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Abstract

W Converging evidence supports the “nonmonotonic plasticity”
hypothesis, which states that although complete retrieval may
strengthen memories, partial retrieval weakens them. Yet, the
classic experimental paradigms used to study effects of partial re-
trieval are not ideally suited to doing so, because they lack the
parametric control needed to ensure that the memory is activated
to the appropriate degree (i.e., that there is some retrieval but not
enough to cause memory strengthening). Here, we present a
novel procedure designed to accommodate this need. After par-
ticipants learned a list of word—scene associates, they completed a
cued mental visualization task that was combined with a multiple-
object tracking (MOT) procedure, which we selected for its ability
to interfere with mental visualization in a parametrically adjustable
way (by varying the number of MOT targets). We also used fMRI
data to successfully train an “associative recall” classifier for use in

INTRODUCTION

Although retrieval from episodic memory is thought to be
obligatory and complete (Moscovitch, Cabeza, Winocur, &
Nadel, 2016), control processes may operate on the
product of retrieval to induce states of partial memory
reactivation. According to the nonmonotonic plasticity
hypothesis (Newman & Norman, 2010), such partial mem-
ory reactivations can weaken memory representations,
although full reactivations can strengthen them. Nonmono-
tonic learning is supported by various lines of evidence, for
example, the large and growing cognitive literature on
retrieval-induced forgetting (Murayama, Miyatsu, Buchli,
& Storm, 2014); neurophysiological evidence of moderate,
but not high, levels of depolarization leading to weakening
(Hansel, Artola, & Singer, 1996; Artola, Brocher, & Singer,
1990); neural models of synaptic plasticity (Norman,
Newman, Detre, & Polyn, 2006); and impaired subsequent
memory for events shown to be partially activated by EEG
and fMRI (e.g., Wimber, Alink, Charest, Kriegeskorte, &
Anderson, 2015; Kim, Lewis-Peacock, Norman, & Turk-
Browne, 2014; Lewis-Peacock & Norman, 2014; Poppenk
& Norman, 2014; Detre, Natarajan, Gershman, & Norman,
2013; Newman & Norman, 2010). However, as empirical
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this task: This classifier revealed greater memory reactivation dur-
ing trials in which associative memories were cued while partici-
pants tracked one, rather than five, MOT targets. However, the
classifier was insensitive to task difficulty when recall was not tak-
ing place, suggesting that it had indeed tracked memory reactiva-
tion rather than task difficulty per se. Consistent with the classifier
findings, participants’ introspective ratings of visualization vivid-
ness were modulated by MOT task difficulty. In addition, we
observed reduced classifier output and slowing of responses in
a postreactivation memory test, consistent with the hypothesis
that partial reactivation, induced by MOT, weakened memory.
These results serve as a “proof of concept” that MOT can be used
to parametrically modulate memory retrieval—a property that
may prove useful in future investigation of partial retrieval effects,
for example, in closed-loop experiments. [l

evidence for nonmonotonic learning accumulates, what
tools are needed to further advance the field?

A key limitation of existing studies that have been used
to characterize nonmonotonic learning is that they rely
on naturally occurring variability within experimental
conditions. For example, Detre et al. (2013) used a
think/no-think paradigm (Anderson & Green, 2001),
measured (on each trial) how much participants thought
of “no-think” memories that they were not supposed to
be retrieving, and related this within-condition variance
to subsequent memory. In that study, the naturally occur-
ring distribution of memory activation values was wide
enough to characterize the full U-shaped curve (i.e., no
memory change for very low activation, memory weaken-
ing for moderate activation, and memory strengthening
for higher levels of activation). Crucially, there is no guar-
antee that any given study will obtain broad enough “cov-
erage” of the range of memory activation values to trace
out the full curve (indeed, in Detre et al., 2013, there
were substantially more activation values toward the mid-
dle of the activation range than toward the high and low
extremes; we were lucky that there were enough obser-
vations to run the analysis). Existing paradigms (e.g.,
think/no-think) tend to use binary manipulations of
memory activation, which further limits the range of
activation values sampled in the experiment. What if we
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needed to obtain partial memory reactivation occurring
halfway between that induced by “think” versus “no-
think” instructions? It would be a great benefit to have
a finer-grained “dial” that we could adjust in experiments
to increase the range of memory activation values that we
sample. This capability could, for example, allow thera-
pists treating patients with posttraumatic stress disorder
to more effectively reactivate memories to levels known
to induce memory weakening.

In a recent study (Poppenk & Norman, 2014), we set out
to parametrically modulate memory activation using an ad-
aptation of a rapid serial visual presentation (RSVP) design
that we called “The Great Fruit Harvest.” Participants asso-
ciated word memory cues with pictures of bedrooms;
these word memory cues were then embedded in an RSVP
stream that participants were monitoring for fruit words
(note that none of the word memory cues were themselves
fruit words). To manipulate the degree of memory reacti-
vation, we varied how long the word cues were presented
in the RSVP stream. Reactivation of associated scene mem-
ories in response to these cues was tracked using an fMRI
pattern classifier trained to detect scene information. The
cue duration manipulation was successful in generating
differential memory effects: Compared with longer
(2000 msec) word cue presentations, brief (600 msec)
word cue presentations led to lower levels of memory ac-
tivation and more memory weakening. In light of these re-
sults, we think that the word cue duration manipulation
has promise. However, in this paradigm, recall elicited by
a memory cue is always task-irrelevant, as it distracts from
looking for fruit words. Thus, associated cues should al-
ways be suppressed, potentially making it difficult to trace
out the full U-shaped curve.

Here, we present an alternative approach to generating
parametrically scalable memory reactivation. This ap-
proach is based on the idea that it is critical to make
memory retrieval an explicit part of the task, such that
participants will not automatically suppress strong mem-
ory retrieval. In addition, instead of varying the strength
of the memory cue (as in our RSVP design), we varied the
cognitive demands of a distractor task that competed
with memory retrieval. The distractor task we selected
was multiple-object tracking (MOT; Pylyshyn & Storm,
1988). Briefly, participants were required to track a vari-
able number of MOT targets within a moving dot field
over an 18-sec interval, with dots moving at a speed cal-
ibrated to each participant’s visuospatial ability. Concur-
rently with this task, participants were asked to visualize
the scene associate of a word cue presented in the center
of the screen and to provide ongoing ratings concerning
the integrity of their mental visualization. Throughout in-
struction and practice for this task, we emphasized that
MOT dot tracking should take precedence and that visu-
alization should only be “squeezed in” using available
mental resources. To further emphasize this point, we
provided feedback on dot-tracking accuracy after every
trial. We selected this combination of tasks because, as

1340  Journal of Cognitive Neuroscience

a visuospatial task, we anticipated that MOT would com-
pete for the visual resources required for visualization of
mental imagery (Phillips & Christie, 1977). Furthermore,
a key property of MOT is that participants need to con-
tinuously attend to the task—any lapse of attention will
break the train of observations linking each dot to its tar-
getness, making it impossible to solve the correspon-
dence problem as required for successful responding
(Pylyshyn, 2004). Accordingly, we reasoned that the
MOT task would both (a) impair visualization of any re-
trieved information and (b) make it difficult for partici-
pants to momentarily switch out of the MOT task to
apply full concentration to visualization.

We predicted that, by varying the number of MOT
targets participants were required to monitor, we would
parametrically modulate resources available for mental
visualization and would observe corresponding variation
in memory reactivation. We further predicted that partial
memory reactivation induced by this procedure would
lead to forgetting effects consistent with the nonmono-
tonic plasticity hypothesis and its supporting literature.

METHODS
Overview

The experiment contained several main phases (see
Table 1 and Figure 1): MOT difficulty calibration (Phase
1), paired-associate training (Phase 2), memory reactiva-
tion (Phase 5), and pre-reactivation and post-reactivation
memory tests (Phases 4 and 6, respectively). In addition,
a functional localizer was collected to assist with pattern
classification analysis (Phase 3). This design was modeled
after that used by Poppenk and Norman (2014), but it in-
corporated a novel method for reactivating memories
(Phase 5) as well as a novel procedure for training a clas-
sifier sensitive to memory reactivation (Phase 3). We em-
ployed an MOT task in which participants tracked moving
MOT target dots among a set of identically colored mov-
ing lure dots (Pylyshyn & Storm, 1988) while centrally fix-
ating on a verbal memory cue. We attempted to
modulate memory reactivation by altering the number
of MOT target dots that participants were required to
track in the MOT task. We also attempted to train a clas-
sifier that could be used to provide additional insight into
memory reactivation. Our hypotheses concerned the ef-
fectiveness of our protocol at modulating memory reac-
tivation (Phase 5), the ability of our classifier to measure
this modulation (Phase 3), and whether partial reactiva-
tion as measured by our instruments would successfully
induce forgetting as observed in a post-reactivation mem-
ory test (Phase 6), as partial reactivation in other para-
digms has been shown to do.

Participants

Twenty-four right-handed volunteers participated in the ex-
periment (16 women; age: M = 20.5 years, SD = 1.6 years).
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Table 1. Schematic of Main Experimental Phases

Phase and Purpose Day Location Stimuli Used Participant Tasks
Phase 1: MOT difficulty 1 Testing room Calibration set *Study block (Figure 1A)
calibration without RSVP
*MOT block (Figure 1B) with
adaptive staircasing
Phase 2: Learning of stimulus 2 Testing room Recall manipulation *Study block (Figure 1A)
materials and word-scene set
associates 3 Testing room Recall manipulation *Study block (Figure 1A)
set without initial pairing
3 Scanner Localizer set *Study block (Figure 1A)
(anatomical)
Phase 3: Functional localizer 3 Scanner (fMRI) Localizer set *MOT block (Figure 1B) crossing
1/5 MOT targets with cues/lures
Phase 4: Pre-reactivation 3 Scanner (fMRI) Recall manipulation *Memory block (Figure 1C)

memory test

Phase 5: Memory reactivation 3 Scanner (fMRI)

Phase 6: Post-reactivation 3
memory test

Scanner (fMRI)

set

Recall manipulation *MOT block (Figure 1B) with
set associative cue (1/5 MOT
targets) targets and familiar
lures (5 MOT targets)

Recall manipulation
set

*Memory block (Figure 1C)

Six additional participants were unable to retain the posi-
tions of five nearly-immobile MOT targets during Phase 1
and were not invited to complete the experiment (details
below). One participant was excluded because of excessive
in-scanner motion, leaving 23 participants. All were native
English speakers between 18 and 25 years old with normal
or corrected-to-normal vision and hearing. Participants
were screened for neurological and psychological condi-
tions and received financial remuneration. The protocol
was approved by the institutional review board for human
subjects at Princeton University.

Stimuli

Participants learned three sets of word—scene pairings. A
calibration set of eight pairs was used during the MOT dif-
ficulty calibration phase (Phase 1), a localizer set of 16 pairs
was used in the functional localizer (Phase 3), and a recall
manipulation set of 30 pairs was used for testing experi-
mental hypotheses (Phases 2, 4, 5, and 6; see Table 1).
Words were concrete, imageable nouns randomly sam-
pled from a pool of 7000 nouns drawn from the MRC Psy-
cholinguistic Database (Coltheart, 1981; mean length =
6.3 letters, mean concreteness = 571.5, mean imageability =
561.3, mean Thorndike-Lorge verbal frequency = 241.7).
Words were filtered to exclude nouns semantically related
to rooms. Paired scenes were grayscale bedroom interiors

drawn from Detre et al. (2013). Each participant received a
different random pairing of words and images.

There were also two sets of words used as lures: a set of
16 used during the functional localizer phase (Phase 3) and a
set of five used during the MOT phase (Phase 5). These
words were randomly sampled from the same pool as above.

Outside of MOT blocks, which are described below, all
text in the experiment was presented in white Geneva
font (height = 0.8° visual angle) on a digital screen with
a gray (50% luminance) background. All images in the
experiment were of the same size (9.0° X 9.0° visual angle)
and normalized with respect to their luminance using the
procedure described in Detre et al. (2013).

Procedure
Phase 1: MOT Difficulty Calibration

Because visuospatial ability varies considerably across in-
dividuals, yet we desired to modulate MOT in a way that
would be comparably distracting for each participant, it
was necessary to calibrate the difficulty of MOT to the sat-
uration point of each participant’s abilities. We did so by
beginning the experiment with a phase in which we used
a staircasing procedure to adjust the speed at which the
MOT task ran. In this phase, which took place in a behav-
ioral testing room at least 1 day before the rest of the ex-
periment, participants first studied the calibration set of
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eight word—scene associates (Table 1; Figure 1A). After
studying these pairs to criterion, they began the MOT
staircasing task.

To study the word—scene associates, the eight pairs
were presented once. Then, the order was randomized,
and the eight pairs were presented again (Figure 1A). Par-
ticipants were told that a memory test would follow and
that, to make stronger memories, they should treat the
cue word paired with each bedroom image as the name
of that “hotel room.” They were told that they should
imagine the most creative, distinctive possible explana-
tion for how each “hotel room” got its name. Cue words
were presented for 5.5 sec; 1.5 sec after each cue word
onset, the scene image also appeared below the word. A
fixation period of 0.75 sec in duration separated trials.

Next, participants completed a train-to-criterion mem-
ory test (Figure 1A). Each trial incorporated three parts.
First, a cue word was presented for 4 sec, during which
time participants were instructed to visualize the associ-
ated scene in as much detail as possible. Next, they were
asked to rate their visualization on the following scale:

1 = no room-related imagery or a generic room with
no distinguishing features, 2 = room with a specific dis-
tinguishing feature, 3 = room with multiple specific dis-
tinguishing features, and 4 = complete image. After a
subjective response was registered, the associated scene
image plus scenes randomly selected from three other
studied pairings were presented in random order from
left to right. Participants had 3 sec to select the scene as-
sociated with the cue word via a button press. If a correct
response was entered before the deadline, green excla-
mation points were presented for 0.75 sec. Otherwise,
a red “X” was presented for 0.75 sec, followed by presen-
tation of the cue word with the correct scene image for
4 sec. A 5-sec fixation cross separated each trial. Each
item remained in the list until it received a correct
multiple-choice response, at which point it was dropped
from the study set. The order of the (remaining) pairs
in the list was randomly shuffled after each pass through
the list.

In the final section of the calibration session, partici-
pants completed eight practice MOT trials to become
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Figure 1. Trial types for phases described in Table 1. In study blocks (A), participants first studied word-scene associate pairs by viewing them once.
Then, they learned the pairs to criterion: Upon being presented with a cue word, they rated the amount of detail in their mental visualization

of the word, completed a 4AFC decision for its scene associate, and were presented with feedback (incorrect items were repeated). Finally,
participants were familiarized with words that had no associates. Participants monitored a stream of words for embedded fruit items and pushed a
button when a fruit item appeared. Filler words were used as lures in later memory tests. In later memory test blocks, words from the
word-scene associations were used to cue mental visualization. Filler words from the RSVP task were used during familiarization as familiar

lures. In MOT blocks (B), participants completed cued visualization while simultaneously tracking target dots in an MOT task. Each time a central
fixation dot turned red, participants reported current levels of visualization. After the trial, participants were given feedback and completed a
series of odd—even judgments. In memory test blocks (C), participants completed cued visualization of studied words’ associates as well as multiple

choice for their associates.
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familiar with the task and then 72 additional MOT trials in
which we adjusted the speed of the task based on their
ability (Figure 1B). MOT trials consisted of a black central
square (20° X 20° visual angle) containing 10 dots (each
1.5° diameter). In each trial, each of the dots was as-
signed a random, nonoverlapping starting position in
the square, and five of the dots were shown in red (“tar-
gets”), whereas the remaining dots were shown in green
(“nontargets”). In addition, a fixation cross was shown in
white. After a 2-sec exposure duration, all dots were pre-
sented in green and began moving (their movement
pattern was complex and is described in detail below).
Participants were asked to mentally track which dots
were originally the red target dots for 18 sec. In addition,
the central fixation cross was replaced by a cue word
from the calibration set in a white font with a small white
dot in the center. Participants were asked to visualize
the associated room in as much detail as possible. Every
5 sec, the central white dot was switched to a red dot to
signal that participants should make a visualization rating
(of the same type performed in the memory test). After a
response was detected or 2 sec—whichever came first—
central dot was switched back to white. At the end of
the trial, all of the larger moving dots froze, and one
was presented in white. Participants were asked to indi-
cate with a button press whether this “probe” dot was
originally a target or a nontarget. After 3 sec elapsed,
participants were given feedback for 1 sec indicating
whether they were correct or incorrect (using the same
format as in the memory test). Participants were also
asked to always prioritize the MOT task over the visuali-
zation task, “squeezing in” visualization only when it
would not compromise dot tracking. We explained that,
although we were interested in their visualization, it
came second to dot tracking, as incorrect dot-tracking
trials would have to be discarded (although we did not
invite poorly-performing participants to complete the
experiment, we did not in fact discard any MOT trials;
see Results). Finally, to disrupt any posttrial visualization
of the cued scene imagery, participants completed two
trials of an odd-even task: Two digits were presented
together with an addition symbol between them for 1.9 sec,
and participants were to indicate with a button press
whether the sum of the numbers was odd or even. This
text was presented in white, but when a correct response
was detected, the font was switched to green; when an
incorrect response was detected, the font was switched
to red. A central fixation of 0.1 sec followed each odd-even
question, and after both odd-even trials, 4 sec of central
fixation preceded the next MOT trial. Together, these ele-
ments constituted a total duration of 32 sec per MOT trial.

In the MOT task, each dot began with independent x
and y dimension starting velocities consisting of values
sampled from a continuous random distribution (x, y =
[—0.5 to 0.5]) and multiplied by a velocity v, measured in
visual degrees per second. After each frame, dot motion
was recomputed. In particular, random x and y values

were again sampled from a continuous random distribu-
tion (—0.5 to 0.5), scaled by v, and added to each dot’s
velocity. An additional vector was added to each dot’s
velocity based on its position relative to that of other
dots and the center of the square: All dots generated a
“repulsion field” to reduce collisions with other dots.
The repulsion effect of a dot on all other dots was cal-
culated as 0.1v over the squared distance between them
(vielding exponentially larger repulsion values as dots
grew closer). A speed limit was enforced by capping
dot velocity at an absolute velocity of 20 on each dimen-
sion. Finally, when a dot collided with another dot or
the perimeter of the square (with collisions defined as
occurring 1.25 diameters away from the center of a
dot), v on the dimension in which the collision occurred
was multiplied by —1 (yielding a “reflection” on that
dimension).

We adjusted the parameter v throughout Phase 1 while
presenting new frames at a rate of 30 per second. After
participants completed eight practice trials at an initializa-
tion speed (1.0°/sec), we adjusted v depending on whether
participants succeeded in that trial, using the Quest
adapted staircasing algorithm (Watson & Pelli, 1983) to
calculate the optimal adjustments to identify the speed
threshold at which participants would succeed 85% of
the time (beta = 3.0, delta = 0.1, gamma = 0.5, grain =
0.2°/sec, range = 5.0°/sec). This speed was used for all
subsequent MOT-based tasks completed by the participant
for the remainder of the experiment. As is typical in MOT
experiments, only participants whose threshold fell above a
given minimum (in our case, 0.5°/sec) were invited to
continue.

After completing the MOT task but before going home,
participants completed a short study session and memo-
ry test for 40 proverbs. This memory test was conducted
to test hypotheses that were unrelated to the current
study, and because the test came after all other tasks
on the difficulty calibration day, corresponding method-
ological details are not reported here.

Phase 2: Learning of Stimulus Materials and
Word-Scene Associates

The MOT difficulty calibration session was conducted
well ahead of the rest of the experiment to ensure, be-
fore scanner scheduling, that participants would qualify
for further experimentation (Phase 1-2 latency: M =
8.41 days, SD = 9.65 days, range = 1-27 days). Partici-
pants studied the recall manipulation set of 30 paired as-
sociates and then performed a train-to-criterion memory
task with those pairs. Initial study and the train-to-criterion
test were conducted in the same manner as in Phase 1
(except that the 30-item recall manipulation set was
employed; Table 1). Participants quickly learned the
30 paired associates to criterion levels (M = 37.0 trials,
SD = 7.5 trials). By later reactivating scene associates of
the word cues within this set by differing amounts (in
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Phase 5, during an MOT task), we would attempt to
weaken these memories. All of Phase 2 took place in a
behavioral testing room, away from the scanner.

After the train-to-criterion task, participants were given
a 60-sec RSVP task in which they viewed fruit words and
nonfruit words while responding to fruit words with a
button press. Seven nonfruit words were presented
repeatedly in random order, with the duration of each
presentation sampled from a uniform distribution with
limits of 0.30-0.75 sec. Three fruit words were also pre-
sented for 1 sec during the task, appearing at random in-
tervals but no sooner than 8 sec after a previous fruit
target. Participants were given feedback on their perfor-
mance at the end of the task. The purpose of exposing
participants to the nonfruit words in the RSVP task was
to familiarize these words (without linking them to a
scene associate) so that five of them could be used as fa-
miliar lures in Phase 5 of the experiment (and two as
practice items). Although each of the word presentations
during RSVP was brief, the cumulative presentation time
of each familiar lure across all RSVP presentations (M =
6.9 sec) was matched to the total presentation time of
cue words during study trials (7.0 sec).

Phase 3: Functional Localizer

The goal of this phase was to obtain a clean neural signal
associated with cued retrieval of scenes that was insen-
sitive to changes in MOT task difficulty. Approximately
1 day after learning the materials constituting the recall
manipulation set (Phase 2-3 latency: M = 23.2 hr, SD =
3.6 hr, range = 16.1-30.2 hr), participants returned for
a third session. This entire session took place inside an
fMRI scanner and began with a practice version of the
localizer scan (see procedure description below), using
paired associates from the difficulty calibration set
learned in Phase 1. Then, while a high-resolution anatom-
ical scan was collected, participants studied the 16-item
localizer set of paired associates (Table 1), completed
a train-to-criterion memory task for those materials, and
completed an RSVP task (Figure 1A). This served to pro-
vide participants with a newly acquired set of paired-
associate memories and familiar lure words for use with
a functional localizer. Tasks were presented in the same
manner as in Phase 2. Here, the RSVP task involved
showing 16 (nonfruit) words plus eight fruit targets; the
16 nonfruit words later served as familiar lures in the loca-
lizer. The RSVP task lasted 136 sec and required par-
ticipants to make button presses on an MR-compatible
keyboard.

The localizer consisted of a 32-item MOT task similar
to that in Phase 1 (Figure 1B). However, the centrally pre-
sented cues in the task consisted of the 16 localizer-set
paired-associate cues (“cues”) and the 16 localizer-set
familiar words without scene associates from the RSVP
task (“familiar lures”). Each of these stimuli was pre-
sented once, and their order was randomized. Half of
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the cue trials and half of the lure trials involved tracking
only one MOT target, whereas the remaining trials in-
volved tracking five MOT targets. In this way, we crossed
the presence of memory signal (cues vs. familiar lures)
with task difficulty (one vs. five MOT targets). This
allowed us to use the associated fMRI data for training
a classifier to identify memory signal (associative recall)
in a manner that generalized across task difficulty level
(number or MOT targets). This task took 17.2 min (517
fMRI volumes) to complete.

Phases 4 and 6: Pre- and Post-MOT Memory Tests

In Phases 4 and 6, test items were all 30 cues from the
recall modulation set (Table 1). No familiar-lure words
were required in these phases, as a four-alternative
forced-choice (4AFC) task (in which foils were the asso-
ciates of other cues) was used to obtain an objective mea-
sure of memory performance (Figure 1C). On each test
trial, participants were first presented with a memory cue
for 8 sec, during which they were instructed to visualize
the associated scene in as much detail as possible. Next,
the multiple-choice prompt was presented, along with
four scenes (as in Phase 1). Participants had 3 sec to
choose, using a button press, which scene went with
the cue word. This period was followed by three odd—
even questions; as in Phase 1, these lasted 1.9 sec each
with a preceding fixation interval of 0.1 sec. Questions
were followed by 5 sec of central fixation. No feedback
was presented, and the pace of the experiment did not
vary based on participant responses. The full group of
30 trials took 11.2 min (335 fMRI volumes) to complete.
We analyzed accuracy and RT for all trials of each
memory test.

Phase 5: Controlled Memory Reactivation in an
MOT Task

The goal of Phase 5 was to repeatedly elicit controlled
levels of memory reactivation by placing word cues in
MOT trials that featured different levels of difficulty. As
in the Phase 3 localizer, difficulty was manipulated by
requiring participants to track either one or five MOT tar-
gets. Of the 30 word-scene pairs in the recall manipula-
tion set, 10 pairs were assigned to the associative cue
(one MOT target) condition, which was intended to elicit
the strongest reactivation; 10 pairs were assigned to the
associative cue (five MOT targets) condition, which was
designed to elicit weaker reactivation due to increased
distraction from the MOT task; and 10 pairs were omitted
from this phase, so that they would not undergo any re-
activation. Each fMRI run included one MOT trial for each
of (1) the 10 cues from the associative cue (one MOT tar-
get) condition, (2) the 10 cues from the associative cue
(five MOT targets) condition, and (3) five familiar words
from the Phase 2 RSVP task (familiar lure condition). The
sequence of these trials was randomized for each fMRI
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run. Three runs were completed, each lasting 13.5 min
(405 fMRI volumes).

fMRI Data Collection

Scanning was performed using a 3-T whole-body Skyra MRI
system (Siemens, Erlangen, Germany) at Princeton Univer-
sity in Princeton, New Jersey. T1-weighted high-resolution
MRI volumes were collected using a 3-D magnetization
prepared rapid gradient-echo pulse sequence optimized
for gray-white matter segmentation, with slices collected
in the AC-PC plane (176 sagittal slices, 1 mm thick; field
of view = 256 mm, 256 X 256 matrix, repetition time
[TR] = 2530 msec, echo time = 3.37 msec, flip angle =
9°). All functional MRI scans were collected using T2*-
weighted EPI acquisition (34 axial oblique slices, 3 mm
thick; field of view = 192 mm, 64 X 64 matrix, TR =
2000 msec, echo time = 33.0 msec, flip angle = 71°, 2x
IPAT acquisition). A T1 FLASH and fieldmap image were
also collected using these parameters to assist with core-
gistration of fMRI volumes to brain anatomy and to correct
spatial distortions.

fMRI Preprocessing

For each functional image, we computed the linear trans-
formation required to coregister the image to the mean
image of the first functional run, yielding an affine motion
correction matrix. Using a fieldmap image, we also com-
puted the warp field necessary for correction for spatial
distortion of functional images and then combined the
two transformations and applied them to the functional
data in a single spatial transformation step. Then, we ap-
plied a high-pass filter (FWHM = 160 sec) and de-spiking
algorithm to each voxel (3dDespike, AFNI).

We next segmented anatomical images to obtain
participant-specific functional masks. We performed this
segmentation in a semi-automated fashion using the
FreeSurfer image analysis suite, which is documented
and available online (v5.1; surfer.nmr.mgh.harvard.edu),
with details described elsewhere (e.g., Fischl et al., 2004).
Briefly, this processing includes removal of non-brain
tissue using a hybrid watershed/surface deformation
procedure, automated Talairach transformation, intensity
normalization, tessellation of the gray—white matter
boundary, automated topology correction and surface
deformation following intensity gradients, parcellation
of cortex into units based on gyral and sulcal structure,
and creation of a variety of surface-based data including
maps of curvature and sulcal depth. Manual quality con-
trol checks were performed. We resampled FreeSurfer
segmentations to functional image space for use as ana-
tomical masks. On the basis of meta-analysis implicating
precuneus, fusiform, parahippocampal, inferior frontal,
cingulate, inferior parietal, and superior parietal gyri in
episodic memory recall (Spaniol et al., 2009), we assem-

bled these segmentations into a “recall” mask for use with
subsequent analyses.

Classifier Training

To support our analyses linking memory reactivation to
later memory outcomes, we aimed to establish an ongo-
ing, incidental measure of memory reactivation. In pilot
testing, using data from a functional localizer phase, we
attempted to train a classifier sensitive to multiple visual
categories (faces, scenes, cars, and words; Spiridon &
Kanwisher, 2002). We hoped to use the classifier to mea-
sure reactivation of scene unit in response to word cues
that participants had studied in conjunction with scenes.
We have used this indirect approach of monitoring mem-
ory reactivation previously (e.g., Poppenk & Norman,
2014; Detre et al., 2013), and it has become relatively
common in the literature. However, we found that our
MOT task, with multiple moving dots, would consistently
and inappropriately elicit activity in the scene unit, per-
haps because the composite of multiple independent
objects within a black frame constituted a “scene” in a
neural framework. This bias was apparent even when
the classifier was trained with the MOT task active and
the visual categories presented as a backdrop, and was
sufficiently prominent as to prevent us from measuring
memory reactivation in the typical manner.

To sidestep this issue, we adopted a classifier training
protocol focused on the presence of an associative recall
signal, similar to that developed by Rissman, Greely, and
Wagner (2010). Rather than attempting to measure neu-
ral evidence for activation of scenes in the brain (i.e.,
memory content), we instead searched for neural evi-
dence of episodic memory retrieval (i.e., memory opera-
tions). In particular, we trained a classifier to distinguish
MOT trials incorporating words that were cues for previ-
ously studied scene associates on the one hand (the
“cue” condition), against words that were merely familiar
due to prior exposure on the other (the “familiar lure”
condition; it is worth noting that our designation of trials
as “cues” or “familiar lures” was based on the experimen-
tal treatment of the word, rather than the subjective
experience of the participant). Importantly, we incorpo-
rated equal numbers of five- and one-MOT-target trials in
each of the two memory conditions (associative cue and
familiar lure). By including this MOT difficulty manipula-
tion but making it irrelevant (orthogonal) to the distinc-
tion being learned by the classifier (associative cue vs.
familiar lure), we hoped to encourage the classifier to fo-
cus on recall-related variance and to ignore variance di-
rectly related to the number of MOT targets. This is a
tricky issue: The point of having participants do the
MOT task simultaneously with the memory task is to af-
fect the level of memory activation, and we want the clas-
sifier to be sensitive to these indirect effects of MOT on
recall. At the same time, we definitely did not want the
classifier to be directly sensitive to the features of MOT,
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which is why we included an MOT difficulty manipulation
in our classifier training regime. The procedure that we
chose can be viewed as conservative: By training the clas-
sifier to be insensitive to features of the MOT task, we ran
the risk of making the classifier insensitive to the indirect
effects of MOT on recall, with the benefit that—if they
are obtained—we can more clearly interpret these effects
as pertaining to variance in recall (as opposed to variance
in the surface features of the MOT task). Below (in the
Results section), we present several key analyses showing
that the classifier has the properties that we sought. In
Phase 3, we found that classifier output on familiar lure
trials was not sensitive to the number of MOT targets
(showing that, on trials where associative recall was not
taking place, the classifier was not affected by properties
of the MOT task), and in Phase 5, we found that classifier
output on associative cue trials was sensitive to the num-
ber of MOT targets (showing that, when recall was taking
place, it was modulated in the anticipated fashion by the
MOT task).

We performed our classifier analysis in MATLAB (The
MathWorks, Natick, MA) using functions from the Princeton
Multivoxel Pattern Analysis (MVPA) Toolbox (Detre et al.,
2006; available for download at www.pni.princeton.edu/
mvpa/), in the same manner as described in Poppenk and
Norman (2014; see also Norman, Polyn, Detre, & Haxby,
2000, for a discussion of the logic and affordances of
MVPA). Classifier training was performed separately for
each participant using a ridge-regression algorithm, which
is sensitive to graded signal information (such as might be
associated with intermediate states of memory reactiva-
tion). Ridge regression learns a  weight for each input
feature (voxel) and uses the weighted sum of voxel activa-
tion values to predict outcomes (in this case, a binary vec-
tor indicating which task is associated with each volume).
The ridge-regression algorithm optimizes each p to simul-
taneously minimize both the sum of the squared predic-
tion error across the training set and also the sum of the
squared [ weights (technical details are described else-
where; see Hastie, Tibshirani, & Friedman, 2001; and
Hoerl & Kennard, 1970). A regularization parameter (\)
determines how strongly the classifier is biased toward
solutions with a low sum of squared B weights; when this
parameter is set to zero, ridge regression becomes iden-
tical to multiple linear regression. The solution found by
the classifier corresponded to a 5 map for each regressor
describing the spatial pattern that best distinguished that
regressor’s condition from other conditions (with regular-
ization applied).

We provided as input to the classifier all of the gray-
matter voxels that fell within the “recall” mask described
above and set our ridge-regression penalty parameter (\)
to 1. We also input a training regressor describing the
presentation of cue words and familiar-lure words, shift-
ing our regressor by 4 sec (i.e., two TRs) to accommodate
hemodynamic lag effects associated with the BOLD
response in fMRI data.
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Figure 2. MOT dot-tracking performance. Participants were instructed
that dot tracking was their primary task during MOT. During Phase 1, a
staircasing algorithm was used to calibrate each participant’s speed of
dot movement to a level leading to 85% dot-tracking accuracy during
five-MOT-target trials. During both (A) the localizer (Phase 3) and

(B) memory reactivation task (Phase 5), dot-tracking performance in
five-MOT-target trials remained consistent with this calibrated level.
Performance was better for one-MOT-target trials but was not different
for associative cue and familiar lure trials. This suggests that participants
complied with instructions to prioritize dot tracking and completed cue
visualization using only residual resources, as instructed. Error bars
describe 95% Cls (between-participant variance; note that comparisons
between conditions were performed within participants).

To evaluate the effectiveness of this classifier at distin-
guishing between categories of images based on patterns
of activity within the recall mask, we held out portions of
the data when training for classifier testing (Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009). The localizer was
divided into eight “folds,” each of which contained one
of the four trial types (associative cues with five MOT tar-
gets, associative cues with one MOT target, familiar lures
with five MOT targets, and familiar lures with one MOT
target). We left out one fold of each type (i.e., one eighth
of the examples) on each iteration. As a reminder, al-
though there were four types of trials, we trained on only
two categories (cue and familiar lure trials), collapsing
across number of MOT targets. Collapsing across folds,
mean classifier accuracy was above chance across partici-
pants (Figure 2B), bootstrap ratio (BSR) = 3.11, p < .005.

Classifier Output as a Dependent Measure

Having established that we had successfully trained a
classifier sensitive to neural evidence of associative recall,
we next used this classifier to assess changes in memory
reactivation over time. To obtain a temporal “readout”
from a ridge-regression classifier corresponding to mem-
ory reactivation, we trained a classifier as above using all
of the data from Phase 3: Because brain activity in other
phases was of primary theoretical interest, there was no
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need to create separate training and testing sets within
the Phase 3 training data once adequate classifier perfor-
mance was established. We then used the classifier to in-
dependently evaluate each fMRI volume. This yielded, for
each time point, the amount of evidence in support of
the trial being an associative cue trial (“cue evidence”)
and the amount of evidence in support of the trial
being a familiar lure trial (“familiar lure evidence”). We
combined these into a single measure by taking the
difference between them and refer to our subtractive
measure as “evidence for associative recall.” Note that,
during classifier training, the target output values for
the “associative cue” regression model were perfectly
anti-correlated with the target output values for the “fa-
miliar lure” regression model (i.e., each trial is either an
associative cue trial or a lure trial, never both). Hence,
the two regressions might learn mappings whose outputs
are perfectly anti-correlated and thus redundant. How-
ever, the ridge penalty in ridge regression (which pres-
sures the model to find smaller weights, in addition to
minimizing prediction error) exerts an extra effect that,
to some extent, decouples the weights of the two classi-
fiers, rendering them non-redundant. As such, taking the
difference between outputs has the effect of providing
extra information beyond what is obtained from each
classifier alone.

The result of our processing was a TR-by-TR (i.e., one
2-sec fMRI volume at a time) time series for each phase,
corresponding to a covert measure of associative recall.
With this measure established, our next task was to assess
the amount of memory reactivation it revealed before
MOT-based reactivation, during MOT-based reactivation,
and after MOT-based reactivation (Phases 4-06, respec-
tively). We accomplished this by extracting the series of
values in our classifier output that began only before
each memory cue onset and that ended only before
the subsequent event onset. We refer to these time
points as TRgragr through TRgyp. In the Phase 4 and 6
memory tests, START corresponded to —1 TR (=2 sec)
relative to event onset, and END corresponded to +5
TRs (10 sec) relative to event onset. In Phase 5, START
corresponded to —1 TR (=2 sec) relative to event onset,
and END corresponded to +12 TRs (24 sec) relative to
event onset. To ensure that we measured evoked rather
than low-frequency state-based signals, we normalized
the response to each trial by subtracting the value at trial
onset from all TRs within that trial. This baseline was TR,
for Phases 4 and 6, and because extra time points were
available for Phase 5, it was the average of TR_, to TRy in
that phase. To reduce the number of comparisons needed
for our study, we focused our comparisons on the mean
classifier signal on a time window from 4 to 8 sec for both
memory tests and from 4 to 18 sec for the MOT phase. We
started the window at 4 sec (instead of 0 sec) to account for
lag in the hemodynamic response measured with fMRI.

Finally, we organized event responses according to our
manipulations. In Phases 4 and 6 (memory testing), we

grouped events based on whether the trial belonged to
the associative cue (one MOT target), associative cue
(five MOT targets), or omitted associative cue condition.
In Phase 5 (memory reactivation), we grouped events
based on whether they belonged to the associative cue
(one MOT target), associative cue (five MOT targets),
or familiar lure (five MOT targets) condition.

Significance Testing

To provide a random-effects statistical test of condition-
level differences, we computed MVPA measures as
described above at the single-participant level, yielding
a different mean memory reactivation time course for
each condition. Group level pairwise comparisons of con-
dition means were then conducted using a nonparamet-
ric bootstrapping analysis. For each time point, pairwise
differences between condition means across participants
were calculated. These computations were repeated
10,000 times, each time drawing 23 samples with replace-
ment from the group of 23 participants. The standard de-
viation of differences provided a standard error estimate
for each comparison. We divided the overall mean differ-
ence by the difference standard error derived from boot-
strap resampling to obtain a BSR, which can be treated as
an approximate z statistic (Efron & Tibshirani, 1986). We
set our significance threshold at an absolute value of BSR
1.96 (approximately corresponding to a 95% confidence
interval [CI]). This same approach was used for the
statistical analysis of our behavioral data.

RESULTS
Overview

The goal of our experiment was to understand how the
Phase 5 difficulty manipulation (one vs. five MOT targets)
impacted memory reactivation during associative cue tri-
als and whether any concurrent impact on later memory
(Phase 6) could be ascertained. We also wished to test
the usefulness of a novel fMRI classifier trained to mea-
sure associative memory and to remain insensitive to
the aforementioned difficulty manipulation. We were able
to train a classifier that satisfied these properties, and that
worked in the context of an MOT task. This classifier, as
well as participant behavioral responses obtained during
the MOT task, indicated that our difficulty manipulation
successfully modulated memory reactivation. Evidence
from the post-reactivation memory task indicated that
the memory representations cued during the MOT task
had been weakened, regardless of the level of difficulty.

Validation of MOT as a Scalable Distractor Task

As discussed, during Phase 1 (staircasing), we used a
staircasing method to adjust the speed at which MOT
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targets moved. We did so in such a way that, when faced
with an array of five target dots and five foil dots, partic-
ipants could successfully identify a probe dot as either a
target or a foil 85% of the time. This resulted in a median
velocity of 1.43%sec, SD = 0.90°/sec, range = 0.52°/sec—
3.36°sec. Each participant’s unique velocity was applied
forward throughout the experimental sessions. Our ob-
jective for this calibration was to present a similar level
of disruption to visualization for all participants. To assess
whether our approach was effective, we evaluated partic-
ipant performance for five MOT target trials in the Phase 3
localizer against this 85% accuracy goal. Doing so allowed
us to assess whether participants remained engaged
throughout the experiment and did not become sub-
stantively better or worse at the task as a result of factors
such as ongoing training, fatigue, or the novel fMRI envi-
ronment. In the Phase 3 localizer task, mean dot-tracking
accuracy under five-MOT-target conditions was not signif-
icantly different than the staircasing goal of 85% accuracy,
BSR = 0.83, p = ns, range = 75-100% (Figure 2A). In the
Phase 5 memory reactivation task, mean dot-tracking
accuracy under five-MOT-target conditions was again
not significantly different than the staircasing goal of
85% accuracy, BSR = 1.52, p = ns, range = 70-100%
(Figure 2B). Although ceiling level performance in a small
subset of participants somewhat complicates interpre-
tation of these values, the results clearly indicate that par-
ticipants remained engaged throughout the experiment
and suggest that the influence of practice, fatigue, and
the fMRI environment did not introduce material variation
in the executive resources absorbed by the MOT task.

Dot-tracking accuracy data also presented information
about the effectiveness of the difficulty manipulation.
Performance on one-MOT-target trials was superior to
that of five-MOT-target trials, both during the Phase 3 lo-
calizer (Figure 2A), BSR = 3.31, p < .001, and the Phase 5
memory reactivation (Figure 2B), BSR = 6.28, p < .001.
Likewise, during Phase 5 memory reactivation, partici-
pants were faster to respond (median RT) on one-
MOT-target trials than five-MOT-target trials, BSR =
—2.41, p < .05, although this pattern was not significant
during the localizer, BSR = —1.03, p = ns, which may be
attributable to the smaller number of trials contributing
to the stability of each participant’s parameter estimates
in that phase. These results confirmed that the task was
more difficult when it was necessary to track five MOT
targets rather than only one.

As a reminder, an important feature of the MOT task
was that participants had two competing obligations:
dot tracking and mental visualization of cued scene asso-
ciates. For our dot-tracking difficulty manipulation to
exert an influence over the amount of memory reactiva-
tion experienced by participants, it was important for
the dot-tacking task to take priority (i.e., for memory re-
call to be accomplished using only residual cognitive
resources), rather than recall taking priority (i.e., maxi-
mizing memory recall, at the expense of dot-tracking
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performance). Accordingly, we instructed participants to
always ensure that dot tracking remained their top prior-
ity during MOT. However, even cooperative participants
could have been influenced by automatic processes trig-
gered by a retrieval cue, to the detriment of their dot-
tracking performance and our manipulation. To evaluate
the extent to which this was an issue, we compared dot-
tracking accuracy for cue and familiar lure trials. On cue
trials, participants had the opportunity to visualize a
scene associate, whereas on familiar lure trials, there
was nothing for participants to visualize. In the event
that participants did not give full priority to dot-tracking
over visualizing, then accuracy for cue trials should have
been lower than that of lure trials. During the Phase 3
localizer task, we found no such difference in accuracy
on five-MOT-target trials, BSR = —0.28, p = ns, and
on one-MOT-target trials, BSR = 1.26, p = ns. Likewise,
during five-MOT-target trials in the Phase 5 memory re-
activation task, we found no such difference, BSR =
—0.30, p = ns (note that, in Phase 5, no lure trials with
only one MOT target were available for comparison).
Dot-tracking RT data (i.e., latency from probe dot pre-
sentation to a participant response) also suggested com-
pliance with instructions. During the Phase 3 localizer
task, we found no RT differences between cue and lure
trials on five-MOT-target trials, BSR = 0.73, p = ns, or
one-MOT-target trials, BSR = 0.78, p = ns. During Phase
5 memory reactivation, we also found no differences on
five-MOT-target trials, BSR = —0.88, p = ns.

Validation of Classifier Measure of
Memory Reactivation

Our classifier performed above chance when tested on
left-out portions of the data from the Phase 3 localizer
task, M = 0.58, 95% CI = [0.54, 0.63], BSR = 3.18, p <
.005. In addition to requiring that our classifier be sensi-
tive to associative recall (i.e., the difference between cues
and familiar lures) in the context of a visually dynamic
MOT task with variable speeds across participants, an im-
portant requirement of our experiment was that, when
recall is not taking place, our classifier should be insensi-
tive to task difficulty (i.e., number of MOT targets). Al-
though we trained our classifier with these goals in
mind, no feature of our design guaranteed that they
would be met; it is certainly possible that our classifier
could track difficulty instead of memory strength. The
actual extent to which we were successful in training a
classifier that satisfied our goals is an empirical question.
Accordingly, we performed a comparison on each fold of
cross-validation to establish whether our classifier would
distinguish the number of MOT targets on trials when no
associative recall was expected to occur (i.e., where
memory strength was held constant). In particular, we
compared overall classifier evidence for associative recall
(i.e., classifier evidence for the word being an associative
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cue minus classifier evidence for it being an familiar lure)
on familiar lure trials with five MOT targets (M = —0.04,
95% CI [—0.10, 0.01]) and those with 1 MOT target (M =
—0.08, 95% CI [—0.15, —0.02]) and observed no differ-
ence, BSR = 1.14, p = ns (numerically, the difference
was in the opposite direction from what you would expect
if the classifier were confounding increased MOT difficulty
with decreased recall). Nonetheless, the classifier was sen-
sitive to MOT task difficulty when associative cues were
presented in Phase 5, as we outline in the section below.
Although we need to be cautious in interpreting null ef-
fects, these results support the idea that we had created
a classifier that was sensitive to memory strength but, in
the absence of recall, was also insensitive to number of
MOT targets.

Memory Reactivation during MOT Tasks

We attempted to differentially reactivate memories by
varying the number of MOT targets present in a given
trial. During Phase 5 (memory reactivation), participants
reported lower subjective visualization during associative
cue (five MOT targets) trials than associative cue (five
MOT target) trials, BSR = —2.16, p < .05 (Figure 3A),
suggesting that our manipulation achieved its desired ef-
fect. Participants’ subjective responses nonetheless indi-
cated that the MOT task was not so distracting that they
were unable to visualize at all, as associative cue (five
MOT targets) trials still had higher-than-null (i.e., a score
<1) visualization, BSR = 24.51, p < .001. Along these lines,
subjective visualization scores for familiar lure (five MOT tar-
get) trials were significantly lower than for associative cue
(five MOT target) trials, BSR = —11.63, p < .001, and also
for associative cue (one MOT target) trials, BSR = —12.29,
p < .001. These differences indicated that participants’

memories were sufficiently robust for their visualization
ratings to discriminate among trials with studied associates
(cue trials) and those without (familiar lure trials).

Participant responses to the four visualization prompts
within each MOT trial had low within-trial variance in all
types of trials; for five-MOT-target trials, average within-
trial variance = 0.19, SD = 0.14, and for one-MOT-target
trials, average within-trial variance = 0.22, SD = 0.14. It is
also worth noting that there was an upward drift in sub-
jective visualization scores over the course of a trial,
which is the opposite pattern to what one would expect
if participants were “giving up” on visualization. The
mean within-trial slope across the four visualization
prompts for associative cue (five MOT target) trials was
0.03, BSR = 2.49, p < .05, and the mean within-trial slope
for associative cue (one MOT target) trials was 0.05,
BSR = 3.85, p < .001.

As a heuristic for confirming whether each memory re-
activation was partial or full, we compared participants’
subjective evaluation of visualization detail against their
original reports during the train-to-criterion task (i.e., af-
ter study and before reactivation). Because their original
scores reflected visualization without distraction, and be-
cause these were sampled shortly after study and imme-
diately before correctly identifying the visualized scene in
4AFC, we reasoned that they reflected “full recall.” Mean
visualization scores during the train-to-criterion task were
2.64, 95% CI [2.45, 2.86], for the localizer set and 2.64,
95% CI [2.44, 2.84], for the recall manipulation set. These
scores were higher than participants later reported dur-
ing the Phase 3 localizer task in associative cue (five MOT
target) trials, BSR = 4.19, p < .001, but not in the associa-
tive cue (one MOT target) trials in that task, BSR = 1.31,
p = ns. This confirmed that, during Phase 3, interference
from the MOT task induced partial memory reactivation
during associative cue (five MOT target) trials and full

Figure 3. Evidence of
associative recall during the
memory reactivation phase.
During the reactivation phase
(Phase 5), participants were
presented with associative cues
(i.e., cues previously associated
with scenes) while tracking five
MOT targets or one MOT target
and familiar lures while tracking
five MOT targets. During
tracking, they also reported
their subjective visualization

of any recalled associate.
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lures, regardless of whether five
or one MOT targets were used,

but were also significantly higher for associative cue trials with one MOT target than ones with five MOT targets. (B) When drawing upon classifier
evidence of retrieval from this same task, this exact pattern was also observed: Classifier evidence from the BOLD-adjusted visualization window
(gray; bar plot summary at right) was greater for associative cues than familiar lures and for one- than five-MOT-target associative cue trials.
Horizontal lines indicate visualization period onset and offset. Error bars describe 95% Cls (between-participant variance; note that comparisons
between conditions were performed within participants). * indicates BSR > 1.96 (p < .05); *** indicates BSR > 3.29 (p < .001).
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reactivation during associative cue (one MOT target) trials.
Likewise, train-to-criterion visualization scores were higher
than associative cue (five MOT targets) trials during the
Phase 5 memory reactivation task, BSR = 7.18, p < .001
(Figure 3A), although visualization scores were also lower
for associative cue (one MOT target) trials, BSR = 3.62, p <
.001, in that task. Relatively low scores in the associative cue
(one MOT target) condition of Phase 5 are likely attributable
to the relatively long study reactivation interval for the stim-
ulus set in that task (about a day, rather than a few minutes,
for Phase 3).

Because visualization scores reflect only subjective ev-
idence of memory recall, one possible objection to our
above findings is that participants’ responses reflected
demand characteristics. We therefore sought converging
evidence for our manipulation’s effectiveness using an
implicit measure of memory reactivation: our trained
classifier, which we applied to fMRI data gathered during
the MOT phase. Output from the classifier aligned with
participants’ subjective reports: Greater signal was ob-
served during associative cue (one MOT target) trials
than associative cue (five MOT target) trials, BSR =
2.05, p < .05 (Figure 3B). Also reflecting participants’ re-
ports, classifier output for familiar lure (five MOT target)
trials was significantly lower than those for associative
cue (five MOT targets) trials, BSR = —3.95, p < .001,
and associative cue (one MOT target) trials, BSR =
—4.48, p < .001. Altogether, the classifier evidence from
Phase 5 provided converging support for the idea that
partial memory reactivation was modulated by MOT task
difficulty. This convergence, in turn, provided a “sanity
check” in suggesting that the classifier mirrored partici-
pants’ own reported memory experiences.

It is worth noting that, because the above analyses av-
erage across recall trials, it is possible that evidence of
“partial activation” values could arise as an artifact of av-
eraging across “all” and “none” trials. If this were true, we
would expect that trial-wise classifier evidence for recall
would be bimodally (as opposed to normally) distributed.
To test for this, we performed the Shapiro-Wilk paramet-
ric hypothesis test of composite normality (which was re-
cently found to be the most powerful normality test in a
variety of nonnormal situations; Razali & Wah, 2011) on
the trial-wise MOT reactivation data from each condition
of each participant. The distribution of classifier output
across trials did not fit the profile of a bimodal distribu-
tion, with the mean of participant p values in the associa-
tive cue (five MOT target) condition falling well above the
cutoff of 0.05 required to assert nonnormality, M = 0.48,
BSR = 7.53, p < .001. Normality was therefore upheld.
This same pattern of high p values was seen in the
one-MOT-target condition, M = 0.37, BSR = 593, p <
.001. Manual inspection of trial-wise histogram data for
classifier and cognitive responses further confirmed a
normal distribution of reactivation strengths across trials,
supporting our interpretation of signal from the MOT
phase as reflecting partial memory reactivation.

1350  Journal of Cognitive Neuroscience

A Recall trial

8.0 sec
3.0
—‘I¢I 6.0 sec
LEAF
LEAF . T
arth
BREAEE ..
visualization T
choilge odd-even
B C —
> P —_——
5808 38 15
w5 ®TL
3 & S 1.0
T > 0.4 Sc
55 =S 0.5
gg 02 55 °
a g o. TEgp
m Associative cue — Associative cue Associative

(6 MOT targets) (1 MOT target) cue (omitted)

D o x10° .
2 6
%CD
253
cog
Sos
5ED
1787 /
08 0 =
og "o 2 4 6 8

Time (sec)

Figure 4. Impact of memory reactivation on later memory. (A) Both
before and after the memory reactivation phase, participants completed
a memory test in which they first visualized the scene associate of
memory cues and then completed a multiple-choice question, followed
by a mathematical distractor task. (B) Memory accuracy was numerically
but not significantly lower for cues that had been presented during the
MOT reactivation phase (dashed line reveals chance performance
level). (C) RTs were significantly slower for cues that had been
presented during the MOT reactivation phase. (D) Classifier evidence
from the BOLD-adjusted visualization window (gray; bar plot
summary at right) was lower for cues that had been presented
alongside five MOT targets during the MOT reactivation phase.
Horizontal lines indicate visualization period onset and offset. Error
bars describe 95% CIs (between-participant variance; note that
comparisons between conditions were performed within participants).
* indicates BSR > 1.96.

Impact of Memory Reactivation on
Subsequent Recall

To the extent that memories were partially activated dur-
ing the MOT phase, we hypothesized that this would
have a negative impact on subsequent memory perfor-
mance. To assess this impact, participants were pre-
sented with a memory test at the end of the experiment
(Phase 6), which investigated memory for associations
that had been cued during Phase 5 under associative
cue (five MOT target) and associative cue (one MOT tar-
get) conditions and for associations that had not been
cued at all during Phase 5. On each trial of the memory
test, participants attempted to visualize the scene asso-
ciate of a cue presented without other distraction, then
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attempted to select the correct associate from a 4AFC dis-
play. Accuracy in the associative cue (five MOT target)
condition and accuracy in the associative cue (one MOT
target) condition were numerically lower than accuracy
for baseline cues (which were omitted from Phase 5
MOT reactivation), but these differences from baseline
were not significant: BSR = —1.47, p = ns, for the asso-
ciative cue (five MOT target) condition and BSR = —0.95,
b = ms, for the associative cue (one MOT target) condi-
tion. Likewise, no reliable difference in accuracy was
found between associative cue (five MOT target) and as-
sociative cue (one MOT target) trials, BSR = —0.29, p =
ns (Figure 4). Implicit measures of memory strength,
however, did appear to be impacted. Participants re-
sponded more quickly to associative cues left out from
the Phase 5 memory reactivation task than associative
cues that had been presented with five MOT targets,
BSR = 2.51, p < .05, or one MOT target, BSR = 2.62,
p < .01. However, there was no difference in RTs for as-
sociative cue (five MOT target) or associative cue (one
MOT target) trials, BSR = 0.38, p = ns. Classifier evidence
showed a similar pattern (Figure 4D): Reduced classifier
signal was observed in association with associative cue
(five MOT target) trials relative to ones left out from Phase
5 memory reactivation, BSR = —2.58, p < .01. No such
difference was found for associative cue (one MOT target)
trials, BSR = —1.47, p = ns, and there was also no signif-
icant difference in classifier output for associative cue
(five MOT target) and associative cue (one MOT target)
trials, BSR = —0.72, p = ns.

DISCUSSION

In the current study, we sought to establish a parametri-
cally scalable procedure for reactivating memories. Our
first contribution was to implement a procedure that, ac-
cording to both classifier evidence as well as participant
subjective reports, was successful both at partially reacti-
vating memories and modulating the particular amount
of partial reactivation that took place. As predicted, this
procedure led to evidence of memory weakening in a
postreactivation memory test, although for more defini-
tive tests of the nonmonotonic plasticity hypothesis, it
will be necessary to select parameters that broaden the
range of observed partial reactivation values. Our second
contribution was to train an “associative recall” classifier
able to distinguish cues with mnemonic associates from
familiar lures, while remaining insensitive to irrelevant
factors (such as MOT difficulty).

Parametrically Scalable Memory Reactivation

As we have argued, the experimental procedures used to
study memory weakening typically incorporate binary ma-
nipulations (e.g., retrieval practice and think/no-think par-
adigms). Across many studies, these manipulations have
been shown to lead to weakening (Murayama et al.,

2014); according to the nonmonotonic plasticity hypoth-
esis, this is because they induce intermediate levels of
memory reactivation (e.g., Lewis-Peacock & Norman,
2014; Newman & Norman, 2010). However, “partial mem-
ory reactivation” is not a discrete state; rather, memory
reactivation and its downstream effects fall on a continu-
ous dimension (e.g., Johnson, McDuff, Rugg, & Norman,
2009; see also Detre et al., 2013, for evidence and discus-
sion). Here, we have shown an MOT difficulty-based
manipulation to be effective at influencing memory reac-
tivation in a graded manner. In particular, altering the
number of target dots to be tracked in an MOT task while
participants concurrently performed mental visualization
allowed us to (1) reduce memory reactivation below
baseline levels on a behavioral index and (2) modulate
fMRI classifier evidence of memory reactivation.

In the current study, we chose to manipulate MOT dif-
ficulty by modulating the number of target dots that par-
ticipants needed to track during dot tracking. This had
the advantage that perceptual features were nearly iden-
tical across difficulty conditions, with the only difference
between “easy” and “hard” trials being the number of
dots painted as MOT targets before the onset of the trial.
A limitation of manipulating the number of MOT targets
is that it can only be manipulated in discrete steps (add-
ing or removing an MOT target)—in our experiment, one
MOT target still imposed sufficient processing load to in-
duce less-than-full memory reactivation. As such, future
work might benefit from other, more fine-grained ways
of manipulating difficulty. Notably, prior work has found
that it is principally the amount of time that tracked MOT
targets spend in proximity to lures that consumes execu-
tive resources (Franconeri, Jonathan, & Scimeca, 2010;
Franconeri, Lin, Enns, Pylyshyn, & Fisher, 2008). Changes
such as increasing dot speed, growing the size of dots rel-
ative to the area they can move on the screen, increasing
dot clustering behavior, or altering other parameters that
increase the frequency of dot collisions are therefore ex-
pected to have similar resource-depleting effects to our
own difficulty manipulation of increasing the number of
MOT targets. Accordingly, these parameters should have
similar effects on mental visualization if used in conjunc-
tion with a reactivation task. Modifying these parameters
to influence memory reactivation may be advantageous
in that they lie on a truly continuous distribution (unlike
manipulating the number of dots that are MOT targets)
and thus can be adjusted to induce a broader range of
task difficulty values.

It should be acknowledged that the multifaceted na-
ture of the task made it difficult to explain and perform,
but with coaching, practice, and calibration of dot veloc-
ity to the individual ability, participants were able to mas-
ter it. In particular, they showed high accuracy on the
MOT dot classification task, which requires vigilance
throughout the entire trial period, alongside stable visu-
alization reports during MOT trials. These reports
showed a slight upwards bias (i.e., more visualization
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over time). Together, these observations suggest that
participants remained engaged in and could adequately
perform both aspects of the task.

Effects of Partial Reactivation on Memory

Our study joins a growing number of experiments that
have illustrated a link between classifier evidence of par-
tial memory reactivation and weaker overall subsequent
memory (e.g., Lewis-Peacock & Norman, 2014; Poppenk
& Norman, 2014; Detre et al., 2013). Memory cues that
were exposed during MOT—whether participants were
under instructions to track five MOT targets or only
one MOT target—were shown, on average, to be partially
activated. Relative to other memory cues not presented
during that phase, memory for the partially activated
items was found to be weakened in a post-reactivation
memory test, as revealed by both slower RTs and lower
classifier output than in the pre-reactivation memory test.
Numerically, weakening (i.e., a reduction in memory
strength relative to the omit/not-reactivated condition)
was consistently greatest across our dependent measures
(accuracy, RT, and classifier output) for associative cue
(five MOT targets) trials, which was also the only condi-
tion to show significant classifier evidence of weakening.
However, none of these variables revealed significant dif-
ferences when associative cue (five MOT target) and as-
sociative cue (one MOT target) trials were compared
directly, and associative cue (one MOT target) trials did
show significantly slower RTs than omitted items. This
pattern likely reflects the fact that, during the MOT task,
participants’ subjective ratings indicated that reactivation
was less than “full” even for associative cue (one MOT
target) trials and that, although this partial reactivation
pushed items somewhat out of the reactivation range as-
sociated with weakening, some weakening nonetheless
took place. The pattern also limits the strength of the ar-
gument that can be made about the impact of partial re-
activation on forgetting, as when interpreted in isolation,
it leaves open the logical possibility that reactivation in
general causes weakening. This study can best be viewed
as a “proof of concept” that memory reactivation strength
can be parametrically manipulated using MOT, leading to
memory weakening. In future work, we will parametri-
cally vary reactivation across a wider range of values, with
the goal of fully reconstructing the U-shaped curve pre-
dicted by the nonmonotonic plasticity hypothesis.

Associative Recall Classifier

Training a classifier capable of measuring memory reacti-
vation in the context of our new procedure was challeng-
ing, as conventional, visual category-based classifiers
appeared to attribute the moving MOT dot fields as sim-
ilar to a particular visual category (“scenes”). We solved
this issue by using a procedure similar to that of Rissman
et al. (2010): training our classifier on the basis of mem-
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ory operations (associative recall using cue words vs. rec-
ognition of familiar lures) rather than the more typical
approach of using distinctive visual categories (e.g.,
Spiridon & Kanwisher, 2002). By supplying the classifier
with trials that varied in difficulty within the same condi-
tion, we ensured that training on difficulty-linked features
would yield low classifier accuracy and reduced the prob-
ability that classifier output would be sensitive to these
features. We found that, when MOT task difficulty was
held constant, this classifier was able to deliver above-
chance performance in the challenging cognitive
environment of dot tracking in an MOT task. The trained
classifier also met the important requirement of being in-
sensitive to task difficulty when memory cues were not
present. This pattern indicates that differences in clas-
sifier evidence evoked by associative cues with one versus
five MOT targets reflected different levels of memory
retrieval strength, rather than task difficulty per se.

Applications

We anticipate that there will be many uses for paradigms
like this one that provide greater control over levels of
memory reactivation. We wish to highlight two important
applications of interest to our own laboratories. First, as
noted earlier, experiments aimed at charting the “link
function” between memory reactivation and subsequent
memory strength (e.g., Detre et al., 2013) have relied on
naturally occurring variability in memory activation
strength. A shortcoming of this approach is that mapping
out the full U-shaped curves requires observations at a
wide range of recall strength levels and there is no guar-
antee that enough observations will be obtained at these
levels (especially at the high and low extremes). By ex-
posing participants to a range of MOT difficulty parame-
ters that yield lower and higher memory reactivation, it
may be possible (in future work) to use the paradigm de-
scribed here to populate the tails and therefore sample
from a more uniform memory reactivation distribution.
Along these lines, another important affordance of a
parametrically scalable reactivation protocol is the possi-
bility of adapting it toward closed-loop experimentation,
adjusting difficulty as each trial unfolds in an attempt to
generate memory reactivation at particular levels. A clas-
sifier in an fMRI environment configured to deliver a live
readout (e.g., deBettencourt, Cohen, Lee, Norman, &
Turk-Browne, 2015) could, in the context of the current
procedure, provide information about the amount of
memory reactivation triggered by the current memory
cue at the current level of MOT difficulty, accounting
for variation injected by fluctuations in the association’s
strength and the participant’s attention. This information,
in turn, could be used to modulate difficulty levels such
that memory reactivation could be readjusted toward a
goal level. This introduces the possibility of a causal test
of the nonmonotonic plasticity hypothesis: Experi-
menters could induce partial memory reactivation at
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specific sections of the nonmonotonic plasticity curve,
probing for predicted impacts on subsequent memory.
Eventually, therapeutically applied versions of closed-
loop procedures could be used to steer all memories into
the portion of the nonmonotonic plasticity curve most
associated with weakening, with the goal of attenuating
the traumatic associates of powerful memory cues. Most
phases of our design could be eliminated this context,
because patients would not need to learn new associa-
tions—presumably, the traumatic associations would pre-
cede therapy. Only MOT difficulty calibration (Phase 1),
localizer training (Phase 3), and memory reactivation
(Phase 5) would be required. As these steps could easily
be completed in two short sessions, we believe our tech-
nique to be viable as a prospective therapeutic approach.

Conclusions

In summary, we have illustrated a “proof of concept” ap-
plication of an MOT-based procedure for parametrically
modulating memory reactivation. Behavioral and classifi-
er measures of reactivation both confirmed that modulat-
ing MOT difficulty influenced the degree of memory
reactivation. In turn, this partial memory reactivation ap-
peared to lead to subsequent memory weakening. This
procedure is intended to make possible new, focused in-
vestigations into human learning that exert greater exper-
imental control over memory reactivation to conduct, for
example, causal tests of the nonmonotonic plasticity hy-
pothesis. Our procedure also may pave the way for
closed-loop clinical procedures that are based on princi-
ples of partial memory reactivation.
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