FIG. 5. The action of the low-energy symmetry of the projected Dirac cone Hamiltonian HD. In panel (a), we illustrate the
action of the L transformation defined in Eq. (B27) on the b̂†δk+q1,q1,+,α,s

operators from Eq. (B26) (here, we focus on valley
η = +). More specifically, L maps the vector k = δk + q1 from inside the first MBZ (shown in dotted lines) to the vector
k′ = −δk + q1, which lies outside the first MBZ. Alternatively, in panel (b) we show that the action of L can alternatively be
defined on the b̂†k,Q,η,α,s operators from Eq. (A20), for which k lies inside the first MBZ. According to Eq. (B29), when the
angle Θ between δk and q1 obeys π ≤ Θ < 4π/3, the operator L maps the momentum k = δk + q1 to k′ = −δk + q2, both of
which lie in the first MBZ. We note that the resulting momenta k′ in panels (a) and (b) are identical, up to a reciprocal moiré
lattice vector.

Lb̂†δk+ηq2,ηq2,η,α,s
L−1 = b̂†−δk+ηq3,ηq3,η,α,s

π/3 ≤ Θ < 2π/3,

Lb̂†δk+ηq1,ηq1,η,α,s
L−1 = b̂†−δk+ηq3,ηq3,η,α,s

2π/3 ≤ Θ < π,

Lb̂†δk+ηq1,ηq1,η,α,s
L−1 = b̂†−δk+ηq2,ηq2,η,α,s

π ≤ Θ < 4π/3,

Lb̂†δk+ηq3,ηq3,η,α,s
L−1 = b̂†−δk+ηq2,ηq2,η,α,s

4π/3 ≤ Θ < 5π/3,

Lb̂†δk+ηq3,ηq3,η,α,s
L−1 = b̂†−δk+ηq1,ηq1,η,α,s

5π/3 ≤ Θ < 2π. (B29)

The transformations defined in Eq. (B29) are also illustrated schematically in Fig. 5b.

In what follows, we will chose to use the b̂† operators of Eq. (B26) in discussing gauge-fixing in Appendix C 4,
as well as the form factors of the interaction Hamiltonian Appendix F 3 a. Note however, that we will always be
able to return to the more symmetrical b̂† of Eq. (A20) by simply using Bloch periodicity in Eq. (A13).
The properties of the L operator can be discussed from the action given in Eq. (B27). It represents an anticom-
muting symmetry of the projected Dirac Hamiltonian, obeying {HD, L} = 0. In addition, it also satisfies the
following relations

L2 = 1, [L,C2z] = 0, [L, T ] = 0, [L,C] = 0. (B30)

Finally, we note that L maps δk + ηq1 to −δk + ηq1, two momentum points which are not related by any
crystalline symmetry. Therefore, L represents an emerging effective low-energy symmetry of ĤD or of any low-
energy Hamiltonian with a π Berry phase (i.e. which contains only odd terms in the low-energy momentum δk).
Moreover, the L operator can be combined with the crystalline C2z symmetry to afford a δk-preserving (non-
crystalline) transformation whose action is defined on the operators b̂†δk+ηq1,Q,η,α,s

for |δk| ≤ Λ and Q = ηq1

by

C2zLb̂
†
δk+ηq1,Q,η,α,s

(C2zL)
−1

=
∑

Q′η′β

[D (L)]Q′η′β,Qηα b̂
†
δk+η′q1,Q′,η′,β,s

, (B31)

where the representation matrix is given by

[D (C2zL)]Q′η′β,Qηα = δQ′,−Qδη′,−η (σx)βα . (B32)

The operator C2zL is an anticommuting symmetry of HD, {C2zL,HD} = 0, and obeys (C2zL) = 1.
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2. Symmetries in the U 6= 0 case

1. Discrete symmetries. The introduction of a perpendicular displacement field breaks the C2x and mz symmetries
of TSTG. At the same time, C2z, C3z, and T remain good symmetries of Ĥ0 and their representation matrices
do not change.

2. U (2)×U (2) spin-charge rotation symmetry. Following the introduction of U 6= 0, the two valleys of TSTG do
remain decoupled. However, the two fermion flavors couple together breaking the initial global [U (2)×U (2)]ĉ×
[U (2)×U (2)]b̂ symmetry into U (2)×U (2). The 8 generators of this symmetry are given by

Ŝab =
∑
α,η
s,s′

∑
k

(τa)ηη(sb)ss′

 ∑
Q∈Q0

ĉ†k,Q,η,α,sĉk,Q,η,α,s′ +
∑

Q∈Qη

b̂†k,Q,η,α,sb̂k,Q,η,α,s′

 (B33)

where a = 0, z and b = 0, x, y, z. In addition, we have defined τa and sa (a = 0, x, y, z) to be the 2× 2 identity
and Pauli matrices in the valley and spin spaces, respectively.

3. Combined particle-hole transformations. Compared to the U = 0 case, the introduction of a perpendicular dis-
placement field breaks both the commuting mirror mz symmetry, as well as the anticommuting C2xP symmetry.
The displacement field Hamiltonian defined in Eq. (A18) anticommutes with mz, but commutes with C2xP{

mz, ĤU

}
=
[
C2xP, ĤU

]
= 0, (B34)

which represents the opposite situation to the TBG and Dirac cone Hamiltonians, for which{
C2xP, ĤTBG + ĤD

}
=
[
mz, ĤTBG + ĤD

]
. (B35)

However, combining mz with C2xP affords an anticommuting symmetry of Ĥ0 in the U 6= 0 case, obeying{
mzC2xP, Ĥ0

}
= 0. (B36)

The action of mzC2xP is given by

(mzC2xP ) ĉ†k,Q,η,α,s (mzC2xP )
−1

=
∑

Q′η′β

[
Dĉ (mzC2xP )

]
Q′η′β,Qηα

ĉ†−C2xk,Q′,η′,β,s
,

(mzC2xP ) b̂†k,Q,η,α,s (mzC2xP )
−1

=
∑

Q′η′β

[
Db̂ (mzC2xP )

]
Q′η′β,Qηα

b̂†−C2xk,Q′,η′,β,s
,

(B37)

with the representation matrices[
Dĉ (mzC2xP )

]
Q′η′β,Qηα

= δQ′,−C2xQδη′,η (σx)βα ζQ,[
Db̂ (mzC2xP )

]
Q′η′β,Qηα

= −δQ′,−C2xQδη′,η (σx)βα ζQ.
(B38)

where ζQ = ±1 for Q ∈ Q±, respectively. As in the U = 0 case, the combined PH transformation satisfies
(mzC2xP )

2
= 1.

4. Chiral symmetries. The TSTG Hamiltonian Ĥ0 defined in Eq. (A14) has chiral symmetry for the same parameter
choices as ĤTBG, namely {

mzC, Ĥ0

}
= 0 if w0 = 0,{

mzC
′, Ĥ0

}
= 0 if w1 = 0.

(B39)

Appendix C: Gauge-fixing of the single-particle spectrum

The symmetries presented in Appendix B yield certain relations between the eigenstates of the single-particle
Hamiltonian Ĥ0. These relations are crucial in deriving the enhanced continuous symmetries of the interacting TSTG
Hamiltonian in Appendix G. We here present the gauge-fixing conventions that will be used throughout the paper:
they will prove instrumental for obtaining an explicit form of the projected interaction Hamiltonian in Appendix F.
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1. Sewing matrices

To keep the discussion general, we will denote the wave functions uf̂Qα;nη (k) to be the single-particle eigenstates
of the Hamiltonian Ĥf̂ , where f̂

† = b̂† for Ĥf̂ = ĤD and f̂† = ĉ† for Ĥf̂ = ĤTBG (see Appendix A2). Moreover,

for the sake of brevity, we will consider the wave function uf̂Qα;nη (k) as a column vector uf̂nη (k) in the space of
indices {Q, α}. Furthermore, when a representation matrix D (g) of an operation g defined in Eq. (B1) acts on
a wave function uf̂nη′ (k), we denote the resulting wave function in valley η for short as

∑
η′ [D(g)]ηη′ u

f̂
nη′ (k), the

components of which are given by
∑

Q′βη′ [D (g)]Qαη,Q′βη′ u
f̂
Q′β;nη′ (k). Namely, we suppress the indices {Q, α} of the

representation matrix D (g) to streamline notation.
When g is a symmetry operator satisfying

[
Ĥf̂ , g

]
= 0 (or

{
Ĥf̂ , g

}
= 0), if uf̂nη′(k) is an eigenstate wave function

at momentum k, the wave function
∑
η′

[
Df̂ (g)

]
ηη′

uf̂nη′ (k) (an additional complex conjugation is needed if g is anti-

unitary) must also be an eigenstate wave function at momentum gk at the same (or opposite) single-particle energy.
This allows us to define a sewing matrix corresponding to the symmetry operator g and the eigenstates uf̂nη′(k)∑

η′

[
Df̂ (g)

]
ηη′

uf̂nη′ (k) =
∑
mη′

[
Bg
f̂

(k)
]
mη′,nη

uf̂mη′ (gk) . (C1)

In the absence of a displacement field the single-particle Hamiltonian can be decoupled into two commuting terms.
Therefore, we can gauge-fix the wave functions of ĤTBG and ĤD separately. In the energy band basis of ĤTBG and
ĤD, a symmetry g acts as

gĉ†k,n,η′,sg
−1 =

∑
m,η

[Bgĉ (k)]
mη,nη′

ĉ†gk,m,η,s,

gb̂†k,n,η′,sg
−1 =

∑
m,η

[
Bg
b̂

(k)
]
mη,nη′

b̂†gk,m,η,s.
(C2)

2. Gauge-fixing the mirror-symmetric operators

For the mirror-symmetric operators ĉ†k,n,η,s, the gauge-fixing was discussed at length in Refs. [37, 86]. We will
only summarize the results here and refer the reader to Refs. [37, 86] for complete proofs. All sewing matrices are
closed within each pair of bands n = ±nB for any nB ≥ 1. Therefore, within each pair of PH-symmetric bands
with band indices n = ±nB , we will use ζa and τa (a = 0, x, y, z) to denote the identity and Pauli matrices in the
energy band n = ±nB and the valley spaces, respectively. For all the symmetries that leave k invariant, the following
k-independent gauge-fixings will be adopted in this paper

BC2zT
ĉ (k) = ζ0τ0 BC2zP

ĉ (k) = ζyτy BCĉ (k) = ζyτz Bmzĉ (k) = ζ0τ0 (C3)

where the sewing matrix of the chiral symmetry operator is only applicable in the first chiral limit, when w0 = 0.
Additionally, we can further fix the relative gauge between wave functions at momenta k and −k by fixing the sewing
matrices of C2z and P .

BC2z

ĉ (k) =

{
ζ0τx k 6= kMM

−ζ0τx k = kMM

BTĉ (k) =

{
ζ0τx k 6= kMM

−ζ0τx k = kMM

BPĉ (k) =

{
−iζyτz k 6= kMM

iζyτz k = kMM

, (C4)

where kMM
denotes one of the three equivalent MM points in the MBZ (as shown in Fig. 1b). The reason for the

additional minus sign of the sewing matrix BPĉ (k) at k = kMM
was explain in Ref. [37]: the sewing matrix BPĉ (k)

must have additional minus signs at an odd number of the four P -invariant momenta due to the odd topological
winding number of the n = ±1 bands protected by C2zT . Because the transformations C2zT and C2zP have been
gauge-fixed in a k-independent manner in Eq. (C3), the sewing matrices BC2z

ĉ and BTĉ also have additional minus
signs at k = kMM

.
In addition to the gauge-fixing conditions given above, we fix the relative sign between the single-particle wave

functions uĉ+,η (k) and uĉ−,η (k) imposing [37]

lim
q→0

∣∣∣u†ĉnη (k + q)uĉnη (k)− u†ĉ−nη (k + q)uĉ−nη (k)
∣∣∣ = 0. (C5)
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3. The Chern band basis for the mirror-symmetric operators

For the future discussion of the many-body states, we also introduce the Chern band basis [28, 29, 37, 86] within
the lowest two bands in each valley-spin flavor η = ±, as defined in Refs. [37, 86]. Under the gauge-fixings of Eqs. (C3)
and (C5), the Chern band basis operators are defined by

d̂†k,eY ,η,s =
1√
2

(
ĉ†k,+1,η,s + ieY ĉ

†
k,−1,η,s

)
(C6)

where eY = ±1. As proven in Refs. [37, 86], the operators d̂†k,eY ,η,s for k ∈ MBZ and fixed eY , η, and s corresponds
to a Chern band carrying Chern number eY .

4. Gauge-fixing the mirror-antisymmetric operators

For the mirror-antisymmetric operators b̂†k,n,η,s, we will focus on the C2z, T , and C symmetries, which are compatible
with a crystalline lattice, as well as on the low-energy emerging symmetry L, which is not. Note that we will not
consider the second chiral transformation C ′, as it is equivalent to C up to a valley-charge rotation, as shown in
Appendix B 1. For each valley η, we will restrict ourselves to the projected bands corresponding to n = ±1, as well as
to k ∈ Aiη, as defined in Eq. (A19). Similarly to the discussion surrounding Eq. (B27) however, we will temporarily
allow k to be outside of the first MBZ, and instead consider the points k = δk + ηq1, where |δk| ≤ Λ.

The action of the symmetry operation g on the momentum k can be defined straight-forwardly in the case of the
crystalline symmetries: for g = C2z or g = T , gk = −k, while for g = C, gk = k. In the case of the emerging
symmetry g = L, we must have that g (δk + ηq1) = −δk+ηq1, where |δk| ≤ Λ. In what follows, we will parameterize
the sewing matrices according to δk and adopt the following shorthand notation[

Bg
b̂

(δk)
]
mη,nη′

≡
[
Bg
b̂

(δk + ηq1)
]
mη,nη′

(C7)

for a given transformation g. For example, using the shorthand notation, the action of the L transformation reads

Lb̂†δk+η′q1,n,η′,s
L−1 =

∑
m,η

[
Bg
b̂

(δk)
]
mη,nη′

b̂†−δk+ηq1,m,η,s
. (C8)

As in the case of the ĉ†k,n,η,s operators, the sewing matrices are closed within the n = ±nB bands subspace (for any
integer nB > 0). We will therefore use ζa and τa (a = 0, x, y, z) to denote the identity and Pauli matrices in the
energy band n = ±nB and the valley spaces, respectively.

We start by fixing the sewing matrices for the δk-preserving transformations in a δk-independent way. The sewing
matrix for C2zT can be chosen to be

BC2zT

b̂
(δk) = ζ0τ0. (C9)

At the same time, the sewing matrix for the first chiral symmetry must have the form[
BC
b̂

(δk)
]
mη,nη′

= δη,η′δ−m,ne
iφC
n,η′ , (C10)

where φCn,η′ represents a phase dependent on the band and valley. Because {C,C2zT} = 0 and C2 = 1, the sewing
matrix for C must satisfy the requirements

BC
b̂

(δk)BC2zT
ĉ (δk) = −BC2zT

ĉ (δk)B∗C
b̂

(δk) and BC
b̂

(δk)BC
b̂

(δk) = 1. (C11)

We are therefore free to choose BC
b̂

(δk) = ζyτz, as in the mirror-symmetric sector. Finally, the transformation C2zL

must have a sewing matrix of the form[
BC2zL

b̂
(δk)

]
mη,nη′

= δ−η,η′δ−m,ne
iφ
C2zL

n,η′ , (C12)

which owing to {C2zL,C} = 0, [C2zL,C2zT ] = 0, and (C2zL)
2

= 1 must obey

BC
b̂

(δk)BC2zL

b̂
(δk) = −BC2zL

b̂
(δk)BC

b̂
(δk) (C13)
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BC2zT

b̂
(δk)B∗C2zL

b̂
(δk) = BC2zL

b̂
(δk)BC2zT

b̂
(δk) (C14)

BC2zL

b̂
(δk)BC2zL

b̂
(δk) = 1, (C15)

implying that BC2zL

b̂
(δk) = ζyτy, as in the mirror-symmetric case for C2zP .

Having fixed the sewing matrices for the δk-preserving transformation, we now consider whether δk-independent
sewing matrices can be found for any of the non-δk-preserving symmetries, C2z, T , and L[

BC2z

b̂
(δk)

]
mη,nη′

= δ−η,η′δm,ne
iφ
C2z
n,η′ ,[

BT
b̂

(δk)
]
mη,nη′

= δ−η,η′δm,ne
iφT
n,η′ ,[

BL
b̂

(δk)
]
mη,nη′

= δη,η′δ−m,ne
iφL
n,η′ .

(C16)

As we are interested in a δk-independent gauge-fixing, we will temporarily suppress the δk parameter of the sewing
matrices. To be compatible with the gauge-fixing of the sewing matrices BC2zL

b̂
(δk) and BC2zT

b̂
(δk), we must have

that

BC2z

b̂
BT
b̂

= BT
b̂
B∗C2z

b̂
= ζ0τ0, (C17)

BC2z

b̂
BL
b̂

= ζyτy. (C18)

We first try to fix the sewing matrices corresponding to T and C2z which satisfy

BT
b̂
B∗T
b̂

= BC2z

b̂
BC2z

b̂
= 1, (C19)

because T 2 = C2
2z = 1. Additionally, the commutation relations [C2zT, T ] = [C2zT,C2z] = 0 together with Eq. (C9)

imply that the sewing matrices of T and C2z must be real. On the other hand, [T,C] = {C2z, C} = 0 and so

BT
b̂
B∗C
b̂
−BC

b̂
BT
b̂

= BC2z

b̂
BC
b̂

+BC
b̂
BC2z

b̂
= 0. (C20)

The only way Eqs. (C17), (C19) and (C20) can be satisfied is if BC2z

b̂
= BT

b̂
= ζ0τx. However, this choice is

incompatible with the commutation relations [C2zL, T ] = [C2zL,C2z] = 0, which would require the δk-independent
sewing matrices of C2z and T to commute with BC2zL

b̂
= ζyτy. Therefore, we conclude that the sewing matrices

BC2z

b̂
(δk) and BT

b̂
(δk) have to be δk-dependent.

Alternatively, it would have been impossible to gauge-fix BL
b̂

(δk) first in a δk-independent manner, as that would
have implied a δk-independent sewing matrix for C2z, leading to another contradiction. Hence, the only symmetry
transformations for which we can choose δk-independent sewing matrices are C2zT , C2zL, C, and mz for which the
sewing matrices are given by

BC2zT

b̂
(δk) = ζ0τ0 BC2zL

b̂
(δk) = ζyτy BC

b̂
(δk) = ζyτz Bmz

b̂
(δk) = −ζ0τ0, (C21)

where C is an anticommuting symmetry of the Dirac Hamiltonian for all interlayer hoppings w0, w1.

Appendix D: Approximations of the single-particle spectrum

This appendix details the various approximations for the single-particle spectrum of TSTG that are mentioned in
Section IV. We first introduce a modified tripod model (similar to the one derived in Ref. [3]) in order to qualitatively
understand the band structure of TSTG near the KM points for U 6= 0. This simplified tripod model paves the road
toward deriving various quantitative k-dependent perturbation schemes for the low-energy single-particle Hamiltonian
of TSTG in the presence of displacement field. These will ultimately allow us to obtain the single-particle eigenstates
of TSTG analytically in terms of the single-particle eigenstates of ĤTBG.

1. A tripod model of TSTG with displacement field

To gain a better understanding of how the TBG Hamiltonian ĤTBG is influenced by the coupling with the Dirac
cone Hamiltonian ĤD in the presence of a displacement field (U 6= 0), it is instructive to consider a simple model in
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conjunction with a series of analytically tractable approximations. For this purpose, we focus on the η = + valley near
the KM point (located at k = q1) and employ a modified tripod model [3]. This is equivalent to considering only four
Q-points in the Q± sublattices, namely Q+ = {q1} and Q− = {2q1,q1 + q2,q1 + q3}. We write the single-particle
eigenstates as

|Ψ (k)〉 =
∑
α

[
3∑
i=0

(
ψi,α (k) ĉ†k,Qi,+,α,s

)
+ ψD,α (k) b̂†k,Q0,+,α,s

]
|0〉 , (D1)

where we have denoted Qi = q1 + qi for i = 1, 2, 3 and Q0 = q1. The first-quantized Hamiltonian acting on the
ten-dimensional spinor ΨT (k) =

(
ψT0 (k) , ψT1 (k) , ψT2 (k) , ψT3 (k) , ψTD (k)

)
is given by

HTri =


δk · σ T ′1 T ′2 T ′3

U
2 1

T ′1 (δk− q1) · σ 0 0 0
T ′2 0 (δk− q2) · σ 0 0
T ′3 0 0 (δk− q3) · σ 0
U
2 1 0 0 0 δk · σ

 , (D2)

with δk = k − q1 and T ′i = Ti
√

2 (for i = 1, 2, 3). As required from Eq. (A18), the displacement field only couples
the Dirac cone and the TBG fermions at Q0. In what follows, we will suppress the momentum k variable of the two-
and ten-dimensional spinors. For an eigenstate Ψ of energy E, we must have

δk · σψ0 +

3∑
j=1

T ′jψj +
U

2
ψD = Eψ0 (D3)

T ′iψ0 + (δk− qi) · σψi = Eψi (D4)
U

2
ψ0 + δk · σψD = EψD (D5)

Using Eqs. (D4) and (D5), we can eliminate ψD and ψi by writing them in terms of ψ0 as

ψD =
E + δk · σ
E2 − δk2

U

2
ψ0

ψi =
E + (δk− qi) · σ
E2 − (δk− qi)

2 T
′
iψ0

(D6)

and cast Eq. (D3) in the form

δk · σψ0 +

3∑
j=1

T ′j
[E + (δk− qj) · σ]

E2 − (δk− qj)
2 T ′jψ0 +

U2

4

E + δk · σ
E2 − δk2

ψ0 = Eψ0. (D7)

We are interested in the low-energy solutions of Eq. (D7) near theKM point and therefore we must have |δk| ∼ |E| � 1.
The denominator of the second term in Eq. (D7) can thus be expanded as

1

E2 − (δk− qi)
2 =

−1

1− (E2 − δk2 + 2δk · qi)
= −1− 2δk · qi +O

(
|δk|2

)
, (D8)

leading to

3∑
j=1

T ′j
[E + (δk− qj) · σ]

E2 − (δk− qj)
2 T ′j = −

3∑
j=1

T ′j [E + δk · σ − qj · σ − (qi · σ) (δk · qi)]T ′j +O
(
|δk|2

)
= −3

(
w′20 + w′21

)
E − 3w′20 δk · σ + 3

(
w′20 − w′21

)
δk · σ +O

(
|δk|2

)
,

(D9)

where for simplicity we have defined the rescaled hopping parameters w′0 = w0

√
2 and w′1 = w1

√
2. This allows us to

simplify Eq. (D7) into [(
1− 3w′21

)
δk · σ − E

(
3w′20 + 3w′21 + 1

)
+
U2

4

E + δk · σ
E2 − δk2

+O
(
|δk|2

)]
ψ0 = 0,{[

U2

4
+
(
1− 3w′21

) (
E2 − δk2

)]
δk · σ − E

[(
3w′20 + 3w′21 + 1

) (
E2 − δk2

)
− U2

4

]
+O

(
|δk|4

)}
ψ0 = 0

(D10)
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where E2 − δk2 6= 0. This eigenvalue equation has non-trivial solutions for ψ0 only if[
U2

4
+
(
1− 3w′21

) (
E2 − δk2

)]
δk = ±E

[(
3w′20 + 3w′21 + 1

) (
E2 − δk2

)
− U2

4

]
, (D11)

which leads to the following four-band dispersion relation:

E = ±
δk
(
3w′20 + 2

)
±
√

9δk2 (w′20 + 2w′21 )
2

+ U2 (3w′20 + 3w′21 + 1)

2 (3w′20 + 3w′21 + 1)
. (D12)

By expanding Eq. (D12) in δk to linear order, one can see that the displacement field splits the two Dirac cones (one
stemming from ĤTBG and the other one, from ĤD) away from zero

E = ±
δk
(
3w′20 + 2

)
2 (3w′20 + 3w′21 + 1)

± U

2
√

3w′20 + 3w′21 + 1
. (D13)

In Figs. 3 and 4, we compare the low-energy spectrum obtained from Eq. (D12) with the one computed by numerical
diagonalizing Ĥ0 with a large number of Q points. This simplified tripod model is seen to predict the appropriate
qualitative features of the single-particle energy spectrum near the KM point. Moreover, in the limit U = 0, Eq. (D12)
reduces to the high-velocity Dirac cone spectrum (E = ±δk) and the TBG tripod approximation spectrum of Ref. [3]
(with the tunneling amplitudes rescalled by a factor of

√
2)

E = ±
δk
(
1− 3w′21

)
(3w′20 + 3w′21 + 1)

. (D14)

Finally, we note that a similar tripod model exists at the K ′M point in valley η = +, but because the Dirac cone
bands are much higher in energy in this region of the MBZ, the effects of HD can be ignored for the low-energy
physics. Therefore, a tripod model for TSTG near the K ′M point in valley η = + is entirely equivalent to the tripod
model introduced for ordinary TBG [3].

2. Single-particle spectrum in the presence of displacement field

Having developed an intuition for the effect of the displacement field coupling on the TSTG single-particle spectrum,
we now turn toward more quantitative perturbation schemes. As we are ultimately interested in the low-energy physics
of TSTG, one approach would be to first consider the single-particle spectrum of the full TSTG Hamiltonian from
Eq. (A14) and then project into its low-energy eigenstates. In our case, however, a better approach is to consider the
TBG Hamiltonian of Eq. (A15) projected into its flat bands and then hybridize it with the high-velocity Dirac cone
in the presence of displacement field.

a. Perturbative effect of the displacement field

We assume that w0 ≤ 0.8w1, which implies the existence of a sizable gap between the active bands (n = ±1) and
the passive bands of the TBG Hamiltonian: in particular, the active band bandwidth ω is much smaller that the
gap [36]. The approach of starting from the projected TBG single-particle Hamiltonian (henceforth denoted without
a hat)

HTBG =
∑
|n|=1

∑
η,s

∑
k∈MBZ

εĉn,η (k) ĉ†k,n,η,sĉk,n,η,s, (D15)

rather than the unprojected one is justified by using perturbation theory arguments. For the experimentally relevant
values of the displacement field [130] (corresponding to U < 0.3), we can develop a perturbation theory in U for the
hybridization between the two mirror-symmetry sectors. The hybridization between the TBG active bands and the
Dirac cone Hamiltonian happens already at first order in U , while mixing between the TBG active and passive bands
happens only as a second order virtual process in U .

The low-energy physics of TSTG is therefore governed by the Hamiltonian

H0 = HTBG + ĤD + ĤU , (D16)
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FIG. 6. Various approximations used to compute the single-particle low-energy spectrum of TSTG in the presence of displace-
ment field in the non-chiral limit. For each row, the first panel denotes the unapproximated spectrum (computed as in Figs. 3a
and 3c), while the second panel denotes the spectrum obtained numerically from the 8 × 8 Hamiltonian in Eq. (D21). In the
third to fifth panels, we always approximate the spectrum away from the Dirac points of the MBZ using Eq. (D28). For the
energy spectrum near the Dirac points, we employ the first, second, and third approximations of Appendix D2 c in the third,
fourth, and fifth panels, respectively. We use a different cutoff Λ for the each value of the displacement field U , namely Λ = 0.1,
0.175, and 0.2 for U = 0.1, 0.2, and 0.3, respectively. For each approximation, the bands are colored according to the overlap
between the corresponding approximated and unapproximated single-particle wave functions. This overlap is always greater
than 0.99. The values of the TSTG parameters are given as an inset for each plot.

where the projected TBG Hamiltonian was given by Eq. (D15), while the Dirac cone and displacement field contri-
butions are respectively given by

ĤD =
∑

k∈MBZ
η,s

∑
α,β

3∑
i=1

[
hD,ηηqi

(k)
]
αβ
b̂†k,ηqi,η,α,sb̂k,ηqi,η,β,s, (D17)

and

ĤU =
U

2

∑
k∈MBZ
η,s

∑
α

3∑
i=1

∑
|n|=1

(
uĉηqiα;nη (k) b̂†k,ηqi,η,α,sĉk,n,η,s + u∗ĉηqiα;nη (k) ĉ†k,n,η,sb̂k,ηqi,η,α,s

)
. (D18)

Among other things, we checked numerically the validity of the TSTG Hamiltonian from Eq. (D16) in the first two
columns of Figs. 6 and 7. The low-energy TSTG spectrum obtained from Eq. (D16) and the one obtained from
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FIG. 7. Various approximations used to compute the single-particle low-energy spectrum of TSTG in the presence of displace-
ment field in the chiral limit. The meaning of the panels is the same as in Fig. 6. All approximate models perform remarkably
well, with no differences from the exact Hamiltonian visible by eye.

Ĥ0 = ĤTBG + ĤD + ĤU (i.e. starting from the unprojected TBG Hamiltonian) are consistent both in energy and
eigenstates to an error smaller than 1%. Moreover, as discussed in Appendix A1, we have restricted to only three
plane-wave states (i.e. Q points) in the expression of ĤD. However, the eigenstates of the TBG active bands are
evaluated in all generality on the Q± sublattice using the approximations discussed in Ref. [36].

For the sake of making this appendix self-contained, we briefly review the notation provided in Section IVC. The
single-particle eigenstates of H0 for valley η and spin s labeled by m are given by

|Ψη,s,m (k)〉 =

 3∑
i=1

∑
α

(
ψη,s,mi,α (k) b̂†k,ηqi,η,α,s

)
+
∑
|n|=1

φη,s,mn (k) ĉ†k,n,η,s

 |0〉 . (D19)

In Eq. (D19), we have defined three two-component spinors on the sublattice space, ψη,s,mi (k) (for i = 1, 2, 3),
corresponding to the three Dirac points in the MBZ, and the two-component spinor in the space of the n = ±1 active
TBG bands, φη,s,m (k). We have also employed m to label the different bands of H0. The single-particle eigenvalue
equation

H0 |Ψη,s,m (k)〉 = Eη,m (k) |Ψη,s,m (k)〉 (D20)

can be written in matrix form as
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Eη (k) U†η1 (k) U†η2 (k) U†η3 (k)

Uη1 (k) hD,ηηq1
(k) 0 0

Uη2 (k) 0 hD,ηηq2
(k) 0

Uη3 (k) 0 0 hD,ηηq3
(k)




φη,s,m (k)

ψη,s,m1 (k)

ψη,s,m2 (k)

ψη,s,m3 (k)

 = Eη,m (k)


φη,s,m (k)

ψη,s,m1 (k)

ψη,s,m2 (k)

ψη,s,m3 (k)

 (D21)

where we have defined the 2× 2 diagonal energy matrix for the TBG active bands in valley η

Eη (k) =

(
εĉ+1,η (k) 0

0 εĉ−1,η (k)

)
(D22)

as well as the displacement field 2× 2 perturbation matrices

[Uηi (k)]α,n =
U

2
uĉηqiα;nη (k) , (D23)

for i = 1, 2, 3. In what follows, we will temporarily suppress the m, η, and s indices as well as the momentum k
parameter. In addition, we will introduce the following shorthand notation

hi ≡ hD,ηηqi (k) , (D24)

for i = 1, 2, 3.
There are two regions of interest pertaining to the low-energy eigenstates of H0. When k is away from the Dirac

points, i.e. k ∈ Cη, where we have defined the region

Cη = MBZ \
3⋃
i=1

Aiη (D25)

in terms of the regions Aiη introduced in Eq. (A19), the hybridization between the eigenstates of ĤD and the active
bands of ĤTBG is suppressed by the difference in energy. One can therefore avoid solving the 8 × 8 Hamiltonian in
Eq. (D21) and employ perturbation theory to find the effect of the displacement on the active bands in this region.
When k is near any of the three Dirac point of ĤD in the MBZ, i.e. k ∈ Aiη, we can no longer ignore the effects of
the Dirac cone bands and more refined approximation methods needs to be developed. We will now explore these two
cases and attempt to solve the Hamiltonian in Eq. (D21).

b. Perturbation theory away from the Dirac points

When k ∈ Cη, the hybridization between the active TBG bands and the Dirac cone bands is suppressed by the
difference in energy. We can therefore eliminate the ψi spinors of Eq. (D21) by writing them in terms of the φ spinors.

ψi = (E − hi)−1
Uiφ. (D26)

This allows us to formulate our problem as a non-linear eigenvalue equation for φ which simply reads[
E +

3∑
i=1

U†i (E − hi)−1
Ui

]
φ = Eφ. (D27)

We expect the energy of the active bands to be only slightly changed by the hybridization with the Dirac cone
Hamiltonian and have |E| � |hi| = |k− ηqi|. For the low-energy bands of H0 we can thus ignore the E dependence
in the denominator of the second term of Eq. (D27). This affords a major simplification as the Hamiltonians hi
can be readily inverted. Introducing the notation σ+ = (σx, σy) and σ− = (−σx, σy) to denote the Pauli vector
corresponding to the two valleys η = ±, the eigenvalue equation becomes

(
εĉ+1,η (k) + Bη+1,+1 (k) Bη+1,−1 (k)

Bη−1,+1 (k) εĉ−1,η (k) + Bη−1,−1 (k)

)(
φη,s,m+1 (k)
φη,s,m−1 (k)

)
= Eη,m (k)

(
φη,s,m+1 (k)
φη,s,m−1 (k)

)
, (D28)
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FIG. 8. The amplitude of the mirror-symmetric operators in the lowest-energy single-particle eigenstates of TSTG. We consider
the overlap between the unapproximated (|ψ〉) and approximated (|ψapp〉) wave functions corresponding to the lowest-energy
conduction band for valley η = + in the MBZ of TSTG. The approximated wave function |ψapp〉 is obtained directly from |ψ〉
by setting the amplitudes of all mirror-antisymmetric creation operators to zero (i.e. |ψapp〉 = 1+mz

2
|ψ〉). The boundaries of

the Ai+ zones (for i = 1, 2, 3) are shown with red dashed lines. We consider the nonchiral limit (w0/w1 = 0.8, w1 = 0.408)
in panels a)-c) and the chiral limit (w0 = 0, w1 = 0.408) in panels d)-f). The values of the displacement field are U = 0.1 in
panels a) and d), U = 0.2 in panels b) and e), and U = 0.3 panels in c) and f). Away from the high-velocity Dirac points in
the TSTG MBZ, the weight of the mirror-antisymmetric operators in the low-energy eigenstates is negligible.

where we have defined the displacement field perturbation matrix

Bηnm (k) =
U2

4

3∑
i=1

∑
α,β

u∗ĉηqiα;nη (k) [(k− ηqi) · ση]αβ u
ĉ
ηqiβ;mη (k)

|k− ηqi|2
. (D29)

As Eq. (D28) is only a 2× 2 matrix, it can be readily diagonalized to obtain the low-energy band dispersion

Eη,±1 =
εĉ+1,η + εĉ−1,η + Bη+1,+1 + Bη−1,−1 ±

√[
εĉ+1,η − εĉ−1,η + Bη+1,+1 − B

η
−1,−1

]2
+ Bη−1,+1B

η
+1,−1

2
. (D30)

The corresponding eigenstates can be found from the φ spinors and Eq. (D26). We prove the validity of the approxi-
mation from Eq. (D28) numerically in the third, fourth and fifth columns of Figs. 6 and 7 in both the non-chiral and
(first) chiral limits, respectively. However, a further approximation can be used: as shown in Fig. 8, the weight of the
mirror-antisymmetric operators is small enough in this region of the MBZ to approximate ψi ≈ 0. The effects of the
displacement field for k ∈ Cη can then be captured by the following effective Hamiltonian which is second order in
the displacement field

H
(ĉ)
U =

∑
|n|,|m|=1

η,s

∑
k∈Cη

Bηnm (k) ĉ†k,n,η,sĉk,n′,η,s. (D31)
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Finally, we note that if U2/|k− ηqi| � ω for i = 1, 2, 3, then the active TBG band states will not be significantly
perturbed by the displacement field.

c. Perturbation theory near the Dirac points

Near any of the three Dirac points in the MBZ, the hybridization between the TBG active bands and the folded
Dirac cone Hamiltonian is significant. If k is near the j-th Dirac point in the MBZ (i.e. k ∈ Ajη), we will have |hj | � 1,
but |hi| ≈

√
3, for i 6= j. This implies that while the hybridization between the TBG active bands and the j-th Dirac

Hamiltonian will be relevant, there will be little to no mixing with the Dirac cone bands stemming from the other two
Dirac points of ĤD in the MBZ. We can therefore approximate ψi ≈ 0 for i 6= j and write the single-particle TSTG
wave functions as

|Ψη,s,m (k)〉 =

[∑
α

(
ψη,s,mj,α (k) b̂†k,ηqj ,η,α,s

)
+
∑
n=±1

φη,s,mn (k) ĉ†k,n,η,s

]
|0〉 . (D32)

reflecting the four bands per spin per valley which are relevant for the low-energy of TSTG, namely the two TBG
active bands and two Dirac cone bands. The eigenvalue equation H0 |Ψη,s,m (k)〉 = Eη,m (k) |Ψη,s,m (k)〉 can then be
written as a 4× 4 matrix eigenvalue equationEη (k) U†ηj (k)

Uηj (k) hD,ηηqj (k)

φη,s,m (k)

ψη,s,mj (k)

 = Eη,m (k)

φη,s,m (k)

ψη,s,mj (k)

 . (D33)

We will call this the first approximation. While this Hamiltonian cannot be solved analytically, we can employ a series
of approximations to make the computations tractable. We begin by eliminating the φ spinor to obtain a nonlinear
eigenvalue equation for ψj hj + Uj

E − εĉ++εĉ−
2 +

εĉ+−ε
ĉ
−

2 σz(
E − εĉ++εĉ−

2

)2

−
(
εĉ+−εĉ−

2

)2U
†
j

ψj = Eψj , (D34)

where we have suppressed the valley index and made the dependence on the k parameter implicit. We then ignore
the term εĉ++εĉ−

2 to first order in E (an approximation which is exact in the chiral limit, where εĉ− = −εĉ+), obtaininghj + Uj
E +

εĉ+−ε
ĉ
−

2 σz

E2 −
(
εĉ+−εĉ−

2

)2U
†
j

ψj = Eψj . (D35)

The solution to Eq. (D35) can be found as an asymptotic series in the small parameter εĉ+−ε
ĉ
−

2 : to first order in εĉ+−ε
ĉ
−

2 ,
the nonlinear eigenvalue equation becomeshj + Uj

E +
εĉ+−ε

ĉ
−

2 σz

E2
U†j

ψj = Eψj , (D36)

an approximation which we call the second approximation. Solving this equation is still impossible to do analytically,
so we take one further simplification and ignore the εĉ+−ε

ĉ
−

2 term altogether to afford the third approximation[
hj +

UjU
†
j

E

]
ψj = Eψj . (D37)

Since hj is a 2 × 2 matrix, finding the energies of this equation essentially amounts to solving for the roots of a
fourth-order polynomial, a cumbersome task to do analytically. In the chiral limit however, under the gauge-fixing of
Eq. (C3), we have that ∑

β

(σz)αβ [Uj ]β,n = η
∑
n′

[Uj ]α,n′ (σy)n′n , (D38)



39

which translates to σzUjU
†
j σz = UjU

†
j , implying that the term UjU

†
j is essentially a 2× 2 diagonal matrix

UjU
†
j =

(
A 0
0 D

)
, (D39)

where A and D are real functions of k, obtained from the moiré eigenstates. The characteristic equation of the third
approximation

det

[
E2 − Ehj −

(
A 0
0 D

)]
= 0 (D40)

is equivalent to finding the roots of a second order polynomial in E2, an equation which can be readily solved
analytically.

We note that the validity of Eq. (D33) (i.e. the first approximation), as well as of the second and third approxima-
tions was checked numerically in Figs. 6 and 7 in the third, fourth and fifth columns, respectively. In what follows,
we will restrict to the first approximation from Eq. (D33) and write the corresponding projected displacement field
Hamiltonian as

H
(b̂ĉ)
U =

U

2

3∑
i=1

∑
k∈Aiη

∑
|n|=1
α

(
uĉηqiα;nη (k) b̂†k,ηqi,η,α,sĉk,n,η,s + h.c.

)
. (D41)

In terms of the energy band basis, the projected displacement field Hamiltonian reads

H
(b̂ĉ)
U =

∑
|n|,|m|=1

η,s

∑
|δk|≤Λ

[
Nη
mn (δk) b̂†δk+ηq1,m,η,s

ĉδk+ηq1,n,η,s + h.c.
]
, (D42)

where we have defined the displacement field overlap matrix

Nη
mn (δk) =

∑
α

u∗b̂ηq1α;mη (δk + ηq1)uĉηq1α;nη (δk + ηq1) . (D43)

For simplicity, in Eq. (D42) we have used the periodicity of the energy band fermion operators Eq. (A24), as well as
the embedding relation of the single-particle wave functions Eq. (A23) to bring together the zones Aiη (for i = 1, 2, 3)
into a full circular region around the ηq1 point.

Appendix E: Gauge-fixing the single-particle projected Hamiltonian

The discrete symmetries of the single-particle Hamiltonian from Appendix B together with the gauge-fixing condi-
tions in Appendix C directly determine the explicit forms of the various terms of the single-particle projected TSTG
Hamiltonian. The goal of this appendix is to parameterize the various terms appearing in the single-particle projected
TSTG Hamiltonian from Eq. (32) of Section IVD. The resulting parameterizations will be used for the unambiguous
identification of the continuous symmetry groups of the projected many-body TSTG Hamiltonian in Appendix G,
together with their corresponding generators.

In what follows, we will find it useful to employ a series of conventions pertaining to the energy band operators ĉ†k,n,η,s
and b̂†k,n,η,s. For both mirror-symmetry sector operators, we will use ζa (with a = 0, x, y, z) to denote the identity
and Pauli matrices in the energy band subspace (restricting to the pair of bands n = ±1), τa (with a = 0, x, y, z) for
the valley subspace, and sa (with a = 0, x, y, z) for the spin subspace.

1. Parameterized forms of the single-particle projected TBG and Dirac Hamiltonian

Independent of the gauge chosen in Appendix C, the form of the Hamiltonians HTBG and HD in the energy band
basis is constrained by the symmetries discussed in Appendix B. For the sake of completeness, we will list the resulting
parameterizations here.
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a. Parameterization of HTBG

The energies of the TBG active bands εĉn,η (k) can be viewed as the elements of a k-dependent matrix which we
dub the TBG energy band matrix and which is diagonal in the valley and energy band subspaces. The (unprojected)
TBG Hamiltonian from Eq. (A15) is symmetric under the combined C2zP transformation{

ĤTBG, C2zP
}

= 0. (E1)

This implies that εĉn,η (k) = −εĉ−n,−η (k) and so the TBG energy band matrix can be parameterized as

εĉn,η (k) =
[
ζzτ0

]
nn,ηη

βĉ0 (k) +
[
ζ0τz

]
nn,ηη

βĉ1 (k) , (E2)

or in matrix notation

εĉ (k) = ζzτ0βĉ0 (k) + ζ0τzβĉ1 (k) . (E3)

The functions βĉ0,1 (k) in Eq. (E3) represent real function whose exact form depends on the TBG band energies

βĉ0 (k) =
εĉ+1,+ (k) + εĉ+1,− (k)− εĉ−1,+ (k)− εĉ−1,− (k)

4

βĉ1 (k) =
εĉ+1,+ (k)− εĉ+1,− (k) + εĉ−1,+ (k)− εĉ−1,− (k)

4

(E4)

Additionally, as a consequence of the C2z commuting symmetry of ĤTBG, the TBG energy bands obey εĉn,η (k) =

−εĉn,−η (−k), which further imposes that

βĉ0 (k) = βĉ0 (−k) and βĉ1 (k) = −βĉ1 (−k) . (E5)

In the (first) chiral limit (w0 = 0), the projected TBG Hamiltonian is also symmetric under the chiral transformation

{HTBG, C} = 0. (E6)

In this case, the band energies additionally satisfy εĉn,η (k) = εĉ−n,η (k), and thus βĉ1 (k) = 0. In the chiral limit, the
TBG energy band matrix can be written in the simple form

εĉ (k) = ζzτ0βĉ0 (k) . (E7)

b. Parameterization of HD

Similar to the active bands of HTBG, we can also view the band energies of the projected Dirac Hamiltonian from
Section IVD as the elements of a matrix diagonal in the energy band and valley subspaces. The exact form of the
Dirac energy bands from Eq. (35) allows the following straight-forward parameterization

εb̂n,η (δk) =
[
ζzτ0

]
nn,ηη

|δk|. (E8)

2. Parameterization of the projected displacement field Hamiltonian

As shown in Appendix D, the projected displacement field Hamiltonian has two contributions, H(b̂ĉ)
U and H

(ĉ)
U ,

which are defined in disjoint regions of the MBZ, one close and one away from the Dirac points, and which are linear
and quadratic in the displacement field parameter U , respectively. We will now discuss the parameterized forms for
each contribution.
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a. Parameterized form of H(b̂ĉ)
U

The first contribution to the displacement field Hamiltonian from Eq. (D42) is written in terms of the energy band
basis operators of the TBG and Dirac cone sectors and the displacement field overlap matrix N (δk), whose exact
form was given in Eq. (D43). Without explicitly solving for N (δk), we will now analyze the constraints imposed on
its form by the symmetries of TSTG presented in Appendix B in conjunction with the k-independent sewing matrices
fixed in Appendix C.

1. The antiunitary C2zT symmetry of TSTG has the same k-independent sewing matrix for both the TBG and
Dirac cone eigenstates, i.e. BC2zT

b̂
= BC2zT

ĉ = ζ0τ0. Using the shorthand notation from Eq. (C1), we obtain

Nη
mn (δk) =

U

2

∑
α

u∗b̂ηq1α;mη (δk + ηq1)uĉηq1α;nη (δk + ηq1)

=
U

2

∑
α,η1,η2

[
u†b̂mη1 (δk + η1q1)

[
D† (C2zT )

]
ηη1

]
ηq1α

[
[D (C2zT )]ηη2 u

ĉ
nη2 (δk + η2q1)

]
ηq1α

=
U

2

∑
α,η1,η2
m′,n′

[
B†C2zT

b̂

]
mη,m′η1

ub̂η1q1α;m′η1 (δk + η1q1)u∗ĉη2q1α;n′η2 (δk + η2q1)
[
BC2zT
ĉ

]
n′η2,nη

, (E9)

Equivalently, Eq. (E9) can be written in matrix form as

N (δk) =
(
ζ0τ0

)
N∗ (δk)

(
ζ0τ0

)
= N∗ (δk) . (E10)

proving that the displacement field overlap matrix is real.

2. In the (first) chiral limit, both the TBG and the Dirac cone Hamiltonians are symmetric under the chiral
transformation C, which has the k-independent sewing matrices BC

b̂
= BCĉ = ζyτz. Correspondingly, the

displacement field overlap matrix obeys

Nη
mn (δk) =

U

2

∑
α

ub̂∗ηq1α;mη (δk + ηq1)uĉηq1α;nη (δk + ηq1)

=
U

2

∑
α,η1,η2

[
u†b̂mη1 (δk + η1q1)

[
D† (C)

]
ηη1

]
ηq1α

[
[D (C)]ηη2 u

ĉ
nη2 (δk + η2q1)

]
ηq1α

=
U

2

∑
α,η1,η2
m′,n′

[
B†C
b̂

]
mη,m′η1

u∗b̂η1q1α;m′η1 (δk + η1q1)uĉη2q1α;n′η2 (δk + η2q1)
[
BCĉ
]
n′η2,nη

, (E11)

which in matrix form is equivalent to

N (δk) = (ζyτz)N (δk) (ζyτz) . (E12)

The displacement field overlap matrix is diagonal in valley subspace and, as a consequence of Eq. (E10), its elements
are real. It can therefore always be parameterized as

N (δk) =
∑

b∈{0,z}

ζ0τ bλ
(b̂ĉ)
0b (δk) + ζxτ bλ

(b̂ĉ)
xb (δk) + iζyτ bλ

(b̂ĉ)
yb (δk) + ζzτ bλ

(b̂ĉ)
zb (δk) , (E13)

where λ(b̂ĉ)
ab (δk) (for a = 0, x, y, z and b = 0, z) represent generic real functions, whose exact form depends on the

single-particle wave functions of the TBG and Dirac Hamiltonians. Additionally, in the (first) chiral limit, due to the

constraint imposed by Eq. (E12), λ(b̂ĉ)
ab (δk) = 0 for a = x, z and b = 0, z and so the displacement field overlap matrix

must be given by

N (δk) = ζ0τ0λ
(b̂ĉ)
00 (δk) + iζyτ0λ

(b̂ĉ)
y0 (δk) + ζ0τzλ

(b̂ĉ)
0z (δk) + iζyτzλ

(b̂ĉ)
yz (δk) . (E14)
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b. Parameterized form of H(ĉ)
U

The matrix B (k) given in Eq. (D29) governs the second-order contribution to the displacement field projected
Hamiltonian, away from the Dirac points. Here, we derive its parameterized form in a similar fashion to N (δk).

1. Owing to the antiunitary C2zT symmetry of the TBG Hamiltonian with the k-independent sewing matrix
BC2zT
ĉ = ζ0τ0, the matrix B (k) obeys

Bηnm (k) =
U2

4

3∑
i=1

∑
α,β

u∗ĉηqiα;nη (k) [(k− ηqi) · ση]αβ u
ĉ
ηqiβ;mη (k)

|k− ηqi|2

=
U2

4

3∑
i=1

∑
α,β
α′,β′

u∗ĉηqiα′;nη (k) (σx)α′α [(k− ηqi) · ση]
∗
αβ (σx)ββ′ u

ĉ
ηqiβ′;mη

(k)

|k− ηqi|2

=
U2

4

3∑
i=1

∑
α,β
η1,η2

[
u†ĉnη1 (k)

[
D† (C2zT )

]
ηη1

]
ηqiα

[(k− ηqi) · ση]
∗
αβ

[
[D (C2zT )]ηη2 u

ĉ
mη2 (k)

]
ηqiβ

|k− ηqi|2

=
U2

4

3∑
i=1

∑
α,β
η1,η2
m′,n′

[
B†C2zT
ĉ

]
mη,m′η1

uĉη1qiα;m′η1
(k) [(k− ηqi) · ση]

∗
αβ u

∗ĉ
η2qiβ;n′η2

(k)

|k− ηqi|2
[
BC2zT
ĉ

]
n′η2,nη

(E15)

Equivalently, Eq. (E15) can be written in matrix form as

B (k) =
(
ζ0τ0

)
B∗ (k)

(
ζ0τ0

)
= B∗ (k) . (E16)

proving that the B (k) matrix is real.

2. In the (first) chiral limit, the TBG Hamiltonian is symmetric under the chiral transformation C, which has the
k-independent sewing matrix BCĉ = ζyτz. Correspondingly, the displacement field perturbation matrix satisfies

Bηnm (k) =
U2

4

3∑
i=1

∑
α,β

u∗ĉηqiα;nη (k) [(k− ηqi) · ση]αβ u
ĉ
ηqiβ;mη (k)

|k− ηqi|2

=− U2

4

3∑
i=1

∑
α,β
α′,β′

u∗ĉηqiα′;nη (k) (σz)α′α [(k− ηqi) · ση]αβ (σz)ββ′ u
ĉ
ηqiβ′;mη

(k)

|k− ηqi|2

=− U2

4

3∑
i=1

∑
α,β
η1,η2

[
u†ĉnη1 (k)

[
D† (C)

]
ηη1

]
ηqiα

[(k− ηqi) · ση]αβ

[
[D (C)]ηη2 u

ĉ
mη2 (k)

]
ηqiβ

|k− ηqi|2

=− U2

4

3∑
i=1

∑
α,β
η1,η2
m′,n′

[
B†Cĉ

]
mη,m′η1

u∗ĉη1qiα;m′η1
(k) [(k− ηqi) · ση]αβ u

ĉ
η2qiβ;n′η2

(k)

|k− ηqi|2
[
BCĉ
]
n′η2,nη

(E17)

where we have used Eq. (B19). We can rewrite Eq. (E17) in an equivalent matrix form

B (k) = − (ζyτz)B (k) (ζyτz) . (E18)

The displacement field perturbation matrix is diagonal in valley subspace and, as a consequence of Eq. (E16), its
elements are real. It can therefore always be parameterized as

B (k) =
∑

b∈{0,z}

ζ0τ bλ
(ĉ)
0b (k) + ζxτ bλ

(ĉ)
xb (k) + iζyτ bλ

(ĉ)
yb (k) + ζzτ bλ

(ĉ)
zb (k) , (E19)
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where λ(ĉ)
ab (k) (for a = 0, x, y, z and b = 0, z) represent generic real functions, whose exact form depends on the

single-particle wave functions of the TBG Hamiltonian. Additionally, in the (first) chiral limit, due to the constraint
imposed by Eq. (E18), λ(ĉ)

ab (k) = 0 for a = 0, y and b = 0, z and so the displacement field perturbation matrix must
be given by

B (k) = ζxτ0λ
(ĉ)
x0 (k) + ζzτ0λ

(ĉ)
z0 (k) + ζxτzλ(ĉ)

xz (k) + ζzτzλ(ĉ)
zz (k) . (E20)

Appendix F: Interaction Hamiltonian

In this appendix, we derive the TSTG interaction Hamiltonian. First, we show how the electron-electron repulsion
Hamiltonian can be written using the fermion operators defined on the moiré lattice in Eqs. (A11) and (A12) of
Appendix A. We then project the TSTG interaction Hamiltonian in the eigenstates of the single-particle projected
Hamiltonian from Eq. (32), namely the active TBG bands and the low-energy Dirac cone modes. We also show that
the projected TSTG Hamiltonian includes an effective Hartree-Fock potential arising from the TSTG bands that
have been projected away. Finally, we gauge-fix the terms of the projected interaction Hamiltonian according to the
symmetries of Appendix B and the gauge-fixing conditions of Appendix C.

1. Derivation of the interaction Hamiltonian

Here, we derive the low-energy interaction Hamiltonian governing electron-electron repulsion in TSTG [37]. We start
by writing the Fourier transformation of the electron density operators in terms of the low-energy fermion operators
from Eq. (A3) defined on the moiré lattice. Finally, we simplify the expression of the interaction Hamiltonian by
employing the mirror-symmetric and antisymmetric fermion operators.

a. Interaction Hamiltonian in the moiré lattice

For each graphene layer l in TSTG, we define the real-space electron operators,

â†R,α,s,l =
1√
N

∑
p∈BZl

e−ip·Rθ,l(R+tα)â†p,α,s,l, (F1)

where R denotes the single-layer graphene unit cell coordinates, α represents the sublattice index, s is the electron
spin, and tα is the displacement of the atoms belonging to sublattice α from the origin of the unit cell. Moreover, in
Eq. (F1), BZl is the BZ of the graphene layer l, while Rθ,l denotes the rotation matrix corresponding to the twist in
layer l relative to the coordinates chosen in Fig. 1. Note that in this notation, an atom belonging to layer l having
the unit cell coordinate R and belonging to the sublattice α is located at position Rθ,l (R + tα). As discussed in
Section II and Appendix A, the low-energy physics is dominated by the electron states near the Dirac points ±Kl,
allowing us to approximate

â†R,α,s,l ≈
1√
N

∑
η

∑
k∈MBZ

∑
Q∈Qη,l

e−i(ηKl+k−Q)·Rθ,l(R+tα)â†k,Q,η,α,s,l, (F2)

where N represents the number of single-layer graphene unit cells and we have used the same notation as in Appendix
A 1. The approximation in Eq. (F2) consists in imposing a finite cut-off for the number of points in the Qη,l sublattice,
such that we always have |Q| � Kl. Using the real-space operators â†R,α,s,l, we can write the interaction Hamiltonian
as

ĤI =
1

2

∑
R,R′

∑
α,s,l
α′,s′,l′

V l,l
′
[Rθ,l (R + tα)−Rθ,l′ (R′ + tα′)] :â†R,α,s,lâR,α,s,lâ

†
R′,α′,s′,l′ âR′,α′,s′,l′ :, (F3)

where V l,l
′
(r) represents the screened Coulomb interaction potential between two fermions located in layers l and l′

which are separated by the vector r in the plane of the single-layer graphene. In Eq. (F3), we have used :(. . . ): to
denote normal-ordering for the fermion operators. The Coulomb interaction potential obeys the symmetry condition

V l,l
′
(r) = V l

′,l (r) . (F4)
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Defining the Fourier transformation of V l,l
′
(r) over the MBZ,

V l,l
′
(r) =

1

Ωtot

∑
G∈Q0

∑
q∈MBZ

e−(q+G)·rV l,l
′
(q + G) , (F5)

where Ωtot represents the total area of the TSTG sample, we will only require that V l,l
′
(q + G) decays with |G| and

becomes negligible when |G| ∼ |Kl| (so that the interaction is diagonal in valley index), but will otherwise leave it
unspecified for the moment, to keep the discussion general.

We now introduce the interaction Hamiltonian in momentum space

ĤI =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ
l,l′

V l,l
′
(q + G) :ρlG+qρ

l′

−G−q: . (F6)

In Eq. (F6) the density operator for layer l is defined as

ρlG+q =
∑
R,α,s

ei(G+q)·Rθ,l(R+tα)â†R,α,s,lâR,α,s,l, (F7)

and can be re-expressed with the aid of Eq. (F2) as

ρlG+q =
1

N

∑
R,α,s

ei(G+q)·Rθ,l(R+tα)
∑
η,η′

∑
k,k′∈MBZ
Q∈Qη,l
Q′∈Qη′,l

e−i[(η−η
′)Kl+k−k′−Q+Q′]·Rθ,l(R+tα)â†k,Q,η,α,s,lâk′,Q′,η′,α,s,l =

=
∑
η,η′
α,s

∑
k,k′∈MBZ
Q∈Qη,l
Q′∈Qη′,l

∑
P

â†k,Q,η,α,s,lâk′,Q′,η′,α,s,l′e
iP·tαδ(η′−η)Kl−k+k′+Q−Q′+G+q,Rθ,lP,

(F8)

where the sum indexed by P is over the reciprocal lattice of single-layer graphene. In evaluating the summation over
the single-layer graphene real-space lattice vectors R, we have employed the Poisson resummation formula

1

N

∑
R

eik·Rθ,lR =
∑
P

δk,Rθ,lP. (F9)

We now turn our attention toward simplifying the summations in Eq. (F8). For this, we consider two possibilities:

1. η = η′ (intra-valley scattering). In this case, the momentum-conserving δ-function reads

δ−k+k′+Q−Q′+G+q,Rθ,lP. (F10)

Since the interaction potential Vq+G only contributes for |G| � |Kl|, we have that
|−k + k′ + Q−Q′ + G + q| � |Kl|, and so the only non-vanishing terms in the sum from Eq. (F8)
corresponds to P = 0.

2. η = −η′ (inter-valley scattering). In this case, the momentum-conserving δ-function becomes

δ−k+k′+Q−Q′+G+q,Rθ,lP−2ηKl
. (F11)

However, because 2ηKl is not a reciprocal vector of the graphene layer l (whereas Rθ,lP is), |P− 2ηKl| ∼ |Kl|,
and so the δ-function always vanishes.

Imposing η = η′ and P = 0 in Eq. (F8), we find that the density operators simplify

ρlG+q =
∑
η,α,s

∑
k,k′∈MBZ
Q,Q′∈Qη,l

â†k,Q,η,α,s,lâk′,Q′,η,α,s,lδ−k+k′+Q−Q′+G+q,0

=
∑
η,α,s

∑
k∈MBZ
Q∈Qη,l

â†k,Q,η,α,s,lâk−q,G+Q,η,α,s,l,
(F12)
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FIG. 9. Gated TSTG experimental setup. We assume that the TSTG sample is located midway between two gate plates which
are separated by a distance ξ. The three graphene monolayers are colored according to the twist angle (see also Fig. 1) and
are located at heights zl (for l = 1, 2, 3) measured from the middle between the two gates (for this geometry, z2 = 0). For the
typical experimental setups, the distance between adjacent graphene monolayers (|z3 − z2| = |z2 − z1| ∼ 3Å) is much smaller
than the gate separation (ξ ∼ 10 nm).

where we have employed the Bloch periodicity from Eq. (A5).
In what follows, we will find it easier to recast the interaction Hamiltonian in Eq. (F6) into a more symmetrical

form. We will therefore introduce the Fourier transformation of the electron density relative to the filling of single-
layer graphene at the charge neutral point, for which

〈
â†k,Q,η,α,s,lâk−q,G+Q,η,α,s,l

〉
= 1

2δq,0δG,0. The interaction
Hamiltonian then becomes

ĤI =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ
l,l′

V l,l
′
(q + G) δρlG+qδρ

l′

−G−q, (F13)

where the relative electron density operators are defined as

δρlG+q =
∑
η,α,s

∑
k∈MBZ
Q∈Qη,l

(
â†k,Q,η,α,s,lâk−q,G+Q,η,α,s,l −

1

2
δq,0δG,0

)
. (F14)

Note that the expressions in Eqs. (F6) and (F13) are equivalent up to a redefinition of the chemical potential.

b. Coulomb repulsion potential

To make further approximations and simplify the expression of ĤI , we need to discuss the exact form of the
interaction potential between the electrons of TSTG. Here we assume that the TSTG sample is situated midway
between a top gate plate and a bottom gate plate which are a distance ξ away from each other in the ẑ direction (see
Fig. 9). We also assume that the height of the graphene layer l is given by zl (as measured from the middle between
the two gates). The potential between two electrons in two layers l and l′, separated by a distance r in the plane of
the single layer graphene is given by summing over an infinite series of image charges

V l,l
′
(r) =

e2

ε

∞∑
n=−∞

(−1)
n√

r2 + [nξ + zl − zl′ (−1)
n
]
2
, (F15)

with ε being the dielectric constant, e denoting the charge of an electron, and r = |r|. Note that the potential obeys
the symmetry condition from Eq. (F4), as it can be seen by changing the dummy summation variable n→ n (−1)

n.
The separation between the top and bottom plates ξ is usually around 10 nm. On the other hand the zl is of the
same order as the inter-layer separation, which is approximately 3Å. It is therefore justified to ignore the zl and zl′
dependence of the interaction potential and approximate

V l,l
′
(r) ≈ e2

ε

∞∑
n=−∞

(−1)
n√

r2 + (nξ)
2
. (F16)
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which affords a significant simplification, since the interaction potential is now independent on the layer indices.
We will henceforth suppress the layer indices and write the interaction potential as V l,l

′
(r) = V (r), whose Fourier

transformation reads [37]

V (q) =
2πe2

ε

tanh (ξq/2)

q
, (F17)

where q = |q|.

c. Decoupling the interaction Hamiltonian in mirror symmetry sectors

As a consequence of the mz symmetry of TSTG in the absence of displacement field, it is useful to construct relative
density operators corresponding to the mirror-symmetric and mirror-antisymmetric operators of TSTG, which are
respectively given by

δρĉG+q =
∑
η,α,s

∑
k∈MBZ
Q∈Q±

(
ĉ†k,Q,η,α,sĉk−q,G+Q,η,α,s −

1

2
δq,0δG,0

)
,

δρb̂G+q =
∑
η,α,s

∑
k∈MBZ
Q∈Qη

(
b̂†k,Q,η,α,sb̂k−q,G+Q,η,α,s −

1

2
δq,0δG,0

)
.

(F18)

Because

δρĉG+q + δρb̂G+q =

3∑
l=1

δρlG+q, (F19)

we can use the independence of the interaction potential V l,l
′
(r) on the layer indices l and l′ in Eq. (F13) and show

that, in a similar fashion to the one-particle Hamiltonian, it also decouples into three different terms

ĤI =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

V (q + G)
[
δρb̂G+q + δρĉG+q

] [
δρb̂−G−q + δρĉ−G−q

]
= ĤI,TBG + ĤI,D + ĤI,TBG−D.

(F20)

The first term in Eq. (F20)

ĤI,TBG =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

V (q + G) δρĉG+qδρ
ĉ
−G−q (F21)

represents the interaction Hamiltonian that appears in ordinary TBG (see for example Ref. [37]),

ĤI,D =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

V (q + G) δρb̂G+qδρ
b̂
−G−q (F22)

denotes the interaction between the Dirac cone fermions, while

ĤI,TBG−D =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

V (q + G)
[
δρĉG+qδρ

b̂
−G−q + δρb̂G+qδρ

ĉ
−G−q

]
(F23)

is the interaction between the Dirac cone fermions and the TBG electrons.

2. Projecting the interaction Hamiltonian

Having derived the TSTG interaction Hamiltonian, we now turn our attention towards projecting it in the low-
energy modes of the single-particle Hamiltonian Ĥ0. This is done by writing the relative density operators in Eq. (F20)
in the energy band basis defined in Appendix A2 and then restricting the summation to the active TBG bands and
the Dirac cone eigenstates with an energy lower than the gap between the TBG active and passive bands.
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a. Projected density operators

To keep the discussion general, we will consider a generic energy band basis given by the operators f̂†k,n,η,s with the

corresponding single-particle wave function uf̂Qα;nη (k). The wave functions uf̂Qα;nη (k) are defined on a certain Qf̂ ,η
sublattice (which might depend on the valley η) and obey the following completeness relation

δG,0δα,β =
∑

Q∈Qf̂,η
n

u∗f̂Q−Gβ;nη (k)uf̂Qα;nη (k) , (F24)

for G ∈ Q0. Eq. (F24) can be used to obtain the operators f̂†k,Q,α,η,s in terms of the energy band basis as

f̂†k,Q,α,η,s =
∑
n

u∗f̂Qα;nη f̂
†
k,n,η,s. (F25)

Using Eq. (F25), the relative density operators corresponding to species f̂†k,Q,α,η,s become

δρf̂G+q =
∑
η,α,s

∑
k∈MBZ

∑
Q∈Qf̂,η

∑
m,n

u∗f̂Q−Gα;mη (k + q)uf̂Qα;nη (k)

(
f̂†k+q,m,η,sf̂k,n,η,s −

1

2
δq,0δm,n

)
. (F26)

Defining the form factor matrix

M f̂ ,η
mn (k,q + G) =

∑
α

∑
Q∈Qf̂,η

u∗f̂Q−Gα;mη (k + q)uf̂Qα;nη (k) =
∑
α

∑
Q∈Qf̂,η

u∗f̂Qα;mη (k + q + G)uf̂Qα;nη (k) , (F27)

the expression in Eq. (F26) can be further simplified into

δρf̂G+q =
∑
η,s
m,n

∑
k∈MBZ

M f̂ ,η
mn (k,q + G)

(
f̂†k+q,m,η,sf̂k,n,η,s −

1

2
δq,0δm,n

)
. (F28)

It is worth mentioning that owing to the embedding relation Eq. (A23), the form factor matrix is periodic in the first
argument, i.e.

M f̂ ,η
mn (k,q + G) = M f̂ ,η

mn (k + G0,q + G) , (F29)

for any G0 ∈ Q0. Also, following straight-forwardly from their definition, the form factors obey the Hermiticity
condition [37]

M f̂ ,η
mn (k,q + G) = M∗f̂ ,ηnm (k− q,−q−G) . (F30)

For the mirror-symmetric operators ĉ†k,n,η,s, the projected density operators are obtained by restricting to the active
bands (i.e. |n|, |m| = 1), yielding

δρĉG+q =
∑
η,s

∑
k∈MBZ

∑
|n|,|m|=1

M ĉ,η
mn (k,q + G)

(
ĉ†k+q,m,η,sĉk,n,η,s −

1

2
δq,0δm,n

)
. (F31)

The overbar used in the definition of δρĉG+q emphasizes the fact that it represents the projected, rather the unprojected
relative density operator.

On the other hand, for the mirror-antisymmetric operators b̂†k,n,η,s, the summation is also constrained to include
only the energy band basis operators with momenta k ∈ Aη, where

Aη =

3⋃
i=1

Aiη, (F32)

in addition to requiring |n|, |m| = 1. The corresponding projected density operators are given by

δρb̂G+q =
∑
η,s

∑
k

k,k+q∈Aη

∑
|n|,|m|=1

M b̂,η
mn (k,q + G)

(
b̂†k+q,m,η,sb̂k,n,η,s −

1

2
δq,0δm,n

)
(F33)
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However, due to the periodicity of the energy band operators from Eq. (A24) and the periodicity of the form factors
from Eq. (F29), we can change the disconnected region of summation for the k momenta to an equivalent connected
region which is defined by the conditions |k− ηq1|, |k + q− ηq1| ≤ Λ. To make this restricted summation more
apparent, we can rewrite the density operators in terms of δk = k− ηq1 as

δρb̂G+q =
∑
η,s

∑
δk

∑
|n|,|m|=1

M b̂,η
mn (δk + ηq1,q + G)

(
b̂†δk+ηq1+q,m,η,sb̂δk+ηq1,n,η,s −

1

2
δq,0δm,n

)
. (F34)

In Eq. (F34) and in the following equations involving the form factors of the mirror-antisymmetryic operators, the
constraint |δk|, |δk + q| ≤ Λ is implicit.

b. Projected interaction Hamiltonian

Following the notation of Ref. [37], we define a set of new operators

Of̂q,G =
√
V (q + G) δρf̂G+q, (F35)

for f̂† = b̂†, ĉ†. This allows us to write the projected interaction Hamiltonian HI in terms of the Oĉq,G and Ob̂q,G
operators, corresponding to the original mirror-symmetric and mirror-anitsymmetric operators. It simply reads

HI =
1

2Ωtot

∑
q∈MBZ

∑
G∈Q0

(
Oĉ−q,−G +Ob̂−q,−G

)(
Oĉq,G +Ob̂q,G

)
. (F36)

Because O†f̂q,G = Of̂−q,−G, for any f̂ = b̂, ĉ, the projected interaction Hamiltonian from Eq. (F36) is a positive
semidefinite operator.

It is important to note that only the Dirac fermions in a fraction of the MBZ (i.e. b̂†k,n,η,s with n = ±1 and
k ∈ Aη) contribute to the interaction Hamiltonian. Using this fact, the expression for HI given in Eq. (F36) can be
further simplified. To see this, one must first note that the projected relative density operators corresponding to the
mirror-antisymmetric sector can be equivalently written as

δρb̂G+q =
∑
η,α,s

∑
i,j

∑
k∈Aiη

(k−q)∈Ajη

(
b̂†k,ηqi,α,s,lb̂k−q,ηqj ,α,s,lδG,η(qj−qi) −

1

2
δq,0δG,0

)
, (F37)

where we are summing over those values of k in MBZ where both k and k − q lie inside the zone Aη. For q inside
the first MBZ, for a small enough momentum cutoff Λ, it follows that δρb̂G+q vanishes, unless G = 0, a statement
which we prove below.

We start with the conditions k ∈ Aiη and (k− q) ∈ Ajη which imply that

|k− ηqi| ≤ Λ and |k + q− ηqj | ≤ Λ. (F38)

Writing q as

q = (k + q− ηqj)− (k− ηqi) + η (qj − qi) = (k + q− ηqj)− (k− ηqi) + G, (F39)

we can find that its modulus squared is given by

q2 = (k + q− ηqj)2
+ (k− ηqi)2

+G2 + 2G · (k + q− ηqj)− 2G · (k− ηqi)− 2 (k− ηqi) · (k + q− ηqj) . (F40)

Using the following inequalities

2G · (k + q− ηqj) ≥ −2GΛ,

−2G · (k− ηqi) ≥ −2GΛ,

−2 (k− ηqi) · (k + q− ηqj) ≥ −2Λ2,

(F41)

we deduce that

q2 ≥ G2 − 4GΛ− 2Λ2. (F42)
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Given that q ∈ MBZ, q2 ≤ 1 and so Eq. (F42) can only be satisfied if G2− 4GΛ− 2Λ2 ≤ 1, which is trivially satisfied
if G = 0. However, if G is the smallest non-zero reciprocal lattice vector, G =

√
3, the inequality G2−4GΛ−2Λ2 ≤ 1

can only be satisfied for Λ ≥ 2−
√

3. Since we assume the cutoff Λ to be smaller than 0.2 (for typical values of Λ, see
Fig. 8), this leads to a contradiction. We thus find that the projected density operators δρb̂G+q vanish unless G = 0.

In addition, the condition G = 0 implies that we must have |q| . Λ for δρb̂G+q to be non-vanishing. Consequently,
we find that

Ob̂q,G = Ob̂q,0δG,0. (F43)

The projected interaction Hamiltonian can thus be written as

HI = HI,TBG +HI,D +HI,TBG−D, (F44)

where the first term denotes the same projected interaction Hamiltonian that appears in ordinary TBG [37],

HI,TBG =
1

2Ωtot

∑
G∈Q0

∑
q∈MBZ

Oĉ−q,−GO
ĉ
q,G, (F45)

while

HI,D =
1

2Ωtot

∑
q∈MBZ

Ob̂−q,0O
b̂
q,0 (F46)

represents the projected interaction Hamiltonian for the Dirac fermions. Additionally,

HI,TBG−D =
1

2Ωtot

∑
q∈MBZ

(
Oĉ−q,0O

b̂
q,0 +Ob̂−q,0O

ĉ
q,0

)
(F47)

denotes the projected interaction between the TBG and Dirac electrons.

3. Gauge-Fixing the Oĉq,G and Ob̂q,G Operators

The operators Oĉq,G have been introduced in Ref. [37] for TBG, where the procedure used to gauge-fix their form
(through the form factors M ĉ) was also thoroughly explained. Here, we will focus on gauge-fixing the Ob̂q,G operators
(through the form factors M b̂) and briefly summarize the results of the gauge-fixing procedure used in Ref. [37] for
the Oĉq,G operators.

a. Gauge-fixing the M b̂ (k,q + Q) form factors

To fix the exact form of the coefficientsM b̂,η
mn (k,q + G), for |m|, |n| = 1, we impose a series of constraints arising from

the symmetries defined in Appendix B, as well as from the specific gauge choices of Appendix C. More precisely, for
each δk-preserving symmetry with a δk-independent sewing matrix, the form factors will satisfy certain commutation
relations, similarly to the single-particle terms in Appendix E 2. The resulting parameterizations of the form factors
will prove instrumental in deriving the continuous symmetries of the many-body TSTG Hamiltonian in Appendix G.

1. The C2zT symmetry, which has the δk-independent sewing matrix BC2zT

b̂
= ζ0τ0 imposes the real condition.

Namely, we must have that

M b̂,η
mn (δk + ηq1,q + G) =

∑
α

∑
Q∈Qη

u∗b̂Q−Gα;mη (δk + ηq1 + q)ub̂Qα;nη (δk + ηq1)

=
∑

Q∈Qη

∑
α,η1,η2

[
u†b̂mη1 (δk + η1q1 + q)

[
D† (C2zT )

]
ηη1

]
Q−Gα

[
[D (C2zT )]ηη2 u

b̂
nη2 (δk + η2q1)

]
Qα

=
∑

α,η1,η2
m′,n′

[
B†C2zT

b̂

]
mη,m′η1

∑
Q∈Qη1

ub̂Q−Gα;m′η1 (δk + η1q1 + q)u∗b̂Qα;n′η2 (δk + η2q1)
[
BC2zT

b̂

]
n′η2,nη

. (F48)
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It then follows that the form factor matrix elements are real

M b̂,η
mn (δk + ηq1,q + G) =

∑
m′,n′,η′

(
ζ0τ0

)
mη,m′η′

M∗b̂,η
′

m′n′ (δk + η′q1,q + G)
(
ζ0τ0

)
n′η′,nη

= M∗b̂,ηmn (δk + ηq1,q + G) .

(F49)

2. Due to the chiral transformation C, which has the δk-independent sewing matrix BC
b̂

= ζyτz in the pair of
bands n = ±1, we must have

M b̂,η
mn (δk + ηq1,q + G) =

∑
α

∑
Q∈Qη

u∗b̂Q−Gα;mη (δk + ηq1 + q)ub̂Qα;nη (δk + ηq1)

=
∑

Q∈Qη

∑
α,η1,η2

[
u†b̂mη1 (δk + η1q1 + q)

[
D† (C)

]
ηη1

]
Q−Gα

[
[D (C)]ηη2 u

b̂
nη2 (δk + η2q1)

]
Qα

=
∑

α,η1,η2
m′,n′

[
B†C
b̂

]
mη,m′η1

∑
α

∑
Q∈Qη1

u∗b̂Q−Gα;m′η1 (δk + η1q1 + q)ub̂Qα;n′η2 (δk + η2q1)
[
BC
b̂

]
n′η2,nη

, (F50)

which can be rewritten as

M b̂,η
mn (δk + ηq1,q + G) =

∑
m′,n′,η′

(ζyτz)mη,m′η′M
b̂,η′

m′n′ (δk + η′q1,q + G) (ζyτz)n′η′,nη . (F51)

3. Finally, the combination transformation C2zL which has a δk-independent sewing matrix BC2zL

b̂
= ζyτy imposes

the following condition on the form factor matrices

M b̂,η
mn (δk + ηq1,q + G) =

∑
α

∑
Q∈Qη

u∗b̂Q−Gα;mη (δk + ηq1 + q)ub̂Qα;nη (δk + ηq1)

=
∑

Q∈Qη

∑
α,η1,η2

[
u†b̂mη1 (δk + η1q1 + q)

[
D† (C2zL)

]
ηη1

]
Q−Gα

[
[D (C2zL)]ηη2 u

b̂
nη2 (δk + η2q1)

]
Qα

=
∑

α,η1,η2
m′,n′

[
B†C2zL

b̂

]
mη,m′η1

∑
Q∈Qη1

u∗b̂Q−Gα;m′η1 (δk + η1q1 + q)ub̂Qα;n′η2 (δk + η2q1)
[
BC2zL

b̂

]
n′η2,nη

, (F52)

which requires that

M b̂,η
mn (δk + ηq1,q + G) =

∑
m′,n′,η′

(ζyτy)mη,m′η′M
b̂,η′

m′n′ (δk + η′q1,q + G) (ζyτy)n′η′,nη . (F53)

As a direct product of 2× 2 matrices in valley and spin space, we can generically parameterize the form factors as

M b̂,η
mn (δk + ηq1,q + G) =

∑
a∈{0,x,y,z}
d∈{0,z}

(
ζaτd

)
mη,nη

αb̂ad (δk,q + G) , (F54)

where only d = 0, z are allowed sinceM b̂,η
mn (δk + ηq1,q + G) is diagonal in valley space, and αcd (δk,q + G) represent

generic complex functions. At the same time, Eqs. (F49), (F51) and (F53) impose a series of constraints on the form
factors which restrict the number of terms allowed in the parameterization from Eq. (F54). More precisely, the matrix
M b̂ (δk + ηq1,q + G) turns out to be a sum of only two terms

M b̂,η
mn (δk + ηq1,q + G) =

(
ζ0τ0

)
mη,nη

αb̂0 (δk,q + G) + i
(
ζyτ0

)
mη,nη

αb̂1 (δk,q + G) , (F55)

where αj (δk,q + G) (for j = 0, 1) represent two real functions.
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b. Gauge-fixing the M ĉ (k,q + Q) form factors

The gauge-fixing of the form factors for to the mirror-symmetric sector was fully detailed in Ref. [37]. The single-
particle wave functions uĉQα;nη (k) at a given k point can be related by the k-independent sewing matrices of the
combined symmetry operators C2zP and C2zT . The gauge-fixing from Eq. (C3) restrict the form factors to the
following parameterization in the band and valley subspaces [37]

M ĉ (k,q + G) = ζ0τ0αĉ0 (k,q + G) + ζxτzαĉ1 (k,q + G) + iζyτ0αĉ2 (k,q + G) + ζzτzαĉ3 (k,q + G) , (F56)

where αĉj (k,q + G) (for j = 0, 1, 2, 3) are all real function.
Furthermore, in the (first) chiral limit w0 = 0, the single-particle wave functions uĉQα;nη (k) at a given k can

additionally be related by the k-independent sewing matrix of the chiral symmetry operator C. This implies that the
form factors will be further restricted to the parameterization

M ĉ (k,q + G) = ζ0τ0αĉ0 (k,q + G) + iζyτ0αĉ2 (k,q + G) . (F57)

4. Hartree-Fock Potential in the projected interaction Hamiltonian

In Appendix F 2, we have derived the projected interaction Hamiltonian starting from Eq. (F20) without first
normal-ordering. We also noted in Appendix F 1 that the normal-ordered and the non-normal-ordered forms of
the unprojected interaction Hamiltonian only differ by a chemical potential term. Here, we show that the projected
interaction HamiltonianHI is not equivalent to its normal ordered form up to a redefinitation of the chemical potential.
Instead, the projected interaction Hamiltonian is the sum between its normal-ordered form :HI : and a single-particle
Hamiltonian HHF, which can be understood as the electron potential from the remote bands which are projected away

HI =:HI : +HHF + const. (F58)

We will now show that HHF can be thought of as an effective background Hartree-Fock potential. The proof is
similar to the one given in Ref. [37] for TBG. However, because we are dealing with two fermion flavors, we will find it
easier to employ a different notation that treats the single-particle Dirac cone and TBG eigenstates on equal footing.
We let f̂†i denote the creation operator for some TBG or Dirac cone energy band eigenstate (ĉ†k,n,η,s or b̂†k,n,η,s) with
corresponding single-particle energy εi. The momentum, band, valley, spin and fermion flavor are encoded in the
index i, which is chosen such that εi ≤ εj for any i < j. Projecting the TSTG Hamiltonian becomes equivalent to
only considering those fermion operators whose single-particle energy lies within a certain interval.

When written in terms of the new operators, the projected interaction Hamiltonian is given by

HI =
1

2Ωtot

∑
i,j,m,n

N−≤i,j,m,n≤N+

G∈Q0

[
M∗Gij

(
f̂†j f̂i −

1

2
δij

)
MG

mn

(
f̂†mf̂n −

1

2
δmn

)]
. (F59)

where the matrix elementsMG
ij are defined as

MG
ij =

√
V (q + G)M f̂ ,η

mn (k,q + G) δs1,s2δη,η′ , (F60)

where the indices i and j are such that f̂†i = f̂†k+q,m,η,s1
and f̂j = f̂k,n,η′,s2 , G is a reciprocal vector. The projection

in Eq. (F59) is implemented by restricting the fermion indices to lie between N− and N+, which respectively denote
the index of the lowest- and highest-energy single-particle eigenstates included in the projection. We note that the
unprojected interaction Hamiltonian has the same form as Eq. (F59), but without imposing any restrictions on the
fermion indices

ĤI =
1

2Ωtot

∑
i,j,m,n
G∈Q0

[
M∗Gij

(
f̂†j f̂i −

1

2
δij

)
MG

mn

(
f̂†mf̂n −

1

2
δmn

)]
. (F61)

We will now derive the Hartree-Fock contribution arising from ĤI by fully filling all the energy eigenstates indexed
by i, with i ≤ N . The filled states give rise to a mean-field〈

f̂†i f̂j

〉
= Θ (N − i) δij , (F62)
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where Θ (x) is the Heaviside step function. The Hartree term arising from this filling is simply given by

ĤN
H =

1

2Ωtot

∑
i,m,n
G∈Q0

(
M∗Gii MG

mnf̂
†
mf̂n +M∗GmnMG

ii f̂
†
nf̂m

)
Θ (N − i) . (F63)

The mean-field from Eq. (F62) also gives rise to a quadratic Fock contribution

ĤN
F = − 1

2Ωtot

∑
i,m,n
G∈Q0

(
M∗GimMG

inf̂
†
mf̂n +M∗Gni MG

mif̂
†
mf̂n

)
Θ (N − i) . (F64)

We now project the Hartree-Fock contributions arising from the partial filling from Eq. (F62) to the active energy
modes with fermion indices between N− and N+ (i.e. the TSTG eigenstates in which we project the interaction
Hamiltonian). The resulting Hartree and Fock potentials read

HN
H =

1

2Ωtot

∑
i,m,n

N−≤m,n≤N+

G∈Q0

(
M∗Gii MG

mnf̂
†
mf̂n +M∗GmnMG

ii f̂
†
nf̂m

)
Θ (N − i) , (F65)

HN
F = − 1

2Ωtot

∑
i,m,n

N−≤m,n≤N+

G∈Q0

(
M∗GimMG

inf̂
†
mf̂n +M∗GmiMG

nif̂
†
nf̂m

)
Θ (N − i) . (F66)

We now turn our attention to the projected interaction Hamiltonian HI , which can be written as the sum between
its normal-ordered form, a quadratic part and a constant, as seen in Eq. (F58). The quadratic part (which has been
denoted HHF = HI− :HI : in anticipation of the results of this section) can be written (up to a constant term) as

HHF =
1

4Ωtot

∑
i,m,n

N−≤i,m,n≤N+

G∈Q0

[(
M∗Gii MG

mn −M∗GimMG
in

)
f̂†mf̂n +

(
M∗GmnMG

ii −M∗GmiMG
ni

)
f̂†nf̂m

]
. (F67)

Employing Eqs. (F65) and (F66), we find that the quadratic part is indeed an effective background Hartree-Fock
potential arising from the bands that have been projected away, i.e.

HHF =
1

2

[
H
N+

H +H
N+

F −
(
H
N−
H +H

N−
F

)]
, (F68)

thus completing the proof. Finally, we note that the effective Hartree-Fock potential HHF is crucial in proving the
charge-conjugation symmetry of the projected many-body Hamiltonian in Appendix G1.

Appendix G: Symmetries of the projected many-body Hamiltonian

In this appendix, we discuss the symmetries of the many-body TSTG projected HamiltonianH defined in Eq. (56) in
different physically-relevant limits. We commence by showing that H inherits a spatial many-body charge conjugation
symmetry from the single-graphene layers. Next, we show that the many-body TSTG projected Hamiltonian enjoys
enlarged continuous symmetries in various limits of interest. In the absence of displacement field, the fermion flavors
corresponding to the two different mirror-symmetry sectors are decoupled at the single-particle level allowing us to
discuss the continuous symmetries of each flavor independently. We conclude this appendix by showing that a nonzero
displacement field breaks the symmetries of the system to the trivial U (2)×U (2) spin-valley rotation symmetry.

1. Spatial many-body charge conjugation symmetry

The full projected Hamiltonian H = H0 + HI has a spatial many-body charge-conjugation symmetry P, which
ensures that all the physical phenomena are particle-hole symmetric about the charge neutral point. Here, we define
this spatial many-body charge-conjugation symmetry transformation and prove explicitly that, up to a constant, it
leaves the projected TSTG many-body Hamiltonian invariant.
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a. Definition

We define the spatial many-body charge conjugation operation P as the combined antiunitary single-particle trans-
formation

U ≡ mzC2xC2zTP (G1)

followed by an interchange between fermion creation and annihilation operators. Its action on the energy band
operators f̂ = b̂, ĉ

P f̂†k,n,η,sP
−1 =

∑
n′,η′

[
BU
f̂

(k)
]
n′η′,nη

f̂−C2xk,n′,η′,s, P f̂k,n,η,sP−1 =
∑
n′,η′

[
BU
f̂

(k)
]∗
n′η′,nη

f̂†−C2xk,n′,η′,s
. (G2)

The representation matrices for the combined single-particle transformation U obey

Df̂ (U) = Df̂ (C2xP )Df̂ (mz)D
f̂ (C2zT ) , (G3)

and, as required by Eqs. (B2) and (B4) to (B6), are given explicitly by[
Dĉ (U)

]
Q′η′β,Qηα

= δQ′,−C2xQδη′,ηδβ,αζQ,[
Db̂ (U)

]
Q′η′β,Qηα

= −δQ′,−C2xQδη′,ηδβ,αζQ.
(G4)

At the same time, the corresponding sewing matrices can be found from the relation

BU
f̂

(k) = BC2xP

f̂
(k)Bmz

f̂
(k)BC2zT

f̂
(k) , (G5)

which, under the gauge-fixing of Appendix C, can be simplified into

BUĉ (k) = BC2xP
ĉ (k) ,

BU
b̂

(k) = −BC2xP

b̂
(k) .

(G6)

In what follows, we will not explicitly fix the sewing matrices for the U transformation, but note that since C2xP
anticommutes with the single-particle Hamiltonians ĤTBG and ĤD and preserves the valley, the sewing matrices must
have the form [

BU
f̂

(k)
]
n′η′,nη

= δη,η′δ−n,n′e
iφf̂,U
n′η′ (k)

, (G7)

where φf̂ ,Un′η′ (k) are gauge-dependent phases, which we will leave unspecified. We now proceed to show that the various
terms of the many-body projected TSTG Hamiltonian are symmetric under the spatial many-body charge conjugation
symmetry P.

b. Spatial many-body charge conjugation symmetry of HTBG and HD

The single-particle TBG and Dirac cone Hamiltonians anticommute with the antiunitary transformation U , namely{
U , Ĥf̂

}
= 0, (G8)

for f̂ = ĉ, b̂. For the sake of brevity, in Eq. (G8), we have introduced the notation Ĥf̂ = ĤTBG for f̂ = ĉ, and
Ĥf̂ = ĤD for f̂ = b̂. It follows that the single-particle band energies obey

εf̂n,η (k) = −εf̂−n,η (−C2xk) (G9)

The action of the spatial many-body charge conjugation operator P on the projected single-particle contributions
HTBG and HD defined in Eqs. (33) and (34) is then given by

PHf̂P
−1 =

∑
k

∑
|n|=1
η,s

εf̂n,η (k)
∑
n′1,η

′
1

n′2,η
′
2

[
BU
f̂

(k)
]
n′1η
′
1,nη

f̂−C2xk,n′1,η
′
1,s

[
BU
f̂

(k)
]∗
n′2η
′
2,nη

f̂†−C2xk,n′2,η
′
2,s
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= −
∑
k

∑
|n|=1
η,s

εf̂−n,η (−C2xk) f̂−C2xk,−n,η,sf̂
†
−C2xk,−n,η,s

= Hf̂ −
∑
k

∑
|n|=1
η,s

εf̂n,η (k) = Hf̂ , (G10)

thus proving that HTBG and HD are invariant under P.

c. Spatial many-body charge conjugation symmetry of H(b̂ĉ)
U and H(b̂)

U

The displacement field overlap matrix governing the projected displacement field Hamiltonian H(b̂ĉ)
U matrix obeys

Nη
mn (δk) =

U

2

∑
α

ub̂∗ηq1α;mη (kη)uĉηq1α;nη (kη)

=− U

2

∑
α,η1,η2

[
u†b̂mη1 (kη)

[
D†b̂ (U)

]
ηη1

]
ηq1α

[[
Dĉ (U)

]
ηη2

uĉnη2 (kη)
]
ηq1α

=− U

2

∑
α

m′,n′

[
B†U
b̂

(kη)
]
mη,m′η

ub̂ηq1α;m′η (−C2xkη)u∗ĉηq1α;n′η (−C2xkη)
[
BUĉ (kη)

]
n′η,nη

=−
∑
m′,n′

[
B†U
b̂

(kη)
]
mη,m′η

N∗ηm′n′ (−C2xδk)
[
BUĉ (kη)

]
n′η,nη

, (G11)

where kη = δk + ηq1. Rearranging Eq. (G11) we find that∑
m,n

[
BU
b̂

(kη)
]
m′η,mη

Nη
mn (δk)

[
B†Uĉ (kη)

]
nη,n′η

= −N∗ηm′n′ (−C2xδk) . (G12)

Eq. (G12), together with the reality condition Eq. (E10) implies that the projected displacement field Hamiltonian
stays invariant under the spatial many-body charge conjugation transformation, i.e.

PH(b̂ĉ)
U P−1 =

∑
η,s

|n|,|m|=1
|δkη|≤Λ

∑
|n′|,|m′|=1

{[
BU
b̂

(kη)
]
m′η,mη

Nη
mn (δk)

[
B†Uĉ (kη)

]
nη,n′η

b̂−C2xkη,m′,η,sĉ
†
−C2xkη,n′,η,s

+ h.c.

}

=
∑
η,s

|n|,|m|=1
|δk|≤Λ

[
N∗ηmn (−C2xδk) ĉ†−C2xkη,n,η,s

b̂−C2xkη,m,η,s + h.c.
]

= H
(b̂ĉ)
U . (G13)

Similarly to Eq. (G11), the displacement field perturbation matrix obeys

Bηnm (k) =
U2

4

3∑
i=1

∑
α,β

u∗ĉηqiα;nη (k) [(k− ηqi) · ση]αβ u
ĉ
ηqiβ;mη (k)

|k− ηqi|2

=− U2

4

3∑
i=1

∑
α,β
η1,η2

[
u†ĉnη1 (k)

[
D†ĉ (U)

]
ηη1

]
ηq′iα

[(k′ − ηq′i) · ση]
∗
αβ

[[
Dĉ (U)

]
ηη2

uĉmη2 (k)
]
ηq′iβ

|k′ − ηq′i|
2

=− U2

4

3∑
i=1

∑
α,β
m′,n′

[
B†Uĉ (k)

]
mη,m′η

uĉηqiα;m′η (k′) [(k′ − ηqi) · ση]
∗
αβ u

∗ĉ
ηqiβ;n′η (k′)

|k′ − ηqi|2
[
BUĉ (k)

]
n′η,nη

, (G14)

where, for the sake of brevity, we have introduced the notation k′ ≡ −C2xk. Rearranging Eq. (G14) we find that∑
m,n

[
BUĉ (k)

]
m′η,mη

Bηmn (k)
[
B†Uĉ (k)

]
nη,n′η

= −B∗ηm′n′ (−C2xk) . (G15)
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By tracing over the band and valley indices in Eq. (G15), we find that∑
|n|=1
η

Bηnn (k) = −
∑
|n|=1
η

B∗ηnn (−C2xk) . (G16)

Together with the reality condition in Eq. (E16), Eq. (G15) the second-order projected displacement field Hamiltonian
is invariant under the many-body chage conjugation transformation, up to a constant

PH(ĉ)
U P

−1 =
∑
η,s

|n|,|m|=1

∑
k∈Cη

|n′|,|m′|=1

[
BUĉ (k)

]
m′η,mη

Bηmn (k)
[
B†Uĉ (k)

]
nη,n′η

ĉ−C2xk,m′,η,sĉ
†
−C2xk,n′,η,s

= −
∑
η,s

|n|,|m|=1

∑
k∈Cη

B∗ηmn (−C2xk) ĉ−C2xk,m,η,sĉ
†
−C2xk,n,η,s

=
∑
η,s

|n|,|m|=1

∑
k∈Cη

Bηnm (k) ĉ†k,n,η,sĉk,m,η,s −
∑
η,s
|n|=1

∑
k∈Cη

Bηnn (k) = H
(ĉ)
U . (G17)

d. Spatial many-body charge conjugation symmetry of HI

To keep the discussion general, we consider the form factor matrix defined in Eq. (F27) corresponding to a certain
energy band creation operator f̂† = b̂†, ĉ†. As a consequence of the antiunitary single-particle transformation U , the
form factors obey

M f̂ ,η
mn (k,q + G) =

∑
α

∑
Q∈Qf̂,η

u∗f̂Q−Gα;mη (k + q)uf̂Qα;nη (k)

=
∑

Q∈Qf̂,η

∑
α,η1,η2

[
u†f̂mη1 (k + q)

[
D†
f̂

(U)
]
ηη1

]
Q−Gα

[[
Df̂ (U)

]
ηη2

uf̂nη2 (k)

]
Qα

=
∑

α,η1,η2
m′,n′

[
B†U
f̂

(k + q)
]
mη,m′η1

∑
Q∈Qη1

uf̂Q−G′α;m′η1
(k′ + q′)u∗f̂Qα;n′η2

(k′)
[
BU
f̂

(k)
]
n′η2,nη

, (G18)

where for simplicity we have defined k′ ≡ −C2xk, q′ ≡ −C2xq, and G′ ≡ −C2xG. Written in matrix form Eq. (G18)
reads

M f̂ (k,q + G) = B†U
f̂

(k + q)M∗f̂ (k′,q′ + G′)BU
f̂

(k) , (G19)

which after rearranging and using the Hermiticity condition in Eq. (F30) leads to

BU
f̂

(k + q)M f̂ (k,q + G)B†U
f̂

(k) = M∗f̂ (k′,q′ + G′) = MT f̂ (k′ + q′,−q′ −G′) . (G20)

Together with the definitions from Eq. (G2), Eq. (G20) and the reality of the form factors derived in Appendix F 3
implies that the action of the spatial many-body charge conjugation operation P on the Of̂q,G operators is given by

POf̂q,GP
−1 =

√
V (q + G)

∑
η,s
m,n

∑
k

M f̂ ,η
mn (k,q + G)

(
P f̂†k+q,m,η,sf̂k,n,η,sP

−1 − 1

2
δq,0δm,n

)

=
√
V (q + G)

∑
η,s
m,n

∑
k

[
BU
f̂

(k + q)M f̂ (k,q + G)B†U
f̂

(k)
]
mη,nη

(
f̂k′+q′,m,η,sf̂

†
k′,n,η,s −

1

2
δq,0δm,n

)

=−
√
V (q′ + G′)

∑
η,s
m,n

∑
k

M f̂ ,η
nm (k′ + q′,−q′ −G′)

(
f̂†k′,n,η,sf̂k′+q′,m,η,s −

1

2
δq′,0δm,n

)

=−
√
V (−q′ −G′)

∑
η,s
m,n

∑
k

M f̂ ,η
nm (k,−q′ −G′)

(
f̂†k−q′,n,η,sf̂k,m,η,s −

1

2
δq′,0δm,n

)
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=−Of̂−C2xq,−C2xG
. (G21)

In Eq. (G21), the momentum k runs over the entire MBZ for f̂ = ĉ, and is restricted by the condition k,k + q ∈ Aη
when f̂ = b̂. In deriving Eq. (G21), we have also used the invariance of the interaction potential under rotations
in the plane of the graphene layers. Taken together with the definition of the projected interaction Hamiltonain in
Eq. (F36), Eq. (G21) implies that HI is symmetric under the spatial many-body charge conjugation symmetry

[P, HI ] = 0 (G22)

Finally, combining Eqs. (G10), (G13), (G17) and (G22) implies that the projected fully-interacting TSTG Hamil-
tonian H = H0 +HI is indeed invariant under the spatial many-body charge conjugation symmetry P

PHP−1 = H. (G23)

2. Brief review of the U (4) group

As it is featured extensively in this paper, this sections presents a brief review of the the U (4) group and corre-
sponding Lie algebra. The U (N) group is defined by all the N ×N unitary matrices V satisfying V†V = 1N , where
1N is the identity matrix. The matrices V are generated by all the linearly independent N ×N Hermitian matrices,
thus the total number of generators is N2. In particular, for the U (4) group, the 16 generators can be represented by
the tensor product of two sets of 2× 2 identity and Pauli matrices τa and sa as

sab0 = τasb, (G24)

where a, b = 0, x, y, z. We denote their commutation relations as[
sab0 , s

cd
0

]
=
∑
e,f

fab,cdef sef0 , (G25)

with fab,cdef of the U (4) group’s Lie algebra.

3. Continuous symmetries of the mirror-antisymmetric sector in the U = 0 case

In Eq. (B9) we have written down the generators of the [U (2)×U (2)]b̂ symmetry of the single-particle Hamiltonian
ĤD. Here we show that in the absence of displacement field, this symmetry is not only inherited by the mirror-
antisymmetric sector of the projected many-body TSTG Hamiltonian, but is also promoted to an enlarged continuous
group. To keep the notation general, we introduce the operators

Sab
b̂

=
∑
|δk|≤Λ
m,η,s
n,η′,s′

(
sab
b̂

)
mηs,nη′s′

b̂†δk+ηq1,m,η,s
b̂δk+η′q1,n,η′,s′ , (G26)

representing the generators of the continuous symmetry group of the mirror-antisymmetric sector (which, for the
moment, we denote by G). For a certain pair of indices a and b, the Hermitian matrices sab

b̂
defined in the band,

valley, and spin subspaces form the representation of the Lie algebra of the group G. The definition in Eq. (G26) is
the projected form of Eq. (B9) that has been further generalized to include arbitrary band, valley, and spin rotations.
It is worth mentioning that the generators Sab

b̂
always preserve the relative momentum δk, but change the actual

momentum k when the matrix sab
b̂

is not diagonal in valley space.

We first investigate the symmetries of the Ob̂q,G operators defined in Eq. (F35) which govern the Coulomb interaction
of the Dirac cone Fermions. The commutator of the generators Sab

b̂
with the Ob̂q,G operators is given by

[
Sab
b̂
, Ob̂q,G

]
=

∑
|δk|≤Λ
m,n,η,s
n′,η′,s′

√
V (q + G)

[(
sab
b̂

)
nηs,mη′s′

M b̂,η′

mn′ (δk + η′q1,q + G)

−M b̂,η
nm (δk + ηq1,q + G)

(
sab
b̂

)
mηs,n′η′s′

](
b̂†δk+ηq1+q,n,η,sb̂δk+η′q1,n′,η′,s′

)
.

(G27)
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Similarly, the commutator between the generators Sab
b̂

and the Hamiltonian HD reads[
Sab
b̂
, HD

]
=

∑
|δk|≤Λ
n,η,s
n′,η′,s′

[
sab
b̂
, εb̂ (δk)

]
nηs,n′η′s′

(
b̂†δk+ηq1,n,η,s

b̂δk+η′q1,n′,η′,s′

)
, (G28)

where εb̂ (δk) is the Dirac energy band matrix introduced in Appendix E 1. Aided by the parameterization of Eq. (F55),
we find that the maximal set of generators that commute with the Ob̂q,G operators is given by

Sab
b̂± =

∑
|δk|≤Λ
m,η,s
n,η′,s′

(
sab
b̂±

)
mηs,nη′s′

b̂†δk+ηq1,m,η,s
b̂δk+η′q1,n,η′,s′ , (G29)

where a, b = 0, x, y, z and the representation matrices are defined by

sab
b̂± =

1

2

(
ζ0 ± ζy

)
τasb, (a, b = 0, x, y, z) . (G30)

In this form, the generators obey [
Sab
b̂±, S

cd
b̂±

]
=
∑
e,f

fab,cdef Sef
b̂±
, (G31)

[
Sab
b̂+
, Scd
b̂−

]
= 0 (G32)

where fab,cdef represent the structure factors of the U (4) group. The symmetry group of the Ob̂q,G operators is thus seen
to be [U (4)×U (4)]b̂, where the 16 generators Sab

b̂+
generate one U (4) group, while the 16 generators Sab

b̂− generate
the other one.

The large Fermi velocity of the single-particle Dirac cone Hamiltonian Ĥ implies that there is no flat limit for
the mirror-antisymmetric sector. Otherwise stated, neglecting the single-particle projected contribution HD is not
a physically valid approximation. Even though the Ob̂q,G operators governing the interaction of the Dirac fermions
are invariant under [U (4)×U (4)]b̂, the introduction of the kinetic term reduces the symmetry to [U (4)]b̂. Using the
parameterized form of the single-particle band-energy from Eq. (E8), we see that only a subset of the 32 generators
from Eq. (G29) commute with theHD. More precisely, we find that

[
Sab
b̂+

+ Sab
b̂−, HD

]
= 0, while

[
Sab
b̂+
− Sab

b̂−, HD

]
6= 0,

for any a, b = 0, x, y, z. We can therefore conclude that the mirror-antisymmetric sector of TSTG in the absence of
displacement field enjoys an enhanced [U (4)]b̂ symmetry for which the representation matrices are given by

sab
b̂

= sab
b̂+

+ sab
b̂− = ζ0τasb, (a, b = 0, x, y, z) , (G33)

and correspond to full U (4) valley-spin rotations in the mirror-antisymmetric sector. The generators Sab
b̂

of this
[U (4)]b̂ symmetry obey the algebra defined in Eq. (G25)[

Sab
b̂
, Scd
b̂

]
=
∑
e,f

fab,cdef Sef
b̂
. (G34)

4. Continuous symmetries of the mirror-symmetric sector in the U = 0 case

In the absence of displacement field, the continuous symmetries of the mirror-symmetric sector of the projected
many-body TSTG Hamiltonian are determined by the single-particle projected Hamiltonian HTBG, as well as by the
Oĉq,G operators governing the Coulomb interaction of the TBG fermions. The symmetries of HTBG and Oĉq,G have
been derived and extensively discussed in Refs. [26–28, 37], in the context of ordinary TBG.

Here, we will summarize the continuous symmetries of the mirror-symmetric sector of TSTG in the absence of dis-
placement field and only briefly justify them from the parameterized forms ofHTBG and Oĉq,G, which were summarized
respectively in Appendices E 1 and F 3 b. We refer the reader to Ref. [37] for the detailed proofs.



58

In analogy with the generators Sab
b̂
, we define the operators

Sabĉ =
∑

k∈MBZ
m,η,s
n,η′,s′

(
sabĉ
)
mηs,nη′s′

ĉ†k,m,η,sĉk,n,η′,s′ , (G35)

representing the generators of the various continuous symmetry groups pertaining to the mirror-symmetric sector
of the TSTG many-body projected Hamiltonian. The commutators of the Oĉq,G operators with the generators in
Eq. (G35) are given by[

Sabĉ , O
ĉ
q,G

]
=

∑
k∈MBZ
n,η,s
n′,η′,s′

√
V (q + G)

[
sabĉ ,M

ĉ (k,q + G)
]
nηs,n′η′s′

(
ĉ†k+q,n,η,sĉk,n′,η′,s′

)
. (G36)

Similarly, the commutator between the generators defined in Eq. (G35) and the single-particle projected TBG Hamil-
tonian reads [

Sabĉ , HTBG

]
=

∑
k∈MBZ
n,η,s
n′,η′,s′

[
sabĉ , ε

ĉ (k)
]
nηs,n′η′s′

(
ĉ†k,n,η,sĉk,n′,η′,s′

)
, (G37)

where εĉ (k) is the TBG energy band matrix introduced in Appendix E 1.
We will now investigate the implications of Eqs. (G36) and (G37) for the continuous symmetry group of the TBG

fermions. It is worth noting that unlike the symmetry generators corresponding to the mirror-antisymmetric sector
defined in Eq. (G26), the generators related to the mirror-symmetric operators introduced in Eq. (G35) leave the
momentum invariant.

a. [U (4)×U (4)]ĉ symmetry in the (first) chiral-flat limit

In the (first) chiral-flat limit we approximate the TBG bands as being perfectly flat, completely neglecting the
projected single-particle contribution HTBG and therefore disregarding Eq. (G37). Assuming that the (first) chiral
condition holds (w0 = 0), the Oĉq,G operators can be parameterized according to Eq. (F57), and so Eq. (G36)
determines the maximal set of commuting generators to be

Sabĉ± =
∑

k∈MBZ
m,η,s
n,η′,s′

(
sabĉ±
)
mηs,nη′s′

ĉ†k,m,η,sĉk,n,η′,s′ , (G38)

where a, b = 0, x, y, z and the representation matrices are defined by

sabĉ± =
1

2

(
ζ0 ± ζy

)
τasb, (a, b = 0, x, y, z) . (G39)

The generators in Eq. (G38) obey the commutation relations[
Sabĉ±, S

cd
ĉ±
]

=
∑
e,f

fab,cdef Sefĉ±, (G40)

where fab,cdef represent the structure factors of the U (4) group and
[
Sabĉ+, S

cd
ĉ−
]

= 0. The symmetry group TBG
fermions is thus seen to be [U (4)×U (4)]ĉ [28, 37], where the 16 generators Sabĉ+ generate one U (4) group, while the
16 generators Sabĉ− generate the other one. Using the Chern band basis defined in Appendix C 3, we can also write the
generators of the [U (4)×U (4)]ĉ symmetry as

Sabĉ± =
∑

k∈MBZ
η,s
η′,s′

(
τasb

)
ηs,η′s′

d̂†k,±1,η,sd̂k,±1,η′,s′ . (G41)
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b. [U (4)]ĉ symmetry in the nonchiral-flat limit

Compared with the chiral-flat limit from Appendix G4 a, in the nonchiral-flat limit we also neglect the dispersion
of the TBG active bands, but we do not assume the (first) chiral condition (w0 = 0) to hold. As such, the Oĉq,G
operators can be parameterized according to Eq. (F56), resulting in the maximal set of symmetry generators being
given by Eq. (G35) for a, b = 0, x, y, z and having the representation matrices

s0b
ĉ = ζ0τ0sb, sxbĉ = ζyτxsb, sybĉ = ζyτysb, szbĉ = ζ0τzsb, (G42)

where b = 0, x, y, z. The generators in Eq. (G35) obey the commutation relation[
Sabĉ , S

cd
ĉ

]
=
∑
e,f

fab,cdef Sefĉ , (G43)

where fab,cdef represent the structure factors of the U (4) group. The symmetry group pertaining to the TBG fermions
in the nonchiral-flat is thus seen to be [U (4)]ĉ [26, 37].

c. [U (4)]ĉ symmetry in the chiral-nonflat limit

In the (first) chiral-nonflat limit, we assume the chiral condition to hold, but, in contrast to Appendices G 4 b and
G4 c, we also account for the non-zero dispersion of the TBG active bands. The parameterizations of HTBG and Oĉq,G
given respectively in Eqs. (E7) and (F57) restrict the maximal set of generators in Eq. (G35) through Eqs. (G36)
and (G37). The representation matrices in the chiral-nonflat limit read

sabĉ = ζ0τasb, (a, b = 0, x, y, z) , (G44)

implying that the generators from Eq. (G35) obey the Lie algebra of the U (4) group[
Sabĉ , S

cd
ĉ

]
=
∑
e,f

fab,cdef Sefĉ , (G45)

As in the nonchiral-flat limit, the symmetry group of the TBG fermions in the chiral-nonflat limit is given by
[U (4)]ĉ [37], but with different generators.

d. [U (2)×U (2)]ĉ symmetry in the nonchiral-nonflat case

When neither the chiral condition holds, nor the dispersion of the TBG active bands is ignored, the parameterizations
of HTBG and Oĉq,G given respectively in Eqs. (F35) and (F56) imply that the TBG fermions have only the trivial
[U (2)×U (2)]ĉ symmetry, associated with the spin-charge conservation per valley. The generators of this symmetry
are given by Eq. (G35) for a = 0, z and b = 0, x, y, z, with the corresponding representation matrices being given by

s0b
ĉ = ζ0τ0sb, szbĉ = ζ0τzsb, (G46)

for b = 0, x, y, z.

5. Symmetries of the projected many-body TSTG Hamiltonian with displacement field

The perpendicularly applied displacement field couples the mirror-symmetry sector fermions at the single-particle

level through the contribution H
(b̂ĉ)
U . As a result of this, the TBG and Dirac fermion flavors can no longer be

independently rotated in the spin, valley, or band subspaces. We will therefore define the operators

Sab =
∑
m,η,s
n,η′,s′

 ∑
|δk|≤Λ

(
sab
b̂

)
mηs,nη′s′

b̂†δk+ηq1,m,η,s
b̂δk+η′q1,n,η′,s′ +

∑
k∈MBZ

(
sabĉ
)
mηs,nη′s′

ĉ†k,m,η,sĉk,n,η′,s′

 , (G47)
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representing the generators of the continuous symmetry group of the TSTG Hamiltonian. In appearance, Eq. (G47)
represents just the sum of Eqs. (G26) and (G35). Note however, that we have not made any assumptions regarding
the Hermitian matrices sab

b̂
and sabĉ , other that the fact that they provide isomorphic representations for the Lie

alegebra of the continuous symmetry group of the many-body projected TSTG Hamiltonian.
The advantage of the notation in Eq. (G47) is that the commutation of the generators Sab with the various terms

of the many-body projected TSTG Hamiltonian can be readily computed from Eqs. (G27), (G28), (G36) and (G37)

[
Sab, Ob̂q,G

]
=

∑
|δk|≤Λ
m,n,η,s
n′,η′,s′

√
V (q + G)

[(
sab
b̂

)
nηs,mη′s′

M b̂,η′

mn′ (δk + η′q1,q + G)

−M b̂,η
nm (δk + ηq1,q + G)

(
sab
b̂

)
mηs,n′η′s′

](
b̂†δk+ηq1+q,n,η,sb̂δk+η′q1,n′,η′,s′

)
, (G48)[

Sab, Oĉq,G
]

=
∑

k∈MBZ
n,η,s
n′,η′,s′

√
V (q + G)

[
sabĉ ,M

ĉ (k,q + G)
]
nηs,n′η′s′

(
ĉ†k+q,n,η,sĉk,n′,η′,s′

)
, (G49)

[
Sab, HD

]
=

∑
|δk|≤Λ
n,η,s
n′,η′,s′

[
sab
b̂
, εb̂ (δk)

]
nηs,n′η′s′

(
b̂†δk+ηq1,n,η,s

b̂δk+η′q1,n′,η′,s′

)
, (G50)

[
Sab, HTBG

]
=

∑
k∈MBZ
n,η,s
n′,η′,s′

[
sabĉ , ε

ĉ (k)
]
nηs,n′η′s′

(
ĉ†k,n,η,sĉk,n′,η′,s′

)
. (G51)

To Eqs. (G48) to (G51), we add the commutators of Sab with the projected displacement field contributions H(b̂ĉ)
U

and H(ĉ)
U [

Sab, H
(b̂ĉ)
U

]
=
∑
|δk|≤Λ
n,η,s
n′,η′,s′

{[
sab
b̂
N (δk)

]
nηs,n′η′s′

b̂†δk+ηq1,n,η,s
ĉδk+η′q1,n′,η′,s′

−
[
N (δk) sabĉ

]
nηs,n′η′s′

b̂†δk+ηq1,n,η,s
ĉδk+ηq1,n′,η′,s′

−
[
sab
b̂
N (δk)

]∗
nηs,n′η′s′

ĉ†δk+η′q1,n′,η′,s′
b̂δk+ηq1,n,η,s

+
[
N (δk) sabĉ

]∗
nηs,n′η′s′

ĉ†δk+ηq1,n′,η′,s′
b̂δk+ηq1,n,η,s

}
, (G52)

[
Sab, H

(ĉ)
U

]
=
∑
n,η,s
n′,η′,s′

 ∑
k∈Cη′

[
sabĉ B (k)

]
nηs,n′η′s′

ĉ†k,n,η,sĉk,n′,η′,s′

−
∑
k∈Cη

[
B (k) sabĉ

]
nηs,n′η′s′

ĉ†k,n,η,sĉk,n′,η′,s′

 . (G53)

The careful analysis of the valley indices in Eq. (G52) reveals that the commutator
[
Sab, H

(b̂ĉ)
U

]
can only vanish

if sab
b̂

is diagonal in valley space, as the generators from Eq. (G47) do not otherwise preserve crystal momentum.
Additionally, the vanishing of the commutator in Eq. (G52) in conjunction with the parameterizations in Appendix
E 2 imply that sab

b̂
= sabĉ . Therefore, the generators of continuous symmetries in the presence of displacement field

are restricted to the following form

Sab =
∑
m,η,s
n,η′,s′

 ∑
|δk|≤Λ

(
sab
)
mηs,nη′s′

b̂†δk+ηq1,m,η,s
b̂δk+η′q1,n,η′,s′ +

∑
k∈MBZ

(
sab
)
mηs,nη′s′

ĉ†k,m,η,sĉk,n,η′,s′

 , (G54)
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which was obtained from Eq. (G47) by setting sab
b̂

= sabĉ = sab. We additionally require that the representation
matrices sab are diagonal in valley subspace, but we make no restriction on their action in the band or spin subspaces.

Irrespective of the physical limit of TSTG we consider, the generators from Eq. (G54) must at least obey the
commutation relations in Eqs. (G48) to (G50). These are enough to restrict the possible representation matrices to
the set

s0b = ζ0τ0sb, szb = ζ0τzsb, (G55)

for b = 0, x, y, z, since they must be diagonal in valley space. The corresponding generators obtained from Eq. (G54)
will also obey the commutation relations in Eqs. (G51) to (G53) under any of the physical limits considered. We
conclude that the introduction of displacement field breaks the symmetries of the many-body projected TSTG Hamil-
tonian to the trivial spin-valley U (2)×U (2) rotation symmetry.
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