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A large fraction of the world’s most

widespread and problematic pathogens,

such as the influenza virus, seem to persist

in nature by evading host immune re-

sponses by inducing immunity to geneti-

cally and phenotypically plastic epitopes

(aka antigenic variation). The more recent

re-emergence of pandemic influenza A/

H1N1 and avian H5N1 viruses has called

attention to the urgent need for more

effective influenza vaccines. Developing

such vaccines will require more than just

moving from an egg-based to a tissue-

culture–based manufacturing process. It

will also require a new conceptual under-

standing of pathogen–host interactions, as

well as new approaches and technologies

to circumvent immune evasion by patho-

gens capable of more genetic variation.

Here, we discuss these challenges, focusing

on some potentially fruitful directions for

future research.

Two important challenges for current

influenza research are to explain the

mechanisms involved in creating and

maintaining the highly restricted diversity

of epidemic strains and to develop more

broadly efficacious vaccines capable of

protecting against future epidemics. The

continued epidemiological importance of

the influenza virus derives in part from its

ability to generate new annual strains

capable of evading host immunity. This

plasticity is generally thought to occur

mostly through a combination of random

genetic mutations, associated with an error-

prone polymerase, and genetic reassort-

ment. We argue here that the observed

strain-to-strain, year-to-year variation is in

part a consequence of another important

contributor to the rapid emergence of

immune-evading variants, namely the pro-

pensity of the host immune system to

develop antibodies to immunodominant

epitopes (i.e., epitopes for which there is a

preferred immune response by the host)

located in variable regions of the viral

envelope protein(s) (e.g., HA and NA). The

interesting and paradoxical outcome of this

immunodominant epitope–antibody inter-

action is that it appears to lead to effective,

highly strain-specific antibodies while at the

same time (due partly to the proximity of

these epitopes to the conserved cell-recep-

tor binding site found on the viral envelope)

sterically interfering with the generation of

more broadly reactive antibodies [1–4].

The virus’s ability to mutate, together with

other host, ecological, and other evolution-

ary factors, still provide a chicken-and-egg

puzzle. It is not yet well understood how

these factors combine to produce the

characteristic patterns of influenza epide-

miology, including seasonality in the north-

ern and southern hemispheres, apparent

endemicity in the tropics, and a single-

trunk phylogeny for the proteins (viral

envelope-HA and surface neuraminidase-

NA) most often targeted by antibodies

[5–6]. This latter fact implies that a very

limited number of distinct strains are

responsible for epidemics at any given

time.

Thus far, several possible explanations

have been proposed for the very limited

diversity of epidemic strains (see Box 1):

that mutations occurring along one di-

mension of a presumed two-dimensional

‘‘strain space’’ may be intrinsically delete-

rious [7], that the viral infection produces

a short-lived strain-transcending immunity

[6], or that the virus may be evolving on a

phenotypically neutral network [8]. Addi-

tional insight will likely come from models

that integrate some of the features dis-

cussed in this essay and essential features

of the virus’s phenotype (particularly its

high mutability and its tendency to form

genetic clusters that are potential targets of

natural selection [9]), the host immune

response (particularly its propensity to

target variable epitopes that have differing

abilities to support viral neutralization [1–

2,4]), and host ecology to predict the

virus’s phylogeny and evolution.

The ability to predict accurately the

influenza virus phylogeny and evolution

would enable the prediction of imminent

circulating strains and assist in the devel-

opment of more effective conventional

vaccines, which primarily target variable
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epitopes of the viral coat proteins. To be

effective, past and current influenza vac-

cines require a close match between the

corresponding epitopes of the vaccine

strain and those of the rapidly evolving,

circulating strains, an objective that is often

difficult to achieve. Vaccines that target

more conserved functional epitopes would

further improve on conventional vaccines

by protecting against a wider range of

strains and being effective for a longer

duration [11]. There are ongoing efforts to

design such vaccines, some of which have

already led to vaccine candidates that are

undergoing clinical trials [12]. In order to

achieve optimal breadth of coverage with

this new generation of vaccines there is a

continued need for basic research to

elucidate the reasons underlying the lack

of or poor immunogenicity of more con-

served functional domains located next to

immunodominant variable epitopes, to

explain the reduced plasticity of these

conserved epitopes, and to predict the

potential impact of sustained immune

pressure on these conserved targets.

Likely to prove central to the successful

design of a new generation of vaccines is a

more nuanced understanding of patho-

gen–host interactions. In particular, two

mechanisms of immune evasion—decep-

tive imprinting and antibody interfer-

ence—deserve greater attention. Decep-

tive imprinting, originally described as

clonal dominance [1–2] and later expand-

ed to include a more complex interaction

of immunodominance coupled to antigen-

ic variation [3,13–15], posits that patho-

gens, such as influenza, have evolved

epitopes that combine immunodomi-

nance, antigenic/genetic variation, and

other poorly understood mechanisms in-

volving immune regulation to decrease the

effectiveness of immune responses (both of

antibodies and T cells) to infection/

vaccination, allowing viral escape from

immune surveillance (see Box 2).

This insight suggests that by molecularly

modifying immunodominant epitopes in

such a way as to immune-dampen them

(called, ‘‘immune refocusing’’; see Figure 1)

as part of a vaccine strategy, it may be

possible to recruit the B and T cell

repertoires of vaccine-induced antibodies

away from ‘‘pathogen-evolved’’ immuno-

dominant deceptive epitopes to more

conserved epitopes, and thereby to poten-

tially sharply increase vaccine efficacy.

The feasibility of this approach to refocus-

ing the immune response is supported by

initial experimental studies on HIV-1 and

influenza virus [3,13,19,20].

In the case of B cell immunity to

influenza, antibody interference can con-

tribute to deceptive imprinting. Specifical-

ly, antibodies to epitopes with either zero

or low neutralization efficiencies (highly

type or strain-restricted) may sterically

interfere with antibodies to epitopes with

high neutralization efficiencies [4]. These

low-efficiency epitopes need not always be

immunodominant to significantly decrease

overall viral neutralization, as long as their

immunological sub-dominance is offset by

a compensating higher affinity of their

cognate antibodies. Essentially, because of

steric hindrance, antibodies are in a

competition to bind to viral coat proteins,

Box 1. What Limits the Diversity of Epidemic Strains?

In spite of the very high viral mutation rates, the phylogenies of the proteins that appear to be evolving under the highest
degree of immune selection pressure (such as the HA1 protein of H3N2 influenza virus), as measured by the ratio of
nonsynonymous to synonymous nucleotide changes occurring at known epitopic sites, have only a single trunk, implying a
very limited genetic diversity of those proteins and, hence, of epidemic strains, and many short branches. Here, we highlight
three proposed explanations for this peculiar phylogenetic structure

N Low effective dimensionality of the space of viral phenotypes

N Suppose, for simplicity, that the features of the viral phenotype most important for its spread among hosts are its
transmissibility and the epitopes most readily recognized by the immune system. If the effects of immune recognition of
different epitopes are not independent (e.g., due to interference among antibodies to those epitopes), then the number of
effective epitopes (and, hence, the effective dimensionality of the component of phenotype space represented by those
epitopes) would be smaller than the total number of epitopes. Further, if (i) there are only two effective epitopes and (ii) for a
particular viral genetic background and structure of host immunity, mutations to one of those epitopes (denoted epitope X)
decrease viral transmissibility, then mutations that give rise to epidemic strains would mostly occur in the other epitope. The
virus’s phylogeny would therefore contain a single trunk representing the lineage of the epidemic strains [7]. Nevertheless,
there may be a limited spread of strains carrying mutations to epitope X, which would occur on the branches of the
phylogeny, once host immunity renders the normally more transmissible strains less able to spread.

N Degeneracy of the mapping from genotypes to phenotypes

N Suppose that most mutations to a particular effective epitope have a negligible effect on immune recognition of that
epitope. Such mutations would produce a ‘‘neutral’’ network of epitope genotypes having similar immunological
phenotypes. During evolution the virus population would sample the neutral networks associated with the effective epitopes
while searching for genotypes whose phenotypes are less recognizable to the immune system. This would cause the virus’s
genetic diversity to increase. If an immunologically novel phenotype is found, then, depending on the selection pressure and
the fitness differential between that phenotype and the virus population’s modal phenotype, the virus would start sampling
the neutral network of the new genotype. The ensuing selective sweep will weed out the previously sampled genotypes,
reducing the virus’s genetic diversity—only the lineage of the particular genotype that ‘‘found’’ the fitter genotype would
survive. Over time, both the repeated sampling of phenotypically neutral networks of genotypes and the occasional selective
sweeps would produce a single-trunk viral phylogeny containing many short-lived side branches [8].

N Strain-transcending immunity

N Suppose that infection with one influenza virus subtype induces partial immunity against all subtypes with a half-life
sufficient to largely prevent the possibility of reinfection within the same influenza season. Such a heterotypic immunity
would contribute to a high rate of strain turnover and a limited diversity of co-circulating influenza strains during inter-
pandemic periods. In addition, during pandemic events heterotypic immunity might cause the elimination of an existing
subtype by a new (pandemic) subtype, depending on the level of pre-existing host immunity to the latter [6,10].
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and the antibodies with the highest ratio of

free concentration to binding constant will

win, even if those antibodies are inefficient

at neutralizing the virus. In addition to

decreasing viral neutralization, the inter-

ference provided by low-efficiency anti-

bodies can also decrease the extent to

which a virus must mutate its high-

efficiency epitopes in order to infect a

vaccinated host or reinfect a previously

infected host. However, by identifying and

genetically modifying the low-efficiency

epitopes used in vaccines, it may be

possible to decrease such antibody inter-

ference and thereby greatly improve viral

Figure 1. Diagram of immune refocusing technology and steric antibody interference using influenza hemagglutinin (HA) trimer as
an example (modified from [3]). The molecular structures in the figure are drawn to scale to demonstrate the relative sizes of the reactants. In the
left panel, native HA containing immunodominant decoy epitopes induce type-specific antibodies shown in red. In the middle panel, the HA has
been engineered to include additional N-linked glycans at specific sites in the epitopes (alternatively, point mutations or deletions can be engineered
into these sites). In the right panel, the immune refocused HA antigen elicits broadly reactive immune responses (shown as a green antibody) and can
be used as a vaccine or to derive novel therapeutic antibodies having broad reactivity. The figure also highlights the potential impact of antibody
interference because the width of the distal surface of each Fab fragment of an antibody is comparable to the diameter of a native HA trimer,
antibodies that bind to different sites in the globular head of trimeric HA can sterically interfere with each other as previously shown (e.g., [21]). The
combination of deceptive imprinting and steric interference can produce oligoclonal, rather than polyclonal, immune responses that are largely
skewed towards the most immunodominant and variable epitopes in the pathogen.
doi:10.1371/journal.pbio.1000571.g001

Box 2. Deceptive Imprinting

The host adaptive immune system has evolved to recognize and respond preferentially to biochemical structures which are
deemed ‘‘foreign’’ or ‘‘non-self.’’ How ‘‘foreignness’’ is ultimately determined by the host immune system continues to be a
major question of immunology and takes on even more importance with the models proposed in this perspective.
Immunodominance—defined as a heightened and preferred immune response by the host to a limited set of epitopes—was
originally described in and thought to be purely a phenomenon of the major histocompatibility complex (MHC)–restricted
response genes in inbred mouse strains. Although experimental immunologists noted pronounced or unusually strong
antibody responses in certain host–antigen interactions, the idea of immunodominance was not readily applied to host–
pathogen interactions (reviewed in [16] and [17]). The importance of the theory of ‘‘deceptive imprinting’’ is that it advances
certain aspects of an earlier described phenomenon called ‘‘original antigenic sin’’ [18] (also known as the Hoskins effect) by
implying that immunodominance is the driving mechanism that operates and is selected for in pathogens in a genetically
outbred host setting.
Once immunodominance of epitopes is exploited by pathogens and placed into an immune memory of the host,
immunodominance leads to the propensity of the immune system to preferentially utilize immunological memory based on a
previous infection by a foreign entity (e.g., a virus, bacterium, or parasite) when a second slightly different version of that entity
is encountered. This leaves the immune system somewhat ‘‘trapped’’ by the first response it has made to each entity, and
unable to mount potentially more effective responses during subsequent infections. Thus, if pathogens couple cross-reactive
immunodominance (hetero-specific immunity) to strain-specific immunity and evolve these immunodominant epitopes
structurally next to highly conserved functional domains needed by the virus to infect host cells, the pathogens would elicit a
host immune response that is mostly directed to less protective epitopes—hence deceptive imprinting.
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neutralization by vaccine-induced high-

neutralization efficiency antibodies [4].

Vaccines often take between 16 and 20

years to develop, and the challenge now is to

understand deceptive imprinting better and

to systematically identify and characterize

deceptive epitopes and low-efficiency, inter-

fering epitopes [3–4] in influenza and other

viruses. Progress here would enable target-

ing of both immunodominant deceptive

epitopes and low-efficiency epitopes for

genetic modification. In addition, more

studies are needed to determine whether

such genetic modifications can actually lead

to significantly greater vaccine efficacy (e.g.,

[3,19]), but there is great promise in these

understanding-driven approaches.
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