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Abstract

A simple four node network in which cooperation improves theinformation-theoretic secrecy is studied. The
channel consists of two senders, a receiver, and an eavesdropper. One or both senders transmit confidential messages
to the receiver, while the eavesdropper tries to decode the transmitted message. The main result is the derivation
of a newly achievable rate-equivocation region that is shown to be larger than a rate-equivocation region derived
by Lai and El Gamal for the relay-eavesdropper channel. Whenthe rate of the helping interferer is zero, the new
rate-equivocation region reduces to the capacity-equivocation region over the wire-tap channel, hence, the new
achievability scheme can be seen as a generalization of a coding scheme proposed by Csiszár and Körner. This
result can naturally be combined with a rate-equivocation region given by Tang et al. (for the interference assisted
secret communication), yielding an even larger achievablerate-equivocation region.

Index Terms

Information-theoretic secrecy, wire-tap channel, eavesdropper channel, rate-equivocation region, secrecy capac-
ity, perfect secrecy, physical layer security, cooperative communication.

I. INTRODUCTION

IN this work we propose a scheme that increases the information theoretic secrecy in a simple co-
operative communication network. The channel model includes a class of the wire-tap channels with

a helping interferer introduced by Lai and El Gamal [1]. These authors considered several cooperation
schemes over the relay-eavesdropper channel, in which the relay node helps to enhance the security
level of communication between the sender and the receiver.The paper gives an interesting observation
indicating that over the multiple access channel (MAC) withan eavesdropper, secret communication can
be enhanced with a help of one of the two senders (called, thehelping interfereror the helper). In
addition, an achievable equivocation-rate region has beenderived for this scheme. Subsequently, Tang et
al. [2] have derived an improved rate-equivocation region using the fact that the receiver does not have to
decode the sequence transmitted by a helper. One possibility is that the helper sends interference (dummy
messages) in order to weaken the channel to the eavesdropper. When the rate of dummy messages of the
helper is zero (there is no cooperation from the helper), thechannel reduces to the (single-user)wire-tap
channelintroduced by Wyner [3], and generalized later by Csiszár and Körner [4]. In this reduced setting,
however, the achievable rate-equivocation regions given by [1] and [2] do not coincide with the capacity-
equivocation region over the wire-tap channel, giving onlyits sub-region. When only perfect-secrecy is
imposed (i.e., the eavesdropper is totally ignorant of the transmitted message), their results coincide with
the secrecy-capacity of the wire-tap channel.

Motivated by this fact, the first part of this paper gives a newachievable rate-equivocation region (i.e,
an inner bound on the capacity-equivocation region) for thewire-tap channel with a helping interferer,
showing that the new region is improved over the one given in [1]. When the rate of the helping interferer
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is zero, the new rate-equivocation region reduces to the capacity-equivocation region over the wire-tap
channel, so the new achievability scheme can be seen as a generalization of the coding scheme given
in [4]. Our result can naturally be combined with the additional rate-equivocation region given by [2],
yielding an even larger rate-equivocation region.

In the next section we present the previous results on the wire-tap channel with a helper. The main
result of this work, that is the improved rate-equivocationregion for the wire-tap channel with helping
interferer, is presented in Section III, while in Section IVwe derive an even larger rate-equivocation
region. A note on the broadcast channel with confidential messages and the wire-tap channel with helping
interferer is given in Section V. Section VI concludes the paper.

II. PRELIMINARIES

A. The Wire-Tap Channel with a Helping Interferer

The cooperative channel considered in this paper is shown inFig. 1 and consists of two senders,
a receiver, and an eavesdropper, in which one sender transmits confidential messages to the receiver,
and the eavesdropper tries to decode the transmitted message. The second sender plays the role of a
“helper” to enhance the secrecy of communication. This model is referred to as the wire-tap channel
with a (helping) interferer, and will be considered first. Let Xt be the channel input alphabet of sendert,

Ŵ1

p(y, z|x1, x2)

Channel
gr

ge

W1

W2

f1

f2

XN
1 Y N

XN
2 ZN

W1

Fig. 1. A four node network of one sender, one receiver, one eavesdropper and one helper.

t = 1, 2, and let andY andZ be the output alphabet of the receiver and the eavesdropper,respectively.
We assume that all the alphabets are discrete and finite and the channel is memoryless, characterized by
a conditional probability mass function (PMF)P (y, z|x1x2) for (x1, x2) ∈ X1 × X2 and (y, z) ∈ Y × Z,
i.e., xt , (xt1, . . . , xtN ) ∈ XN

t , y , (y1, . . . , yN) ∈ YN andz , (z1, . . . , yN) ∈ YN . Then, we have

PN(y, z|x1,x2) =
N
∏

n=1

P (yn, zn|x1n, x2n)

whereN denotes the number of channel uses. We assume that both of thereceiver and the eavesdropper
know P (y, z|x1, x2).

DefineWt with t = 1, 2 as the set of integers{1, . . . ,Mt} with Mt ≥ 1. Let w1 ∈ W1 be a uniformly
distributed confidential message of sender 1. We also denotea random message of sender 2 byw2 ∈ W2.
Encodert is a deterministic mapping denoted by

ft : Wt → XN
t . (1)

The receiver and the eavesdropper estimate the transmittedmessage from the received sequencey andz,
with the decoding functions

gr : Y
N → W1, and ge : Z

N → W1,

respectively. LetRt, t = 1, 2, be an information rate defined as

Rt = log2Mt/N.

An (N,M1,M2, {ft, gt}t=1,2) code for the MAC with a helper consists of message setsV1×V2, encoding
functionsft, and decoding functionsgt with t = 1, 2. Provided that the transmitted message isw1 ∈ W1,
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the decoder makes anerror if gr(y) 6= w1. The average probability of decoding error, denoted byP
(N)
e ,

is
P (N)
e =

1

M1

∑

w1∈W1

Pr(gr(y) 6= w1| w1 sent).

The equivocationrate at the eavesdropper is defined as

R(N)
e =

1

N
H(W1|Z

N).

The secrecy considered in this paper is defined as follows:
Definition 1: A rate-equivocation pair(R1, Re) is said to beachievableif there exists a sequence of

(N,M1) codes such that for everyǫ > 0,

R1 ≥
log2M1

N
− ǫ, P (N)

e ≤ ǫ, and R(N)
e ≥ Re − ǫ,

for all sufficiently largeN .
Definition 2: A perfect-secrecy rateR1 is said to beachievableif the rate-equivocation pair(R1, R1)

is achievable. Thesecrecy-capacityof the wire-tap channel with a helper is defined as the maximumof
all achievable perfect-secrecy rates.

Note that without sender 2, this channel model reduces the (single-user) wire-tap channel [3], [4].
Achievable rate-equivocation pairs, achievable perfect-secrecy rates, and the secrecy capacity for the wire-
tap channel are defined analogously.

B. Known Achievable Rate-Equivocation Regions

For the (single-user) wire-tap channel [3], [4], the following rate-equivocation region is the capacity-
equivocation region

⋃

PQUPX1|U
PY Z|X

{

(R1, Re) : 0 ≤ Re ≤ R1,

R1 ≤ I(U ; Y ),

Re ≤ I(U ; Y |Q)− I(U ;Z|Q)
}

, (2)

whereQ andU are auxiliary random variables satisfying the Markov chaincondition

Q → U → X1

and the cardinality bounds

|Q| ≤ |X1|+ 3 and |U| ≤ |X1|
2 + 4|X1|+ 3.

Since we assume that all rates in this paper are always non-negative, if an upper-bound onRe happens
to be negative, it meansRe = 0. This rule will be applied throughout the paper when necessary.

For the wire-tap channel with a helper, it was shown in [1, Theorem 3] that the following rate-
equivocation region is achievable:

co
⋃

PU1
PU2

PX1|U1
PX2|U2

PY Z|X1X2

{

(R1, Re) : R1 ≤ I(U1; Y |U2),

0 ≤ Re ≤ R1,

Re ≤ I(U1; Y |U2)−min{I(U2; Y ), I(U2;Z)}

− I(U1;Z|U2) + min{I(U2; Y ), I(U2;Z|U1)}
}

, (3)
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where co(S) denotes the convex hull of the setS, U1 andU2 are auxiliary random variables satisfying
the Markov chain condition

(U1, U2) → (X1, X2) → (Y, Z).

We note that ifI(U2; Y ) ≤ I(U2;Z), then the last inequality onRe becomes

0 ≤ Re ≤ I(U1; Y |U2)− I(U1;Z|U2),

implying that the wire-tap channel with a helper becomes theordinary wire-tap channel, i.e., there is no
effect from the user cooperation. In this case, the region given by (2) reduces to a sub-region of the region
given by (2). Note that the result of Tang et al. [2] implies that we might still have an advantage from
the user cooperation in this case.

For the wire-tap channel with a helper, it is known that the following perfect-secrecy rate is achievable
[1, eq. (10)]:

R1 = sup
PU1

PU2
PX1|U1

PX2|U2

[

I(U1; Y |U2)− I(U1;Z|U2) + min{I(U2; Y ), I(U2;Z|U1)}

− min{I(U2; Y ), I(U2;Z)}
]+

, (4)

where[x]+ denotesmax{x, 0}.

III. I MPROVED RATE-EQUIVOCATION REGION

In this section we show that it is possible to have a rate-equivocation region larger than the one given
by (3). To that end we introduce an auxiliary random variableQ1 and we get the following improved
region.

Proposition 1: The following rate-equivocation region is achievable:

C =
⋃

π

{

(R1, Re) : 0 ≤ Re ≤ R1,

R1 ≤ R′
1 +min{I(Q1; Y |U2), I(Q1;Z|U2)},

Re ≤ max
{

R′
1 +R′

2 − I(U1;Z|U2Q1)− I(U2; Y |Q1), R
′
1 +R′

2 − I(U1U2;Z|Q1)
}

(5)

where

π , PQ1PU1|Q1PU2PX1|U1PX2|U2PY Z|X1X2 ,

R′
1 , I(U1; Y |U2Q1), and

R′
2 , min{I(U2; Y |Q1), I(U2, Z|U1)}.

Q1, U1, andU2 are auxiliary random variables satisfying the following Markov chain conditions:

Q1 → U1 → X1, and

(U1, U2) → (X1, X2) → (Y, Z). (6)

As in [4], let the auxiliary random variableQ1 correspond to the sequence alphabet decoded by both
the receiver and the eavesdropper, while lettingU1 and U2 denote the sequence alphabets that can be
decoded only by the receiver. First, we note that the constraint on Re in (5) can be re-written as

Re ≤











I(U1; Y |U2Q1)− I(U1;Z|U2Q1), if I(U2; Y |Q1) ≤ I(U2;Z|Q1),

I(U1U2; Y |Q1)− I(U1U2;Z|Q1), if I(U2;Z|Q1) ≤ I(U2; Y |Q1),≤ I(U2;Z|U1),

I(U1; Y |U2Q1)− I(U1;Z|Q1), if I(U2;Z|U1) ≤ I(U2; Y |Q1).
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It is straightforward that by settingQ1 = ∅, we have

I(U1; Y |U2Q1) + min{I(Q1; Y |U2), I(Q1;Z|U2)} = I(U1; Y |U2),

I(U1; Y |U2Q1)− I(U1;Z|U2Q1) = I(U1; Y |U2)− I(U1;Z|U2).

On the other hand, since

I(U1; Y |U2Q1)− I(U1;Z|U2Q1) = I(U1; Y |U2)− I(U1;Z|U2) +
(

I(Q1;Z|U2)− I(Q1; Y |U2)
)

,

we have

sup
PQ1

PU1|Q1
PU2

{

I(U1; Y |U2Q1)− I(U1;Z|U2Q1)
}

≥ sup
PU1

PU2

{

I(U1; Y |U2)− I(U1;Z|U2)
}

. (7)

A similar derivation of (7) yields

sup
PQ1

PU1|Q1
PU2

{

I(U1U2; Y |Q1)− I(U1U2;Z|Q1)
}

≥ sup
PU1

PU2

{

I(U1U2; Y )− I(U1U2;Z)
}

,

and

sup
PQ1

PU1|Q1
PU2

{

I(U1; Y |U2Q1)− I(U1;Z|Q1)
}

≥ sup
PU1

PU2

{

I(U1; Y |U2)− I(U1;Z)
}

.

Hence, regionC given by (5) is larger than or equal to the region given by (3).The random variableQ1

plays not only the role of convexification. The achievability of the regionC will be shown in Appendix A.
For the rate-equivocation regionC, if I(U2; Y |Q1) ≤ I(U2;Z|Q1) for every

P ∗
Q1U1U2X1X2

, PQ1U1PX1|U1
PU2X2 ,

the cooperation between sender 1 and sender 2 (the helper) has no effect, and the region is in a simpler
form as the convex hull of

C̃ =
⋃

P ∗
Q1U1U2X1X2

PY Z|X1X2

{

(R1, Re) : 0 ≤ Re ≤ R1,

R1 ≤ I(U1; Y |U2)

Re ≤ I(U1; Y |U2Q1)− I(U1;Z|U2Q1)
}

.

Although Tang et al. [2] give a larger region in this case, ifI(U2; Y |U1) ≥ I(U2;Z|U1), then user
cooperation does not take effect. In the following text, we denote the convex hull ofC and C̃ by C∗ and
C̃∗, respectively. When there is no helping interference, i.e., R2 = 0, then the regioñC corresponds to the
capacity-equivocation region for the ordinary wire-tap channel given by (2). Note that in the caseR2 = 0,
the helper transmits a deterministic sequenceuN

2 ∈ UN
2 , and both the receiver and the eavesdropper know

this sequence. Therefore, the capacity-equivocation region is still characterized byU2.
When considering the perfect-secrecy rate, the auxiliary random variableQ1 introduced to derive a new

rate-equivocation region has no impact. For the wire-tap channel with a helper, we can achieve the same
perfect-secrecy rate as (4) derived in [1].

As the last result of this section we get the following theorem.
Theorem 1:The rate-equivocation regionC∗ is achievable for the wire-tap channel with a helping

interferer.
Proof: From the above argument, by the coding scheme given in Appendix A, the regionR1(P

∗
Q1X1X2

)
is achievable for any givenP ∗

Q1X1X2
, and henceR1 is achievable. By prefixing a conditional PMF

PX1|U1
PX2|U2

, the regionR2, which is equivalent toC, is also achievable. The convex hull can be taken
since we can time-share multiple input PMFs via thetime-sharing principle[5].

✷
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IV. A N EVEN LARGER RATE-EQUIVOCATION REGION

We can combine the idea given in [2] with the achievable region C∗ to get a larger achievable rate-
equivocation region. The key observation is that the receiver does not necessarily need to decode the
dummy messageW2 sent from the helper.

For a fixedP ∗
Q1U1U2X1X2

, PQ1U1PX1|U1
PU2X2 ∈ P∗, let CA(P ∗

Q1U1U2X1X2
) be defined as the rate-

equivocation region

CA(P
∗
Q1U1U2X1X2

) =
{

(R1, Re) : 0 ≤ Re ≤ R1,

R1 ≤ I(U1; Y |U2Q1) + min{I(Q1; Y |U2), I(Q1;Z|U2)},

Re ≤ max
{

R′
3 − I(U1;Z|U2Q1)− I(U2; Y |Q1), R

′
3 − I(U1U2;Z|Q1)

}

(8)

where

R′
2 = min{I(U2; Y |Q1), I(U2, Z|U1)},

R′
3 , I(U1; Y |U2Q1) +R′

2,

and Q1, U1, and U2 are auxiliary random variables satisfying Markov chain conditions (6). Then the
achievable rate-equivocation regionC is expressed as

C =
⋃

P ∗
Q1U1U2X1X2

PY Z|X1X2

CA(P
∗
Q1U1U2X1X2

). (9)

We define another rate-equivocation region, for a fixedP ∗
Q1U1U2X1X2

∈ P∗, as

CB(P
∗
Q1U1U2X1X2

) =
{

(R1, Re) : R1 ≤ I(U1; Y ),

0 ≤ Re ≤ R1,

Re ≤ I(U1; Y |Q1)− I(U1;Z|Q1)
}

.

Then, a new achievable rate-equivocation region, denoted by C̃, is given by the convex hull of

C̃ =
⋃

P ∗
Q1U1U2X1X2

{

CA(P
∗
Q1U1U2X1X2

) ∪ CB(P
∗
Q1U1U2X1X2

)
}

. (10)

From equations (9) and (10), it is readily seen that in general we haveC∗ ⊆ C̃∗ where C̃∗ denotes the
convex hull ofC̃. The region

CB(P
∗) \ (CA(P

∗) ∩ CB(P
∗))

expresses an additional region toCA(P ∗) for a fixedP ∗ ∈ P∗, which is given by the observation in [2].
The rate-equivocation regioñC can be seen as an extension of the result of [2] in the sense that we derive
not only a perfect-secrecy rate but also a rate-equivocation region by introducing the auxiliary random
variableQ1. The key idea lies in the facts that:
(i) The receiver and the eavesdropper can decode a partial message ofW1 at the rate at most

min{I(Q1; Y ), I(Q1;Z)}, and,

(ii) As for the other part of message, dummy message from the helper needs not be decoded, and can
be treated as noise.

Note that even though the regionCB(PQ1U1U2X1X2) does not involve the rateR2, user cooperation, i.e.,
interference by a helper, is necessary to achieve this region, and hence, the PMFs of random variablesU2

andX2 are also included in the region. The achievability of the region C̃ is shown in Appendix B.
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coop. B coop. B

coop. A

R2

RY

RZ

I(X1; Y |X2) < I(X1;Z|X2)

R1

RY

RZ

R2

I(X1; Y |X2) ≥ I(X1;Z|X2)

R1

Fig. 2. Pictorial representation for the equivocation gainwhen cooperation is used for the case (i) of Proposition 2 forthe situations
I(X1;Y |X2) ≥ I(X1;Z|X2) (left) and I(X1;Y |X2) ≥ I(X1;Z|X2) (right). PentagonsRY and RZ express an achievable region for
the receiver’s MAC and the eavesdropper’s MAC, respectively. The cooperation scheme that achievesCA(P

∗) is labeled “coop. A” and the
cooperation scheme that achievesCB(P

∗), is labeled “coop. B”.

When only the perfect-secrecy rate is concerned, the obtained rate-equivocation region is reduced to

C̃′ =
⋃

π12

{

C′
A(π12) ∪ C′

B(π12)
}

, (11)

where

C′
A(π12) ,

{

R1 : R1 ≥ 0,

R1 ≤ max
{

I(U1; Y |U2)− I(U1;Z|U2) +R′
2 − I(U2; Y ),

I(U1; Y |U2) +R′
2 − I(U1U2;Z)

}

}

and

C′
B(π12) =

{

R1 : 0 ≤ R1 ≤ [I(U1; Y )− I(U1;Z)]
+
}

.

for a fixed input distributionπ12 = PU1X1PU2X2 . Then, the following perfect-secrecy rate is achievable:

sup
π12

{

C′
A(π12) ∪ C′

B(π12)
}

which is the same as the one given in [2].
We next consider conditions under which we get an improvement to regionCB(P ∗), i.e.,

CB(P
∗) \ (CA(P

∗) ∩ CB(P
∗)) 6= ∅.

We have the following proposition:
Proposition 2: For a givenP ∗ ∈ P∗, CB(P ∗) \ (CA(P

∗) ∩ CB(P
∗)) 6= ∅ if and only if either of the

following two conditions is satisfied:

(i) I(U1; Y |Q) > I(U1;Z|Q) and

0 ≤ I(U2;Z|Q1)− I(U2; Y |Q1) ≤ I(U2;Z|U1)− I(U2; Y |U1), (12)

(ii) I(U1; Y |Q) > I(U1;Z|Q) and

I(U2;Z|Q1) ≤ I(U2; Y |Q1) ≤ I(U2; Y |U1) ≤ I(U2;Z|U1). (13)

Proof: See Appendix C. ✷
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coop. B coop. B

coop. A

no coop.

R2

R1

RZ

RY

I(X1; Y |X2) < I(X1;Z|X2)

R1

R2

RZ

RY

I(X1; Y |X2) ≥ I(X1;Z|X2)

(R2 = 0)

Fig. 3. Pictorial representation for the equivocation gainwhen cooperation is used for the case (ii) in Proposition 2 for the situations
I(X1;Y |X2) ≥ I(X1;Z|X2) (left) and I(X1;Y |X2) ≥ I(X1;Z|X2) (right). PentagonsRY and RZ express an achievable region for
the receiver’s MAC and the eavesdropper’s MAC, respectively. The cooperation scheme that achievesCA(P

∗) is labeled “coop. A” and the
cooperation scheme that achievesCB(P

∗), is labeled “coop. B”.

We illustrate both cases, in whichCB(P ∗) is effective, in Figs. 2 and 3. For illustrative purpose,
we consider rate-equivocation regions given byPX1|Q1

PX2 . The actual region is obtained by prefixing
PX1|U1PX2|U2 as discussed in Appendix A. Fig. 2 describes the case that satisfies (12) in the following two
situations:I(X1; Y |X2) ≥ I(X1;Z|X2) (left) and I(X1; Y |X2) ≥ I(X1;Z|X2) (right). Fig. 3 describes
the case that satisfies that satisfies (13) in the following two situations:I(X1; Y |X2) ≥ I(X1;Z|X2) (left)
and I(X1; Y |X2) ≥ I(X1;Z|X2) (right). In the figures “coop. A” denotes the cooperation scheme that
achievesCA(P ∗), while “coop. B” the cooperation scheme that achievesCB(P

∗). Observe that in the right
subfigures of both figures only cooperation scheme B gives positive equivocation, implying the usefulness
of this cooperation scheme.

V. A NOTE ON THE BROADCAST CHANNEL WITH CONFIDENTIAL MESSAGES AND AHELPING

INTERFERER

Since the effect ofQ1 is not completely clear, one might doubt the true effect ofQ1. In this section,
we discuss about the role of the introducedQ1 by comparing relationship between the broadcast channel
with confidential messages (BCC) and the wire-tap channel with a helping interferer. We consider the
following two items:
(1) The constraint onR1 in the new achievable rate-equivocation regionC involves the term

min{I(Q1; Y |U2), I(Q1;Z|U2)},

whereas the capacity equivocation region for the ordinary wire-tap channel does not (c.f., (2)).
(2) Although by introducing another auxiliary random variable Q1 we have a wider rate-equivocation

region, this random variable gives no impact in terms of perfect-secrecy (i.e., (4)).
Csiszár and Körner show in [4] that for the broadcast channelwith confidential messages (BCC), the use
of Q1 is essential.

In the model of BCC (Fig. 4), there are two receivers, and the sender wishes to send public messages
W0 of rateR0 to both receivers while public messagesW1 of rateR1 is confidential to receiver 2. It is
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W1 p(y, z|x1)

Wiretap Channel

ZN

Y N Ŵ0, Ŵ1

Ŵ0

Receiver

Eve

XN
1

Sender

Private Message

Public Message
W0

Fig. 4. The broadcast channel with confidential messages (BCC).

known that the following region is the capacity-equivocation region for the BCC [4, Theorem 1]

CBCC =
{

(R1, Re, R0) : 0 ≤ R0, 0 ≤ Re ≤ R1,

R0 +R1 ≤ I(U1; Y |Q1) + min{I(Q1; Y ), I(Q1;Z)},

Re ≤ I(U1; Y |Q1)− I(U1;Z|Q1),

R0 ≤ min{I(Q1; Y ), I(Q1;Z)}
}

(14)

where the random variables satisfy

Q1 → U1 → X1 → (Y, Z). (15)

From (14), the constraint onR0 + R1 also involves the termmin{I(Q1; Y ), I(Q1;Z)} (c.f., above item
1). Furthermore, the random variableQ1 is essentially necessary because receiver 2 should estimate W0

from ZN reliably. Having this in mind, we can argue theBCC with a helping interfereras in Fig. 5, and
we can achieve the following rate-equivocation region, that is the convex hull of

CBCCH =
⋃

π∗

{

C′
A(π

∗) ∪ C′
B(π

∗)
}

. (16)

where

C′
A(π

∗) ,
{

(R1, Re, R0) : 0 ≤ R0, 0 ≤ Re ≤ R1,

R0 +R1 ≤ I(U1; Y |U2Q1) + min{I(Q1; Y |U2), I(Q1;Z|U2)},

Re ≤ I(U1; Y |U2Q1)− I(U1;Z|U2Q1),

R0 ≤ min{I(Q1; Y |U2), I(Q1;Z|U2)}
}

,

and

C′
B(π

∗) =
{

(R1, Re, R0) : 0 ≤ R0, 0 ≤ Re ≤ R1,

R0 +R1 ≤ I(U1; Y |Q1) + min{I(Q1; Y ), I(Q1;Z)},

Re ≤ I(U1; Y |Q1)− I(U1;Z|Q1),

R0 ≤ min{I(Q1; Y ), I(Q1;Z)}
}

.

Here,Q1, U1, andU2 are auxiliary random variables satisfying the Markov chainconditions (6). Therefore,
we think that in the case of the BCC with a helper, the use ofQ1 is alsoessential. Furthermore, when
R2 = 0, the above region reduces to the capacity-equivocation region for the BCC.

Remark 1:We cannot directly use the achievability scheme from Appendix A, and the constraint on
Re ∈ C′

A(P
∗), which is always achieved withR2 = 0, is smaller than that inCA(P ∗) given in (8) for the

wire-tap channel with a helper. The main reason for this is that, by setting

R2 ≤ min{I(U2; Y |Q1), I(U2;Z|U1)}
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Fig. 5. BC with confidential messages and with a helper.

as in Appendix A, then receiver 2 cannot always decodeW2 (and equivalently,UN
2 ) correctly, and it

cannot decodeW0 accordingly for some

R0 ≤ min{I(Q1; Y |U2), I(Q1;Z|U2)}.

If I(Q1; Y |U2) ≤ I(Q1;Z) is satisfied, then there is a possibility to have an advantage. On the other hand,
in the case of the wire-tap channel with a helper,W2 needs not be decoded by the eavesdropper, so this
problem does not occur.

Despite the above remark, from (14) and (16), the cooperation by a helper gives a larger rate-equivocation
region compared with the case of the ordinary BCC (with no helpers). This indicates that the cooperation
has an effect even for the BCC case, and observation by Tang etal. [2] is also useful.

VI. CONCLUSION

We have derived a new achievable rate-equivocation region for a class of wire-tap channels with a
helping interferer, which has been shown to be larger than the rate-equivocation region given by [1]. Our
result can naturally adopt the observation given by [2], yielding an even larger rate-equivocation region
than the previously known regions. We also discussed about some relationship of our result with the
capacity-equivocation over the broadcast channel with confidential messages in order to explain the role
of the newly introduced random variable.

APPENDIX A
ACHIEVABILITY OF THE NEW REGION

We shall show an achievability scheme for the regionC via random coding. As in the wire-tap channel
[4], we introduce rate splitting ofR1 into R10 andR11, whereR10 denotes the rate of messages that can
be decoded by both the receiver and the eavesdropper, andR11 denotes the rate of messages that can be
decoded only by the receiver. First we define the following region:

R1 =
⋃

PX1Q1
PX2

PY Z|X1X2

{

(R1, Re) : R1 = R10 +R11, 0 ≤ R10, 0 ≤ Re ≤ R1,

R10 ≤ min{I(Q1; Y |X2), I(Q1;Z|X2)},

R11 ≤ I(X1; Y |X2Q1),

Re ≤ max
{

I(X1; Y |U2Q1)− I(X1;Z|X2Q1),

I(X1; Y |X2Q1)− I(X1X2;Z|Q1)

+min{I(X2; Y |Q1), I(X2;Z|X1)}
}

. (17)
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As discussed in [4], ifR1 is achievable, the following regionR2 is achievable by prefixing a conditional
PMF PX1|U1PX2|U2:

R2 =
⋃

PQ1
PU1|Q1

PU2
PX1|U1

PX2|U2
PY Z|X1X2

{

(R1, Re) : R1 = R10 +R11, 0 ≤ R10, 0 ≤ Re ≤ R1,

R10 ≤ min{I(Q1; Y |U2), I(Q1;Z|U2)},

R11 ≤ I(U1; Y |U2Q1),

Re ≤ max
{

I(U1; Y |U2Q1)− I(U1;Z|U2Q1),

I(U1; Y |U2Q1)− I(U1U2;Z|Q1)

+min{I(U2; Y |Q1), I(U2;Z|U1)}
}

.

By using the relationR10 = R1 − R11, Fourier-Motzkin elimination yields the regionC given by (5).
Hence, in terms of the achievability to the regionC, it suffices to show that the rate-equivocation region
R1 is achievable for every givenPQ1X1PX2 .

Next we show the achievability ofR1, given by (17), via random coding and the jointasymptotic
equipartition property(AEP) [5]. We fix a joint PMFP ∗

Q1X1X2
, PQ1X1PX2, and let the target region be

denoted byR1(P
∗
Q1X1X2

). We consider two cases that will be called Case 1 and Case 2.

A. Case 1:I(X1; Y |X2Q1) ≤ I(X1;Z|X2Q1)

In this case, we need to consider only the caseI(X2; Y |Q1) ≥ I(X2;Z|Q1), since otherwise the rate-
equivocation becomes zero because the first constraint onRe in (17) is apparently negative (i.e., it gives
a trivial upper-bound onRe). Then, the constraint onRe is expressed as

Re ≤ [I(X1; Y |X2Q1) + min{I(X2; Y |Q1), I(X2;Z|X1)} − I(X1X2;Z|Q1)]
+. (18)

1) Codebook generation:For a givenP ∗
Q1X1X2

, we first generate2NR10 independent and identically
distributed(i.i.d.) sequences at random according to

PQN
1
(q) ,

N
∏

n=1

PQ1(qn),

and index them asq(i), i ∈ [1, 2NR10 ], with

R10 ≤ min{I(Q1; Y |X2), I(Q1;Z|X2)}. (19)

When j1 ≤ j2, [j1, j2] denotes the set of all integers fromj1 to j2. For givenq(i), i ∈ [1, 2NR10 ], we
generate2NR11 i.i.d. sequences at random according to

PXN
1 |QN

1
(x1|q) ,

N
∏

n=1

PX1|Q1
(x1n|qn),

and index them asx1(i, b), b ∈ [1, 2NR], with

R ≤ I(X1; Y |X2Q1). (20)

We also generate2NR2 i.i.d. sequences at random according toPXN
2
(x2) ,

∏N

n=1 PX2(x2n), and index
them asx2(k), k ∈ [1, 2NR2], with

R2 ≤ min{I(X2; Y |Q1), I(X2;Z|X1)}. (21)

Let
R′ , [R +R2 − I(X1X2;Z|Q1)]

+ (22)
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express the rate that exceeds the eavesdropper’s ability todecode a sequence reliably. We also define
W = [1, 2NR′

], L = [1, 2N(R−R′)], andB = W ×L = [1, 2NR]. Note thatR′ ≤ R since

R− R′ ≥ I(X1X2;Z|Q1)− I(X2;Z|X1) = I(X1;Z|Q1).

Hereafter, we assumeR′ > 0 for simplicity. If this is not the case, no security level canbe reached, and
we achieve only(R1, 0) such thatR1 ≤ R which is still inside the rate-equivocation regionR1. We call
this codebook generation and the encoding and decoding scheme described belowCoding Scheme 1.

2) Encoding:For a given rate-equivocation pair(R10, R11, Re) such thatR1 = R10+R11 andRe ≤ R1,
we consider the following encoding scheme: Assume that a secret messagew1 = (w10, w11) ∈ W1 with
w10 ∈ W10 , [1, 2NR10 ] and w11 ∈ W11 , [1, 2NR11 ] is input to sender 1 and a random message
w2 ∈ [1, 2NR2] is generated at sender 2.

The encoding function forw11 at sender 1 operates in the following stochastic manner:
(i) If R11 > R′, then we divideW11 into W and J , [1, 2N(R11−R′)] as W11 = W × J . Let g be

the partition that dividesL into |J | = 2N(R11−R′) subsetsL′
1, . . . ,L

′
2N(R11−R′) with equal cardinalities

2N(R−R11). The encoder determines(w, l) from w11 = (w, j) such thatl is uniformly chosen from the
partitionL′

j at random. In this case, there is a one-to-one correspondence between{(w, l)} and [1, 2NR].
(ii) If R11 ≤ R′, then the encoder obtains(w, l) by settingw , w11 and uniformly choosingl from L

at random. In this case, there is a one-to-one correspondence between{(w, l)} and [1, 2N(R11+R−R′)].
The transmitted sequence from sender 1 isx1(i, b) with i = w10 and b = (w, l) ∈ [1, 2NR]. Sender 2

transmits the sequencex2(k) with k = w2, wherew2 ∈ [1, 2NR2] is uniformly selected.
3) Decoding:: Upon receivingy ∈ YN , the receiver seeks a message pair(̂i, k̂) such that

(

q(̂i),x2(k̂),y
)

∈ A(N)
ǫ

whereA(N)
ǫ denotes theǫ-jointly typical set [5] for any fixedǫ > 0. If there does not exist or there are

more than one such sequence, then the receiver declares a decoding error. Then, the receiver seeks a
messagêb = (ŵ, l̂) such that

(

q(̂i),x1(̂i, b̂),x2(k̂),y
)

∈ A(N)
ǫ

for given (̂i, k̂). Having (̂i, b̂) such that̂b = (ŵ, l̂), the receiver obtains the estimates of the transmitted
messagew1 = (w10, w11) by setting

ŵ10 , î, ŵ11 ,
(

ŵ, g(l̂)
)

, if R11 > R′, and

ŵ10 , î, ŵ11 , ŵ, if R11 ≤ R′.

4) Analysis of Reliability:The average probability of decoding error for the receiver,denoted by
P

(N)

e (i, b, k) provided that(i, b, k) is sent, is upper-bounded as

P
(N)

e (i, b, k) ≤ P
(N)

e,1 (i, k) + P
(N)

e,2 (b|i, k), (23)

whereP
(N)

e,1 (i, k) andP
(N)

e,2 (b|i, k) denote the probabilities of decoding error for the first step(estimation
of (i, k)) and the second step (estimation ofb given a true transmitted pair(i, k)), respectively. It is easily
seen that the error probability of the first decoding step canbe made arbitrarily small for all sufficiently
largeN by the AEP [5] sinceR10 andR2 satisfy (19), (21), and

R10 +R2 ≤ min{I(Q1; Y ), I(Q1;Z)}+min{I(X2; Y |Q1), I(X2;Z|X1)}

≤ I(Q1X2; Y ). (24)

Also, the error probability of the second decoding step can be made arbitrarily small for sufficiently large
N by the AEP and (20), and so can the probabilityP

(N)

e (i, b, k).
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5) Analysis of Equivocation:The equivocationR(N)
e = 1

N
H(W1|Z

N) is lower-bounded by

R(N)
e =

1

N
H(W10W11|Z

N)

≥
1

N
H(W10W11|Z

NW10)

=
1

N
H(W11|Z

NW10), (25)

where the inequality follows from the fact that conditioning does not increase the entropy. By a similar
expansion forH(W11|Z

NW10) as in [1, eq. (45)], we obtain

H(W11|Z
NW10) ≥ H(XN

1 XN
2 |W10)− I(XN

1 XN
2 ;ZN |W10)−H(XN

1 XN
2 |W10W11Z

N). (26)

We shall consider bounding each term in (26). For the first term, we have

H(XN
1 XN

2 |W10) = H(XN
1 |W10) +H(XN

2 )

and
H(XN

1 |W10) = H(XN
1 |W10Q

N
1 ) = H(XN

1 |QN
1 ),

where the first equality is due to the fact thatQN
1 is a deterministic function ofW10, while the last equality

follows from the Markov chain relationshipW10 → QN
1 → XN

1 . Since the codewords are generated
according to i.i.d. distributions, it follows that

H(XN
1 |QN

1 ) = NH(X1|Q1) ≥ NR, (27)

and

H(XN
2 ) = NH(X2) ≥ NR2. (28)

It is sufficient that we directly replace these inequalitieswith

NH(X1|Q1) ≥ NI(X1; Y |X2Q1)

and
NH(X2) ≥ N min{I(X2; Y |Q1), I(X2;Z|X1)}.

For the second term in (26), we expand

I(XN
1 XN

2 ;ZN |W10) = H(ZN |W10)−H(ZN |XN
1 XN

2 W10),

(29)

for which we have

H(ZN |W10) = H(ZN |QN
1 ) = NH(Z|Q1) (30)

due to the fact thatQN
1 is a deterministic function ofW10, the Markov chain relationshipW10 → QN

1 →
ZN , and an i.i.d. distribution forZN givenQN

1 . We also have

H(ZN |XN
1 XN

2 W10) = H(ZN |XN
1 XN

2 QN
1 ) = NH(Z|X1X2Q1). (31)

It follows from (30) and (31) that (29) becomes

I(XN
1 XN

2 ;ZN |W10) = NI(X1X2;Z|Q1). (32)

We now consider the third term in (26). Consider decoding ofl givenw1 = (w10, w11) ∈ W1 by observing
z ∈ ZN . For the caseR11 > R′, since this decoder knowsj ∈ J , which is given byw11 = (w, j) ∈ W11,
and using the following inequalities

1

N
log2 |L

′
j|+R2 ≤ R− R′ +R2 = I(X1X2;Z|Q1),



14

and
1

N
log2 |L

′
j| ≤ R ≤ I(X1;Z|X2Q1), (33)

the average probability of decoding error can be made arbitrarily small for sufficiently largeN . Note that,
in this case,

R ≤ I(X1; Y |X2Q1) ≤ I(X1;Z|X2Q1).

For the caseR11 ≤ R′, we also have

1

N
log2 |L|+R2 ≤ R −R′ +R2 = I(X1X2;Z|Q1),

and
1

N
log2 |L| ≤ R ≤ I(X1;Z|X2Q1). (34)

Again, the average probability of decoding error can be madearbitrarily small with all sufficiently large
N . Therefore, by Fano’s inequality [5], for any givenǫ′ > 0, we have

1

N
H(XN

1 XN
2 |W10W11Z

N) ≤ ǫ′ (35)

for sufficiently largeN . Substituting (28), (32), and (35) into (26) yields, for anygiven ǫ′ > 0,

R(N)
e ≥ R +R2 − I(X1X2;Z|Q1)− ǫ′

for N sufficiently large. Since we can choose any pair ofR andR2 subject to (20) and (21), there exist
R andR2 such that, for anyǫ′ > 0,

R(N)
e ≥ I(X1; Y |X2Q1) + min{I(X2; Y |Q1), I(X2;Z|X1)} − I(X1X2;Z|Q1)− ǫ′. (36)

Hence, it follows from (22) and (36) that any equivocationRe satisfying (18) is achievable.

B. Case 2:I(X1; Y |X2Q1) > I(X1;Z|X2Q1)

In this case, ifI(X2; Y |Q1) ≥ I(X2;Z|Q1), then the constraint onRe is given by (18). We can use
Coding Scheme 1 discussed in Case 1 with a slight modification. We set

R′ =
[

R + min{I(X2; Y |Q1), I(X2;Z|X1)} − I(X1X2;Z|Q1)
]+

,

and we assume thatR′ > 0, because no security level is obtained otherwise. Then, forthe analysis of
equivocation, the left hand side of (33) is bounded as

1

N
log2 |L

′
j| ≤ R −R′ = I(X1X2;Z|Q1)−min{I(X2; Y |Q1), I(X2;Z|X1)}.

SinceI(X2;Z|Q1) ≤ min{I(X2; Y |Q1), I(X2;Z|X1)} and

I(X2;Z|Q1) = H(X2)−H(X2|Q1Z)

≤ H(X2)−H(X2|Q1X1Z)

= I(X2;Z|X1)

where the last equality follows from the Markov chain relationship

Q1 → (X1, Z) → X2,

we have (33) ifR11 > R′. From the same reasoning, we also have (34) ifR11 ≤ R′. Other arguments are
quite similar to those for Case 1, and we can show that any rate-equivocation pair(R1, R) ∈ R1(P

∗
Q1X1X2

)
is achievable.
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We then consider the caseI(X2; Y |Q1) ≤ I(X2;Z|Q1). In this case, the constraint onRe in (17) is
given by

Re ≤ I(X1; Y |X2Q1)− I(X1;Z|X2Q1),

which can be achieved by a similar coding/decoding scheme toCoding Scheme 1 by letting

R ≤ I(X1; Y |X2Q1), and

R′ = [R1 − I(X1;Z|X2Q1)]
+.

In this case,R2 can be arbitrarily set in the range0 ≤ R2 ≤ I(X2; Y |Q1). We call this coding scheme
Coding Scheme 2.

To show the equivocation at the eavesdropper, note that

R(N)
e =

1

N
H(W10W11|Z

N)

≥
1

N
H(W11|Z

NXN
2 W10).

Similarly to the derivation [1, eq. (49)], we obtain

H(W11|Z
NXN

2 W10) ≥ H(XN
1 |W10)− I(XN

1 ;ZN |W10X
N
2 )−H(XN

1 |W10W11Z
NXN

2 ),

in which the right hand side is lower-bounded by

N(I(X1; Y |X2Q1)− I(X1;Z|X2Q1)− ǫ),

for any givenǫ > 0, for all sufficiently largeN . This completes the proof of the achievability to the
regionR1(P

∗
Q1X1X2

).

APPENDIX B
AN ACHIEVABLE SCHEME FOR THEREGION RB

We give an achievability scheme for the regionC̃ given in (10). Letπ∗ = P ∗
Q1U1U2X1X2

andRB(π
∗) be

defined as

RB(π
∗) =

{

(R1, Re) : R1 = R10 +R11, 0 ≤ R10,

0 ≤ Re ≤ R1,

R10 ≤ min{I(Q1; Y ), I(Q1;Z)},

R11 ≤ I(U1; Y |Q1),

Re ≤ I(U1; Y |Q1)− I(U1;Z|Q1)
}

. (37)

By virtue of Fourier-Motzkin elimination, it is readily shown that
⋃

π∗

CB(π
∗) =

⋃

π∗

RB(π
∗), (38)

and from (9) and (10),

C̃ =
⋃

π∗

{

CA(π
∗) ∪RB(π

∗)
}

= C ∪
⋃

π∗

RB(π
∗).

The regionC is achievable by the coding method given in Section III. Therefore, if we have an
achievability scheme to achieveRB(P

∗
Q1U1U2X1X2

) for any givenP ∗
Q1U1U2X1X2

∈ P∗, then the region
C̃ is also achievable.

We turn to showing an achievable scheme to the regionRB(P
∗
Q1U1U2X1X2

) for arbitrarily fixed π∗ =
P ∗
Q1U1U2X1X2

∈ P∗. The description of a achievability scheme is a combinationof the scheme in Ap-
pendix A and the scheme given in [2].
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APPENDIX C
PROOF OFPROPOSITION2

The conditionI(U1; Y |Q) > I(U1;Z|Q) is necessary since otherwise there is no equivocation inCB(P
∗).

As we have seen in (7), there are three cases for which the region CA(P
∗) is of different form.

If I(U2; Y |Q1) ≤ I(U2;Z|Q1), then the constraint onRe ∈ CA(P
∗) is given by

Re ≤ [I(U1; Y |U2Q1)− I(U1;Z|U2Q1)]
+.

Then the constraint onRe ∈ CB(P
∗) has an effect iff

I(U1; Y |Q1)− I(U1;Z|Q1) ≥ I(U1; Y |U2Q1)− I(U1;Z|U2Q1). (39)

First note that

I(U1; Y |Q1)− I(U1;Z|Q1)− (I(U1; Y |U2Q1)− I(U1;Z|U2Q1))

= I(U1;Z|U2Q1)− I(U1;Z|Q1)− (I(U1; Y |U2Q1)− I(U1; Y |Q1)). (40)

Since

I(U1;Z|U2Q1)− I(U1;Z|Q1) = I(U1U2;Z|Q1)− I(U1;Z|Q1)− I(U2;Z|Q1)

= I(U2;Z|U1)− I(U2;Z|Q1)

and also

I(U1; Y |U2Q1)− I(U1; Y |Q1) = I(U2; Y |U1)− I(U2; Y |Q1),

then (40) becomes

I(U1; Y |Q1)− I(U1;Z|Q1)− (I(U1; Y |U2Q1)− I(U1;Z|U2Q1))

= I(U2;Z|U1)− I(U2;Z|Q1)− (I(U2; Y |U1)− I(U2; Y |Q1))). (41)

Therefore, (39) holds iff

I(U2;Z|U1)− I(U2;Z|Q1) ≥ I(U2; Y |U1)− I(U2; Y |Q1),

leading to (12).
If I(U2;Z|Q1) ≤ I(U2; Y |Q1) ≤ I(U2;Z|U1), then the constraint onRe ∈ CA(P

∗) is given by

Re ≤ [I(U1U2; Y |Q1)− I(U1U2;Z|Q1)]
+.

Then the constraint onRe ∈ CB(P
∗) has an effect iff

I(U1; Y |Q1)− I(U1;Z|Q1) ≥ I(U1U2; Y |Q1)− I(U1U2;Z|Q1). (42)

We note that

I(U1; Y |Q1)− I(U1;Z|Q1)− (I(U1U2; Y |Q1)− I(U1U2;Z|Q1))

= I(U2;Z|U1)− I(U2; Y |U1). (43)

Therefore, (42) holds iff (13) holds.
If I(U2;Z|U1) ≤ I(U2; Y |Q1), then the constraint onRe ∈ CA(P

∗) is given byRe ≤ [I(U1U2; Y |Q1)−
I(U1;Z|Q1)]

+. In this case, since it always holds

I(U1; Y |Q1)− I(U1;Z|Q1) ≤ I(U1U2; Y |Q1)− I(U1;Z|Q1), (44)

the constraint onRe ∈ CB(P
∗) hasno effect. ✷
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APPENDIX D
THE WIRE-TAP CHANNEL WITH A DEAF-INTERFERER

In wireless network settings, sender 2 (the helper) in the wire-tap channel with a helper can observe
a noisy sequence of the transmitted sequenceXN

1 from sender 1. LetY N
1 denote the sequence observed

by sender 2. For some security systems, it is desired to avoidleaking information aboutW1 to sender 2,
which motivates the introduction of another type of the wire-tap channel with a helper, called the wire-tap
channel with adeaf-helper(a deaf-interferer) [1].

The wire-tap channel with a deaf-helper looks like the relay-eavesdropper channel, in which a relay
node observesY N

1 and helps to increase the rate ofW1 or the equivocation at the eavesdropper. Note
that in this channel model, the relay node might (partially)decode the messageW1 for the cooperation.
On the other hand, the scenario of the wire-tap channel with adeaf-helper describes the setting in which
sender 1 with secret messages does not fully trust the other sender (the helper) but still wishes to get
help from the user cooperation. As in [1], we assume that sender 2 is not malicious, and willing to help
the communication from sender 1 to the receiver. Since sender 2 ”forwards” a dummy sequence instead
of forwarding a (partial) message of sender 1, the cooperation scheme is called anoise-forwarding (NF)
strategy.

In this setting, a rate-equivocation region is defined by introducing an additional security constraint as
follows:

Definition 3: A rate-equivocation pair(R1, Re) is said to beachievableif there exists a sequence of
(N,M1) codes such that for everyǫ > 0,

R1 ≥
log2M1

N
− ǫ,

P (N)
e ≤ ǫ,

R(N)
e ,

1

N
H(W1|Z

N) ≥ Re − ǫ,

R(N)
s ,

1

N
H(W1|Y

N
1 XN

2 ) ≥ Re − ǫ

for all sufficiently largeN .
We conjecture that the convex hull of the following rate-equivocation region is achievable

CDH =
⋃

PQ1
PU1|Q1

PU2
PX1|U1

PX2|U2
PY Z|X1X2

{

(R1, Re) : 0 ≤ Re ≤ R1,

R1 ≤ I(U1; Y |U2Q1) + min{I(Q1; Y |U2), I(Q1;Z|U2)},

Re ≤ max
{

R′
3 − I(U1;Z|U2Q1)− I(U2; Y |Q1), R

′
3 − I(U1U2;Z|Q1)

}

Re ≤ [I(U1; Y |U2Q1)− I(U1; Y1|U2Q1)]
+
}

where
R′

2 = min{I(U2; Y |Q1), I(U2, Z|U1)},

R′
3 = I(U1; Y |U2Q1) +R′

2,

andQ1, U1 andU2 are auxiliary random variables satisfying the Markov chainconditions given by (6).
As for the perfect-secrecy rate, the above achievable rate-equivocation region reduces to the following

result, which is the same as that given in [1, Theorem 6].
Theorem 2:The perfect-secrecy rate for the wire-tap channel with a deaf-helper, given by

R1 = sup
PU1X1

PU2X2

min{Re,1, Re,2},
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where

Re,1 , max
{

I(U1; Y |U2)− I(U1;Z|U2) +R′
2 − I(U2; Y |), I(U1; Y |U2) +R′

2 − I(U1U2;Z)
}

, and

Re,2 , [I(U1; Y |U2) +R′
2 − I(U1; Y1|U2)]

+,

is achievable.
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