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Abstract—The core network architecture of telecommunication systems has undergone a paradigm shift in the fifth-generation (5G)

networks. 5G networks have transitioned to software-defined infrastructures, thereby reducing their dependence on hardware-based

network functions. New technologies, like network function virtualization and software-defined networking, have been incorporated in

the 5G core network (5GCN) architecture to enable this transition. This has resulted in significant improvements in efficiency,

performance, and robustness of the networks. However, this has also made the core network more vulnerable, as software systems are

generally easier to compromise than hardware systems. In this article, we present a comprehensive security analysis framework for the

5GCN. The novelty of this approach lies in the creation and analysis of attack graphs of the software-defined and virtualized 5GCN

through machine learning. This analysis points to 119 novel possible exploits in the 5GCN. We demonstrate that these possible

exploits of 5GCN vulnerabilities generate five novel attacks on the 5G Authentication and Key Agreement protocol. We combine the

attacks at the network, protocol, and the application layers to generate complex attack vectors. In a case study, we use these attack

vectors to find four novel security loopholes in WhatsApp running on a 5G network.

Index Terms—Attack Graphs, 5G Network, 5G Security, Network Function Virtualization, Machine Learning, Mobile Network Security,

Software-defined Networks.

✦

1 INTRODUCTION

F IFTH-generation (5G) networks hold promise for realiz-
ing the vision of universal connectivity. They enable var-

ious verticals like Internet-of-Things (IoT), autonomous ve-
hicles, smart cities, and telemedicine. These applications re-
quire high-bandwidth, robust, flexible, dynamic, and fault-
tolerant network architectures.

5G networks represent a huge leap, both qualitatively
and quantitatively, from previous-generation telecommuni-
cation networks. The network core architecture has under-
gone a paradigm shift from its predecessor, the Evolved
Packet Core. Previously, network functions were imple-
mented on commodity hardware. In 5G networks, the net-
work functions are mostly implemented in software. More-
over, with the advent of cloud computing, many network
operations are now virtualized. This allows multiple op-
erators to use the same underlying hardware resources to
provide network services. This technology is broadly known
as network function virtualization (NFV). 5G networks also
separate the communication on the data plane from that
on the control plane. This involves the use of a controller
that observes the entire network before making routing
decisions. This technology, broadly referred to as software-
defined networking (SDN), has been shown to reduce both
the operational expenditure (OPEX) and capital expenditure
(CAPEX) of the network. Many of these transitions have
become possible due to the utilization of an mm-wave
technology in 5G. Incorporation of these new technologies
results in significant improvements in efficiency, reliability,
and flexibility of wireless networks.

The confluence of the new technologies makes the 5G
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core network (5GCN) an intricate system comprising SDN,
NFV, distributed systems, and cloud computing. The 5GCN
has a service-based architecture that dynamically modifies
itself according to the requirements of the operators and
users. However, introduction of new technologies into the
5GCN also expands its attack surface [1], as it now inherits
the vulnerabilities of all these individual technologies.

Prior work in 5G security has referred to broad cat-
egories of attacks that the 5GCN may be vulnerable to
[2, 3, 4]. In this article, we address far-reaching implications
of these threats and how they may interact with each
other to give rise to complex attacks that were infeasible in
previous generations of telecommunication networks. The
sequences of operations that are executed to implement an
attack, also referred to as attack vectors, can be combined
into an attack graph for a concise representation. We com-
bine the various attack vectors pertaining to SDN, NFV, and
5G protocols into attack graphs. We analyze these graphs to
generate 119 novel possible exploits that are exclusive to 5G
networks. They are possible exploits in a specific system. The
numerous vulnerabilities arising due to implementation er-
rors are generally system-specific. We show how these possi-
ble exploits can compromise the 5G Authentication and Key
Agreement (AKA) protocol. We discover five new attack
vectors in the 5G-AKA protocol that can be triggered by
5GCN vulnerabilities. We demonstrate how various attacks
at the network and protocol levels can be combined to re-
motely hack targeted end-user applications. In a case study,
we demonstrate the hacking of the WhatsApp account of
an end user. We chose WhatsApp as our target application
because it is the most widely used instant messaging (IM)
platform and possesses some of the most advanced security
features [5]. We discovered four security loopholes that may
be triggered in WhatsApp in the absence of appropriate
5GCN security measures. We show how our framework can
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scale to larger infrastructures through the use of machine
learning (ML) and a constraint satisfaction problem (CSP)
formulation. We use ML and CSP formulation at the system
level to predict possible vulnerability exploits when a new
node is added to the attack graphs. A new node may be
added when a new vulnerability is discovered or when
a new vulnerable component is introduced in the 5GCN.
Utilization of ML at the system level is inspired by the
SHARKS framework [6], where ML was used to discover
novel possible exploits in an IoT system. SHARKS is an
acronym for Smart Hacking Approaches for RisK Scanning.
Although SHARKS was originally targeted at IoT and cyber-
physical systems, it is also applicable to the 5GCN architec-
ture.

The new contributions of this article include:

1) Representation of 113 documented SDN and NFV at-
tack vectors in the form of concise attack graphs.

2) Analysis of attack graphs to obtain 119 novel possible
exploits of SDN, NFV, and malicious peripheral vulner-
abilities in the 5GCN.

3) Analysis of the consequences of network infrastructure
threats and their interactions on the 5G-AKA protocol,
resulting in the discovery of five novel possible attack
vectors that are triggered by 5GCN vulnerabilities.

4) Combination of threats across the hardware, software,
network, and protocol layers to compromise end-user
applications.

5) Application of ML and CSP models to the attack graphs
to make the framework scalable to larger infrastruc-
tures.

The article is organized as follows. Section 2 provides a
summary of the work that has been done on 5G security.
Section 3 discusses background material. Section 4 gives
details of our methodology. Section 5 describes the impact
of system vulnerabilities on the implementation of the 5G-
AKA protocol. Section 6 describes the application of our
approach to exploitation of network-level vulnerabilities
to compromise end-user applications. Section 7 includes
a discussion on the applications and limitations of our
framework. Section 8 concludes the article.

2 RELATED WORK

Security and privacy of users are of prime importance in 5G
networks. The Third Generation Partnership Project (3GPP)
has been working continuously to define the security stan-
dards of 5G communication systems. Multiple versions of
security standards have been published to date. Recent sur-
veys and articles list the potential vulnerabilities of various
5G-enabling technologies like cloud radio access networks,
SDN, NFV, network slicing, cloud computing, and multi-
edge computing [3, 7, 8].

There are many vulnerabilities that exist in the SDN
ecosystem [9]. Multiple implementation vulnerabilities exist
in various open-source SDN controllers and network op-
erating systems (NOSs) like OpenFlow, POX, and Open-
Daylight [10]. Similarly, network slicing and NFV have
their own vulnerabilities [11, 12]. NFV inherits many of its
vulnerabilities from traditional virtualization technologies.
However, prior research does not report on the specific
attack vectors that can exploit these vulnerabilities in the

5G framework and lacks detailed analyses of the impact
of these vulnerabilities on the end-user. To the best of
our knowledge, no prior work explores interactions among
vulnerabilities of different technologies, like SDN and NFV,
to generate complex attack vectors.

We use attack graphs to analyze 5GCN security. Attack
graphs have found extensive use in network security, soft-
ware, and electronic systems. Various vulnerability assess-
ment tools have been developed to analyze the security
of software systems and networks using attack graphs.
Some of the popular ones are MulVal and A2G2V [13, 14].
However, these tools do not address discovery of unique
vulnerability exploits in a software-defined and virtualized
network. We target this problem in this article. ML-based
attack graphs have been used previously to analyze the
security of IoT and cyber-physical systems [6, 15]. We use
ML on the attack graphs to enable our framework to scale
to larger networks.

The 5G ecosystem consists of multiple protocols execut-
ing at different layers. Many vulnerabilities have been de-
tected in various 5G protocols like cellular paging protocols,
multiple control layer protocols [16], and cellular access net-
work protocols [17]. The 5G-AKA protocol claims to provide
higher security than its predecessors because it provides
enhanced user identity protection, more sophisticated key
derivation, and an increased influence of the home network
in authentication. However, the increased complexity of the
5G-AKA protocol leads to new vulnerabilities [18]. Most
of these vulnerabilities have been detected using formal
verification methods [19, 20]. In this article, we investigate
how SDN, NFV, and other infrastructure vulnerabilities can
facilitate the execution of protocol-level attacks.

In a case study, we analyze the impact of 5G network-
level vulnerabilities on the implementation of WhatsApp on
a client device. WhatsApp is one of the most widely used
instant messaging platforms with one of the most secure
platforms. Due to its high popularity and highly secure
platform, we choose to examine its security features through
the lens of a vulnerable network. Although WhatsApp is
highly secure, it is still vulnerable to attacks like media
file jacking, non-blocking behavior exploitation, voicemail-
based verification exploits [21], and key hijacking attacks.
We demonstrate that the execution of these attacks becomes
easier when we have a compromised 5G network.

3 BACKGROUND

We analyze the vulnerabilities of various disruptive tech-
nologies like NFV, SDN, and network slicing. In this section,
we provide an introduction to these concepts. We also
introduce some of the techniques we use to analyze system
security.

3.1 NFV

A network comprises various network functions (NFs) like
gateways, load balancers, and firewalls. In traditional net-
works, these NFs are implemented on proprietary hardware
systems. Such systems are not flexible and incur high main-
tenance costs because they are vendor-proprietary. More-
over, they often remain underutilized. These issues prevent



network operators from improving their average revenue
per user (ARPU). NFV provides a way to increase ARPU by
reducing network CAPEX and OPEX.

NFV abstracts out lower-level NF details by implement-
ing NFs on virtual machines (VMs). This facilitates easier
adoption of NFs by various applications. In addition, the
virtual network functions (VNFs) provide higher flexibility
and higher resource utilization.

The NFV architecture is shown in Fig. 1. In this figure,
every layer interacts only with the layers directly above and
below it. The rest of the infrastructure is abstracted out. For
example, the VNFs interact only with OSS/BSS above and
virtual resources below. They do not need to interact directly
with any other layer.

OSS / BSS

Service, VNF, infrastructure description

VNF1 VNF2 VNFn

NFVI
Virtual

compute
Virtual
storage

Virtual
network

Virtualization layer

Compute Storage Network

VNFs
Orchestrator

VNF
manager

Virtual
infrastructure

managerPhysical resources

NFV
management

and
orchestration

Fig. 1: NFV reference architecture provided by the European
Telecommunications Standards Institute (ETSI)

The various components of the NFV architecture are as
follows:

• Operations Support System (OSS): This is responsi-
ble for various network management and operations
functions like service provisioning and fault toler-
ance.

• Network functions virtualization infrastructure
(NFVI): This is a distributed system of resources
designed to provide a common platform to the VNFs.
As shown in Fig. 1, the NFVI can be categorized into
three classes: virtual resources, virtualization layer,
and physical resources.

• NFV orchestrator: This is part of the NFV manage-
ment and network orchestration (MANO) unit. It
plays an important role in instantiating the network.

• VNF manager: This is responsible for instantiating
the VNFs. It manages various attributes of the VNFs
like their creation, migration, resource allocation, and
termination.

• Virtual Infrastructure Manager (VIM): This is re-
sponsible for management and virtualization of the
physical compute, storage, and network resources.

All the components described above are provided by
third-party vendors, unlike pre-5G networks where all

components are proprietary. This makes these components
inherently untrustworthy. Moreover, third-party software
systems cannot be protected by hardware-based fingerprint-
ing mechanisms like hardware root-of-trust and physical
unclonable functions [22]. In this article, we study various
methods for compromising the virtualization components
and the consequences of doing so.

3.2 SDN

Traditionally, network devices have their functionalities
hard-coded into the devices. This hinders flexibility and
innovation in networks. SDNs ameliorate these issues, make
virtualization of networks easier, and have the potential to
increase the ARPU of network operators.

The primary objective of software-defined networking
is decoupling the control and data planes. SDNs have cen-
tralized controllers that make forwarding decisions for the
switches. The controllers have a broad overview of the entire
network, hence can make better decisions than localized
switches.

Operator
Services

SDN Applications
Management

apps
Monitoring

apps
Vendor
apps

Northbound
Interface

Control Plane

Controller 1 Controller 2 Controller 3

Southbound
Interface

Data Plane

Switches

Fig. 2: The SDN architecture

The SDN architecture is shown in Fig. 2. The log-
ically centralized controllers receive application require-
ments through the northbound interface. They are responsi-
ble for translating the application requirements into efficient
flow rules. These rules are relayed to the data plane de-
vices via the southbound interface. The data plane mainly
consists of forwarding devices like routers and switches.
The data plane devices communicate periodically with the
controllers, updating them with the current situation in the
data plane. This gives the controllers a global view of the
network, thus enabling them to make efficient forwarding
decisions.

Various components of the SDN architecture, namely the
control plane, data plane, and northbound and southbound
interfaces, are prone to vulnerabilities. We analyze the con-
sequences of these vulnerabilities on a 5G-enabled system.

3.3 Network Slicing for 5G Networks with SDN/NFV

Network slicing is a method of sharing virtual network
resources among multiple verticals. A network slice refers
to an independent, end-to-end network composed of virtual



resources. Network slicing enables the network operators to
meet their ambitious goals, like scalability and low latency,
by providing better network isolation and increased statis-
tical multiplexing. The network slicing architecture for the
5GCN is depicted in Fig. 3.
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VNF
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Slice 1
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Virtual Infrastructure Manager
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Fig. 3: Network slicing for 5G networks with SDN/NFV and
its attack surface

There are two kinds of resources available for sharing:
NFs and the physical infrastructure [23]. The NFs are pro-
vided to the operators by the tenants and the infrastructure
by the infrastructure provider (InP). Virtualization and SDN
are utilized at both the tenant and InP levels. The SDN
controller at the tenant and InP levels are referred to as the
tenant controller (TC) and the infrastructure controller (IC),
respectively. A simplified example of the implementation of
network slicing is depicted in Fig. 3. Every network slice has
a network services orchestrator (NSO) that communicates
with the resource orchestrator (RO) of the tenant. A tenant
provides multiple slices to the operators. In the simplified
example depicted in Fig. 3, the tenant is dependent on a
single InP for its resources. In reality, the tenant may be
dependent on multiple InPs.

The network slicing architecture demonstrates how SDN
and NFV are used together in the 5GCN. We use this
framework while analyzing 5G system security.

3.4 Regular Expression

Regular expression is a concise representation of a set of
strings. We use regular expressions to represent an attack
vector. The set of all permissible characters in a regular
expression is called its alphabet, denoted by Σ. The oper-
ations in regular expressions that we use in this article are
described in Table 1.

Regular expressions are generally used to denote
system-level operations that are incomprehensible to hu-
mans. In this article, we define the characters of the regular

TABLE 1: The basic operations in our regular expressions

A = {a, b};B = {c, d}
Operation Definition Example

Set Union (+)
Set union of two
regular expressions

A+B = {a, b, c, d}

Concatenation
(.)

Concatenation of
strings of two
regular expressions

A.B = {ac, ad, bc, bd}

expression at a higher granularity for the sake of gener-
ality. The alphabet (Σ) of our regular expressions com-
prises human-understandable system-level operations. For
example, Σ ={’Install malicious switch,’ ’Insert malware in
hypervisor,’ ...}. This is done to ensure that application of
our approach is independent of the application, OS or the
compiler employed by the 5GCN.

4 METHODOLOGY

This section describes our methodology and its impact. We
analyze the security of the software-defined and virtual-
ized 5GCN using ML and CSP formulation. Section 4.1
describes our threat model. Section 4.2 describes the method
of representing attack vectors with attack graphs. Section 4.3
gives details of analyzing 5GCN security with attack graphs.
Section 4.4 describes the methods for exploiting ML and
CSP formulation to improve the scalability of the proposed
methodology.

4.1 Attack Surface

An attack surface of a system refers to the set of various
entry points that can be exploited. The various components
that compose the attack surface of the 5GCN are depicted in
Fig. 3. They are as follows:

1) User applications
2) Northbound interface of SDN controller
3) SDN controller
4) Control channel of SDN
5) VNFs
6) Tenant
7) Network slice
8) NFV MANO unit
9) Management network between tenant and InP

10) Hypervisor
11) InP peripheral attacks; Attacks on physical infrastruc-

ture

The attack vectors for exploiting vulnerabilities of these
components are discussed in detail in the subsequent sec-
tions.

4.2 Attack Vector Representation

We use regular expressions and attack graphs to represent
various attacks on the 5G system. We use regular expres-
sions because they allow us to represent the sequence of
exploits in an exploit chain. We use attack graphs because
they enable efficient modeling of the interactions between
different threats. In this section, we describe the process of
constructing the attack graphs from various attacks. First,
every attack is decomposed into a sequence of system-
level operations. We represent this sequence using a regular



expression. Then, we convert this regular expression into an
attack graph. For example, let us consider an attack in which
a target switch is disconnected from its SDN controller
by poisoning the Address Resolution Protocol (ARP). This
attack can be executed by the following sequence of system-
level operations:

1) Install a malicious VM in the system.
2) Launch an ARP poisoning attack to alter the MAC

address of the controller on the target switch.
3) In the target switch memory, replace the MAC address

of the original controller with that of the malicious VM.
4) The target switch is now disconnected from the con-

troller.
5) Send malicious flow rules to the switch from the mali-

cious VM. This disrupts network functionalities.

Let ch denote a character from the alphabet Σ of our reg-
ular expressions. Then, the regular expression of the attack
vector described above can be represented as: chi(Install
malicious VM). chj(ARP poisoning). chk(Impersonate con-
troller in switch). chl(Disconnect switch from controller).
chm(Crash network). This regular expression can be con-
verted into an execution graph, as shown in Fig. 4.

ARP
poisoning

Install
malicious

VM

Impersonate
controller in

switch

Disconnect
switch from
controller

Crash
network

Fig. 4: Turning a regular expression into an execution graph

We combine the execution graphs of multiple attacks to
obtain the aggregated attack graphs.

4.3 5GCN Vulnerability Analysis

In this section, we describe the vulnerabilities of NFV, SDN,
and peripheral devices, and the threats that arise from them.
For each of these domains, we use regular expressions and
attack graphs to conduct a complete security analysis of the
system.

4.3.1 SDN Vulnerability Analysis

SDN is one of the most disruptive technologies that is
deployed in 5G systems. SDN implementation contains
multiple vulnerabilities and is prone to exploits of varying
complexity, including topology poisoning attacks, controller
hijacking attacks, man-in-the-middle (MiTM) attacks, and
denial-of-service (DoS) attacks, to name a few [9, 24, 25, 26].
Moreover, popular open-source NOSs for the SDN con-
troller, namely OpenFlow, OpenDaylight, and POX, have
been shown to be vulnerable to multiple attacks [10].

SDN vulnerabilities can be broadly divided into two
categories: control plane and data plane attacks. Control
plane attacks involve compromising the NOS or the control
channel that is used to send the control messages to the
data plane devices [27]. The communication in the control
channel is generally unencrypted to enhance performance.
This is a potential security loophole. An adversary with
access to the control channel can possibly eavesdrop on
the control messages to infer the network topology. Knowl-
edge of the network topology can lead to a variety of
attacks [28, 29]. Moreover, an adversary can compromise
the integrity of the control messages without being detected.

This can cause malicious network reconfiguration and DoS
attacks. The data plane is also vulnerable to various attacks.
The data plane attacks generally target individual switches
and forwarding devices. We represent all SDN attack vectors
as regular expressions and then convert them into attack
graphs. The regular expressions of various SDN attacks are
shown in Table 2. These attack vectors in the SDN control
plane (SDN-CP) and the SDN data plane (SDN-DP) are then
concisely represented as the attack graphs shown in Fig. 5
and Fig. 6, respectively. In an attack graph, every path from
a head node to a tail node is a unique attack vector. The
graph in Fig. 5 has 14 unique SDN-CP attack vectors and
the graph in Fig. 6 has 25 unique SDN-DP attack vectors.

4.3.2 NFV Vulnerability Analysis

NFV provides a dynamic and loosely-coupled infrastructure
that caters to a large diversity of user requirements. How-
ever, NFV inherits multiple implementation vulnerabilities
and exploits thereof. Prior to NFV, when a proprietary
function was introduced in the network, there existed an
established trust between the developer and the operator.
This trust is absent in an NFV-enabled network architecture
because third-party VNFs are usually susceptible to a vari-
ety of threats [30]:

1) Generic networking threats.
2) Generic virtualization threats.
3) Emerging threats due to a combination of networking

and virtualization.

Due to multi-tenancy and Infrastructure-as-a-Service
paradigms of virtualization, access to the core network is
easier than before. This makes the 5GCN vulnerable to
different kinds of attackers, some of whom may be end cus-
tomers of retail networks, retail network operators, whole-
sale network operators, hypervisor operators, infrastructure
sharers and operators, and facility managers. Hence, secu-
rity monitoring should be an integral part of the 5GCN
ecosystem.

The regular expressions of the NFV threats and vulnera-
bilities are described in Table 3 and are concisely represented
in the attack graph shown in Fig. 7. The attack graph
has 25 unique NFV attack vectors. These attack vectors
have been constructed from the ETSI NFV security problem
statement [30].

4.3.3 Malicious Peripherals

The 5GCN is vulnerable to malicious peripheral devices
that can potentially compromise the virtualization infras-
tructure. Input/Output (IO) attacks involve malicious pe-
ripherals that make root-level read and write accesses to the
DRAM or to the memory embedded in other peripherals.
Various attacks involve corrupting the Peripheral Compo-
nent Interconnect (PCI) to install rootkits [31], exploiting
Message Signal Interrupts (MSI) and VGA driver vulner-
abilities for privilege escalation on hypervisors, and over-
writing root-table entries to gain kernel privileges. A concise
representation of these attacks is shown in the attack graph
in Fig. 8. This attack graph consists of 49 attack vectors
introduced by malicious peripherals and attacks on physical
infrastructure of InP.

The vulnerabilities mentioned in this section require
physical access to the infrastructure. Hence, they are less



TABLE 2: Regular Expressions for SDN attacks [9, 24, 25, 26, 27, 28, 29]

Application layer Entry point of attack Regular expression

Abuse of privileges
and authority

Malicious third party apps
chi(install malicious app). chn(gain control over tenant controller VM).
{chj (disconnect sensitive apps) + chk(shutdown sensitive apps)}.
{chl(crash network) + chm(degrade network performance)}

Service disruption Malware

chi(install malicious app). chj (gain control over tenant controller VM).
[{ch1(drop control messages to VNFs) + ch2(subvert order in which app
handlers access control packets) + ch3(interfere in service chain)}.
chk(disrupt control packet forwarding) + ch4(eavesdrop on control messages).
chl(derive topology of network). chm(execute topology based attacks)].
{cho(crash network) + chp(degrade network performance)}

Application shutdown Vulnerable northbound API
chi(exploit vulnerability in northbound API). {chj (issue system command).
chk(terminate victim app) + chl(eavesdrop on messages between controller and app)}

Control layer

Dynamic flow rule
tunneling

Malware & vulnerable
switches

chi(install malicious app). chj (instruct conflicting/overlapping flow rules).
chk(bypass sensitive VNFs like firewall/Intrusion Detection Systems (IDS)).
{chl(degrade performance) + chm(crash network) + chn(DoS attack)}

Controller poisoning
(Poisoned network view)

Malware & vulnerable
network services and
protocols

chi(gain access to controller VM).
{chj (send crafted LLDP packets). chk(poison network topology in controller
by adding fake connections). chl(drop packets in data plane). chm(degrade
performance) + chn(poison controller host profile reservoir). cho(install malicious
VM). chp(redirect data packets to malicious VM). chq(MiTM attack in data plane)}

NOS misuse Vulnerable controller
{chi(malicious apps running at Application layer) + chj (rogue switch VM)}.
(multiple attacks that are denoted in cells below)
chk(execute system commands). chl(terminate controller).
chm(degrade network performance)
chk(access sensitive network information). chl(execute deviant actions)
chk(modify flow rules). {chl(eavesdrop on data plane packets) + chm(redirect
data packets)}. {chn(degrade network performance) + cho(MiTM attack in
data plane) + chp(bypass security functions like firewalls/IDS)}
chk(install rootkits)
chk(hijack network policy database)
chk(input invalid input data). chl(send controller in an invalid state).
chm(degrade network performance)

Packet-in flooding
Faulty controller or
compromised switch VMs

{chi(malicious app) + chj (malicious switch VM)}. chk(send massive amounts of
malformed packets). chl(switch-table misses of switch VM). chm(massive
amount of packet-in messages sent to controller VM). cho(DoS attack on
controller). chp(degrade network performace)

Switch table flooding
Faulty controller or
compromised switch VMs

{chi(malicious app) + chj (malicious switch VM)}. chk(send massive amount of
’features-reply’ messages to controller). chl(fill controller switch table with
fake switches). chm(DoS attack on controller). chn(degrade network performance)

Legitimate switch
id hijacking

chi(malicious switch VM installed). chj (connect malicious VM to controller using
DPID of target VM). chk(legitimate VM gets disconnected). {chl(network crash) +
chm(degrade network performance)}

Spanning tree poisoning
chi(send crafted LLDP packets to controller VM). chj (poison spanning tree
protocol with targetted fake links). chk(disconnect targetted links).
{chl(network crash) + chm(degrade network performance)}

Control Channel (CC)

Passive MiTM Unencrypted messages
chi(absence of crypto in CC). chj (sniff packets on CC). {chk(eavesdrop on
control messages) + chl(eavesdrop on topology information) +
chm(eavesdrop on management info)}

Active MiTM
Compromised southound
interface or vulnerable
data links

chi(absence of crypto in CC). chj (ARP poisoning). chk(insert intruder host
between controller and data plane)

Infrastructure layer

DoS leveraging
ARP poisoning

chi(ARP poisoning). chj (impersonate controller VM). chk(connect fake
controller to target switch). chl(disconnect target switch VM from network).
chm(degrade network performance)

Flow-rule flushing/
modification

{chi(malicious app) + chj (install malware on controller VM) + cho(gain access to
controller VM)}. chk(send incorrect control messages to switches).
{chl(modify switch flow rules) + chm(flush switch flow rules)}. chn(degrade
network performance)

Flow-rule flooding Side-channel attack (SCA)

chi(record round-trip time of packets; SCA). chj (detect
VM that has an almost full switch-table). chk(detect types of packets causing
table misses). chl(send such packets repeatedly). chm(flood switch table of VM).
chn(degrade network performance)



TABLE 3: Regular expressions of NFV threat vectors mentioned in the standards document ETSI GS NFV-SEC 001 v1.1.1
[30]

Topology-based
attacks

Regular expression

Adding unauthorized
connection in VNF

chi(modify VNF instantiation). chj (add unauthorized connection in VNF). chk(exploit weak crypto implemen-
tations). {chl(eavesdrop on packets) + cho(add a loop in network). chp(orchestrator creates new instances of
VMs (to handle excess load). chq(DoS on NFV infrastructure)}

Modifying firewall/IDS
instantiation

chi(modify VNF instantiation). chj (modify rules in firewall virtual storage). chk(connect to malicious website)
+ chl(modify IDS rules). {chm(flood network with incoming malicious traffic). chp(orchestrator creates new
instances of VMs (to handle excess load)). chq(DoS on NFV infrastructure) + chm(flood network with incoming
DNS queries). chp(orchestrator creates new virtual DNS). chq(amplified DNS query request - DoS attack on
victim)}

Passive MiTM {chi(modify VNF instantiation). chm(add a link to malicious VM) + chj (physical access of interfaces)}.
chk(eavesdrop on the messages being sent). chl(infer topology of network)

Active MiTM cho(physical access to interface). chi(exploit weak crypto implementations). chj (modify packets in-transit).
chk(crash the system) + chl(replay packets). chm(orchestrator creates new instances of VMs (to handle excess
load)). chn(DoS on NFV infrastructure)

Exploiting Lights out Management (LOM)

DoS attack on manage-
ment network

chi(identify network port(s) having access to LOM). chj (flood the port with requests). chk(DoS attack on LOM
port(s))

Exploiting LOM net-
work

{chi(SQL injection attack on virtual storage) + chj (SCA by physical access) + chk(cache poisoning attack) +
chl(download unwhitelisted software). chm(gain control over hypervisor) + chn(dynamic memory overflow
of hypervisor). cho(overwrite frame pointer of hypervisor). chp(code injection in hypervisor)}. chq(read secret
LOM credentials).{chr(crash the system) + chs(modify critical files on virtual storage) + cht(modify critical code
on virtual compute)}

Exploiting hypervisor
dependency on VNF (1)

chi(network fails). chj (hypervisor starts to boot). chk(hypervisor requests network configuration from VM
running on top of it). {chl(VM crashed; depends on hypervisor2 which has also crashed) + chm(crashed VM
depends on hypervisor)}. chn(VM fails to boot). cho(DoS on hypervisor)

Exploiting hypervisor
dependency on VNF (2)

chi(network failure). chj (virtual forwarding function1 (VFF1) starts to boot). chk(requests access to VFF2).
chl(VFF2 is crashed). chm(VFF2 requests access to VFF1). chn(deadlock arises, DoS on VFF1). cho(DoS on VFF2)

Exploiting insecure
boot

chi(absence of secured boot authentication). chj (steal secret keys) + chk(rootkit injection) + chp(reset configura-
tion). chl(hypervisor compromise) + chm(VM compromise) + chn(orchestrator compromise) + cho(VM manager
compromise)

Insecure Crash

Compromising
sensitive data

chi(VM/VNF crashes). {chj (local memory not cleared by hypervisor) + cho(remote memory not cleared by
hypervisor)}. chk(new VM gets assigned same memory addresses as crashed VM). chl(new VM gets access to
sensitive data) + chm(new VM gets access to keys). chn(new VM implements privilege escalation)

Exploiting absence of
safety measures

chi(application within VM crashes but VM is still functional). chj (hypervisor resets/changes existing authoriza-
tions). chk(VM is restricted from performing required functions). chl(network crashes)

Privilege escalation chi(VMi crashes). chj (memory and authorizations are not cleared by hypervisor). chk(VMj gets assigned the
same memory location as crashed instance of VMi). chl(VMj gets same privileges as VMi)

Authentication,
Authorization,
Accounting (AAA)
attacks (1)

chi(weak authentication on NFVI manager). chj (access to hypervisor). chk(access to physical storage, compute
and network). {chl(get secret keys) + chm(MiTM attacks) + chn(replay attacks) + cho(eavesdrop on commu-
nication) + chp(modify packets in-transit) + chq(assign low memory to VMs). chr(DoS on VMs) + chs(give
unauthorized privileges to malicious actors) + cht(download unwhitelisted malware) + chu(add unauthorized
connections)}

AAA attacks (2) chi(weak auth. of hypervisor) + chj (weak auth. of orchestrator) + chk(weak auth. of VM) + chl(weak auth. of
VNF managers)

Exploiting backdoors
meant for testing

chi(virtualized switch in promiscuous mode). {chj (eavesdrop on VNF traffic with test process) + chk( adversary
sends malicious traffic through test backdoor) + chl(shared memory access to test process)}.{chm(eavesdrop on
sensitive data/secret keys) + chn(modify sensitive data of VNF in test/monitoring mode)}

Flooding attacks chi(physical access to shared network resources). {chj (flood shared network with requests) + chk(flood shared
network with high-priority messages)}. chl(DoS attack on target VM)

Eavesdropping on
shared resources

{chg(virtual sharing of same network slice) + chh(physical sharing of same network component)}.
chi(eavesdrop on shared resources). chi(absence of crypto on control plane). chj (reverse engineer the packets
sent by target VM). chk(spoof target VM). {chm(send modified packets with target VM id) + chn(request access
to other VMs with target VM’s id). cho(target VM is disconnected from these VMs in the virtual network).
chp(replay packets received by target VM)}.{chq(crash the system)+chr(launch DoS attack on another VM
through target VM)}

SCA/Cache poisoning chi(SCA analysis) + chj (cache poisoning). chk(extract crypto keys)
Resources of virtual infrastructure

Local storage attacks chi(install malware at hypervisor level). chj (force hypervisor to fill up local storage with logs). chk(local storage
insufficient for VMs). {chl(degrade network performance) + chm(DoS attack on VMs)}

Remote attacks chi(install malware at hypervisor level). {chj (force hypervisor to fill up remote storage with logs). chk(remote
storage insufficient for VMs) + chn(remote control channel degradation)}. {chl(degrade network performance)
+ chm(DoS attack on VMs)}

Memory pressure at-
tacks

chi(install malware at hypervisor level). chj (consume kernel memory). {chl(degrade network performance) +
chm(crash the system)}

CPU attacks chi(install malware at hypervisor level). chj (cause scheduler unfairness). {chl(degrade network performance) +
chm(crash the system)}

OS resource exhaustion chi(install malware at hypervisor level). {chj (consume file handles) + chn(consume event channels)}.
cho(insufficient resources for OS). {chl(degrade network performance) + chm(crash the system)}



Install malicious
app

Gain control over
tenant controller

VM

Drop control
messages to

VNFs

Disconnect
sensitive

apps

Shut down
sensitive apps

Subvert order in
which app handlers

access control
packets

Interfere in
service chain

Disrupt control
packet forwarding

Derive network topology;
Topology based attacks

Degrade network
performance / Crash

network

Hijack northbound
API

Eavesdrop on messages
between applications and

tenant controller

Issue
system

command

Instruct conflicting /
overlapping flow rules

Bypass
sensitive VNFs

Bypass IDS;
DoS

Bypass
firewall;

connect to
malicious host

Poison tenant
controller host

profile reservoir

Install
malicious

switch / VNF

Redirect
packets to
malicious

switch/VNF

MiTM

Send crafted
LLDP packets

Poison network
topology in

tenant controller

Drop packets
in data plane

Poison
spanning tree
protocol with

fake links

Disconnect
targeted links

Shut down
sensitive

apps

MiTMRedirect
data packets

Fig. 5: Aggregated attack graph of SDN control plane vulnerabilities

Install
rootkits

Access to
sensitive info

(keys,
topology, etc.)

Input invalid
data

Send tenant
controller into
invalid state

Hijack network
policy database

Install fake
switches in

tenant controller
memory

DoS on
tenant

controller

Send massive
amounts of
malformed

packets

Switch-table
miss in

controller

Issue system
command

Terminate
tenant controller

Degrade network
performance / Crash

network

Install
malicious

app

Install
malicious

switch

Connect malicious switch
to tenant controller with

ID of target switch

Target switch
disconnected

Degrade network
performance / Crash

network

ARP
poisoning

Impersonate tenant controller
VM with no connections yet

Connect fake controller
to switch/VNF

Install
malware in

controller VM

Gain control
over tenant

controller VM

Send incorrect
control messages
to switches/VNFs

Modify tenant
controller

switch table
info

Modify/flush flow rules
(e.g., Add a loop)

Sniff packets in
control channel

Eavesdrop on
management

info

Eavesdrop on
control

messages

Measure
round-trip time

of packets

Detect switch with
almost filled up

flow-table

Detect types of
packets causing

table miss

Send such
packets

repeatedly

Flow-table
flooding; DoS

on switch
MiTM

Replay packets;
DoS

Modify packets
in-transit

Degrade network
performance / Crash

network

Drop packets

Send massive
amounts of

'Features-reply'
message to

tenant
controller

Fig. 6: Aggregated attack graph of SDN data plane vulnerabilities

likely to be exploited than NFV and SDN vulnerabilities.
However, such attacks are quite common and their impact
is often catastrophic. Thus, it is necessary to take precautions
against such attacks while designing the system.

4.3.4 Graph Analysis

The attack vectors in the graphs are constructed from SDN
vulnerabilities pointed out in existing literature [9, 27, 29],
NFV vulnerabilities [11, 30], and IO vulnerabilities [31, 32,
33]. We find that there are 113 attack vectors in all in the four
aggregated attack graphs. This is summarized in Table 4.

After constructing the attack graphs based on previous
literature, we observe that many of the unconnected nodes

TABLE 4: Summary of attacks in the graphs

Graph Number of attack vectors
SDN-CP 14
SDN-DP 25

NFV 25
Malicious peripheral 49

Total 113

in these graphs can be linked together to generate new
possible exploits. In this section, we analyze the feasibility
of connections among the unconnected nodes. A link or a
branch is deemed to be feasible if the control/data flow
represented by that branch is feasible in a real-world sys-
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tem. For example, nodes ’Exploit test backdoors’ and ’Access
sensitive information’ can be connected because sensitive
credentials of a resource can be accessed through backdoors.
On the other hand, nodes ’Compromise hypervisor’ and ’Flood
management ports’ cannot be connected because there is a
lack of a direct causal relationship between the two.

Connecting a pair of nodes leads to a new directed
branch in the graph. A new branch is interpreted as a novel
possible exploit of an existing vulnerability. There are two
categories of novel possible exploits in this analysis:

• Intra-graph: These possible exploits are restricted to
one of the four domains, namely SDN-CP, SDN-DP,
NFV, and malicious peripherals. For example, when
we connect two nodes in Fig. 5, we get a novel

possible exploit in the SDN-CP.
• Inter-graph: These possible exploits involve the com-

bination of vulnerabilities of multiple attack graphs.
For example, when we connect a node in Fig. 6 to a
node in Fig. 7, it leads to a novel possible exploit that
combines vulnerabilities of the SDN-DP with that of
the NFV infrastructure.

We demonstrate some of our novel possible exploits in
Table 5. We state the number of novel possible exploits per
category in Table 6.

4.4 ML Analysis

When the number of components in the 5GCN increases,
the size of the attack graphs increases significantly. To add



TABLE 5: Category-wise examples of novel possible exploits

Category Novel possible exploit

SDN-CP
Drop control messages to VNFs −→ Disconnect

targeted links in the network

SDN-DP
Gain control of tenant controller VM −→ Hijack

network policy database

NFV
Install a malicious switch −→ Modify critical files

on virtual storage or virtual compute

SDN-CP,
SDN-DP

Hijack northbound API −→ Input invalid data to
tenant controller, forcing it to go to an invalid

state
NFV,

SDN-CP
Exploit backdoors for testing −→ Poison tenant

controller host profile reservoir

SDN-DP,
NFV

Flood the switch table of target virtual switch
−→ Exploit the insecure crash recovery of NFV to
shut down new VNFs assigned the same memory

as the crashed VNF
Malicious

peripheral,
SDN-DP

Compromise NFV-MANO unit −→ Issue system
command to terminate controller

Malicious
peripheral,

NFV

Connect malicious peripheral and exploit MSI
vulnerabilities −→ Gain hypervisor privilege

TABLE 6: Number of novel possible exploits per category

Category Number of novel possible exploits
SDN-CP 36
SDN-DP 23

NFV 36
Malicious peripheral 0

Inter-graph 24
Total 119

a new node to these graphs, every possible connection
between the new node and the existing nodes has to be
analyzed manually. This is a tedious process that hinders
scalability of this framework. To overcome this obstacle, we
employ ML and CSP formulation to predict the possible
connections of a new node in the graphs.

4.4.1 Feature Engineering

Feature engineering is a necessary pre-processing step for
using an ML or CSP model. Every possible branch in the
graphs has to be represented by a feature vector for it to be
processed by the ML or CSP model. We generate the feature
vectors of a branch by implementing the following sequence
of steps:

1) Assign feature values for individual nodes.
2) Combine the feature vectors of the constituent nodes of

a branch.

We assign various attributes (features) to the nodes of
the attack graph(s) depending on the layer(s) at which it
is executed, the type of impact the attack would have on
the system and network, and its position in the graph(s).
The exhaustive set of features that we used comprises
the following: application layer, controller, application-
controller interface, VNF, network infrastructure, manage-
ment layer, hypervisor, flooding (DoS), access control, data
plane, side-channel analysis (SCA), control channel, sen-
sitive information, SDN-CP, SDN-DP, NFV, malicious pe-
ripheral, head, and tail. We assign 1 to the features that
are related to the node and 0 to the others. For exam-
ple, we demonstrate the features of nodes ’Install mali-
cious apps’ and ’Assign low memory to VM’ in Table 7.
We can observe that the feature vectors of these two

TABLE 7: Node features

Feature
Install

malicious
apps

Assign low
memory to

VM
Application layer 1 0

Controller 0 0
Application-controller interface 0 0

VNF 0 1
Network infrastructure 0 1

Management layer 0 1
Hypervisor 0 1

Flooding 0 1
Access control 0 0

Data plane 0 0
SCA 0 0

Control channel 0 0
Sensitive information 0 0

SDN-CP 1 0
SDN-DP 1 0

NFV 0 1
Malicious peripheral 0 0

Head 1 0
Tail 0 0

nodes are {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0} and
{0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}.

We represent a branch of the graph with an ordered
pair of the source and destination nodes, i.e., (source, des-
tination). We obtain the feature vector of a branch by the
ordered concatenation of the feature vectors of the source
and destination nodes, as shown in Fig. 9. This feature
vector constitutes a datapoint for our ML/CSP model. We
assign a positive label (equal to 1) or a negative label (equal
to −1) to this datapoint if the branch is feasible or infeasible,
respectively.

Node BNode A

-1

Features of Node A Features of Node B
Label

0, 0, 1,  ...  , 0, 1, 0,   0, 1, 0,  ... , 0, 0, 0 

Fig. 9: Constructing a feature vector and label for a plausible
branch

We classify all plausible branches into positive and
negative examples. The positive examples also include the
existing branches in the attack graphs. We split the dataset
for each graph into a training set and a test set. The training
set is used to train the model and the test set is used to
evaluate it. The training set has 85% of the data while the
test set has the remaining. Table 8 shows the number of
instances in the training and test sets for each of the graphs.

TABLE 8: Number of datapoints per graph

Graph Training set Test set
SDN-CP 552 98
SDN-DP 898 159

NFV 510 90
Malicious peripherals 690 122

Inter-graph connections 6548 1156
Total 9198 1625



4.4.2 Analysis with a CSP Formulation

A CSP formulation requires creating a set of constraints on
the features of the data instances, such that any feature that
satisfies all the constraints represents a feasible exploit.

To obtain a CSP formulation based on our dataset, we
generate a set S that contains the feature vectors of all the
positive examples in the training set. For prediction, we
check if the feature vector of the test instance belongs to
S. If it does, we assign a positive label to it; else, a negative
one.

4.4.3 ML models

We train multiple ML models on our data and choose the
best-performing ones for our final ensemble model. The
performance of these models is reported in Section 4.4.4.
In this section, we briefly describe the various ML models
that we experiment with.

• Naive Bayes: Naive Bayes is a probabilistic ML al-
gorithm based on Bayes theorem. The Naive Bayes
model assumes that features are independent of each
other, given the label. Let the class label be de-
noted by y and the input features by {x1, x2, ..., xn}.
Assuming feature independence, the probability of
label y can be calculated as

P (y|x1, x2, ..., xn) =
P (y)

∏n
i=1

P (xi|y)
∏n

i=1
P (xi)

(1)

The class label with the highest conditional probabil-
ity is assigned to a test instance, i.e., prediction =
argmax

y
P (y|x1, ..., xn). The probabilities P (xi|y),

P (xi), and P (y) can be obtained by constructing a
frequency table of the features from the training data.
In our experiments, we used the Gaussian Naive
Bayes classifier, where the likelihood of the features
is assumed to be a Gaussian distribution.

• Decision Tree: A decision tree classifier uses a deci-
sion tree to assign class labels. A decision tree can be
expressed as a logical expression composed of ’AND’
and ’OR’ boolean operators. The leaf nodes of the
tree represent the class labels. The other nodes rep-
resent conditional tests on the data attributes. Edges
between two nodes represent control flow transition
that depends on the outcome of the conditional test
at the source node.

• k-Nearest Neighbors (k-NN): The k-NN algorithm
assigns a datapoint to the most popular class label
among its k (k ≥ 1) nearest neighbors. We experi-
mented with k = {1, 2, 3, 4, 5, 6, 7}. We observed that
the performance on our data initially increased with
an increase in k till k = 3. Then, it either stopped
increasing or started decreasing. Hence, we chose
k = 3.

• Support Vector Machine (SVM): For an n-
dimensional dataset, SVM constructs an (n − 1)-
dimensional separating hyperplane that serves as the
decision boundary. SVM can generate nonlinear de-
cision boundaries with the help of kernel transforma-
tions based on a quadratic optimization algorithm.
We experimented with various parameters of the
SVM model. We observed that the most effective

kernel for our data was the radial basis function. The
class imbalance effects are mitigated through data
preprocessing (see Section 4.4.4 for details).

• Artificial Neural Network (ANN): ANNs are loosely
modeled after the biological neurons in the brain.
We use an ANN variant called the multi-layer per-
ceptron (MLP). The neurons in a MLP model are
arranged in multiple layers. Every neuron receives
signals from all the neurons in its previous layer. All
these signals are weighted by their corresponding
edge weights and their weighted sum is passed
through a nonlinear activation function. This output
is then propagated to all the neurons in the next layer.
The training process involves updating the edge
weights so that the prediction error is minimized.
In our experiments, two-layer MLPs with the ReLU
activation function yield the best results.

4.4.4 Performance Results

In this section, we compare the performance of various ML
algorithms on our data. We use the Negative Predictive
Value (NPV) to evaluate the ML models. NPV is defined
as the fraction of correct negative predictions, as shown in
the equation below. We combine the models with highest
NPVs to obtain our final ensemble model. We evaluate
the ensemble model with additional metrics like precision,
recall, F1 score, Matthew’s correlation coefficient (MCC),
and classification accuracy.

NPV =
True Negative

True Negative + False Negative
(2)

We design our framework in such a way that the security
analyst, who uses our framework, can trust the negative
predictions of our model with high confidence to be in-
feasible exploits. Then, the analyst only needs to manually
examine the positive predictions for possible exploits. This
significantly reduces the amount of manual effort needed.
The NPVs of our models are shown in Table 9.

We use stratified three-fold cross validation for evalua-
tion of our models. Stratified cross validation ensures that
each fold has an equal ratio of positive and negative labels.

Our dataset is quite imbalanced with a much higher
fraction of negative examples. To mitigate its impact, we
resample the positive examples n times, where the value of
n changes for different algorithms. The value of n varies
between 3 and 12. We observe that this is highly effective
for all the ML models, except k-NN.

TABLE 9: NPV (in %) of ML/CSP models

Algorithm SDN-CP SDN-DP NFV
Malicious
peripher-

als

Inter-
graph

Naive
Bayes

94.44 94.91 89.8 97.44 100

Decision
tree

90.7 94.63 89.02 98.26 99.74

k-NN
(k=3)

87.76 93.67 87.64 97.54 100

SVM 93.33 95.65 91.38 98.86 99.74
Neural

network
95.0 96.9 91.67 98.98 99.82

CSP 94.38 96.69 95.12 98.35 99.65



We select the models with the highest NPVs in Table 9
and combine them into an ensemble model. For the inter-
graph dataset, although the Naive Bayes and k-NN (k = 3)
models have perfect NPV values, we do not select these
models. This is because Naive Bayes and k-NN have very
low precision values of 0.005 and 0.008, respectively, on this
dataset. This overshadows their perfect NPV scores. The
final ensemble model is shown in Table 10. The numbers
in the parentheses indicate the number of neurons in the
two hidden MLP layers.

TABLE 10: The final ensemble model

Graph Algorithm
SDN-CP MLP (6,2)
SDN-DP MLP (8,2)

NFV CSP
Malicious peripherals MLP (5,2)

Inter-graph MLP (5,2)

In Table 11, we show the confusion matrix of the final
ensemble model shown in Table 10. The confusion matrix
reports the true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN).

TABLE 11: Confusion matrix of final ensemble model on the
test set

Actual = True Actual = False
Predicted = True 26 67 93
Predicted = False 15 1517 1532

41 1584 1625

In Table 11, we observe that there are 93 positive predic-
tions. Our framework reduces the search space of manual
analysis to 93 instances from the original search space of
1625 instances. This is a 94.3% reduction in manual effort.
Manual examination of these 93 instances leads to the dis-
covery of the 26 true positives as novel possible exploits.
The drawback of using the ML/CSP approximation is that
we fail to include the 15 false negatives in our search space,
thus missing the detection of 15 novel possible exploits.

We evaluate our final ensemble model with the following
metrics:

• Precision: Precision is defined as

Precision =
TP

TP + FP
(3)

A higher precision implies a lower FP. This implies
that smaller manual effort is devoted to manually ex-
amining infeasible exploits, thus resulting in higher
automation efficiency.

• Recall: Recall of a model is defined as

Recall =
TP

TP + FN
(4)

A high recall value enables the user of our frame-
work to discard the negative predictions from the
manual examination set with high confidence. This
requires our model to have a minimal FN.

• F1 score: F1 score is the harmonic mean of precision
and recall and is defined as

F1 = 2× Precision×Recall

Precision+Recall
(5)

F1 score aims to strike a balance between precision
and recall. It is a useful metric when there is an
uneven class distribution.

• MCC: MCC is a measure of quality of a binary pre-
diction algorithm. It performs well even for imbal-
anced classes. It returns a value between −1 and +1.
−1 corresponds to a complete disagreement between
observation and prediction, 0 corresponds to random
guessing, and +1 corresponds to a perfect prediction
system. It is defined as

MCC =
TP × TN − FP × FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(6)

• Accuracy: Accuracy portrays the overall perfor-
mance of the framework. It is defined as

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

We present the various performance metrics of our final
ensemble model in Table 12. We obtain a high NPV and
accuracy. However, our precision, recall and F1 scores are
not as impressive as the NPV and accuracy. Our experiments
show that there is a trade-off among the various metrics. If
we choose to construct our final ensemble model with a high
F1 score, then the NPV suffers. This is a trade-off that has
to be made by the security analyst. Since we prioritize NPV,
our precision and F1 scores suffer.

TABLE 12: Performance metrics of final ensemble model on
the test set

Metric Value
NPV 0.99

Precision 0.28
Recall 0.63

F1 score 0.36
MCC 0.4

Accuracy 0.95

5 CASE STUDY I: 5G-AKA

The novel possible exploits of the 5GCN reported in the
previous sections can lead to novel attacks at the higher
layers of the network or increase the ease of execution of
existing attacks in the protocol and application layers. In this
section, we demonstrate the impact of 5GCN vulnerabilities
on the protocol layer.

AKA is used in telecommunication networks to establish
a secure and authenticated connection between the sub-
scribers and service providers. It enables sharing of a secret
key between the user and service provider that is used to
secure all further communication.

The AKA protocols have evolved through generations
of telecommunication networks. Today, the most widely
used authentication mechanism in such networks is the
4G-AKA. The 3GPP Consortium has designed 5G-AKA
to provide superior privacy and security guarantees than
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4G-AKA. However, it has been shown that multiple 4G-
AKA vulnerabilities still persist in 5G-AKA [34]. 5G-AKA
is also vulnerable to novel attacks that were not possible
in previous generations of networks [19, 20, 35]. The 5G-
AKA protocol can be easily compromised if the 5GCN is
vulnerable. In this section, we analyze the implications of
our novel possible exploits on 5G-AKA security.

5.1 5G-AKA protocol

The 5G-AKA protocol authenticates a user equipment (UE),
a serving network (SN), and a home network (HN) to each
other. It is a challenge-response based protocol where the
UE is authenticated as a legitimate user only if it succeeds
in providing the expected response to a challenge provided
by the HN. Unlike previous networks, the identity of the
UE, called subscriber permanent identifier (SUPI) in 5G
networks, is not sent directly. In 5G networks, the UE
sends a subscriber concealed identifier (SUCI) that prevents
international mobile subscriber identity catcher attacks [34].

Often, the SN and HN are the same network. How-
ever, sometimes they are different. For example, when a
UE is roaming, its SN is different from its HN. In our
analysis, we consider a separate SN and HN because this
scenario is more prone to attacks. The primary network
functions involved in 5G-AKA are the Authentication Server
Function (AUSF), Authentication Credential Repository and
Processing Function (ARPF), and Security Anchor Function
(SEAF). A simplified outline of the 5G-AKA protocol is
shown in Fig. 10. The details of the messages are abstracted
for simplicity. AV denotes the authentication vector, XRES
denotes the expected response from the UE, and HXRES
denotes a hash of XRES.

5.2 Threat Model

Most of the security analysis of the 5G-AKA protocol so
far has considered a threat model where the adversary has

access to the UE and the communication channels between
different networks. The core network infrastructure is con-
sidered to be inaccessible to the adversary. From Fig. 10, we
see that the AUSF and ARPF communicate over a secure
network because they belong to the same network (HN).
However, we have shown in Section 4 that the internal
components of the 5GCN can be compromised. To over-
turn the assumption of having an impenetrable 5GCN, we
expand the attack surface of the 5G-AKA protocol in our
analysis. In our threat model, an adversary can compromise
the network’s private channels and the network functions
as well. In Section 4, we demonstrated how VNFs and other
network components can be compromised by exploiting
vulnerabilities of SDN, NFV, and IO peripherals.

5.3 5G-AKA Security Analysis

In this section, we analyze the implications of a compro-
mised 5GCN on the security properties of the 5G-AKA
protocol. A compromised 5GCN leads to unique exploits
and also facilitates exploits that were unrealistic before.
Section 5.3.1 describes the novel attack vectors that become
possible using our analysis framework to compromise the
5GCN. Section 5.3.2 analyzes the various 5G-AKA security
properties that are violated in the presence of a compro-
mised 5GCN.

5.3.1 Novel Attacks

The vulnerabilities of NFV, SDN, and IO peripherals have a
variety of potential consequences at the network level. These
consequences include flooding (DoS) attacks, termination of
sensitive VNFs, passive MiTM attacks (like eavesdropping),
hijacking of VNFs, and active MiTM attacks (like modifica-
tion of in-flight traffic). In this section, we analyze how these
consequences can be exploited to compromise the 5G-AKA
protocol.

• Flooding attacks: The 5G-AKA protocol is vulner-
able to session confusion attacks triggered by a
race condition in the AUSF-ARPF channel [20]. We
demonstrate this attack in Fig. 11. When the ARPF
receives multiple authentication requests in parallel,
it sends the AVs for all the requests to the AUSF at
the same time. This leads to a race condition in which
the AUSF is unable to distinguish which AV belongs
to which UE. Thus, there is a high probability that the
AUSF sends the wrong credentials to the users. This
is a probabilistic attack whose success rate can be
increased with more parallel authentication requests
from the adversary.
In the threat model of this attack, the adversary can
hijack the VNFs on the SN but not the VNFs on
the HN. He can hijack the SEAF on the SN and
use it to bombard the AUSF with multiple network
packets of SUCI(Attkr) simultaneously. The AUSF
generates authentication requests, Auth. info. request
(Attkr), for all of these packets and sends them to
the ARPF. When the ARPF receives all these packets
simultaneously, along with Auth. info. request (Vic-
tim), it leads to a race condition. According to the
5G-AKA protocol specifications, the response of the
ARPF does not include the identity of the UE. Thus,
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Fig. 11: The 5G-AKA session confusion attack flow

the simultaneous reception of multiple (AV, XRES)
pairs by the AUSF causes a session confusion. It
is probable that the AUSF forwards the AV of the
victim to the adversary as a result of this confusion.
Now, the adversary can authenticate himself as the
victim.
The probability of success of this attack is (1 − 1

n
),

where n depicts the total number of simultaneous
authentication requests received by the ARPF. In
Fig. 11, the value of n is 2; thus the probability
of attack success is 0.5. Increasing the number of
simultaneous authentication requests from the ad-
versary’s UEs (by replay/flooding attacks from a
compromised SEAF) will increase n, thus increasing
the probability of attack success. The node “Flood
VNF with requests/high priority requests” of the
NFV attack graph in Fig. 7 can be implemented via
multiple possible exploits discovered by our frame-
work to execute this attack.

• Termination of sensitive VNFs: NFV and IO vul-
nerabilities can be exploited to forcibly terminate
targeted VNFs. This can be achieved by executing
one of the following nodes in Fig. 7: “Shutdown
sensitive VNFs,” “VNF crash,” “DoS on target VNF.”
Our analysis framework predicts multiple possible
exploits for implementing these nodes in a vulnera-
ble 5GCN. Untimely termination of SEAF, AUSF or
ARPF disrupts the 5G-AKA protocol. Although the
adverse effects of such attacks can be mitigated by a
fault-tolerant implementation of these functions [36],
all ongoing authentication information is lost. This
forces the UEs to restart the 5G-AKA protocol.

• Passive MiTM: Passive MiTM can be executed on
the AUSF-ARPF channel. Since this channel is con-
sidered to be secure by the 5G-AKA designers, it is

not required to be encrypted. Operators would also
prefer having no encryption to boost performance. In
our analysis of attack graphs in Section 4, we gener-
ated multiple attack vectors for launching privilege
escalation attacks that give access to 5GCN resources.
An adversary with access to the 5GCN infrastructure
can eavesdrop on the secure channels. This leads to
the disclosure of private information like AV, XRES,
SUPI, and the secret keys of AUSF and SEAF to the
adversary. The adversary can exploit the knowledge
of XRES and SUPI to authenticate himself on behalf
of a legitimate UE. The secret key of AUSF can be
exploited to authenticate a fake base-station, thereby
launching active MiTM attacks on UEs.

• Hijacking of VNFs: Hijacking of sensitive VNFs
like the SEAF, AUSF or ARPF can cause the 5G-
AKA protocol to prevent authentication of legitimate
UEs or authenticate adversaries with the credentials
of a legitimate UE. Our methodology in Section 4
demonstrates multiple access control and privilege
escalation attacks in the graphs that can be exploited
to hijack VNFs.

• Active MiTM: Active MiTM attacks involve modify-
ing the packets during transit. This compromises the
integrity of network packets. Since the connections
in the same network are assumed to be secure in
the original 5G-AKA threat model, the operators
are not required to have integrity checks on intra-
network messages. The adversary can get access to
the internal network by exploiting certain infrastruc-
ture vulnerabilities and modify the packets in transit.
Our methodology in Section 4 demonstrates multiple
attack vectors for launching active MiTM attacks.
The attack graphs in Fig. 5, 6, and 8 demonstrate that
there are multiple openings for MiTM attacks in a
vulnerable 5GCN. The adversary can exploit them
to modify the AV, XRES, AUSF secret key or SUPI
in the AUSF-ARPF channel without being detected.
Modifying the SUPI or XRES will enable the adver-
sary to authenticate himself on behalf of a legitimate
UE. Modifying the AUSF secret key enables the user
to launch a fake base station.

5.3.2 5G-AKA Property Violations

The 3GPP Consortium has detailed the security require-
ments of 5G system components in TS 33.501 v0.7.0 [37].
The security requirements that are related to the 5G-AKA
protocol can be expressed concisely through two secrecy
properties and seven authentication properties [20]. Every
vulnerability of the 5G-AKA protocol, including the ones
mentioned in Section 5.3.1, violates at least one of these
security properties. Hence, analyzing these properties may
provide insights into what kinds of attacks are possible.

The secrecy properties of 5G-AKA are:

S1. The long-term secret key of the UE should be
unknown to the adversary.
S2. The adversary should not have access to the
secret keys of AUSF and SEAF.

The authentication properties of 5G-AKA are:

A1. SN and UE must agree on the identity of UE.



A2. UE and SN must agree on the identity of SN.
A3. HN and SN must agree on the identity of UE.
A4. UE and HN must agree on the identity of HN.
A5. UE and HN must agree on the identity of SN.
A6. UE, HN, and SN must agree on the anchor key
of SEAF, KSEAF .
A7. UE, HN, and SN must agree that an anchor key
KSEAF instance is not used more than once.

The security of the 5G-AKA protocol is compromised if
any of the aforementioned properties is violated. It has been
shown that the compromise of participating components
of the 5G-AKA protocol leads to the violation of these
properties [20]. We demonstrate the consequences of com-
promising the 5GCN on the 5G-AKA properties in Table 13.

TABLE 13: Property satisfaction under compromised chan-
nels and components

Compromised element S1 S2 A1 A2 A3 A4 A5 A6 A7
AUSF-ARPF channel;

passive MiTM
✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

AUSF-ARPF channel;
active MiTM

✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

SEAF ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

AUSF ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

ARPF ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

We see that 5GCN vulnerabilities and threats lead to the
violation of many of the security properties of the 5G-AKA
protocol. This demonstrates that 5GCN vulnerabilities also
make the 5G-AKA protocol vulnerable.

6 CASE STUDY II: WHATSAPP SECURITY IN 5G

NETWORKS

In this section, we analyze how various existing and novel
possible exploits of a vulnerable 5GCN can lead to targeted
attacks in the application layer of the network. We chose the
WhatsApp application for our security analysis.

WhatsApp is the most widely used IM application in the
world, with over 1.5 billion users [38]. It is also one of the
most secure IM applications, where all communications are
end-to-end (E2E) encrypted. In this section, we demonstrate
that even WhatsApp can be compromised through network
and protocol vulnerability exploits. Various WhatsApp at-
tack vectors that are facilitated by our methodology include
the following.

• Impersonation of the victim via 5G-AKA: As de-
scribed in Section 5.3.1, the adversary can authenti-
cate himself as the victim during 5G-AKA protocol
execution by exploiting any of the following attacks:
flooding, passive MiTM, hijacking of VNFs, and ac-
tive MiTM. Then, the adversary can use the victim’s
identity to impersonate him on WhatsApp.

• Assisting WhatsApp impersonation through voice-
mail cracking: During registration of a WhatsApp
account, the user can choose to be authenticated
by a text message or a call. If the user chooses to
be authenticated by a call and fails to receive the
authentication call, then the one-time password voice
message is saved in voicemail. It has been shown

that voicemails can be easily hacked using brute-
force attacks [21]. This attack has a low probability
of being successful in a real-world situation because
it requires the victim to either be offline or ignore the
authentication call. This obstacle for the adversary
can be bypassed by launching a DoS attack on the
victim’s network infrastructure. The framework dis-
cussed in Section 4 generates multiple novel possible
exploits to launch a DoS attack on various compo-
nents of the 5GCN. Fig. 5, 6, 7, and 8 show that DoS
attacks can be launched on VNFs, VMs, switches,
and SDN controllers. A DoS attack on the network
infrastructure will terminate the victim’s connection
to the 5GCN, thus ensuring that he is offline. Now,
the voicemail attack has a much higher probability of
being successful.

• Compromising encryption keys: E2E security of
WhatsApp can be readily compromised if the adver-
sary gets access to the WhatsApp encryption keys on
the device. The WhatsApp keys are stored in a sand-
box memory on the smartphone that is only acces-
sible by the WhatsApp application. If an adversary
has root privileges on the phone, he can access the
WhatsApp encryption keys. Rootkits can be installed
on the UE by combining MiTM attacks in our attack
graphs with baseband attacks [39]. Attack vectors
that exploit rootkit injection attacks are described in
Fig. 6.

• Lack of certificate pinning: WhatsApp does not
implement certificate pinning on the UE [40]. This
makes the WhatsApp clients vulnerable to MiTM at-
tacks through certificate proxying. We demonstrated
the possible exploits for launching an MiTM attack
at the network level in Section 4. These attacks can
be executed in the absence of certificate pinning.

7 DISCUSSION

The attack graphs depicted in Fig. 5–8 are designed to be
as exhaustive as possible. We have attempted to include all
possible attack classes applicable to SDN, NFV, and mali-
cious peripherals in a 5GCN in these graphs. For application
of our framework to a specific 5GCN implementation, we
have to derive 5GCN-specific graphs from the generalized
graphs that we have presented. For a given 5GCN archi-
tecture, the relevant nodes from the generalized graphs
are extracted to form the architecture-specific graphs. For
example, if a 5GCN does not use LLDP to establish network
topology, we will eliminate the LLDP-specific nodes from
Fig. 5 for this 5GCN. If a 5GCN has a feature that warrants
addition of new nodes to the graphs, we can use ML to
predict the connections of the new nodes to the existing
nodes. Thus, we can add new nodes to the graphs and create
a 5GCN-specific attack graph for further analysis.

Probabilistic attack graphs, more popularly known as
Bayesian attack graphs, have been extensively used to assess
the security risk of networks. The framework proposed here
can be extended to Bayesian attack graphs with minimal
modifications. In a traditional Bayesian attack graph, each
node represents a state of the system. An edge from state
A to state B exists if an exploit of a vulnerability at state



A takes the system to state B. The weight of this edge is
equal to the probability of execution of the aforementioned
exploit. Hence, the graphs presented in our article can be
transformed into equivalent Bayesian attack graphs if the
edges have weights corresponding to their probability of
execution. These probabilities can be obtained for specific
systems from the CVE databases. However, our framework
is more useful than Bayesian attack graphs because it can
also discover novel possible exploits in a system.

8 CONCLUSION

5G communication systems have a huge potential for rev-
olutionizing the way we live. This is made possible by
the integration of new technologies like NFV and SDN
into the 5GCN. This gives rise to new vulnerabilities in
the 5G system. In this article, we analyzed how various
vulnerabilities of NFV, SDN, and malicious IO peripherals
can interact with each other to compromise the security of
the 5GCN. We discovered 119 novel possible exploits by
analyzing the underlying patterns in the 113 existing attack
vectors in SDN, NFV, and IO peripherals. We showed that
a compromised 5GCN may have devastating consequences
on the end user. A compromised 5GCN was shown to
trigger five unique types of attacks in the 5G-AKA protocol.
These attacks can be further combined with infrastructure
vulnerabilities to compromise targeted users at the applica-
tion layer. We demonstrated this by analyzing four potential
security loopholes in the WhatsApp IM application.
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