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Abstract

In this work a variational Bayesian framework for efficient training of echo state net-

works (ESNs) with automatic regularization and delay&sum (D&S) readout adaptation

is proposed. The algorithm uses a classical batch learning of ESNs. By treating the

network echo states as fixed basis functions parametrized with delay parameters, a vari-

ational Bayesian ESN training scheme is proposed. The variational approach allows

for a seamless combination of sparse Bayesian learning ideas and variational Baye-

sian Space-Alternating Generalized Expectation-Maximization (VB-SAGE) algorithm

for estimating parameters of superimposed signals. While the former method realizes

automatic regularization of ESNs, which also determines which echo states and input

signals are relevant for “explaining” the desired signal, the latter method provides a ba-

sis for joint estimation of D&S readout parameters. The proposed training algorithm

can naturally be extended to ESNs with fixed filter neurons. It also generalizes the re-

cently proposed expectation-maximization-based D&S readout adaptation method. The



proposed algorithm was tested on synthetic data prediction tasks as well as on dynamic

handwritten character recognition.

1 Introduction

Echo state networks (ESNs) and reservoir computing in general represent a powerful

class of recurrent neural networks (Jaeger et al., 2007; Verstraeten et al., 2007); they are

particularly useful for nonparametric modeling of nonlinear dynamical systems. Due to

a very simple training procedure ESNs have found applications in many areas of signal

processing, including speech recognition and audio processing, system modeling and

prediction, and filtering (Han and Wang, 2009; Verstraeten et al., 2006; Xia et al., 2008;

Holzmann and Hauser, 2010), to name just a few.

A typical ESN allows learning a nonlinear dependence between an M -dimensional

input signal u[n] and a P -dimensional output signal y[n] of a nonlinear dynamical

system characterized by a nonlinear difference equation y[n] = g(y[n− 1], . . . ,y[n−

k], . . . ,u[n], . . . ,u[n − l], . . .), where the mapping g(·) is typically unknown. The

goal of ESN-based modeling is to approximate this mapping by (i) creating a random

network of interconnected neurons, called a reservoir, and (ii) linearly combining the

reservoir outputs and network input signals to form the desired network response. The

operation of an ESN with L neurons can be formally described by a system of two

equations:

x[n+ 1] =f(CT
uu[n+ 1] +CT

xx[n] +CT
y y[n]) (1)

y[n] =W [x[n]T ,u[n]T ]T . (2)

Equation (1) is the state equation of the ESN; it specifies how the responses ofL neurons

x[n] = [x1[n], . . . , xL[n]]
T are evolving over time. In (1) the function f : RL 7→ R

L is

a vector-valued neuron activation function, e.g., a hyperbolic tangent, applied to each

element of its argument. The matrices Cx ∈ R
L×L, Cu ∈ R

M×L, and Cy ∈ R
P×L

are respectively the neuron interconnection weights, input signal weights, and output

feedback weights. Typically, the entries of these matrices are generated and fixed during

the network design stage (Jaeger, 2001; Lukoševičius and Jaeger, 2009).

Equation (2) is the output equation of the network. It states that the output of the
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network is formed as a linear1 combination of network states x[n] and network inputs

u[n]. Under certain conditions (Jaeger, 2001) a sequence of neuron states x[n] forms

echoes – a temporal basis used for reconstructing the output signal y[n]. The “dynam-

ics” of the training data are thus encoded in the echoes generated by the reservoir. The

ESN training then reduces to finding an optimal estimate of W so as to minimize the

squared distance between the network output and the desired network response. Notice

that since W enters (2) linearly, the ESN training requires solving a system of linear

equations.

Despite the simple learning procedure, a straightforward application of ESNs has

two practical shortcomings: (i) an estimation of W , especially for large ESNs with

many neurons, requires regularization (Jaeger, 2001) and (ii) simple ESNs have been

shown to fail for certain learning problems, e.g., they cannot learn multiple attractors

at the same time (Jaeger, 2007). Regularization has been extensively studied in the

literature within the context of ill-posed problems; the Moore-Penrose inverse (Golub

and Van Loan, 1996) and ridge regression (Bishop, 2006), also known as Tikhonov

regularization, are standard approaches to finding a regularized solution to the linear

least-squares (LS) estimation problem. The “universality” of ESNs can be signifi-

cantly boosted by introducing filter neurons and delay&sum (D&S) readouts in the

ESN structure (Holzmann and Hauser, 2010; Wustlich and Siewert, 2007; Zechner and

Shutin, 2010). Equipping neurons with additional filters will result in neurons that are

“specialized” to more relevant frequency bands. This is achieved by applying a linear

time-invariant filter to the output of the neuron activation function in (1). Introducing

delays makes it possible to shift the reservoir signals in time and provides a compu-

tationally inexpensive method to vastly improve the memory capacity of the network.

The parameters of such filter neurons and the corresponding readout delays can be cho-

sen randomly during the network initialization or heuristically through trial and error

(Wustlich and Siewert, 2007; Holzmann and Hauser, 2010).

The regularization of ESN LS-based training on the one hand, and optimization

of D&S readout parameters and filter neurons on the other hand are typically two un-

connected optimization steps. Motivated by the lack of a formal optimization frame-

1In general one can also reconstruct the desired output y[n] as y[n] = s(ỹ[n]), where s : RP 7→ R
P

is a bijective mapping and ỹ[n] = W [x[n]T ,u[n]T ]T (Lukoševičius and Jaeger, 2009).

3



work that combines both regularization and ESN parameter adaptation, and inspired

by the recent developments of the variational Bayesian methods (Bishop, 2006; Beal,

2003) for sparse Bayesian learning (SBL) (Shutin et al., 2011b; Seeger and Wipf, 2010;

Tzikas et al., 2008; Tipping, 2001; Bishop and Tipping, 2000) and variational nonlin-

ear parameter estimation (Shutin and Fleury, 2011), we propose a variational Bayesian

ESN training framework. In the new framework the ESN training is formulated as a

variational Bayesian inference problem on a directed acyclic graph (DAG) (Bishop,

2006). Specifically, the unknown network parameters are jointly estimated by minimiz-

ing the Kullback-Leibler divergence between the true posterior probability density func-

tion (pdf) of the network parameters and a variational approximation to this posterior.

The estimation of the output coefficients W and regularization parameters is realized

using ideas inspired by variational SBL approach (Bishop and Tipping, 2000). This not

only allows for an automatic regularization of the network, but also provides quantita-

tive information about the relative relevance or importance of individual neurons and

network input signals. The estimation of D&S readout parameters is implemented us-

ing the variational Bayesian Space-Alternating Generalized Expectation-Maximization

(VB-SAGE) algorithm which was originally proposed for the variational estimation of

superimposed signal parameters (Shutin and Fleury, 2011). The VB-SAGE framework

allows for a monotonic decrease of the Kullback-Leibler divergence between the two

pdfs with respect to only a subset of the parameters of interest using latent variables,

also called admissible hidden data — an analog of the complete data in the expectation-

maximization (EM) framework (Bishop, 2006). We demonstrate that latent variables

reduce the complexity of the objective function for estimating delay parameters of a

single neuron, which leads to a more efficient numerical optimization.

Previously we have considered the application of the VB-SAGE algorithm within

the ESN training framework (Zechner and Shutin, 2010). However, in (Zechner and

Shutin, 2010) the automatic regularization has not been a part of the estimation scheme.

Also, the variational approximation used in (Zechner and Shutin, 2010) assumes a

statistical independence between the elements of w. Although this assumption sig-

nificantly simplifies the variational inference of the ESN weight coefficients, it leads

to a poorer performance of the trained models and does not generalize the classi-

cal pseudoinverse-based ESN training. Here we do not impose any independence as-
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sumptions on the elements of w. We demonstrate that the proposed variational ESN

training framework generalizes the existing techniques for ESN training. In particular,

the Tikhonov-like regularization of ESNs (Jaeger, 2001) and expectation-maximization

(EM)-based estimation of D&S readout parameters (Holzmann and Hauser, 2010) are

obtained as special cases of the proposed variational Bayesian ESN training. Moreover,

the proposed algorithm automatically regularizes the obtained solution by taking into

account the training data and the amount of additive noise.

The rest of the paper is organized as follows. In Section 2 we discuss the extended

ESN model and explain the variables involved; in Section 3 we formulate the proba-

bilistic model and discuss the variational inference of model parameters; in Section 4

we discuss the implementation and initialization of the learning algorithm. Finally, in

Section 5 we consider several learning examples to demonstrate the performance of the

proposed scheme.

Throughout the paper we shall make use of the following notation. Vectors are

represented as boldface lowercase letters, e.g., x, and matrices as boldface uppercase

letters, e.g., X . For vectors and matrices (·)T denotes the transpose. Notation A =

[X,Y ] is used to denote a matrix A obtained by concatenating matrices X and Y ;

it is assumed that X and Y have the same number of rows. Sets are represented as

calligraphic uppercase letters, e.g., S . We use I = {1, . . . , L} to denote an index set

of L neurons. With a slight abuse of notation we write xI to denote a set of random

variables {xk : s.t. k ∈ I}; also, for l ∈ I, xl denotes a set {xk : s.t. k ∈ I \{l}}. Two

types of proportionality are used: x ∝ y denotes x = αy, and x ∝e y denotes ex = eβey

and thus x = β + y, for arbitrary constants α, and β. We use Eq(x)

{
f(x)} to denote

the expectation of a function f(x) with respect to a probability density q(x). Finally,

N(x|a,B) denotes a multivariate Gaussian probability density function (pdf) with a

mean a and a covariance matrix B; Ga(x|a, b) = baxa−1 exp(−bx)/Γ(a) denotes a

gamma pdf with parameters a and b.

2 Extended ESN model

Consider a standard batch ESN learning problemwithN training samples {y[n],u[n]}n0+N−1
n=n0

andN echo state samples {x[n]}n0+N−1
n=n0

generated with an untrained network. The time
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index n0 ≥ 0 is chosen such as to make sure that the ESN transients due to the initial-

ization of the network fade out. For simplicity we restrict ourselves to a scalar output

signal y[n]. Considering a general P -dimensional output signal merely leads to a more

complicated probabilistic signal model without adding any new aspects relevant to the

understanding of the new proposed concepts and methods. 2

Let xl(τl) =
[
xl[n0 − τl], . . . , xl[n0 + N − 1 − τl]

]T
denote a vector of echo state

samples xl[n] of the lth neuron delayed by τl. We will collect these vectors in anN ×L

matrix X(τ ) = [x1(τ1), . . . ,xL(τL)], where τ = [τ1, . . . , τL]
T . In order to ensure the

causality of the ESN with D&S readouts we will assume that xl[n0 + i− τl] = 0 when

n0+ i−τl < 0, for any τl ≥ 0 and i = 0, . . . , N−1. Similarly, we collectN samples of

themth input signal um[n] in a vector um = [um[n0], . . . , um[n0 +N − 1]]T and define

an N ×M matrix U = [u1, . . . ,uM ]. Now, the output equation of an ESN with D&S

readout can be rewriten in the following form:

y = Φ(τ )w + ξ, (3)

where y = [y[n0], . . . , y[n0 +N − 1]]T is a desired output of the network that is repre-

sented as a linear combination of column-vectors in Φ(τ ) = [X(τ ),U ] perturbed by

a random vector ξ = [ξ[n0], . . . , ξ[n0 + N − 1]]T . This perturbation models a random

error between the predicted network response Φ(τ )w and the desired response y. We

will assume that each element of ξ is drawn independently from a zero mean Gaussian

distribution with variance σ2. Let us also point out that for the scalar output y[n] the

output weight matrix W in (2) reduces to a vector w.

Observe that delays τ do not influence the generation of echo states xl[n]; they

simply “shift” the signals xl[n] before they are linearly combined to form the network

output, hence leading to the D&S readout terminology. When filter neurons are em-

ployed in the reservoir, the generation of echo states becomes depend on the parameters

of the neuron filters. In this case the output of the lth neuron activation function is com-

puted as x̃l[n+1] = f(cTulu[n+1] + cTxlx[n] + cTyly[n]), where cul, cxl, and cyl are the

2Note that in general each element signal in a P -dimensional network output signal might have a

different variance. This case can be accounted for by an appropriate, albeit more elaborate, noise model

in a relatively straightforward fashion. Specifically, it will lead to the introduction of non-circular noise

covariance matrices. This case is left outside the scope of the paper.
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lth column vectors from the matrices Cu, Cx, and Cy respectively. The filtered echo

state, i.e., the filter neuron output signal, is then computed as

xl[n+ 1] =
∞∑

k=0

hl[k]x̃l[n+ 1− k],

where hl[n] is an impulse response of a stable linear time-invariant filter, e.g., a band-

pass filter.3 Typically it is assumed that transfer functions of all neuron filters hl[n],

l = 1, . . . , L, are fixed at the network design stage (Holzmann and Hauser, 2010;

Wustlich and Siewert, 2007). This is essentially a simplifying assumption; adapting

filter parameters is complicated due to a recurrent inter-dependency of the neurons in

the network. Although it is possible to construct an algorithm to estimate neuron filters

hl[n] (Zechner and Shutin, 2010), there are no theoretical convergence or monotonicity

guarantees for this learning scheme. Henceforth we assume that the parameters of neu-

ron filters are fixed at the design stage and the adaptation of the filter neuron parameters

is left outside the scope of this paper. For all our experiments in Section 5 we assume

ESNs without filter neurons, which are obtained by choosing hl[n] = δ[n], where δ[n]

is a discrete-time unit impulse.4

Let us point out that in a batch learning regime the columns of the matrixΦ(τ ) cor-

responding to the generated echo states can be interpreted as parametric basis functions,

parametrized by parameters τ . In what follows we explain how this can be exploited

to formulate a variational Bayesian framework to jointly estimate the D&S readout pa-

rameters and train the network.

3 Bayesian ESN learning

We first note that an ESN training is equivalent to the maximization of the log-likelihood

function

log p(y|τ ,w) ∝e −
1

2σ2
‖y −Φ(τ )w‖2 . (4)

3Note that practically the filter hl[n] can represent a linear time-invariant system with an infinite

impulse response, as well as with a finite impulse response.

4The ESN training algorithm proposed in this work can be easily extended to ESN with arbitrary,

although fixed, filter neurons. This extension merely leads to a more complicated signal model without

adding any new aspect relevant to the understanding of the new proposed concepts and methods.
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Notice that even when parameters τ are assumed to be fixed, the estimation of w from

(4) typically requires a regularization (Lukoševičius and Jaeger, 2009; Jaeger, 2001).

Bayesian methods introduce regularization by imposing constraints on the model pa-

rameters using priors. Consider a prior pdf p(τ ,w|α), where α is a vector of prior

parameters. This prior leads to a posterior pdf that in the log-domain can be expressed

as

log p(τ ,w|y,α) ∝e −
1

2σ2
‖y −Φ(τ )w‖2 + log p(τ ,w|α), (5)

where log p(τ ,w|α) performs the role of a regularizing function. Depending on the

choice of p(τ ,w|α) different forms of the regularizing function can be constructed.

Henceforth we will assume that the prior p(τ ,w|α) factors as

p(τ ,w|α) = p(τ )p(w|α). (6)

The motivation behind this assumption is the following: through the prior p(w|α) we

can control the contribution of individual basis functions in Φ(τ ) irrespective of their

form, which is specified by the parameters τ . The prior p(w|α) is assumed to fully

factor as p(w|α) =
∏K

k=1 p(wk|αk), where α = [α1, . . . , αK ]
T , K = L + M , and

p(wk|αk) is selected as a zero mean symmetric pdf with the prior parameter αl inversely

proportional to the width of p(wk|αk). Such factorization of the prior enables a more

flexible control over the importance of each column inΦ(τ ) through the coefficientsα:

a large value of αk drives the posterior mean of the corresponding weight wk towards

zero, thus effectively suppressing the corresponding basis function inΦ(τ ) and leading

to a regularized solution. Such a formulation of the prior is related to sparse Bayesian

learning (SBL) (Shutin et al., 2011b; Tzikas et al., 2008; Tipping, 2001; Bishop and

Tipping, 2000). In our work we will select p(wk|αk) as a Gaussian pdf with zero mean

and variance α−1
k . This choice corresponds to a penalty function

∑
k αk|wk|

2 in (5),

which is a weighted ℓ2 norm of the weight vector w (Bishop, 2006).5 Such form of

the penalty leads to a Tikhonov-like regularization6 of the original estimation problem

5It is also possible to extend the inference procedure discussed in the paper to Laplacian priors

p(wk|αk). This selection leads to an ℓ1-type of log-likelihood penalty
∑

k
αk|wk| and Least-Absolute

Shrinkage and Selection Operator (LASSO) regression. We leave this development outside the scope of

this work.

6Strictly speaking, this is so when p(τ ) ∝ 1.
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(4) with parameters α acting as regularization parameters. Additionally, the Gaussian

prior p(w|α) and the Gaussian likelihood ofw in (4) form a conjugate family (Bishop,

2006), which in turn allows for a computation of the posterior distribution of w in

closed form.

Within the SBL framework the parameters α are then determined from

p(y|α) =

∫
p(y|τ ,w)p(τ ,w|α)dτdw, (7)

which is also known as the marginal likelihood function, or evidence (Tipping, 2001;

Tipping and Faul, 2003). Unfortunately, the nonlinear dependence of the integrand in

(7) on the parameters τ precludes the exact evaluation of the marginal p(y|α). Ad-

ditionally, this nonlinear dependency significantly complicates the optimization of the

posterior (5). This motivates the use of approximation techniques to estimate the pa-

rameters w, τ and α of the extended ESN model.

3.1 Variational Bayesian inference

Note that the joint estimation of ESN parametersw, τ and regularization parameters α

is equivalent to the maximization of the posterior pdf

p(τ ,w,α|y) ∝ p(τ ,w|y,α)p(y|α)p(α), (8)

which involves (5), (7), and the prior p(α). Instead of computing (8) directly we ap-

proximate it with a proxy pdf q(τ ,w,α) using variational Bayesian inference methods

(Beal, 2003; Bishop, 2006).

Variational inference is realized by maximizing the lower bound on the marginal

log-likelihood log p(y)

log p(y) ≥

∫
q(τ ,w,α) log

p(τ ,w,α,y)

q(τ ,w,α)
dτdwdα (9)

with respect to q(τ ,w,α). It is known (Beal, 2003; Bishop, 2006) that the density

q(τ ,w,α) that maximizes the lower bound in (9) also minimizes the Kullback-Leibler

divergence between q(τ ,w,α) and often “intractable” true posterioir pdf p(τ ,w,α|y).

Observe that optimizing the lower bound in (9) requires specifying both the approx-

imating pdf and the joint pdf. Using (4) and (6) it is easy to conclude that the joint pdf
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Figure 1: a) A graphical model for estimating τ , w, and α; b) a graphical model with

the admissible hidden data hl for estimating the delay parameter τl of the lth neuron.

p(τ ,w,α,y) can be represented as follows:

p(τ ,w,α,y) = p(y|τ ,w)p(w|α)p(τ )p(α). (10)

A DAG in Fig. 1a captures this factorization using a graphical model. Based on the

Bayesian ESN model discussed in Section (3) it is easy to conclude that p(y|τ ,w) =

N(y|Φ(τ )w, σ2I) and p(w|α) = N(w|0,A−1), where A = diag{α}. The choice of

priors p(τ ) and p(α) is arbitrary in general. We will, however, assume that both priors

factor as p(τ ) =
∏L

l=1 p(τl) and p(α) =
∏K

k=1 p(αk). The choice of p(τl) is arbitrary

in the context of our work. As we will show later, any desired form of p(τl) can be used

in the algorithm. The prior p(αk), also called a hyperprior, is selected as a gamma pdf,

i.e., p(αk) = Ga(αk|ak, bk), with the prior parameters ak and bk chosen so as to ensure

the desired form of the prior. Practically we will select ak = bk = 0 to render this

prior non-informative (Tipping, 2001). Such formulation of the hyperprior is related to

automatic relevance determination (ARD) (Neal, 1996; MacKay, 1994). Let us stress

that the ARD formulation of the hyperprior distribution also leads to a number of very

efficient inference algorithms (Shutin et al., 2011b; Tipping and Faul, 2003).

The approximating pdf q(τ ,w,α) is typically a free parameter. However, to make

the optimization of the bound in (9) tractable one typically assumes a suitable factor-

ization of q(τ ,w,α) and constrains individual approximating factors to some classes

of parametric pdfs. Henceforth we will assume that

q(τ ,w,α) = q(w)
K∏

k=1

q(αk)
L∏

j=1

q(τj). (11)

The motivation behind such factorization is the following. Selection q(α) =
∏K

k=1 q(αk)

follows from the assumption that p(w,α) =
∏K

k=1 p(wk|αk)p(αk). The assumption

10



q(τ ) =
∏L

j=1 q(τj) is mainly done for computational reasons. Essentially, such fac-

torization allows one to reduce a nonlinear L dimensional optimization with respect to

q(τ ) to a series of L simpler one-dimensional nonlinear optimizations with respect to

q(τl), which makes the numerical estimation problem much simpler.

Consider a random variable a ∈ {τ1, . . . , τL,w, α1, . . . , αK}, and assume we are

interested in finding q(a) that maximizes the lower bound (9). Define now

p̃(a) ∝ exp
(
Eq(MB(a))

{
log p(a|MB(a))

})
, (12)

whereMB(a) is a Markov blanket7 of the variable a. It is then easy to show that an un-

constrained (form-free) variational solution for q(a), a ∈ {τ1, . . . , τL,w, α1, . . . , αK},

that maximizes the bound (9) is found as q(a) = p̃(a). If q(a) is constrained to some

suitable class of density functionsQ(a), then a constrained solution is obtained by solv-

ing

q(a) = argmin
q∗(a)∈Q(a)

DKL(q
∗(a)‖p̃(a)). (13)

Note that an unconstrained solution naturally gives a tighter bound on log p(y) in (9).

Now let us return to the approximating pdf q(τ ,w,α). In the case of q(w) it is

easy to verify that log p̃(w) computed from (12) is quadratic in w, which implies that

p̃(w) must be a Gaussian pdf. This can be easily verified by noting that the posterior

p(w|MB(w)) = p(w|y,α, τ )) is proportional to a product of two Gaussian pdfs:

p(w|y,α, τ )) ∝ p(y|w, τ )p(w|α). Therefore, selecting q(w) = N(w|ŵ, Ŝw) is

equivalent to a form-free variational solution for this factor. Following the same line

of argument it can be shown that p̃(αk), k = 1, . . . , K, is a gamma pdf. Therefore,

selecting q(αk) = Ga(αk|âk, b̂k) corresponds to a form-free variational solution for

q(αk). As a single exception to the above cases we restrict q(τl) to a set of Dirac

measures Q(τl) = {δ(τl − τ̂l)|τ̂l ∈ {0, . . . , N − 1}}, l = 1, . . . , L. By doing so we

restrict ourselves to the integer point estimate of the lth neuron delay τl. While other

forms of the pdfs can be assumed here, their study is left outside the scope of this paper.

Now, the variational inference reduces to the estimation of the variational parame-

ters ŵ, Ŝw, âk, b̂k, k = 1, . . . , K, using (12) and τ̂l, l = 1, . . . , L, using (13).

7TheMarkov blanket of a variable node in a DAG is a set of nodes that includes parent nodes, children

nodes, and co-parents of the children nodes (Bishop, 2006).

11



Should our estimation problem be independent of τ , the solution to the variational

inference of q(w) and q(α) can be easily computed (Bishop and Tipping, 2000; Shutin

et al., 2011a; Tipping and Faul, 2003). Unfortunately, the nonlinear dependence of

X(τ ) on τ significantly complicates the evaluation of (12) and (13). In fact, when

y is observed the variables w and τ become conditionally dependent (Bishop, 2006);

the variational estimation of a single factor q(τl) would thus require computing the

expectation with respect to MB(τl) = {w, τ1, . . . , τl−1, τl+1, . . . , τL} in (12). As a

consequence, the straightforward variational estimation of q(τl) might become compu-

tationally quite costly due to the correlations between the elements of w, especially

when the number of columns in Φ(τ ) is high. Although this approach is practically

realizable, these numerical difficulties can be efficiently circumvented by appealing to

the EM-type of inference schemes used for estimating parameters of superimposed sig-

nals (Feder and Weinstein, 1988; Fleury et al., 1999; Shutin and Fleury, 2011). Here

we propose to use one such algorithm known as the VB-SAGE algorithm (Shutin and

Fleury, 2011).

The VB-SAGE algorithm— a variational extension of the original SAGE algorithm

(Fessler and Hero, 1994) — allows one to simplify the optimization of the bound in (9)

by introducing latent variables termed admissible hidden data. Within the VB-SAGE

algorithm the admissible hidden data is introduced for only a subset of parameters of

interest; this distinguishes the VB-SAGE framework from a closely related EM frame-

work and its variational extensions (Sung et al., 2008a,b; Palmer et al., 2006; Beal,

2003; Attias, 1999), where complete data is introduced for all the unknown parameters.

In our case we would like to simplify the inference of a single delay parameter τl. The

VB-SAGE algorithm is then used to maximize the bound in (9) with respect to q(τl) by

performing a variational inference on a new graph that has been appropriately extended

with latent variables. The monotonicity property of the VB-SAGE algorithm guarantees

that this optimization strategy necessarily improves the variational bound in (9) (Shutin

and Fleury, 2011).
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3.2 Variational Bayesian Space-Alternating inference

Let us begin by formally defining the notion of admissible hidden data. Let P =

{Ps,Ps} be a set of all the unknown parameters8, and let Ps be a subset of parame-

ters we wish to update.

Definition 1. Given a measurement y, hs is said to be admissible hidden data with

respect to Ps if the factorization

p(hs,y,P) = p(y|hs,Ps)p(hs,P) (14)

is satisfied (Shutin and Fleury, 2011; Fessler and Hero, 1994).

The purpose of the hidden data is to make the update procedure for the subset

Ps a tractable optimization problem. Now, let us re-inspect (3). We observe that

the network output is represented as a superposition of L neuron responses X(τ ) =

[x1(τ1), . . . ,xL(τL)] and M input signals U = [u1, . . . ,uM ]. Obviously, the weight

vector w can be partitioned as w = [wT
x ,w

T
u ]

T , where wx and wu are respectively

the weighting coefficients for the echo states X(τ ) and the input signals U . In what

follows we formulate the learning problem so as to estimate the delay τl of a single

neuron.

Lemma 1. Let wxl denotes the lth element from the vector wx. Decompose the total

perturbation ξ in (3) into two statistically independent parts such that ξ = ξl + ηl,

where E{ξlξ
T
l } = βlσ

2I and E{ηlη
T
l } = (1− βl)σ

2I for some 0 ≤ βl ≤ 1.

Then, a variable

hl = xl(τl)wxl + ξl, (15)

is admissible hidden data with respect to τl.

Proof. With the new variable hl the ESN output expression (3) can be rewritten as

y = hl +X l(τ l)wxl +Uwu + ηl, (16)

whereX l(τ l) = [x1(τ1), . . . ,xl−1(τl−1),xl+1(τl+1), . . . ,xL(τL)] is an N ×L− 1 ma-

trix of delayed echo states with the response of the lth neuron removed andwxl is vector

8We will assume that Ps

⋂
Ps = ∅.
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with L− 1 elements obtained by removing the lth weight wxl fromwx. Then, the mod-

ified graphical model that accounts for the introduced variable hl can be represented as

shown in Fig. 1b, from which it immediately follows that the new joint pdf factors as

p(y,hl, τ ,w,α) =p(y|hl, τ l,w)×

p(hl|w, τl)p(τ )p(w|α)p(α).
(17)

By comparing (17) and (14) we conclude that hl defined in (15) is admissible hidden

data with respect to Ps ≡ {τl} .

The key quantities in (17) that distinguish it from (10) is the likelihood on the ad-

missible hidden data p(y|hl, τ l,w) = N
(
y| (hl +X l(τ l)wxl +Uwu) , (1− βl)σ

2I
)

and the new likelihood of τl, which is now a function of w and hl. From (15) it fol-

lows that p(hl|w, τl) = p(hl|wxl, τl), where p(hl|wxl, τl) = N(hl|xl(τl)wxl, βlσ
2
l I).

The VB-SAGE-based inference of q(τl) now incorporates two steps: (i) a variational

inference of the admissible hidden data hl using the augmented graph in Fig. 1b, which

forms the VB-SAGE-E-step of the scheme, followed by the (ii) a variational inference

of q(τl), which is the VB-SAGE-M-step of the algorithm. Notice that the E-step of the

VB-SAGE algorithm requires extending the approximating pdf (11) such as to account

for the admissible hidden data hl. We assume that

q(τ ,w,α,hl) = q(τ ,w,α)q(hl). (18)

The same factorization of the approximating pdf also underpins the variational exten-

sion of the EM algorithm (Attias, 1999). Once the joint pdf (17) and the approximating

pdf (18) are specified, the variational inference of q(hl) and q(τl) is realized following

the standard variational inference on a DAG, i.e., the expressions (12) and (13) are eval-

uated to estimate the corresponding approximating factors, albeit using the new graph

in Fig. 1b to determine the Markov blanket of the updated variables.

It has been shown (Shutin and Fleury, 2011) that in order to guarantee the monotonic

increase the variational lower bound with respect to q(τl) using the VB-SAGE algo-

rithm, it suffice to estimate the approximating pdf q(hl) of the admissible hidden data as

a form-free solution (12) and select βl = 1. In our case these constraints are easily sat-

isfied. Note that βl is in general a free parameter. However, setting βl = 1 is convenient

since it has been proven that for models linear in their parameters this choice leads to a
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fast convergence of the algorithm already in the early iteration steps (Fessler and Hero,

1994); the same choice has been also adopted in (Fleury et al., 1999; Shutin and Fleury,

2011). In case of q(hl) it follows that due to (15) and (16) it is easy to demonstrate

that log p̃(hl) is quadratic in hl since p(hl|MB(hl)) ∝ p(y|hl, τ l,w)p(hl|wxl, τl) is

Gaussian. Thus, by selecting q(hl) = N(hl|ĥl, Ŝ
h
l ) the monotonicity property of the

VB-SAGE scheme is guaranteed.

3.3 Variational estimation expressions

Here we provide the estimation expressions for the variational parameters of the ap-

proximating factors of q(τ ,w,α,hl). The updated value of a variational parameter is

denoted by (·)′.

We begin with the variational estimation of q(w). By evaluating log p̃(w) from (12),

which is quadratic in w, and minding that q(w) = N(w|ŵ, Ŝw), we find the updated

variational parameters ŵ and Ŝw as

(Ŝw)′ =
(
σ−2

Eq(τ )

{
Φ(τ )TΦ(τ )

}
+ Eq(α){A}

)−1
=

(
σ−2Φ̂

T
Φ̂+ Â

)−1
,

ŵ
′ = σ−2(Ŝw)′Eq(τ ){Φ(τ )T}y = σ−2(Ŝw)′Φ̂

T
y.

(19)

Here we defined Φ̂ = [X(τ̂ ),U ] and Â = diag{α̂}, where α̂ = [α̂1, . . . , α̂K ]
T and

α̂k = Eq(αk)(αk) = âk/b̂k, k = 1, . . . , K. Let us stress that (19) is essentially a

Tikhonov-like regularized solution for the coefficients w, with α̂ acting as the regular-

ization parameters.

Following the same inference steps we compute the variational parameters of the

pdfs q(αk) = Ga(αk|âk, b̂k), k = 1, . . . , K, as follows

â′k = ak + 1/2,

b̂′k = bk +
1

2
Eq(w)

{
|wk|

2
}
= bk +

1

2

(
|ŵk|

2 + Ŝw
k

)
, k = 1, . . . , K.

(20)

In (20) ŵk is a kth element of the vector ŵ, and Ŝw
k is the kth element on the main

diagonal of posterior covariance matrix Ŝw.

Now, let us consider the VB-SAGE-based estimation of delay parameters τ . For

each neuron the inference includes a VB-SAGE-E-step to estimate q(hl) and a VB-

SAGE-M-step to update the corresponding pdf q(τl). The VB-SAGE-E-step involves

a computation of the expectation of log p(hl|MB(hl)) with respect to MB(hl) =
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{τ ,w,y}. As we have mentioned earlier, q(hl) should be selected as q(hl) = p̃(hl)

to ensure the monotonicity of the algorithm. Since log p̃(hl) is quadratic in hl, the

variational parameters of q(hl) = N(hl|ĥl, Ŝ
h

l ) can be easily computed as

h′
l = xl(τ̂l)ŵxl + βl

(
y − Φ̂ŵ

)
,

(Ŝh
l )

′ = βl(1− βl)σ
2I.

(21)

Observe that with β1 = 1, Ŝh
l → 0, i.e., q(hl) collapses to a Dirac distribution. Now,

the VB-SAGE-M-step involves a computation of the expectation of log p(τl|MB(τl))

with respect to MB(τl) = {w,hl}. Since q(τl) = δ(τl − τ̂l), the solution to (13) is

obtained by finding τ̂l as a solution to the following optimization problem:

τ̂ ′l = argmax
τl∈{0,...,N−1}

{
log p(τl)−

1

2βlσ2
‖ĥl − ŵxlxl(τl)‖

2 −
Ŝw
xl

2βlσ2
‖xl(τl)‖

2
}
. (22)

i.e., τ̂l is found such that q(τl) is centered at the maximum of the p̃(τl); naturally, τ̂l is

the maximum a posteriori estimate of the delay parameter τl. In (22) Ŝw
xl is the element

on the main diagonal of Ŝw that corresponds to the posterior variance of the lth echo

state weight wxl. Notice that the estimation of the delay τl requires numerical optimiza-

tion, which, however, can be implemented as a simple one-dimensional line search on

the domain of q(τl). The VB-SAGE-E-step (21) and VB-SAGE-M-step (22) are then

iteratively repeated for all L neurons. Let us also mention that due to q(τ ) being fully

factorizable, the neurons can be processed in any desired order.

In (Holzmann and Hauser, 2010) the authors propose a similar iterative EM-based

scheme for D&S readout optimization. Their algorithm is in many respects inspired

by the ideas of the original SAGE algorithm (Fessler and Hero, 1994). The authors

propose to estimate the delay τl of the lth neuron by first subtracting the influence of

the other echo states and network input signals from the desired network response y

to compute the residual signal. This realizes the E-step of the scheme. The delay τl is

then found as a value that maximizes the absolute value of the correlation between the

computed residual and the echo state xl[n]; this constitutes the M-step of the algorithm.

Although the scheme is very effective, several heuristics are employed that distinguish

it from the algorithm proposed in this work. Specifically, the weights of the echo states

are estimated in two steps: during the D&S readout parameter updates, the weight wxl

of the lth echo state is computed as a projection of xl(τl) on the residual signal; then,
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once the delay parameters of the D&S readout have converged, the Moore-Penrose

pseudoinverse is used to estimate the weights w one more time. Also, the objective

function used to compute the delay parameters of the D&S readout differ from that

obtained with the standard SAGE algorithm. Let us now show that (21) and (22) are the

generalizations of this approach.

First, we note that with βl = 1 the expression (21) naturally realizes the “interfer-

ence cancellation” scheme of (Holzmann and Hauser, 2010). Indeed, in this case (21)

reads

h′
l = y − (X l(τ̂ l)ŵxl +Uŵu), (23)

where τ̂ l, ŵxl, and ŵu are the expectations of τ l, wxl, and wu, respectively. In other

words, in (23) all input signals and responses of the other neurons but the response of

the lth neuron are subtracted from the target signal y. The similarity between the VB-

SAGE-E-step and the E-step of the scheme proposed in (Holzmann and Hauser, 2010)

comes quite naturally, since both schemes use the SAGE algorithm as a starting point.

The actual distinction lies in the way the D&S readout parameters are estimated. In their

work the authors (Holzmann and Hauser, 2010) depart from the SAGE algorithm and

use a heuristic to estimate the delay τl. Specifically, τ̂l is found as a maximizer of the

absolute value of the correlation |ĥ
T

l xl(τl)|. Under certain assumptions, the objective

function (22) can be shown to be very similar to that used in (Holzmann and Hauser,

2010).

Observe, that since τl is a delay parameter for the echo state xl[n], we can assume

that the term ‖xl(τl)‖
2 is independent of the delay τl. This allows us to neglect the last

“regularization” term 1
2βlσ

2 Ŝw
xl‖xl(τl)‖

2 in (22). Furthermore, when the prior p(τl) is

assumed to be flat, i.e., p(τ) ∝ 1, it follows that the optimization problem (22) becomes

equivalent to

τ̂ ′l = argmax
τl∈{0,...,N−1}

{ŵxlĥ
T

l xl(τl)}, (24)

which estimates τl on a grid such as to maximize the correlation between ĥl and xl(τl).
9

The objective function used in (Holzmann and Hauser, 2010) is thus an “incoherent”

9In can be shown that in this case the minimum of ‖ĥl−ŵxlxl(τl)‖
2 is achieved when the correlation

between ĥl and ŵxlxl(τl) is maximized.
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version of (24), where the weight ŵxl is ignored and only the magnitude of the correla-

tion ĥ
T

l xl(τl) is maximized with respect to τl.

4 Implementation issues and algorithm initialization

In order to initialize the algorithm a simple strategy can be used that allows for an infer-

ence of the initial variational approximation from the training data {y[n],u[n]}n0+N−1
n=n0

.

For that we start with an empty model, i.e., assuming all variational parameters to be

0. The iterations of the algorithm are then sequentially update all variational factors. In

Algorithm 1 we summarize the main steps of the proposed algorithm. Note that in the

step 3 of the algorithm we initialize αl = ǫ. The choice of ǫ is in general application

dependent; we will discuss it in more details in Sec. 5.

Algorithm 1 Variational Bayesian ESN training

1: Construct an ESN with L neurons, D&S readouts and neuron filters.

2: Use training data {y[n],u[n]} to generate echo states xl[n], l = 1, . . . , L.

3: Initialize σ2, τ̂ , α̂, and ŵ.

4: while not converged do

5: for l = 1 . . . L do

6: Estimate ĥl from (21) and update τ̂l from (22)

7: end for

8: Update Ŝw and ŵ from (19).

9: Update âk, b̂k, ∀k from (20) and recompute α̂,

10: end while

An important part of the initialization procedure is a selection of the additive per-

turbation variance σ2. When signal y[n] is known to be noisy, the variance σ2 should

be selected to reflect this. In general, a large value of σ2 leads to a more aggressive

regularization and makes the network less sensitive to variations in y[n].

The iterative nature of the algorithm requires a stopping criterion for parameter

updates. In our experiments it has been empirically determined that after 5–6 update

iterations the improvment of the algorithm performance is insignificant; thus, a total of

6 iterations are used.
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4.1 Computational complexity of the algorithm

Incorporation of automatic regularization in the ESN training scheme as well as estima-

tion of D&S readout parameters increases the computational complexity of the network

training. Quite naturally, when D&S readout parameters and regularization parameters

are fixed, the variational Bayesian ESN training reduces to an instance of the classi-

cal ridge regression-based estimate of w . This requires inverting a K × K posterior

covariance matrix Ŝw, an operation that has a computational complexity O(K3).

The estimation of regularization parameters α̂ using (20) has complexity O(K).

Compared to the computation of the weightsw, the estimation of regularization param-

eters poses an insignificant increase of the total computational complexity. Recently, a

new fast variational SBL (FV-SBL) scheme has been proposed (Shutin et al., 2011a,b)

to accelerate the convergence of sparsity parameter update expressions (20) in the case

when hyperpriors p(αk), k = 1, . . . , K, are chosen to be non-informative. The scheme

exploits the fact that the lower bound in (9) is convex with respect to the factorization

(11); in other words, the factors in (11) can be updated in any order without compro-

mising the monotonic increase of the variational lower bound (Bishop, 2006). Then,

for a fixed k, the stationary point of variational updates (20) and (19) repeated ad in-

finitum can be computed in closed form assuming that the other variational parameters

are fixed. All K variational factors q(αk), k = 1, . . . , K, are then updated sequen-

tially, with the complexity of a single update being on the order of O(K2). Although

in general the total complexity remains O(K3), the update of a single component can

be performed more efficiently. Furthermore, fewer iterations are typically needed to

estimate the regularization parameters.

The estimation of D&S readout parameters also increases the total computational

complexity. Specifically, the estimation of the delay parameter for each neuron from

(22) requires evaluating the admissible hidden data from (21), an O(NK) operation,

and solving the optimization problem (22), which is an O(N2) operation. For L neu-

rons this results in a total computational complexity on the order of O(LNK + LN2);

i.e., it is quadratic10 in both the number of learning samplesN as well as in the number

of neurons L; yet this increase is still dominated by O(K3) complexity of estimating

10Recall that K = M + L.
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the network weights. Note that an ESN with D&S readout typically requires fewer neu-

rons as compared to the standard ESN to achieve the same memory capacity; in other

words, training a smaller ESN with tunable D&S readouts is typically more efficient

than training a standard ESN with many neurons.

5 Simulation results

In this section we compare the performance of the proposed variational Bayesian learn-

ing of ESNs with other state-of-the-art ESN training algorithms using synthetic as well

as real-world data. In the first experiment, described in Section 5.1 we train an ESN pre-

dictor to forecast a chaotic time series generated with a Mackey-Glass system, which

is often used to benchmark ESN learning schemes (Jaeger, 2001; Holzmann, 2008). In

the second experiment, described in Section 5.2, we apply the ESN training schemes to

a recognition of handwritten symbols based on measured dynamic pen trajectory data.

In both experiments we compare an extended ESN trained with the proposed VB-

SAGE algorithm (which we will further term VB-ESN) to the performance of i) a

standard ESN (STD-ESN), ii) an ESN trained using Moore-Penrose pseudoinverse and

reservoir extended with fixed D&S readout (EXT-ESN), and iii) an ESN with D&S

readout that is trained using the algorithm proposed in (Holzmann and Hauser, 2010)

(further in the text we will refer to this algorithm as HH-ESN).

5.1 Time-series prediction

In this experiment we apply ESNs to predict a chaotic time series generated with a

Mackey-Glass system. Similar experiments have also been performed in (Jaeger, 2001;

Holzmann, 2008) to benchmark the performance of different ESN training schemes. We

assume that an input signal to an ESN is a constant signal u[n] = 0.02 and an output

signal is generated using the Mackey-Glass differential equation

dy(t)

dt
= β

y(t− τmg)

1 + y(t− τmg)n
− γy(t), (25)

where γ, β, n and τmg are the parameters of the system. Following (Jaeger, 2001;

Holzmann, 2008) we select these parameters as follows: γ = 0.1, β = 0.2, n = 10 and
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τmg = 30. This choice guarantees that the Mackey-Glass system converges to a chaotic

attractor.

The reservoir coefficients Cx, Cy and Cu are randomly generated by uniformly

drawing samples from the interval [−1, 1]. For all tested networks the connectivity of

the reservoir is set to 5% and the connectivity matrix Cx is normalized so as to have a

spectral radius of 0.8. To avoid instabilities due to the nonlinear feedback mechanism

(Jaeger, 2001), a small zero-mean white additive disturbance with variance 1 × 10−6

was added to the feedback signal CT
y y[n] in the state transition equation (1). We set

the size of the reservoir for all tested ESNs to L = 200 neurons, unless explicitly stated

otherwise. The variance of the additive noise ξ was set in this experiment to σ2 = 10−10.

For the EXT-ESN algorithm the time delays are generated randomly by indepen-

dently drawing samples from the interval [0, 100]; 50% of the generated delay values

are then set to zero, which ensures that a particular number of echo state functions enter

the ESN output without a time delay. Similarly, the VB-ESN and HH-ESN algorithms

use this initialization to generate the initial values of neuron delays.

In the case of the VB-SAGE algorithm it is important to mention that due to the

iterative structure of the algorithm the proper initialization of the network parameters

plays an important role. To obtain a consistent starting point, the initial values of the

weights w are drawn from the Gaussian distribution with zero mean and covariance

matrix A−1, where A = diag{α}. Obviously, the initial choice of α controls the

algorithm’s emphasis on the estimation of the time delays τ . Small initial values of α

lead to weak regularization of the weights during the early iterations. We have observed

that this often drives the algorithm to a local optimum, with the values of τ “frozen”

at the initial values. Setting initial values of α to large numbers corresponds to the

initial weights w being close to zero; as a result, the training algorithm essentially

“de-regularizes” the solution, which, as our extensive simulations show, leads to better

estimation results. In our experiments we set αk = ǫ = 1010, k = 1 . . . K. The same

strategy is also used to initialize the weights of the HH-ESN algorithm.

The training and testing of the ESNs are then realized as follows. First, 3300 sam-

ples of Mackey-Glass time series are generated. The first 3000 samples are used to

train the network and the remaining 300 are used to validate the network performance.

The network is then run from a zero initial state in teacher-forced mode (Jaeger, 2001)
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using the first 3000 samples of the time series; further, the initial 1000 samples of the

resulting network trajectory are discarded to ensure that the system settles at the chaotic

attractor. The remaining N = 2000 samples are used to train the network and estimate

its parameters.

Once the coefficients of the network are estimated, the trained network is run for

300 time steps to generate the predicted trajectory by feeding the output of the trained

network back into the reservoir. The performance of the trained network is evaluated

by measuring the normalized root-mean squared error between the 300 samples of the

true trajectory ytrue[n] and the trajectory ytrained[n] generated by the trained network;

the corresponding results are then averaged over NMC = 300 independent Monte Carlo

simulations, where for each simulation run a new ESN is generated and trained using

a new realization of the Mackey-Glass time series. The normalized root-mean squared

error between ytrue[n] and ytrained[n] is computed as follows:

NRMSE[n] =

√√√√√ 1

NMC

NMC∑

i=1

∣∣∣y[i]true[n]− y
[i]
trained[n]

∣∣∣
2

σ2
ytrue

, (26)

where the superscript [i] denotes the signal computed during the ith Monte Carlo sim-

ulation run, and σ2
ytrue

is the variance of the true time series ytrue[n]. Naturally, the

longer both systems remain synchronized, i.e., the more slowly NRMSE[n] grows as a

function of n, the better the performance of the trained model is.

In Fig. 2 we plot the estimated performance of the compared algorithms. Observe

that the predicted output signal obtained with the STD-ESN scheme diverges much

faster from the true signal as compared to the other algorithms; even doubling the size

of the network from 200 to 400 neurons does not improve the performance. Introduc-

ing the random D&S readout, however, does help. However, although the EXT-ESN

scheme with L = 200 neurons outperforms both STD-ESN schemes, its performance is

below that of the VB-ESN and HH-ESN algorithms. The latter two schemes deliver the

lowest prediction error. These algorithms still have a 30 dB performance gain over the

STD-ESN and EXT-ESN after 300 time steps. Solely boosting the size of the EXT-ESN

to 400 neurons makes this scheme perform on par with VB-ESN and HH-ESN with 200

neurons each. Thus, learning the optimal parameters of the D&S readout allows signif-

icantly reducing the required size of the network. It should be mentioned that in this

22



0 50 100 150 200 250 300
−120

−100

−80

−60

−40

−20

0

 

 

STD−ESN (L=200)

STD−ESN (L=400)

EXT−ESN (L=200)

EXT−ESN (L=400)

HH−ESN (L=200)

VB−ESN (L=200)

20
lo
g
1
0
(N

R
M
S
E
),
d
B

Trajectory time samples

(a)

0 2 4 6 8 10 12 14 16

−120

−100

−80

−60

−40

−20

 

 

STD−ESN (L=200)

STD−ESN (L=400)

EXT−ESN (L=200)

EXT−ESN (L=400)

HH−ESN (L=200)

VB−ESN (L=200)

20
lo
g
1
0
(N

R
M
S
E
),
d
B

Trajectory time samples

(b)

Figure 2: An error between the true Mackey-Glass time series and the predicted re-

sponse for a) 300 time steps; b) a zoom-in into the error evolution for time steps between

n = 1 and n = 16

example the performance of both VB-ESN and HH-ESN schemes is nearly identical.

Let us look into the performance of these two scheme a bit closer.

For that we analyze the estimation results for the delays τ . In Figures 3a and 3b we

plot the histograms of the estimated D&S readout parameters with non-zero delay val-

ues computed with the HH-ESN and VB-ESN methods. Interestingly, the histogram for
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Figure 3: Histogram of the estimated D&S readout parameters. a) HH-ESN, b)VB-

ESN.

the D&S readout parameters computed with the VB-ESN algorithm shows strong peaks

in the range between τ = 20 and τ = 60, which covers the original delay parameter

τmg of the Mackey-Glass system. In fact, this is not a mere coincidence; experiments

with different values of the delay parameter τmg indicate that the VB-SAGE algorithm
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indeed sets many of the D&S readout delays to the value closest to the true delay τmg.

In contrast, the delay estimation with the HH-ESN algorithm seems to result in more

uniform values of the estimated delays and thus shows only weak peaks around the true

delay parameter. Based on the obtained simulation results we can claim that the exact

estimates of the D&S readout parameters are not pivotal for the successful prediction

of the Mackey-Glass time series and deviations in the delay parameter estimates can

be compensated to a certain extent by the estimation of output weights. Also, due to

a very low noise level, the distinction between the Bayesian regularization used in the

VB-ESN and Moore-Pensore pseudoinverse-based regularization is also minimal. This

explains the similarity of the prediction results obtained with the two schemes.

It is also important to stress that there is a statistical dependency between the es-

timated delay parameters τ and estimated regularization parameters α. Recall that α

reflect the importance of the particular echo states or input signals: the higher the value

of αk, the more regularization is applied to the kth column in the matrix Φ(τ) in (3)

and, thus, the less relevant this column is in predicting the output signal. Thus, parame-

ters α can be used to measure the relative “quality” of individual neuron echo states. In

Fig. 4 we plot the values of regularization parameters α versus the corresponding D&S

readout delays parameters for the Mackey-Glass time series prediction example. Notice
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Figure 4: An empirical distribution of the D&S readout parameters τ and regularization

parameters α for L = 200 neurons.
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that the histogram has a strong peak at τ ≈ 25 and τ ≈ 35 with relatively small values

of α, which indicates an importance of the echo states with these delays for representing

the desired output signal.

5.2 Handwritten character recognition

Here we assess the performance of the proposed algorithm using measured multidi-

mensional pen trajectory data for handwritten character recognition. It was already

demonstrated (Zechner, 2010) that ESNs can successfully handle dynamic handwriting

data. Here we adopt the same experimental setup as used in (Zechner, 2010) to test the

performance of the VB-SAGE algorithm.

The following simulations are carried out using samples from theWILLIAMS database

(Williams, 2010), available at the UCI Machine Learning Repository (Frank and Asun-

cion, 2010). The database contains 2858 character trajectories from an English alphabet,

where only letters that can be written as a single stroke were recorded (i.e., 20 character

classes). Furthermore, each trajectory is represented as a three-dimensional time series,

featuring X− and Y− velocities as well as the pen pressure. The measured data in

the repository have been smoothed using a Gaussian filter with a variance set to 4 (see

(Williams, 2010) for further details). For our purposes we will consider recognition of

only a subset of characters from the repository, namely, “a”, “b”, “c”, “d”, “e”, “g”, and

“h”;11 the corresponding 2D patterns for these characters are shown in Figure 5. It has

A B C D E G H

Figure 5: Sample X-Y -trajectories for letters “a”, “b”, “c”, “d”, “e”, “g”, and “h” from

the WILLIAMS database.

been noted in (Lukoševičius and Jaeger, 2009) that there are two ESN configurations for

a classification task. First, one can design and train a single ESN with as many outputs

11The letter “f” was not recorded for the WILLIAMS database as it cannot be represented as a single

stroke.
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as class labels; the classes are then predicted by the output with the largest amplitude.

Alternatively, one can train several ESN predictors, one for each class; then, given a

test signal, the class label is selected by choosing the ESN predictor that achieves the

smallest prediction error. In this work we use the first approach.

Let us now describe the settings for the ESN network parameters and the design of

the input signals. To this end we introduce an index set C = 1, . . . , 7 with each element

corresponding to one of the 7 letters. As an input signal u[n] ≡ uc[n] we use the tra-

jectory corresponding to the class c ∈ C; the corresponding output signal of the ESN

y[n] = [y1[n], . . . , y7[n]]
T is then set to zero except for the element yc[n], c ∈ C, which

is selected as a Gaussian pulse with variance 1 centered at the time instance correspond-

ing to 70% of the input trajectory length. During the testing a class estimate is obtained

by selecting the output element of y[n] which shows the maximum value within the

input trajectory’s time window. The reservoir parameters for this classification task are

selected as in the signal prediction example except for the reservoir connectivity, which

is set to 10%. Also, no output feedback is used, i.e.,Cy = 0I . For each of the EXT-ESN

algorithms 30% of the D&S readout delays are set to zero, whereas the remaining 70%

are uniformly drawn from the interval [0, 100]. The algorithms VB-ESN and HH-ESN

use this initialization to generate the initial values of the D&S readout parameters.

The classification tasks were performed using five as well as seven character classes,

i.e., {“a”, “b”, “c”, “d”, “e”} and {“a”, “b”, “c”, “d”, “e”, “g”, “h”}. In both cases

60% of the character instances are used for training and the remaining 40% are used

for testing. As the performance measure we compute a per-class classification error

rate Ecl as the number of incorrect classifications per class over the number of tested

examples in this class and the total classification error rate Etotal, which is the number

of incorrect classifications for all letters over the total number of tested examples. To

better assess the classification performance of the compared algorithms we estimate Ecl

and Etotal over 50 independent runs; for each run a new ESN reservoir is generated and

trained and the corresponding classification errors are estimated.

In Fig. 6 we summarize the distributions of the per class classification errors Ecl

using box-and-whiskers plots for 5 letter case; in Fig. 7 the classification errors for

the 7 letter case are presented. The edges of the boxes are 25 and 75 percentiles of

the estimated classification errors and the central mark denotes the median. Whiskers
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Figure 6: Classification results for 5 letters case.
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Figure 7: Classification results for 7 letters case.

illustrate the degree of error dispersion; they extend from the box to the most extreme

data value within 1.5 × IQR, where IQR is the interquantile range of the sample. The

data with values beyond the ends of the whiskers, marked with crosses, are treated as

outliers.

In the 5 letter case the compared algorithms successfully classify the symbols with

a single exception of the letter “c”. Note that in contrast to previous example the VB-

ESN by far outperforms the other schemes; moreover, the distinction between the VB-

ESN and HH-ESN schemes is now much more apparent. The HH-ESN and EXT-ESN

schemes also produce more outliers as compared to the VB-ESN algorithm. The failure

of all three schemes to achieve low classification error rate for the letter “c” can be ex-

plained by its similarity to the letter “e”. The analysis of the confusion matrix, shown

in Table 1a, reveals that the letter “c” is indeed often predicted as “e”. This leads to a

higher dispersion of the classification errors, as can be seen in Fig. 6c. Interestingly, the
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reverse is not true: letter “e” is less often confused with “c”. Notice that the VB-ESN

scheme is more successful in properly classifying “c”, having the smallest dispersion

of Ecl. The same tendency is observed when when total classification error is analyzed.

A B C D E

A 1859 0 1 0 2

B 0 1424 0 1 0

C 8 0 761 0 327

D 0 0 0 1623 1

E 0 0 6 0 2219

(a) 5 letter case

A B C D E G H

A 5655 0 1 0 23 0 0

B 0 4307 0 20 0 0 3

C 20 0 2288 1 919 0 0

D 0 0 0 4819 8 0 0

E 0 0 30 0 6577 0 0

G 681 0 1 7 16 3223 0

H 4 42 9 106 0 0 3286

(b) 7 letter case

Table 1: Confusion matrices for a) 5 letter case and b) 7 letter case computed jointly

by EXT-ESN, HH-ESN and VB-ESN schemes. Rows correspond to actual letters and

columns to predictions.

In the 5 letter case (see Fig. 8a) the VB-ESN has much lower dispersion of the clas-

sification error as compared to HH-ESN and EXT-ESN cases. These results clearly
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Figure 8: Total classification error Etotal for (a) 5 letters case and (b) 7 letter case.

demonstrate that the proposed joint optimization of the D&S readout parameters and

regularization parameters significantly improves the performance of the trained models

as compared to the other training schemes.

In the 7 letter classification scenario we see that increasing the number of classes

makes the classification clearly more difficult. Specifically, all schemes make nowmore

errors. Similarly to the 5 letter case, the letter “c” is often confused with the letter “e”,
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as can be seen from the confusion matrix in Table 1b. Also, the letter “g” is often

confused with “a” by all compared algorithms. Interestingly, the HH-ESN is able to

classifying the letter “e” without errors, while VB-SAGE is not (see Fig 7e). This can

be explained as follows: increasing the complexity of the classification problem with

a fixed reservoir size not only increases the classification errors, but, in a multi-class

classifier that we employ here, also “redistributes” the errors between the classes. If

we consider the distribution of the total classification error, shown in Fig. 8b, we will

see that in contrast to the 5 letter case, the performance of all schemes degrades; yet,

the performance of the VB-ESN algorithm is still slightly better than that of the other

compared schemes.

6 Conclusion

In this work we have proposed a variational Bayesian approach to automatic regular-

ization and training of extended Echo State Networks with Delay&Sum readouts. The

proposed training framework combines sparse Bayesian learning methods with varia-

tional Bayesian Space-Alternating Generalized Expectation-Maximization (VB-SAGE)

algorithm. We have demonstrated that the proposed scheme allows for an optimal reg-

ularization of the training algorithm, with regularization parameters being determined

automatically by the input-output signals, additive noise, and the structure of the reser-

voir. The standard Tikhonov-like regularization of ESN training is obtained as a special

case of the proposed approach. The estimated regularization parameters also provide

an objective measure of the weights’ importance: excessive regularization required for

some of the echo states or input signals indicates the irrelevance of these signals to the

approximation of the target signal. This importance information, together with the es-

timated delay parameters of the D&S readout, can be potentially used for relating the

structure of the reservoir and neuron responses to different features of the training data.

However, a detailed analysis is required to support this claim, which is beyond the scope

of this paper.

In addition to automatic regularization, the standard ESN structure has also been

extended with tunable Delay&Sum readouts and filter neurons and, when filter neurons

are fixed, the D&S readout parameters can be efficiently estimated using the VB-SAGE
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algorithm. Although in general the optimization of neuron parameters leads to an in-

tractable nonlinear optimization, the variational approach allows for a reduction of the

optimization problem to a sequence of simpler one-dimensional searches with respect

to the delay parameter of each neuron. The VB-SAGE-based estimation of the D&S

readout parameters generalizes the ad-hoc EM-based D&S readout parameter estima-

tion proposed by Holzmann and Hauser in (Holzmann and Hauser, 2010). Thus, the

variational Bayesian framework for ESN training presented in this work generalizes

some of the existing approaches to regularization and D&S readout parameter estima-

tion, while at the same time providing a formal optimization framework for joint ESN

training, regularization and parameter estimation.

The proposed estimation scheme has been applied to forecasting a chaotic time

series generated with a Mackey-Glass system and dynamic handwritten symbol recog-

nition problem. Our results demonstrate that for time-series prediction the proposed

variational approach outperforms a simple extended ESN with random D&S readout

parameters and performs on par only with the algorithm proposed in (Holzmann and

Hauser, 2010). However, in a handwritten character recognition problem the advantages

of the proposed training algorithm become more apparent. Specifically, the proposed

training scheme consistently outperforms the other algorithms, while only marginally

increasing the computational complexity as compared to the training scheme discussed

in (Holzmann and Hauser, 2010).
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