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Abstract: Correlators of local operators inserted on a straight or circular Wilson loop

in a conformal gauge theory have the structure of a one-dimensional “defect” CFT. As

was shown in arXiv:1706.00756, in the case of supersymmetric Wilson-Maldacena loop

in N = 4 SYM one can compute the leading strong-coupling contributions to 4-point

correlators of the simplest “protected” operators by starting with the AdS5 × S5 string

action expanded near the AdS2 minimal surface and evaluating the corresponding tree-

level AdS2 Witten diagrams. Here we perform the analogous computations in the non-

supersymmetric case of the standard Wilson loop with no coupling to the scalars. The

corresponding non-supersymmetric “defect” CFT1 should have an unbroken SO(6) global

symmetry. The elementary bosonic operators (6 SYM scalars and 3 components of the SYM

field strength) are dual respectively to the S5 embedding coordinates and AdS5 coordinates

transverse to the minimal surface ending on the line at the boundary. The SO(6) symmetry

is preserved on the string side provided the 5-sphere coordinates satisfy Neumann boundary

conditions (as opposed to Dirichlet in the supersymmetric case); this implies that one

should integrate over the S5 expansion point. The massless S5 fluctuations then have

logarithmic propagator, corresponding to the boundary scalar operator having dimension

∆ = 5√
λ

+ . . . at strong coupling. The resulting functions of 1d cross-ratio appearing in the

4-point functions turn out to have a more complicated structure than in the supersymmetric
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case, involving polylog (Li3 and Li2) functions. We also discuss consistency with the

operator product expansion which allows extracting the leading strong coupling corrections

to the anomalous dimensions of the operators appearing in the intermediate channels.
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1 Introduction

Wilson loops are important observables in gauge theories. In addition to the standard

Wilson loop (WL), in the N = 4 super Yang-Mills theory one can define also a special

Wilson-Maldacena loop (WML) which is locally-supersymmetric due to an extra coupling

to SYM scalars. In the case of a straight line or circular loop that we shall consider below,

the WML is also globally supersymmetric (BPS).

Both WL and WML are natural objects to study [1, 2]. For smooth contours their

expectation values do not have logarithmic divergences and thus are consistent with con-

formal covariance. For straight line or circular contour they preserve a SL(2, R) subgroup

of the 4d conformal group, and hence they may be viewed as examples of one-dimensional

conformal defects of the 4d gauge theory. In fact, the WL and WML may be interpreted

respectively as the UV and IR fixed points of a 1d RG flow of the scalar coupling constant

in the Wilson line exponent [2] (see also [3]). In the large N limit, their expectation values

in the strong coupling (λ� 1) expansion are given by the AdS5 × S5 string path integral

over the world surfaces ending on an infinite line (or circle) at the boundary of AdS5 and

with the S5 scalars subject to the Dirichlet (in the WML case) or the Neumann (in the

WL case) boundary conditions [1, 2].

In addition to the WL expectation value it is interesting also to study correlation

functions of local operators inserted along the loop (see, e.g., [1, 4–8]).1 These correlators

are constrained by the SL(2,R) 1d conformal symmetry, and define an effective defect 1d

CFT [5, 6, 9].2 In the supersymmetric WML case this CFT1 was studied in [9, 11] (see

also [12–23] for some recent discussions of the 1d defect CFT approach to Wilson loop

computations in N = 4 SYM). In [11] it was shown how to compute some correlation func-

tions on the supersymmetric WML at strong coupling using string theory, i.e. AdS/CFT.

Our aim below will be to perform analogous computations in the case of the standard WL

which should correspond to a different, non-supersymmetric defect CFT.

Let us first review the supersymmetric WML case, i.e. W = TrPe
∫
dt(iẋµAµ+|ẋ|θAΦA),

where ΦA are the SYM scalars (A = 1, . . . , 6). For an infinite straight line (or circle)

and θA being a constant vector this operator preserves 16 of the 32 supercharges of the

N = 4 superconformal group PSU(2, 2|4). Choosing the defining line as the Euclidean time

x0 = t ∈ (−∞,∞) and θA pointing in the 6-th direction we get W = TrPe
∫
dt(iAt+Φ6).

The correlators of the gauge-theory operators O(x) inserted along the line (we suppress

exponential factors appearing between the operators)

⟪O(t1) · · · O(tn)⟫ ≡ 〈TrP
[
O(x(t1)) · · ·O(x(tn)) e

∫
dt(iAt+Φ6)

]
〉 (1.1)

can be interpreted as correlators of the corresponding conformal operators O(t) in an

effective defect CFT1. We shall use the notation ⟪· · ·⟫ for correlators of operators inserted

1The operator insertions are equivalent to deformations of the Wilson line [5, 9], so that the knowledge

of all of the correlators should, in principle, allow one to compute the expectation value of a general Wilson

loop which is a deformation of a line or circle.
2More generally, the data of a defect CFT include additional observables, such as “bulk-defect” correla-

tors, that describe the coupling between operators on the defect and “bulk” operators inserted away from

the defect. See e.g. [10].
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on the Wilson line. We shall sometimes not distinguish between O(x(t)) and O(t) like in

eq. (1.2) below.

This CFT has d = 1, N = 8 superconformal symmetry OSp(4∗|4) ⊂ PSU(2, 2|4)

which contains: (i) SO(5) subgroup of the SO(6) rotating 5 scalars Φa (a = 1, . . . , 5)

not coupled directly to the loop; (ii) SO(3)× SO(2, 1) subgroup of the 4d conformal group

SO(2, 4) (SO(3) rotations around the line and dilatations, translation and special conformal

transformation along the line); (iii) 16 supercharges preserved by the WML. The operators

O on the line belong to representations of OSp(4∗|4) (i.e. are labelled by the 1d scaling

dimension ∆ and representation of “internal” SO(3) × SO(5)). The simplest multiplet

contains 8+8 operators corresponding to a short representation of OSp(4∗|4) with protected

dimensions; the bosonic ones are the 5 scalars Φa (with ∆ = 1) and the 3 “displacement”

operators in the directions (i = 1, 2, 3) transverse to the line Fti ≡ iFti+DiΦ6 (with ∆ = 2).

Their 2-point functions in the planar SYM theory then have the exact form

⟪Φa(t1)Φb(t2)⟫ = δab
CΦ

(t12)2
, (1.2)

where CΦ(λ) = 2B(λ) = λ
8π2 − λ2

192π2 + . . . is twice the Bremsstrahlung function B(λ) =
√
λ I2(

√
λ)

4π2 I1(
√
λ)

[7, 8]. Similarly, one finds ⟪Fti(t1)Fti(t2)⟫ = δij
CF(λ)
(t12)4 , where CF = 12B(λ).

The three-point functions of these elementary operators O = (Φa,Fti) vanish by the

SO(3) × SO(5) symmetry while their four-point correlators are non-trivial functions of

the 1d conformal cross-ratio χ and the ’t Hooft coupling. For example, for 4 operators of

the same dimension

⟪O∆(t1)O∆(t2)O∆(t3)O∆(t4)⟫ =
1

(t12 t34)2∆
G(χ;λ) , χ =

t12 t34

t13 t24
. (1.3)

Ref. [11] computed these correlators at strong coupling using the dual string theory in

AdS5 × S5. At large string tension T =
√
λ

2π the minimal surface corresponding to the 1
2

BPS Wilson line is represented by AdS2 space embedded into AdS5 and fixed at a point in

the S5. The 1d conformal group SO(2, 1) is then the isometry of AdS2, i.e. one gets a novel

example of the AdS2/CFT1 duality. This CFT1, which is “induced” from the 4d CFT on

the 1d defect, is not expected to have a description based on a local 1d Lagrangian (for

example, representing the Wilson loop path ordered exponential in terms of a 1d auxiliary

fermionic path integral [24–29] and integrating out the 4d fields would lead to a non-local

1d fermion action).

The AdS2 multiplet of string fluctuations transverse to the string surface includes [30]:

(i) 5 massless scalars ya (S5 fluctuations near the fixed vacuum point); (ii) 3 massive

(m2 = 2) scalars xi (AdS5 fluctuations), and (iii) 8 fermions with m2 = 1. These

AdS2 fields are then naturally identified with the 8+8 basic CFT1 operators [6, 31, 32].

The standard relation ∆(∆ − d) = m2 between the AdSd+1 scalar mass and the corre-

sponding CFTd operator dimension implies that the massless ya fields should be dual to

the scalars Φa with ∆ = 1 inserted on the line and subject to the standard (Dirichlet)

boundary conditions, while the AdS5 fluctuations xi with m2 = 2 should be dual to Fti
with ∆ = 2.

– 2 –
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As was explained in [11], using the quartic vertices between the ya and xi fields ap-

pearing in the expansion of the string action around the AdS2 minimal surface one is able

to compute the corresponding tree-level Witten diagrams in AdS2 and extract the strong

coupling predictions for the four-point functions of the protected operators on the WML

⟪O(t1) · · · O(tn)⟫ = 〈X(t1) · · ·X(tn)〉
AdS2

. (1.4)

Here 〈· · · 〉
AdS2

is the expectation value in the 2d world-sheet theory with the bulk-to-

boundary propagators attached to the points t1, · · · , tn at the boundary, X ∼ ya corre-

sponds to O ∼ Φa and X ∼ xi corresponds to O ∼ Fit. The expansion parameter for the

AdS2 Witten diagrams is the inverse string tension T−1 = 2π√
λ

.3

Applying the OPE to (1.3) one can extract the leading corrections to the scaling

dimensions of the “two-particle” operators built out of products of two of the protected

insertions (ya∂
n
t ya, etc.). In particular, for the lowest-dimension unprotected operator yaya

at strong coupling one finds [3, 11]

∆ = 2− 5√
λ

+O
(

1

(
√
λ)2

)
. (1.5)

The yaya operator may be identified with Φ6 for which at weak coupling one finds [1]

⟪Φ6(t1)Φ6(t2)⟫ =
CΦ6

(t12)2∆
, CΦ6 =

λ

8π2
+ · · · , ∆ = 1 +

λ

4π2
+ · · · , (1.6)

so that (1.5) is consistent with a smooth growth of ∆ from weak to strong coupling.

Let us now turn to our present case of interest — correlators on the standard (non-

supersymmetric) Wilson line. Since here W = TrPei
∫
dt ẋµAµ has no coupling to scalars,

the full SO(6) global symmetry should be preserved, i.e. the correlators of operators inserted

on the line should correspond to a non-supersymmetric CFT1 with the SO(2, 1) conformal

and SO(3)× SO(6) “internal” symmetry. Since there is no supersymmetry, the dimension

of the scalars will no longer be protected. In particular, instead of (1.2) (and (1.6)) we

should get

⟪ΦA(t1)ΦB(t2)⟫ = δAB
C ′Φ

(t12)2∆
, C ′Φ =

λ

8π2
+ · · · , ∆ = 1− λ

8π2
+ · · · . (1.7)

The leading weak-coupling term in C ′Φ is the same as in (1.2) or (1.6), as it is determined

just by the normalization of the free scalar propagator. In general, however, the 2-point

function normalization factor like C ′Φ is scheme dependent and hence arbitrary, since the

3As the 2d theory defined by the fundamental superstring action is to be UV finite, the duality with the

boundary 1d CFT should hold for any value of λ, including world-sheet loop corrections.

– 3 –
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operator gets renormalized and has non-trivial scaling dimension.4 The leading correction

to ∆ in (1.7) was computed in [1].5

Our aim will be to explore these CFT1 correlators at strong coupling using similar

AdS2/CFT1 set-up as in [11]. The minimal surface in AdS5 corresponding to the straight-

line WL at the boundary has the same AdS2 geometry and thus the spectrum of string

fluctuations will again contain 5 massless S5 scalars ya, 3 AdS5 scalars xi with m2 = 2 and

8 fermions with m2 = 1. The boundary conditions for the scalar xi do not change, and this

should be dual to the usual field strength operator Fti. The latter, being the displacement

operator in the defect CFT1, should have protected dimension, i.e. ∆F = 2 for all λ.

In the supersymmetric WML case, where the expansion is around a particular point

in S5, one may use an explicit parametrization of S5 like (YAYA = 1)

Ya =
ya

1 + 1
4y

2
, Y6 =

√
1− YaYa =

1− 1
4y

2

1 + 1
4y

2
, ds2

S5 = dYAdYA =
dyadya(

1 + 1
4y

2
)2 . (1.8)

Then the expansion in 1√
λ

is equivalent to expansion in powers of ya subject to Dirichlet

b.c. and one is left with SO(5) as manifest symmetry of their correlators [11].6

The key difference with the supersymmetric WML case is that now the S5 scalars

should be subject to the Neumann (or “alternative” [34]) boundary conditions which break

supersymmetry [1–3]. This leads, in particular, to an additional integration over a point

in S5 restoring the full SO(6) symmetry in the corresponding correlators.7 We will assume

that the counterparts of the SYM scalars ΦA on the string side should be the S5 embedding

coordinates YA (YAYA = 1) on which SO(6) acts linearly. For a massless AdS2 scalar one

has ∆(∆− 1) = 0 which gives ∆ = 0 for the Neumann (N) boundary conditions. The first

non-vanishing strong-coupling correction to ∆ in this case was argued to be [1]

∆ =
5√
λ

+O
(

1

(
√
λ)2

)
. (1.9)

4The reason why the normalization constant CΦ in (1.2) in the supersymmetric WML case is meaningful

is that Φa has protected dimension and is in the same multiplet as the displacement operator Fti =

iFti +DiΦ6; this has a natural normalization due to its relation to translations in the directions orthogonal

to the defect. Hence the normalization constant in its 2-point function defines a meaningful observable,

somewhat analogous to the “central charge” coefficient CT in the correlator of two stress tensors. In the

non-supersymmetric WL case the displacement operator dual to xi will be simply proportional to the field

strength component Fti = iFti [8] and the coefficient in the corresponding 2-point function (5.1) will also be

a meaningful function of λ. However, the scalar operator normalization C′Φ = CY will be scheme-dependent

and we shall fix it in a particular way (see (4.3)).
5Recently, it was rederived as a consequence of integrability of a certain SO(6) invariant spin chain [16].

This provides a weak-coupling indication that correlators on the standard WL may be described by an

integrable theory. Since the AdS5 × S5 superstring action is an integrable 2d theory, the approach of [11]

suggests that the same may be expected also at strong coupling (both in the supersymmetric and non-

supersymmetric cases).
6Let us note also that in the present case of UV finite AdS5×S5 superstring model there will be no

automatic restoration of SO(6) symmetry (either in flat 2d space or AdS2, cf. [33]).
7The contribution of the S5 zero modes implies also that in contrast to the large λ asymptotics 〈W 〉 ∼

(
√
λ)−3/2e

√
λ of the WML [35], for the standard WL one gets 〈W 〉 ∼

√
λ e
√
λ [3]. Let us note also that

integration over sphere 0-modes is important also in the context of ratio of BPS Wilson loops in [36].

– 4 –
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The same result was found also in [3], following [2].8 We will reproduce (1.9) di-

rectly by computing the 2-point function (1.7) interpreted as the scalar correlator

〈YA(t1)YB(t2)〉
AdS2

below.

In the case of Neumann boundary conditions on ya in (1.8) one is to integrate over

their zero mode or position of the expansion point on S5. This is equivalent to integrating

over the embedding coordinates YA without breaking SO(6). Then we should have the

following analog of (1.4), (1.7)

⟪ΦA1(t1) · · ·ΦAn(tn)⟫ = 〈YA1(t1) · · ·YAn(tn)〉
AdS2

. (1.10)

The computation of (1.10) can be implemented in a manifestly SO(6) covariant way by

setting YA = nA + ζA(σ) + . . . (nAζA = 0) and integrating over the fluctuations ζA and

the constant direction nA. In practice, it is sufficient to consider the SO(6) singlets like

〈YA(t1)YA(t2)YB(t3)YB(t4)〉 which will not depend on the position of the expansion point

nA and thus averaging over nA will not be required. Such SO(6) singlets will also be IR

finite in the quantum theory [37–39].

The rest of the paper is organized as follows. In section 2 we shall first review the

computation of 4-point correlators on the supersymmetric Wilson line at strong coupling,

following [11]. The starting point is the bosonic part of the AdS5×S5 string action expanded

near the AdS2 minimal surface that defines the corresponding quartic vertices between the

xi and ya fields. After summarizing some general relations for 4-point functions in CFT1

we will present the expressions for the leading-order strong-coupling terms in the G(χ)

functions in the scalar 4-point correlators in (2.34) and (2.38). In section 2.4 we make

some comments on the analytic continuation to the out of time order correlators relevant

for chaos [40], which appear to display a maximal Lyapunov exponent.

In section 3 we will turn to the non-supersymmetric Wilson line case and describe

the general SO(6) invariant computational scheme, based on using the Neumann propa-

gator for the fluctuations of the Y A fields and averaging over the S5 expansion point nA.

In section 4 we shall use it to compute the 2-point function (1.7) at strong coupling or

〈YA(t1)YB(t2)〉 for SO(6) scalars in AdS2 (see (4.1), (4.2)). We shall reproduce the leading

term in the dimension ∆ in (1.9) and also demonstrate (in section 4.2) that the subleading
1

(
√
λ)2

log2 corrections “exponentiate”, i.e. have the right coefficient to be consistent with

the 1d conformally invariant form of the 2-point function in (4.1). The subleading 1
(
√
λ)2

log

correction in (4.1) corresponding next to leading coefficient d2 in ∆ = 5√
λ

+ d2

(
√
λ)2

+ . . .

should receive contributions from the fermionic 1-loop graphs (cf. figure 3) and we will not

attempt to compute it here.

In section 5 we will compute the mixed correlator ⟪F i
t (t1)F i

t (t2)ΦA(t3)ΦB(t4)⟫
at strong coupling or the leading contribution to the G(χ) function in

〈xi(t1)xj(t2)YA(t3)YB(t4)〉 in (5.2) coming from the diagrams in figures 6 and 7.

8As Y6 = 1− 1
2
yaya + · · · (see (1.8)) at strong coupling Φ6 may be identified with yaya and thus should

have the dimension 2− 5√
λ

+. . . as in (1.5). Since in the WL case all 6 scalars have the same dimension, (1.5)

and (1.9) are then consistent [3] with the fact that the dimensions of scalars with the standard (D) and

alternative (N) boundary conditions in AdS2 should sum up to 2.

– 5 –
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The resulting connected contribution to G is given by (5.16), (5.18) and happens to be

simply proportional to the expression in the supersymmetric case in (2.37), (2.38). The

reason for this relation is explained in section 6.2.

Section 6 is devoted to the computation of the Y -scalar 4-point function (6.1), (6.2).

We shall first determine the leading order 1
(
√
λ)2

contribution to the singlet function

GS(χ) (6.10), (6.11) coming from tree-level graphs in figure 8 and graphs with 1-loop prop-

agator corrections like in figure 9. The corresponding functions in the traceless symmetric

GT and antisymmetric GA parts of the correlator are given in (6.12), (6.13). We shall then

turn to the order 1
(
√
λ)3

contribution coming from the tree-level graph with contact bulk

vertex in figure 11.

In section 6.2 we will explain how one can by-pass the complication of directly comput-

ing the AdS2 bulk integrals of the products of four logarithmic Neumann propagators by

first differentiating the correlator over the boundary points, then relating it to correlators

in the theory with standard Dirichlet propagators and finally integrating back. In addition

to the contact diagram contribution there is also the order 1
(
√
λ)3

contribution coming from

“reducible” tree diagrams in figure 12 and similar diagrams with 1-loop “dressed” propaga-

tors which are computed in appendix G (see (G.11), (G.17)). It is only the sum of all 1
(
√
λ)3

corrections that is conformally invariant with the resulting singlet function given in (6.59).

Similar expressions are found for GT and GA functions. Compared to the supersymmetric

case expressions in (2.34) they are more complicated containing polylog (Li3 and Li2) func-

tions of χ. In section 5 and section 6.4 we also comment on the consistency of the results

for the G-functions with the OPE in (2.11) extracting the leading-order strong-coupling

corrections to the dimensions of composite operators appearing in the intermediate chan-

nels (cf. appendix B). We also include several other appendices reviewing some general

relations and discussing technical points.

There are a number of interesting directions to explore in the future. One is how

the classical integrability of the AdS5 × S5 string theory is reflected in the correlation

functions like (1.10). Some connection to integrability is expected since, on the one hand,

the knowledge of tree-level correlators is related to the value of string action on world

sheets ending on more general wavy contours, while, on the other hand, the classical

string integrability allows one to find more general Wilson-line type solutions (cf., e.g., [41]

and [42]). It would be important to identify more direct correspondence at the level of

particular correlators (and the associated AdS2 Witten diagrams) possibly analogous to

constraints on flat-space S-matrix in integrable 2d models. Another is an extension of

the computations in [11] and the present paper to AdS2 world-sheet loop level including

also the Green-Schwarz fermions. Finally, it would be interesting to establish a connection

between the strong-coupling results for the correlators found in this paper and general

results obtained in the framework of 1d bootstrap (generalizing the analysis of [17] in the

supersymmetric case).

2 Correlators on supersymmetric Wilson line at strong coupling

Before turning to the non-supersymmetric WL case let us start with a review of the com-

putation of 4-point correlators on the supersymmetric Wilson line at strong coupling fol-

lowing [11].

– 6 –
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2.1 AdS5 × S5 string action in static gauge as AdS2 bulk theory action

The bosonic part of the superstring action on AdS5 × S5 may be written as

SB =
1

2
T

∫
d2σ
√
hhµν

[
1

z2
(∂µx

0∂νx
0 + ∂µx

i∂νx
i + ∂µz ∂νz) +

∂µy
a∂νy

a

(1 + 1
4y

2)2

]
,

T =

√
λ

2π
,

(2.1)

where σµ = (t, s) are Euclidean world-sheet coordinates, r = (0, i) = (0, 1, 2, 3) label 4-

boundary coordinates and a = 1, . . . , 5 — the S5 coordinates. The minimal surface ending

on the straight line x0 = t at the boundary is

z = s, x0 = t, xi = 0, ya = 0, (2.2)

with the induced metric being the AdS2 metric

gµνdσ
µdσν =

1

s2
(dt2 + ds2) , gµν =

1

s2
δµν . (2.3)

The embedding of AdS2 into AdS5 can be made explicit using the coordinates (here x2 =

xixi, i = 1, 2, 3)

ds2
AdS5

=
(1 + 1

4x
2)2

(1− 1
4x

2)2
ds2

2 +
dxidxi

(1− 1
4x

2)2
, ds2

2 =
1

z2
(dx2

0 + dz2). (2.4)

Then perturbation theory near the above minimal surface can be described by the string

action in the Nambu form taken in the static gauge z = s, x0 = t

SB = T

∫
d2σ

√√√√det

[
(1 + 1

4x
2)2

(1− 1
4x

2)2
gµν(σ) +

∂µxi∂νxi

(1− 1
4x

2)2
+

∂µya∂νya

(1 + 1
4y

2)2

]

= T

∫
d2σ
√
g LB ,

(2.5)

where gµν is the background AdS2 metric (2.3). This action representing a straight fun-

damental string in AdS5 × S5 stretched along z may be interpreted as a 2d field theory

of 3+5 scalars (xi, ya) propagating in AdS2 geometry. It has manifest (linearly-realised)

symmetry SO(2, 1)× SO(3)× SO(5).

Expanding (2.5) in powers of xi and ya we get an interacting theory for 3 massive

(m2 = 2) scalars xi and 5 massless scalars ya propagating in AdS2 described by LB =

L2 + L4x + L2x,2y + L4y + · · · :

L2 =
1

2
gµν∂µx

i∂νx
i+xixi+

1

2
gµν∂µy

a∂νy
a , (2.6)

L4x =
1

8
(gµν∂µx

i∂νx
i)2− 1

4
(gµν∂µx

i∂νx
j) (gρκ∂ρx

i∂κx
j)

+
1

4
xixi(gµν∂µx

j∂νx
j)+

1

2
xixixjxj , (2.7)
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L2x,2y =
1

4
(gµν∂µx

i∂νx
i)(gρκ∂ρy

a∂κy
a)− 1

2
(gµν∂µx

i∂νy
a) (gρκ∂ρx

i∂κy
a) , (2.8)

L4y =−1

4
(ybyb)(gµν∂µy

a∂νy
a)+

1

8
(gµν∂µy

a∂νy
a)2− 1

4
(gµν∂µy

a∂νy
b) (gρκ∂ρy

a∂κy
b) .

(2.9)

Assuming that both scalars are subject to the standard (Dirichlet) boundary conditions at

z = s = 0 and applying the standard AdS/CFT relation (∆(∆ − 1) = m2) we conclude

that xi and ya should be dual, respectively, to the ∆ = 2 and ∆ = 1 operators at the 1d

boundary x0 = t. There are also 8 fermionic fields transforming in the (2,4) representation

of SU(2)× Sp(4) ' SO(3)× SO(5).

Starting with the 2d bulk theory (2.5) and computing Witten diagrams with bulk-to-

boundary propagators attached to the points {tn} on the boundary will give us correlators

in the boundary CFT1 and thus the strong-coupling expansion of the SYM correlators of

the corresponding gauge-theory operators (xi ↔ Fti, ya ↔ Φa) inserted along the WML

(see (1.1), (1.4)). As the Lagrangian LB has no cubic terms, the first non-trivial contribu-

tion to the simplest 4-point correlation functions of xi and ya is given just by the contact

4-point vertices in (2.7)–(2.9).

2.2 Conformal invariance and crossing constraints on 4-point functions in

CFT1

The 4-point function of primary operators O with the same dimension ∆ is constrained by

the SO(2, 1) conformal invariance to take the form

⟪O∆(t1)O∆(t2)O∆(t3)O∆(t4)⟫ =
1

(t12 t34)2∆
G(χ), χ =

t12 t34

t13 t24
. (2.10)

The function G(χ) in (2.10) admits the OPE (see, e.g., [43])

G(χ) =
∑
h

c∆,∆;h χ
h Fh(χ) , Fh ≡ 2F1(h, h, 2h, χ), (2.11)

associated with the s-channel exchange of fields with conformal dimension h. The OPE

coefficients in (2.11) may be expressed in terms of the coefficients in the 2-point and 3-

point functions as c∆,∆;h =
(C∆,∆,h)2

(C∆,∆)2(Ch,h)2 . For the 4-point function with two pairwise equal

dimensions, one has

⟪O∆1(t1)O∆2(t2)O∆1(t3)O∆2(t4)⟫ =
1

(t12t34)∆1+∆2

∣∣∣∣ t24

t13

∣∣∣∣∆12

G(χ), (2.12)

G(χ) =
∑
h

c∆1,∆2;h χ
h

2F1(h+ ∆12, h−∆12, 2h, χ), ∆12 = ∆1 −∆2, (2.13)

The expressions for the G(χ) functions in (2.10), (2.12) in the case of the (generalized) free

field theory are summarized in appendix A.

Together with the conformal invariance, we should also take into account the crossing

invariance of the 4-point function. Having in mind applications to the cases of SO(5) or

SO(6) invariant scalar correlators in defect CFT1’s associated with the WML or WL, let
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us discuss crossing for the general SO(N) flavour symmetry. Let us consider a primary

operator OA with dimension ∆ and vector index A = 1, . . . , N of SO(N). Then the analog

of the correlator (2.10) will be

⟪OA(t1)OB(t2)OC(t3)OD(t4)⟫ =
[C∆(λ)]2

t2∆
12 t

2∆
34

GABCD(χ) . (2.14)

where we separated the factor related to the normalization factor C∆ in the 2-point func-

tion. GABCD can be decomposed into singlet, symmetric traceless tensor and antisymmetric

tensor parts as

GABCD = GS(χ) δABδCD +GT (χ)
[
δACδBD + δBCδAD − 2

N
δABδCD

]
+GA(χ)

[
δACδBD − δBCδAD

]
, (2.15)

so that

GAABB = N2GS , GABAB = N GS + (N + 2)(N − 1)GT +N(N − 1)GA,

GABBA = N GS + (N + 2)(N − 1)GT −N(N − 1)GA . (2.16)

Thus GS , GT , GA can be found as combinations of invariant contractions

GS =
1

N2
GAABB , GT =

1

2 (N + 2)(N − 1)

[
GABAB +GABBA − 2

N
GAABB

]
, (2.17)

GA =
1

2N(N − 1)

[
GABAB −GABBA

]
. (2.18)

Crossing transformations are generated by the leg exchanges 3 ↔ 4 and 1 ↔ 3 in (2.14)

which, in addition to exchanging the corresponding flavour indices, amount to t3 ↔ t4 and

t1 ↔ t3 or, equivalently,

χ
3↔4→ χ

χ− 1
, χ

1↔3→ 1− χ. (2.19)

From (2.17) one finds that under 3↔ 4

GS (χ) = GS

(
χ

χ− 1

)
, GT (χ) = GT

(
χ

χ− 1

)
, GA (χ) = −GA

(
χ

χ− 1

)
. (2.20)

The 1 ↔ 3 exchange leaves invariant GABAB and swaps GAABB ↔ GABBA. Taking into

account the transformation of the prefactor 1
t2∆
12 t2∆

34
in (2.14), this gives

GAABB (χ) =

(
χ

χ− 1

)2∆

GABBA (1− χ) , GABAB (χ) =

(
χ

χ− 1

)2∆

GABAB(1− χ).

(2.21)

Using (2.20) and (2.21) we observe that instead of three functions in (2.15) we have only

one independent, i.e. we can express the GT and GA in terms of GS . Explicitly, we have

GABAB (χ) = χ2∆GAABB
(

1

1− χ

)
, GABBA (χ) =

(
χ

χ− 1

)2∆

GAABB (1− χ) ,

(2.22)
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Figure 1. Leading order disconnected contribution G(0) with other similar diagrams obtained

by crossing.

and therefore

GT (χ) = − N

(N + 2)(N − 1)
GS(χ)

+
N2

2 (N + 2) (N − 1)

[
χ2∆GS

(
1

1− χ

)
+

(
χ

χ− 1

)2∆

GS(1− χ)

]
, (2.23)

GA (χ) =
N

2 (N − 1)

[
χ2∆GS

(
1

1− χ

)
−
(

χ

χ− 1

)2∆

GS (1− χ)

]
. (2.24)

2.3 Strong-coupling expansion of the SO(5) scalar 4-point function

Let us now review the result of [11] for the tree-level 4-point correlator of the S5 fluctuations

ya dual to the 5 SYM scalars Φa, a = 1, . . . , 5 not coupled to the Wilson-Maldacena loop

in (1.1). Since the dimensions of the operators Φa are protected by supersymmetry, we

should have9

⟪Φa(t1)Φb(t2)⟫ = 〈ya(t1)yb(t2)〉 = δab
CΦ

(t12)2
, (2.25)

⟪Φa(t1)Φb(t2)Φc(t3)Φd(t4)⟫ = 〈ya(t1)yb(t2)yc(t3)yd(t4)〉 =
C2

Φ

(t12 t34)2
Gabcd(χ). (2.26)

With the normalization coefficient [CΦ(λ)]2 extracted we will have Ga1a2a3a4(χ) =

δa1a2δa3a4 + O(χ). The tensor Ga1a2a3a4 can be split into the S, T,A parts according

to (2.15) with N = 5. Expanding at strong coupling (i.e. small 1√
λ

) we will have

Gc(λ) = G(0)
c +

1√
λ
G(1)
c + . . . , c = S, T,A . (2.27)

The leading order contributions G(0) comes from with disconnected diagrams like in figure 1.

Here and below for simplicity we draw the 1d boundary as a circle rather than a line. It is

thus given by the free-field contribution (cf. (A.2))

⟪Φa(t1)Φb(t2)Φc(t3) . . .Φd(t4)⟫disc. = C2
Φ

[
δabδcd

t212t
2
34

+
δacδad

t213t
2
24

+
δadδbc

t214t
2
23

]
(2.28)

=
C2

Φ

(t12t34)2

[
δabδcd + χ2δacδbd +

χ2

(1− χ)2
δadδbc

]
.

9In what follows we shall for simplicity omit the label AdS2 in the corresponding correlators, i.e.

〈ya(t1)yb(t2)〉AdS2 ≡ 〈ya(t1)yb(t2)〉, etc.
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Figure 2. Contact diagram contributing to first subleading strong-coupling correction G(1).

Comparing with (2.15) gives

G
(0)
S (χ) = 1+

2

5
G

(0)
T (χ) , G

(0)
T (χ) =

1

2

[
χ2+

χ2

(1−χ)2

]
, G

(0)
A (χ) =

1

2

[
χ2− χ2

(1−χ)2

]
.

(2.29)

The first subleading correction comes from the contact diagram in figure 2 where the

4-point vertex comes from (2.9). The bulk-to-boundary propagator corresponding to a

massive scalar in AdSd+1 is (∆(∆− d) = m2)

K∆

(
z, x;x′

)
= C∆ K∆

(
z, x;x′

)
, K∆

(
z, x;x′

)
≡
[

z

z2 + (x− x′)2

]∆

, (2.30)

⟪O∆ (x)O∆

(
x′
)⟫ =

C∆

|x− x′|2∆
, C∆ =

Γ (∆)

2πd/2 Γ
(
∆ + 1− d

2

) , (2.31)

where we have assumed a particular normalization of the 2-point function of the associated

boundary field.10 For d = 1 and ∆ = 1 this gives

d = 1, ∆ = 1 : K1(z, t; t′) =
1

π
K1 , K1 =

z

z2 + (t− t′)2
, C1 =

1

π
. (2.32)

The contribution of the connected diagram corresponding to the vertex in (2.9) is then

⟪Φa(t1)Φb(t2)Φc(t3)Φd(t4)⟫conn = 〈ya(t1)yb(t2)yc(t3)yd(t4)〉conn

=
(C1)2

(t12 t34)2

1√
λ

(G(1))abcd , (2.33)

where the corresponding functions in (2.15) are then

G
(1)
S (χ) = −2

χ4 − 4χ3 + 9χ2 − 10χ+ 5

5(χ− 1)2
+

(2χ4 − 11χ3 + 21χ2 − 20χ+ 10)χ2

5(χ− 1)3
logχ

− (2χ4 − 5χ3 − 5χ+ 10)

5χ
log(1− χ),

G
(1)
T (χ) = −(2χ2 − 3χ+ 3)χ2

2(χ − 1)2
+

(χ2 − 3χ+ 3)χ4

(χ− 1)3
logχ− χ3 log(1− χ), (2.34)

G
(1)
A (χ) = −(χ− 2)(2χ2 − χ+ 1)χ

2(χ − 1)2
+

(χ− 2)(χ2 − 2χ+ 2)χ3

(χ− 1)3
logχ

− (χ3 − χ2 − 1) log(1− χ) .

10Explicitly, in this normalization CΦ(λ) = C1(1 − 3

2
√
λ

+ . . .) = 4π√
λ
B(λ), with C1 given in (2.32). The

higher order corrections in λ are determined by the Bremsstrahlung function B(λ) and should be reproduced

by computing loop corrections to the boundary-to-boundary propagators in figure 1.
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These expressions are found by computing AdS2 integrals as discussed in appendix C. Here

and in what follows we assume as in [11] that logχ ≡ log |χ|, log(1 − χ) ≡ log |1 − χ| so

that the resulting expressions are defined as real on the whole line χ ∈ (−∞,∞).

The leading order terms (2.29) in GS,T,A(χ) are given by the free-field expressions

associated with the exchange of 2-particle states Φa∂kt Φb that can be decomposed as

[ΦΦ]S2n ∼ Φa∂2n
t Φa, [ΦΦ]T2n ∼ Φ(a∂2n

t Φb), [ΦΦ]A2n+1 ∼ Φ[a∂2n+1
t Φb]. (2.35)

The connected contributions (2.34) provide the 1√
λ

corrections to the OPE coefficients and

scaling dimensions hn = 2 + 2n + 1√
λ
γ(1) + · · · of these operators. In general, there is

a mixing between [ΦΦ]S2n (with n > 0) and FF and 2-fermion operators, while [ΦΦ]A2n+1

mixes with 2-fermion states in the (1,10) of SU(2)× Sp(4) ' SO(3)× SO(5). The mixing

is absent for [ΦΦ]S0 or [ΦΦ]T2n and for these operators one finds (see appendix B)

hn = 2 + 2n+
1√
λ
γ(1) + · · · , γ

(1)

[ΦΦ]T2n
= −3n− 2n2, γ

(1)

[ΦΦ]S0
= −5 . (2.36)

Assuming that one can identify the scalar Φ6 coupled to the WML with the singlet compos-

ite field yaya ∼ [ΦΦ]Sn=0 one finds that strong coupling expansion of its dimension should

be given by (1.5).

Finally, let us mention that one can similarly compute the strong-coupling expansion

of the correlation functions involving AdS5 coordinates xi dual to the dimension ∆ = 2

operator Fit inserted on the Wilson line. In particular, one finds for the connected part of

the mixed correlator of two AdS and two sphere fluctuations [11]

⟪Fit(t1)Fjt (t2) Φa(t3) Φb(t4) ⟫conn = 〈xi(t1)xj(t2)ya(t3)yb(t4)〉conn = δijδab
Gconn(χ)

t412 t
2
34

,

(2.37)

Gconn(χ) =
1√
λ
C1C2G

(1)(χ) =
1√
λ

2

3π2
G(1)(χ) , G(1) = −4

[
1−

(
1
2 −

1

χ

)
ln(1− χ)

]
.

(2.38)

The explicit expression for the 4-point correlator of xi ∼ Fit can also be found in [11].

2.4 Analytic continuation to the “chaos configuration”

It is interesting to consider the analytic continuation of the above results to the out of

time order correlator relevant to chaos [40, 44]. Let us focus on the SO(5) singlet part

of the 4-point function of sphere coordinates, which is given by the contracted correlation

function 〈ya(t1)ya(t2)yb(t3)yc(t4)〉. Following [44], in order to obtain the relevant thermal

out of time order configuration ya(t)yb(0)ya(t)yb(0), one can map the line to the thermal

circle by ti = tan(πτi/β), i = 1, . . . , 4, and then continue to real time.11 A convenient

configuration considered in [40] is given by taking the four operators to be equally spaced

11Equivalently, one should also be able to obtain the result by computing the 4-point functions directly

in AdS Rindler coordinates ds2 = −(r2/r2
h − 1)dt2 + dr2

r2/r2
h
−1

.
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along the thermal circle. This configuration can be obtained by setting τ1 = it, τ2 =

it+ β/2, τ3 = β/4, τ4 = −β/4, which corresponds to a value of the cross ratio

χ =
2

1− i sinh(2πt
β )

. (2.39)

In order to reach this configuration, one has to start from the expression for GS(χ) valid

in the region χ > 1, which can be simply obtained from (2.34) by letting log(1 − χ) →
log(χ− 1). Then, one may take a large t limit (corresponding to the formal small χ limit

of the χ > 1 expression) to probe the chaotic behavior. Applying this procedure to the

result for GS(χ) given in (2.34), we find for the out of time order correlator

〈ya(t)yb(0)ya(t)yb(0)〉
〈yaya〉〈ybyb〉

' 1− π

2
√
λ
e

2πt
β , (2.40)

where we have normalized by the product of 2-point functions (omitting the explicit posi-

tions along the thermal circle). The behavior (2.40) corresponds to a maximal Lyapunov

exponent 2π
β . The same behavior can be seen to arise from the 〈xxyy〉 correlator in (2.38)

and the 〈xxxx〉 correlator that can be found in [11]. This maximally chaotic behavior for

correlators on the string worldsheet was also found previously in [45, 46].

In our static gauge approach, this result can be seen to be essentially due to the 4-

derivative vertices in the Nambu-Goto action: these lead to terms in the 4-point functions of

the form ' χ−1 log(1−χ), which are responsible for (2.40). We will see below that the same

behavior persists for the correlators on the non-supersymmetric Wilson line, indicating that

it is not sensitive to the boundary conditions. This should be due to the fact that the limit

relevant to chaos is captured by the near horizon region, which is essentially flat space.12

The chaotic behavior (2.40) should then also be related to the “gravitational-type” phase

shift found in [47] for the S-matrix on a long string in flat space. It would be interesting

to further clarify the relation of our calculations to the exact flat space S-matrix of [47].

3 Non-supersymmetric Wilson line case: SO(6) invariant correlators

Let us now turn to the case of strong-coupling description of correlators on non-super-

symmetric WL. As discussed in the introduction, the corresponding non-supersymmetric

CFT1 should be dual to the AdS2 theory defined by the same string action (2.5)–(2.9)

but now with Neumann boundary conditions for the S5 fluctuations [1–3]: ∂sy
a
∣∣
s=0

= 0

(cf. (2.2), (2.3)). Then the SO(6) symmetry of scalar correlators will be restored due to

the remaining integration over the unfixed “zero mode” part of ya.

This may be implemented systematically using the embedding coordinates YA (without

choosing explicitly a particular parametrization or solution of YAYA = 1 as in (1.8)).

Ignoring the dependence on the transverse AdS5 fluctuations xi in the string action (2.5)

12We thank Juan Maldacena for discussions on these points.

– 13 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
2

the bosonic Lagrangian in the static gauge will take the form

LB =
√

det(gµν + ∂µYA∂νYA) =
√
g (1 + L2 + L4 + · · · ) , (3.1)

L2 =
1

2
∂µYA∂µYA, L4 =

1

8
(∂µYA∂µYA)2 − 1

4
(∂µYA∂µYB)2 , (3.2)

so that the path integral over S5 will be (Y 2 ≡ YAYA, T =
√
λ

2π )

Z =

∫
DY δ

(
Y 2 − 1

)
exp

(
−T

∫
d2σ
√
g [L2(Y ) + L4(Y ) + . . . ]

)
. (3.3)

Let us separate the constant part nA of Y A that selects a particular point on S5 as

Y A = nA + ỹA(σ) , n2 = 1 . (3.4)

Then (3.3) takes the form

Z =

∫
[dn]

∫
Dỹ δ

(
nAỹA +

1

2
ỹAỹA

)
exp

(
−T

∫
d2σ
√
g [L2(ỹ) + L4(ỹ) + . . . ]

)
, (3.5)

where
∫

[dn] . . . ≡
∫
d6n δ(n2 − 1) . . . is the integral over S5. The δ-function constraint on

ỹA can be solved perturbatively in powers of an independent fluctuation yA orthogonal to

nA as13

ỹA = f
(
y2
)
nA + h

(
y2
)

yA , nAyA = 0 , (3.6)

f = −1

2
y2 −

(
a +

1

8

) (
y2
)2

+ . . . , h = 1 + a y2 + . . . , y2 = yAyA , (3.7)

where a is an arbitrary coefficient. We can always choose a=0 or redefine14 h(y2) yA → ζA.

This is equivalent to defining ζA as the part of Y A orthogonal to nA. This is what we shall

do below, i.e. set

Y A =
√

1− ζ2 nA + ζA =

[
1− 1

2
ζ2 − 1

8
(ζ2)2 + . . .

]
nA + ζA , nAζA = 0 . (3.8)

Then the path integral (3.3) or (3.5) takes the form

Z =

∫
[dn]

∫
Dζ δ

(
nAζA

)
exp

(
− T

∫
d2σ
√
g
[
L2(ζ) + L4(ζ) + . . .

])
, (3.9)

L2 =
1

2
∂µζA ∂µζ

A , L4 =
1

2
ζAζB ∂µζA∂µζ

B +
1

8
(∂µζA ∂µζ

A)2 − 1

4
(∂µζA ∂µζ

B)2 ,

(3.10)

where we have substituted (3.8) into (3.2) keeping only terms up to quartic order in ζA.

13In the special case of the ya parametrization in (1.8), (2.5) we had nA = (0, 0, 0, 0, 0, 1) and ζ6 =

0, ya = ya.
14Such local field redefinitions should preserve the “on-shell” correlators in AdS2, see appendix E.
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The propagator for the massless scalar field ζA (with 5 independent components for

fixed nA) is then given by

〈ζA(σ)ζB(σ′)〉 = PAB(n) GN(σ, σ′), PAB = δAB − nA nB, (3.11)

where PAB is the projector orthogonal to nA and GN is the bulk Green’s function in

AdS2 (2.3) corresponding to the Neumann boundary conditions (see appendix D)

GN(σ, σ′) = − 1

4π

(
log[(t− t′)2 + (z − z′)2] + log[(t− t′)2 + (z + z′)2]

)
. (3.12)

The corresponding bulk-to-boundary propagator will be also denoted as GN:

GN(t, z; t′) ≡ GN(t, z; t′, 0) = − 1

2π
log[(t− t′)2 + z2] . (3.13)

We will also use boundary-to-boundary propagator

GN(t1, t2) ≡ GN(t1, 0; t2, 0) = − 1

2π
N12 , N12 ≡ log(t212) . (3.14)

As in the static gauge (used in (2.5), (3.3)) which is adapted to the expansion near the

WL minimal surface the target-space AdS coordinate z is identified with the world-sheet

coordinate s (see (2.2)) we shall often use σµ = (t, z) as the coordinates in the AdS2 bulk

theory. The propagator (3.12) is the standard Neumann one on a half-plane (z ≥ 0) with a

conformally-flat metric (the dependence on conformal factor drops out due to the conformal

invariance of the massless scalar kinetic term in (3.9). The conformal factor re-enters via a

covariant UV cutoff, e.g., after the replacement (t−t′)2+(z−z′)2 → [ (t−t′)2+(z−z′)2

zz′ +ε2] z z′

(see appendix D).

In what follows we shall use this SO(6) covariant set-up (3.9)–(3.12) to compute

correlation functions of the S5 embedding coordinates that should give as in (1.10)

the corresponding scalar correlators in the boundary CFT1. The expectation value

〈YA1(t1) · · ·YAn(tn)〉
AdS2

will be computed according to (3.8), (3.9), (3.10), i.e. will include

integrating over ζA as well as averaging over the S5 direction nA. From now on we shall

denote the AdS2 expectation value simply by 〈· · · 〉.
The averaging over S5 can be done using

〈nAnB〉 =
1

6
δAB , 〈nAnBnCnD〉 =

1

48

(
δABδCD + δACδBD + δADδBC

)
, (3.15)

〈PAB〉 =
5

6
δAB , 〈PABPCD〉 =

33

48
δABδCD +

1

48

(
δACδBD + δADδBC

)
, etc. (3.16)

This averaging restores SO(6) symmetry and implies that all correlators with odd number

of YA should vanish, i.e. non-vanishing ones should be 〈Y Y 〉, 〈xxY Y 〉, 〈Y Y Y Y 〉, etc.

4 Two-point function 〈Y AY B〉

The 2-point boundary-to-boundary correlator of YA is supposed to reproduce the strong-

coupling expansion of the 2-point function of the SO(6) scalars (1.7). Its structure is fixed
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by 1d conformal invariance to be (Y A(t) ≡ Y A(t, z = 0))

〈Y A(t1)Y B(t2)〉 = δAB
CY
|t12|2∆

= δABCY

[
1−

(
d1√
λ

+
d2

(
√
λ)2

+ . . .

)
log(t212)

+

(
d2

1

2 (
√
λ)2

+ . . .

)
log2(t212) + · · ·

]
, (4.1)

∆ =
d1√
λ

+
d2

(
√
λ)2

+
d3

(
√
λ)3

+ · · · , d1 = 5 , (4.2)

where the d1 = 5 is the expected value of the leading anomalous dimension coefficient (1.9).

The subleading d2

(
√
λ)2

contribution to log term and thus to ∆ should come from the 1-loop

diagrams involving also the fermions (see below).

Note that the normalization of the 2-point function of the conformal operator dual

to Y A is scheme dependent and hence arbitrary. On the string side, since the two-point

function starts with 〈nAnB〉 = 1
6δ
AB, it appears to be natural to choose a scheme where

to all orders

CY =
1

6
(4.3)

so that the condition Y AY A = 1 at coincident points is preserved.15 This should correspond

to fixing a particular choice of 2-point function normalization of the dual operator ΦA

inserted on the WL.

4.1 Leading logarithmic correction

Using (3.8), (3.11) and (3.16) we find (T−1 = 2π√
λ

)

〈Y A(σ1)Y B(σ2)〉 = 〈
[
nA + ζA + · · ·

][
nB + ζB + · · ·

]
〉

=
1

6
δAB

[
1 + 5T−1GN(σ1, σ2) + · · ·

]
. (4.4)

Setting z1, z2 → 0 in the propagator in (3.12), (3.13) we thus readily reproduce the value

d1 = 5 in (4.1). We have ignored the contribution of the −1
2ζ

2nA term in Y A in (3.8) as it

leads (to the leading order) only to a cutoff-dependent constant.

As discussed in [3], this value is the J = 1 case of the J(J + 4) eigenvalue cor-

responding to the S5 scalar spherical harmonic with angular momentum J . One may,

indeed, generalize the computation in (4.4) to the correlator 〈V A1...AJ (σ1)V B1...BJ (σ2)〉
where V A1...AJ = Y {A1 · · ·Y AJ} is a totally symmetric traceless tensor. It is sufficient

to consider the correlator of two primary fields 〈ZJ Z̄J〉 where Z = uAYA with constant

complex null vector uA (u2 = 0). For example, we may use Z = Y1 + iY2 and then

〈ZJ(σ1)Z̄J(σ2)〉 = 〈
[
MJ−J2 (MJ−2MJ−1)T−1GN(σ1, σ2)

]
〉+. . . , MJ ≡ |n1+i n2|2J ,

(4.5)

15One may ensure the expected normalization of (4.1) at the coinciding points 〈Y A(t)Y A(t)〉 = 1 by

explicitly keeping track of the boundary UV cutoff dependence as in 〈Y A(t1)Y B(t2)〉 = 1
6
δAB

[
ε2

|t12|2+ε2

]∆
.

We will not do this below.

– 16 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
2

ζ

ζ

ζζ

ζ, x

ζζ

ψ

ψ

Figure 3. Diagrams contributing the 2-point function 〈Y Y 〉 at order 1
(
√
λ)2

.

where the remaining S5 average can be done, e.g., by using the explicit spherical angle

parametrization of nA.16 As a result, 〈MJ〉 = 2
(J+1)(J+2) and thus

〈(Y1 + i Y2)J(σ1) (Y1 − i Y2)J(σ2)〉 =
2

(J + 1)(J + 2)

[
1 + J(J + 4)T−1GN(σ1, σ2)

]
+ · · · ,

(4.6)

with J(J + 4) thus replacing 5 in (4.4).

4.2 Subleading corrections

The order 1
(
√
λ)2

corrections to the 2-point function will be given by the sum of the log and

log2 terms in (4.1). The d2 log term should originate from the bosonic (ζA and xi, cf. (2.8))

and fermionic 1-loop diagrams — the second and third diagrams in figure 3. We will not

systematically include fermions and thus will not determine d2 here.

The 1d conformal invariance of (4.1) implies that the leading logs at each order in
1

(
√
λ)n

should exponentiate. Thus at order 1
(
√
λ)2

we should find the log2(t212) term with the

coefficient being precisely
d2

1
2 = 25

2 . To demonstrate this requires to go beyond the tree

approximation and include the loop contributions of the interacting vertices in (3.9).17

At order 1
(
√
λ)2

we need to consider the 1-loop contributions from the vertices in L4

in (3.10) and these require UV regularization. In general, the coefficients in the finite

contributions will depend on a scheme and, as usual, the scheme should be chosen so that

to preserve the required (world-sheet and target space) symmetries (cf. appendix D).

There are three types of diagrams contributing to the 2-point function (4.1) at order
1

(
√
λ)2

are shown in figure 3: (i) the tree-level one with the contraction of the ζ2nA terms

in Y A in (3.8) that does not involve interaction vertices; (ii) bosonic 1-loop diagrams with

quartic vertices from L4 in (3.10); (iii) fermionic 1-loop diagrams with vertices from the

fermionic terms in the full AdS5 × S5 superstring action (which were ignored in (2.5)).

16Explicitly, 〈MJ〉 = 1
π3

∫ 2π

0
dφ
∫ π

0
dθ1 . . . dθ4 sin4 θ1 sin3 θ2 sin2 θ3 sin θ4 | cos θ1 + i sin θ1 cos θ2|2J =

2
(J+1)(J+2)

.
17It is useful to compare the present case with that of a free scalar 2d theory which also has a logarithmic

propagator, 〈XX〉 ∼ log |z12|. Here a primary operator without derivatives which will have 〈OO〉 ∼ |z12|−2∆

is O = eaX . The choice of the exponential function is essential for the right combinatorics. One may of

course redefine X → X ′, X = a−1 log(1 + aX ′) so that O = 1 + aX ′ but then the required contributions

will come from the expansion of the redefined action L = (∂X)2 = (∂X′)2

(1+aX′)2 . Similarly, in the present case

of Y A(ζ) =
√

1− z2nA + ζA = nA + ζA − 1
2
z2nA + . . . with the propagator of ζ given by (3.14) we will not

get the correct exponentiation of log t212 without including extra contributions from loop diagrams with the

interacting vertices from the action.
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While the fermionic loop contribution is important for computing the subleading d2

coefficient in the scaling dimension (4.2), given that d1 in (4.2) receives contribution only

from bosons it might be natural to expect that finite 1
(
√
λ)2

log2(t212) terms in (4.1) should

also come only from the bosonic 1-loop contributions. Still, given that the fermionic contri-

bution is crucial for ensuring the UV finiteness of the 2d theory (and given that, in general,

there are power-like divergences in the purely bosonic theory) this issue may be regular-

ization scheme dependent. Below we shall assume that there is no log2(t212) term coming

from the fermionic loop in figure 3 and concentrate only on the bosonic contributions, i.e.

the first two diagrams in figure 3.

The contribution of the first diagram in figure 3 is 〈12 ζ
2(t1)nA 1

2ζ
2(t2)nB〉 so it should

correct (4.4) (restricted to the boundary points σa = (ta, 0)) by γ2 T
−2[GN(t1, t2)]2 term.

In general, we should find (GN(t1, t2) = − 1
2πN12, see (3.14))

〈Y A(t1)Y B(t2)〉 =
1

6
δAB

[
1 +

γ1√
λ

N12 +
γ2

(
√
λ)2

(N12)2 +
γ3

(
√
λ)3

(N12)3 + · · ·
]
,

N12 = log(t212)

(4.7)

γ1 = −d1 = −5, γ2 = γ
(0)
2 + γ

(1)
2 , γ

(0)
2 =

5

2
. (4.8)

The tree-level contribution γ
(0)
2 = 5

2 here should be part of the total coefficient γ2 =
d2

1
2 = 25

2

in (4.1); the additional term γ
(1)
2 = 20

2 = 10 should come from the 1-loop diagrams.

As we shall see below, it is only the first (“sigma-model”) quartic vertex in L4 in (3.10)

that will contribute to the leading log2 term in (4.7). It will lead to several 1-loop contri-

butions to the correlator

〈ζA(t1) ζB(t2)〉 =
1

6
δABΠ(t12) . (4.9)

One comes from the contraction
∫
d2σ
√
g 〈ζA(t1)ζB(t2) ζCζD (∂ζC · ∂ζD)〉 (plus permu-

tations). Its contribution is found to be

Π1 = −
√
λ

2π
× 5×

(
2π√
λ

)3

×X2 × I2 ,

I2 =

∫
dzdt

z2
GN(t, z; t1) GN(t, z; t2) =

1

4π
log2(t212) ,

(4.10)

X2 = lim
σ′→σ

gµµ
′
∂µ∂

′
µGN(σ, σ′) =

k

4π
, (4.11)

where GN(t, z; t′) is the bulk-to-boundary propagator (3.13). X2 originates from 〈∂ζ(σ) ·
∂ζ(σ)〉 and its value, in general, depends on a scheme: such correlators are, in general,

power divergent and in (4.11) we dropped quadratic divergence (cf. (4.22), (D.13)). The

value of k (4.11) found using the naive point-splitting is k = 1 but in AdS2 case (in the

presence of the boundary) a more natural value is k = 2 (see discussion at the end of

appendix D and (D.14)).

The bulk integral I2 in (4.10) is computed using that I2 = 1
(2π)2 limε12→0 Ī2, where

Ī2 =
∂2

∂ε1∂ε2

Γ(ε1+ε2)

Γ(ε1)Γ(ε2)

∫ ∞
−∞

dt

∫ ∞
0

dz

z2

∫ 1

0
dx

xε1−1(1−x)ε2−1

[x((t−t1)2+z2)+(1−x)((t−t2)2+z2)]ε1+ε2

(4.12)

The resulting contribution to γ2 in (4.7) is (γ
(1)
2 )1 = −5

4k.
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Another contribution originates from the contractions∫
d2σ
√
g 〈ζA(t1)ζB(t2) ζCζD (∂ζC · ∂ζD)〉 and

∫
d2σ
√
g 〈ζA(t1)ζB(t2) ζCζD (∂ζD · ∂ζC)〉.

Using that from (3.12)

[
∂µGN(σ, σ′)

]
σ=σ′

=

{
0, µ = 0

− 1
2π z , µ = 1 ,

(4.13)

we get the following analog of (4.10) (with averaging over nA computed using (3.16) and

PCC = 5)

Π2 = −
√
λ

2π
× 1

2
× 22 × 30× 1√

λ

(
2π√
λ

)2

× I ′2 , (4.14)

where the bulk integral I ′2 is related to I2 in (4.10) via integration by parts

I ′2 = −
∫
dzdt

z2
z ∂zGN(t, z; t1) GN(t, z; t2)

= −1

2

∫
dzdt

z
∂z

[
GN(t, z; t1) GN(t, z; t2)

]
= −1

2
I2 . (4.15)

As a result, we get an extra contribution to γ2 in (4.7): (γ
(1)
2 )2 = 15.

The remaining term from the first vertex in (3.10)∫
d2σ
√
g 〈ζA(t1)ζB(t2) ζCζD (∂ζC · ∂ζD)〉 contains the logarithmically divergent contribu-

tion (ε is the covariant bulk UV cutoff, see (3.12), (D.7))

GN(σ, σ) = − 1

2π
log(2ε2)− 1

π
log z . (4.16)

The UV divergent term should be absorbed into the renormalization of the radius of S5

in the purely bosonic model but should be cancelled by the fermionic loop contribution in

the superstring case. If we assume that the fermionic contribution cancels log ε2 term but

does not change the coefficient of the finite log z term in (4.16) we will get the following

additional contribution to (4.9)

Π3 =−
√
λ

2π
× 1

2
×2×5×

(
− 2√

λ

)(
2π√
λ

)2 ∫ dzdt

z2
logz z2

2∑
µ=1

∂µGN(t,z; t1) ∂µGN(t,z; t2) .

(4.17)

Integrating by parts and using that ∂µ∂µGN = 0 we get as in (4.10), (4.15)

Π3 = − 5

6π

(
2π√
λ

)2 ∫ dzdt

z
GN (t, z; t1) ∂zGN (t, z; t2)

= − 5

12π

(
2π√
λ

)2 ∫ dzdt

z
∂z [GN (t, z; t1) GN(t, z; t2)]

= − 5

12(
√
λ)2

log2(t212) . (4.18)

The additional contribution to γ2 in (4.7) is thus (γ
(1)
2 )3 = −5

2 .
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Thus in total we get (adding also the “tree-level” contribution γ
(0)
2 = 5

2)

γ2 = γ
(0)
2 + γ

(1)
2 =

5

2
+

(
−5

4
k + 15− 5

2

) ∣∣∣
k=2

=
5

2
+ 10 =

25

2
, (4.19)

which agrees with (4.1) in the scheme where k = 2 in (4.11).18

Finally, let us check that 1-loop diagrams with the other two (4-derivative) vertices in

L4 in (3.10) do not contribute to the log2 terms in (4.7), (4.9). The second vertex in (3.10)

leads to two types of contractions. The first is
∫
d2σ
√
g 〈ζA(t1) ζB(t2)∂ζC · ∂ζC∂ζD · ∂ζD〉;

using (4.11) and doing the bulk integral we find its contribution to (4.9) to be

Π4 = −
√
λ

2π
× 1

8
× k × 22 × 25×

[
− π

(
√
λ)3

log(t212)

]
. (4.20)

It thus contributes to the first power of log, i.e. to the coefficient d2 in the scaling di-

mension (4.2). In the second contraction
∫
d2σ
√
g 〈ζA(t1) ζB(t2) ∂ζC · ∂ζC ∂ζD · ∂ζD〉 we

need to use that (see (D.11), (D.13))

GN(σ, σ′) = − 1

4π
log u(u+ 1) , u =

1

2

(t− t′)2 + (z − z′)2

2zz′
+ ε2 , (4.21)

∂µ∂
′
νGN(σ, σ′)

∣∣∣
σ→σ′

=
1

8πz2

(
1

ε2
+ 1

)
δµν . (4.22)

Then the bulk integral gives again only a log term. The third vertex in (3.10) that has

a different SO(6) contraction structure leads to the same bulk integral and thus also does

not produce log2 contributions to (4.9).

Similar conclusions are reached for the 1-loop diagrams with the xi loop coming from

the ∂x∂x∂y∂y vertex in (2.8) (where one can replace ya → Y A). Here we will need

to use that the bulk-to-bulk AdS2 Green’s function for the massive scalar xi satisfies

(cf. (4.21), (D.7))

G
(m2=2)
D

(
σ, σ′

)
= − 1

4π

[
(2u+ 1) log

u

u+ 1
+ 2

]
, (4.23)

∂µ∂
′
νG

(m2=2)
D

(
σ, σ′

) ∣∣∣
σ→σ′

=
1

8πz2

(
1

ε2
+ 1 + 2 log ε2

)
δµν . (4.24)

As (4.24) scales with z in the same way as (4.21) the corresponding 1-loop diagram also

does not contribute to log2 term (while the UV log divergence should cancel against the

contribution of the fermionic loop).

At the next 1
(
√
λ)3

order the (N12)3 = log3(t212) term in (4.1), (4.7) should have the

coefficient γ3 = −d3
1

3! = −125
6 . As the expansion of Y A in (3.8) does not contain a ζ3 term

(while the ζ4 term in Y A will start contributing only at order 1
(
√
λ)4

) all contributions to

18That this value is indeed the natural one can be seen by generalizing the bosonic SO(6) computation

to the SO(N) case. Then d1 in (4.1) becomes N − 1 and thus
d21
2

= (N−1)2

2
. The corresponding analog

of (4.19) is then γ2 = N−1
2
− N−1

4
k + N(N−1)

2
− N−1

2
which is equal to (N−1)2

2
precisely if k = 2.
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(a)

−1
2n

Aζ2 −1
2n

Bζ2
1

(b)

ζA ζB2

Figure 4. Loop diagrams contributing to 1
(
√
λ)3

log3 term in the 2-point correlator. In (a) the blob

stands for the bosonic and fermionic one-loop diagrams in figure 3. In (b) it stands for the two-loop

irreducible contributions like or reducible iterations of one-loop diagrams as in .

γ3 should come from loop diagrams. The first type of them is the first diagram in figure 3

where one of the two tree propagators is replaced by the 1-loop corrected one (i.e. the

one with the corrections from the 1-loop graphs in figure 3 included), see figure 4(a). In

view of the above discussion this 1-loop “self-energy” dressing amounts to the following

replacement of each log factor in (4.7) (cf. the first and the second terms in (4.7) with

γ
(1)
2 = 5× 2 according to (4.19))19

N12 → N12 −
2√
λ

(N12)2 . (4.25)

Applied to the tree-level γ
(0)
2 term in (4.7) this will give the following contribution to γ3:

γ
(1)
3 = 5

2 × 2× (−2) = −10. The second type of contributions should come from the 2-loop

corrections to the ζA-propagator which are: (i) irreducible 2-loop generalizations of the

second and third graphs in figure 3; (ii) reducible iterations of these 1-loop graphs, see

figure 4(b). These 2-loop corrections (which we will not compute here) should produce the

remaining contribution γ
(2)
3

γ3 = γ
(1)
3 + γ

(2)
3 = −125

6
, γ

(1)
3 = −10 , γ

(2)
3 = −65

6
. (4.26)

5 Mixed four-point function 〈xixjY AY B〉

As was mentioned in the Introduction, the correlators of the three AdS5 transverse fluc-

tuations xi (scalars with m2 = 2) dual to the correlator of the field strengths Fti at

leading order in strong-coupling expansion should be the same in both WML and WL

cases as they are described by the same classical string action (2.5) with the same (Dirich-

let) boundary conditions for xi. The corresponding tree-level 2- and 4-point functions

〈xx〉 or 〈xxxx〉 were computed in [11]. As the boundary operator F i
t ≡ iF i

t dual to xi

has the interpretation of the displacement operator, its dimension ∆ = 2 will be pro-

tected also in the non-supersymmetric WL case, i.e. it should not receive corrections in the

strong-coupling expansion

⟪F i
t (t1) F j

t (t2)⟫ = 〈xi(t1)xj(t2)〉 = δij
C ′x

(t12)4
. (5.1)

19This shift accounts just for the leading log contributions; in addition, there will be also subleading ones

that can be accounted for by a shift like in (G.7).
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Figure 5. Leading order disconnected contributions to 〈xixjY AY B〉.

While in the WML case the normalization factor Cx = CF(λ) in the analog of (5.1) is

known exactly (being equal to 12 times the Bremsstrahlung function), the expression for

C ′x = CF (λ) at strong coupling (which should have a scheme-independent meaning, see

footnote 4) is not known at present.20 The 4-point correlators 〈xxxx〉 in the supersymmet-

ric and non-supersymmetric cases may start to differ at the first subleading order in 1√
λ

.

In the case of the 4-point correlator of two AdS fluctuations and two S5 fluctuations

the difference should appear already at the leading order at strong coupling. In the su-

persymmetric WML case when S5 coordinates were subject to the Dirichlet b.c. it was

computed in [11]. In the WL case with Neumann b.c. in S5 directions this correlator

should have SO(3)×SO(6) symmetry and should represent the strong-coupling limit of the

4-point function of two displacement operators and two 6-scalars (cf. (1.3))

⟪F i
t (t1) F i

t (t2)ΦA(t3)ΦB(t4)⟫ = 〈xi(t1)xj(t2)YA(t3)YB(t4)〉 =
1

6
δijδAB

C ′x
(t12)4 (t34)2∆

G(χ) ,

G(χ) = 1 +
1√
λ
G(1) +

1

(
√
λ)2

G(2) · · · , (5.2)

where ∆ = 5√
λ

+ · · · is given by (4.2) and as in (4.3) we choose a scheme where CY = 1
6 .

Recalling that YA = nA + ζA− 1
2ζ

2nA + · · · (see (3.8)) the leading order contributions

to (5.2) will come from the disconnected diagrams 〈xx〉〈Y Y 〉 (see figure 5) that will con-

tribute to the prefactor 1
(t12)4 (t34)2∆ in (5.2). Here the bulk-to-boundary propagator for x

(given by (2.30) with ∆ = 2) and the bulk-to-boundary propagator for the massless field ζ

given by (3.13), i.e.

K2

(
t, z; t′

)
= C2 K2

(
t, z; t′

)
, K2

(
t, z; t′

)
≡
[

z

(t− t′)2 + z2

]2

, C2 =
2

3π
, (5.3)

GN

(
t, z; t′

)
= CN N

(
t, z; t′

)
, N

(
t, z; t′

)
≡ log

[(
t− t′

)2
+ z2

]
, CN ≡ −

1

2π
, (5.4)

so that (ignoring an infinite rescaling of xi by a z → 0 factor)

〈xi (t1)xj (t2)〉 =
C ′x

(t12)4 , C ′x =
2π√
λ
C2 +O

(
1

(
√
λ)2

)
. (5.5)

One may normalize the 4-point function on the 2-point function of xi, i.e. absorb the factor

of C ′x into a redefinition of the operator x; we will not do this here.

20It should be easy to compute the leading strong-coupling correction to it as C′x − Cx = CF − CF

should be given by the loop of S5 scalars with the internal line being the difference of the Neumann and

Dirichlet propagators.
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ζAxi

ζBxj

Figure 6. Connected contribution to 〈xixjY AY B〉. The 4-vertex comes from the quartic La-

grangian (2.8).

−1
2 ζ

2 nA

nB

xi

xj

Figure 7. Connected contribution with Y A replaced by − 1
2ζ

2nA. There is a similar diagram

with A↔ B.

To compute the non-trivial correction to 〈xxY Y 〉 we need to use the 4-vertices in (2.8)

where we may replace ∂µya∂νya → ∂µYA∂νYA (the two expressions are the same to quar-

tic order in the fields). The leading connected contribution to G(χ) will come from the

connected diagram in figure 6.

There is also another connected contribution to 〈xixjY AY B〉 when Y A is replaced by

nA and Y B by −1
2ζ

2nB (or vice versa), see figure 7.

We get for the tree-level connected contribution of the diagram in figure 6 to the

correlator in (5.2)21

Gconn(χ)

t412 t
2∆
34

= −5×
(

2π√
λ

)2

C2 (CN)2 Qxy , (5.6)

Qxy ≡
∫
dtdz

z2

[
∂K2(t1) · ∂K2(t2) ∂N(t3) · ∂N(t4)− ∂K2(t1) · ∂N(t3) ∂K2(t2) · ∂N(t4)

− ∂K2(t1) · ∂N(t4) ∂K2(t2) · ∂N(t3)
]
, (5.7)

where the factor 5 came from (3.16), ∂A · ∂B ≡ gµν∂µA · ∂νB, and K2(t1) ≡ K2(t, z; t1),

etc. The expression (5.7) can be simplified using the relations (cf. (C.2))

∂K2(t1) · ∂Kt2(t2) = 4
[
K2(t1)K2(t2)− 2 (t12)2 K3(t1)K3(t2)

]
,

∂N(t1) · ∂N(t2) = 2 z
[
K1(t1) + K1(t2)

]
− 2 (t12)2 K1(t1) K1(t2),

∂K2(t1) · ∂N(t2) = −4 zK3(t1) + 4 (t12)2 K3(t1) K1(t2),

Kn(t1) ≡ Kn(t, z; t1) =

[
z

(t− t′)2 + z2

]n
.

(5.8)

The contribution of the diagram in figure 7 is similar: including it gives the total connected

21Here the vertex (2.8) in the string action (2.5) contributes
√
λ

2π
and four propagators ( 2π√

λ
)4. One power

of normalization factor 2π√
λ
C2 of the x-propagator is extracted to represent C′x in (5.2).
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contribution by replacing Qxy(1, 2, 3, 4) with

Q(tot)
xy (t1, t2, t3, t4) = Qxy(t1, t2, t3, t4)− 1

2
Qxy(t1, t2, t3, t3)− 1

2
Qxy(t1, t2, t4, t4). (5.9)

This results in the following replacement in (5.7)22

∂(µN(t3) ∂ν)N(t4)→ −1

2
∂(µ

[
N(t3)−N(t4)

]
∂ν)

[
N(t3)−N(t4)

]
, (5.10)

and we find from (5.7), (5.8)

Q(tot)
xy =

∫
dtdz

z2

[
16K2(t3)K3(t1)K3(t2)t213t

2
23 + 16K2(t4)K3(t1)K3(t2)t214t

2
24

− 16K1(t3)K1(t4)K3(t1)K3(t2)t214t
2
23 − 8K1(t3)K1(t4)K2(t1)K2(t2)t234

− 16K1(t3)K1(t4)K3(t1)K3(t2)t213t
2
24 + 16K1(t3)K1(t4)K3(t1)K3(t2)t212t

2
34

]
= 16t213t

2
23 T2,3,3(t3, t1, t2) + 16t214 t

2
24T2,3,3(t4, t1, t2)

− 16D3,3,1,1t
2
14 t

2
23 − 8D2,2,1,1t

2
34 − 16D3,3,1,1t

2
13 t

2
24 + 16D3,3,1,1t

2
12 t

2
34 . (5.11)

Here T∆1,∆2,∆3(t1, t2, t3) is the standard AdS scalar 3-point function (see, e.g., [48])

T∆1,∆2,∆3(t1, t2, t3) =

∫
dt dz

z2
K∆1(z, t; t1) K∆2(z, t; t2) K∆3(z, t; t3)

=
A

t∆12
12 t∆23

23 t∆31
31

,
(5.12)

A =

√
π

2

Γ
[

∆12
2

]
Γ
[

∆23
2

]
Γ
[

∆31
2

]
Γ (∆1) Γ (∆2) Γ (∆3)

Γ

[
1

2
(∆1 + ∆2 + ∆3 − 1)

]
,

∆12 ≡ ∆1 + ∆2 −∆3, etc. ,

(5.13)

and the D-functions are defined in (C.1). Expressing the latter in terms of D functions

according to (C.3) we may use that in the AdS2 case (cf. (C.5))

D2,2,1,1 =
1

3 (1− χ)χ2
− 2 + χ

3χ3
log(1− χ) +

1

3 (1− χ)2
logχ,

D3,3,1,1 = −2χ2 + 3χ− 3

15(χ− 1)2χ4
− 2(χ2 + 3χ+ 6)

15χ5
log(1− χ)− 2

15(1− χ)3
logχ. (5.14)

As a result,

Q(tot)
xy =

6π

t412

[
1−

(
1

2
− 1

χ

)
log(1− χ)

]
. (5.15)

We thus find for the leading-order contribution to the G-function in (5.2)

G (χ) = 1 +
1

(
√
λ)2

G(2)(χ) +O
(

1

(
√
λ)3

)
, (5.16)

G(2)(χ) = −5 (2π)2 C2 (CN)2 t412 Q
(tot)
xy = −20

[
1−

(
1

2
− 1

χ

)
log(1− χ)

]
. (5.17)

22Since this depends only on the difference N(t3) − N(t4) = log (t−t3)2+z2

(t−t4)2+z2
the same result is found if

we start with the manifestly AdS2 (or conformally) invariant bulk-to-boundary propagator corresponding

to (D.11), i.e. N(t, z; t′) = log (t−t′)2+z2

z
. This ensures that the resulting integral is conformally invariant.
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We observe that the strong-coupling contribution to the connected part of G in (5.2) first

appears at order 1
(
√
λ)2

and, remarkably, that G(2) is proportional to the corresponding

expression (2.37), (2.38) for the tree-level 〈xixjyayb〉 correlator found in the supersymmetric

line case in [11]. Using the label D for the G-function in the supersymmetric (Dirichlet

propagator) case we thus get in the non-supersymmetric case

G(2) = 5G
(1)
D , G

(1)
D = −4

[
1−

(
1

2
− 1

χ

)
log(1− χ)

]
. (5.18)

We will explain the reason for this coincidence in section 6.2 below.

Let us comment on the OPE interpretation of the function G(χ) in (5.2), (5.16), (5.17).

Exchanging t2 ↔ t3 in (5.2) we get (cf. (2.13), (2.13))

⟪F i
t (t1) ΦA(t2) F i

t (t3) ΦB(t4)⟫ =
1

6
δijδAB

C ′x
(t12 t34)2+∆

∣∣∣∣ t24

t13

∣∣∣∣2−∆

G(χ), (5.19)

G(χ) ≡ χ2+∆G(χ−1) = χ2+∆

(
1− 20

(
√
λ)2

[
1 +

(
χ− 1

2

)
log

1− χ
χ

]
+O

(
1

(
√
λ)3

))
,

where ∆ is given by (4.2). The corresponding conformal block expansion is23

G(χ) =
∑
h

ch χ
h

2F1(h+ 2−∆, h− 2 + ∆, 2h, χ) . (5.20)

Comparing (5.19) with (5.20), and using the expansion (4.2) for ∆, we find the following re-

sults for the corresponding intermediate operator dimensions and coefficients ch consistent

content in (5.20)

h0 = 2+
5√
λ
− 10−d2

(
√
λ)2

+· · · , ch0 = 1− 20

(
√
λ)2

+· · · ,

h1 = 3+
3√
λ

+· · · , ch1 =− 10√
λ

+
25−2d2

(
√
λ)2

+· · · ,

h2 = 4+
0√
λ

+· · · , ch2 =
10

3
√
λ

+

(
80

3
+

2d2

3

)
1

(
√
λ)2

+· · · ,

h3 = 5− 4√
λ

+· · · , ch3 =− 25

21
√
λ

+

(
−8125

441
− 5d2

21

)
1

(
√
λ)2

+· · · , etc. (5.21)

For n ≥ 2 the general expression for the leading order 1√
λ

correction is

hn = 2+n− (n+ 5)(n− 2)

2

1√
λ

+ · · · , chn =
20

3

n+ 2

n

(
−1

4

)n+2 √π (n+ 3)!

Γ(n+ 3
2)

1√
λ

+ · · · .

(5.22)

Notice that for large n the dimension hn of the intermediate operator Φ∂nt F has the

same universal behaviour as in the supersymmetric line case in [11]: hn → n − n2

2
√
λ

+ . . .

23ch is related to the coefficient in the 3-point function between F, Φ, and the exchanged operator Oh of

conformal dimension h. Let us recall that in the supersymmetric case (cf. (2.37)) the operator Oh takes a

schematic form Φ∂nt F, and has dimension hn = 3 + n − 1

2
√
λ

(n + 1)(n + 4) + · · · [11]. The normalization

of ch in (5.21) below takes into account that in the present case in (5.16) we have G(χ) = 1 + · · · .
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(compared to (2.36), (B.6) where the operator contains ∂2n
t here n→ 1

2n). This universality

supports the existence of a semiclassical explanation of this large n asymptotics (indeed,

possibly related classical string solution should not be sensitive to boundary conditions

in S5).

6 Four-point function 〈Y AY BY CY D〉

Given the 2-point function (4.1), the general structure of the SO(6) scalar 4-point function

controlled by the 1d conformal invariance and crossing should be as in (2.14), (2.15), i.e.

〈Y A(t1)Y B(t2)Y C(t3)Y D(t4)〉=
C2
Y

|t12 t34|2∆
GABCD(χ) , (6.1)

GABCD =GS δ
ABδCD+GT

[
δACδBD+δBCδAD− 1

3
δABδCD

]
+GA

[
δACδBD−δBCδAD

]
.

(6.2)

Here GS(χ) is the basic function with GT and GA expressed in terms of it via leg inter-

change, i.e. using the crossing relations (2.23), (2.24). In what follows we shall set CY = 1
6

as in (4.3).

To compute GS it is sufficient to consider the singlet correlator as in (2.17), i.e.

〈Y A(t1)Y A(t2)Y B(t3)Y B(t4)〉 =
1

|t12t34|2∆
GS . (6.3)

Here nA dependence drops out (so the integration over S5 is trivial). Thus (6.3) can be

computed in any explicit parametrization of YA and we shall again use (3.8), i.e. Y A =

nA + ζA − 1
2n

A ζ2 +O(ζ4) with nAζA = 0, nAnA = 1.

6.1 Leading-order contributions

Let us first consider the simplest — leading order — contributions to (6.3)

〈Y A(t1)Y A(t2)Y B(t3)Y B(t4)〉 = 1 +
1√
λ
Q(1) +

1

(
√
λ)2

Q(2) +
1

(
√
λ)3

Q(3) + · · · . (6.4)

At order 1√
λ

these are just the tree-level terms 〈ζAζAnBnB〉 + 〈nAnAζBζB〉, giving as

in (4.1), (4.7)

Q(1) = −5
(
N12 + N34

)
, N12 = log t212 . (6.5)

Q(1) thus corresponds to the leading term in the expansion of the prefactor (t12t34)−2∆

in (6.1), (6.3) with ∆ = 5√
λ

+ . . . . At the next 1
(
√
λ)2

order we will get several contributions

from tree-level diagrams with four ζ and two contractions (see figure 8). Denoting their

contribution to Q(2) as Q
(2)
0 we get

Q
(2)
0 =

5

2

(
N2

12 + N2
34 + N2

13 + N2
14 + N2

23 + N2
24

)
+ 25N12N34

− 5
(
N13N14 + N23N24 + N13N23 + N14N24

)
+ 5
(
N13N24 + N14N23

)
. (6.6)
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(a)

− 1
2
ζ2 nA − 1

2
ζ2 nA

nB nB

(b)

ζA ζA

ζB ζB

(c)

− 1
2
ζ2nA nA

ζB ζB

(d)

ζA ζA

ζB ζB

(e)

ζA ζA

ζB ζB

Figure 8. Types of diagrams contributing to (6.6). Other diagrams are obtained by interchang-

ing points.

ζAζA

nBnB

Figure 9. A disconnected diagram contributing 〈Y AY AY BY B〉. The ζ-propagator includes loop

corrections, with 1-loop ones corresponding to the second and third diagram in figure 3.

Here the first group of terms comes from diagrams like figure 8(a), the second from fig-

ure 8(b), the third from figure 8(c) and the forth from figure 8(d) and figure 8(e). The

terms 5
2

(
N2

12 + N2
34

)
and 25N12N34 with 12 and 34 propagators should corresponds again

to the log2 terms appearing from the expansion of the prefactor (t212 t
2
34)
− 5√

λ
+···

in (6.3).

In addition, there are also similar terms coming from the 1-loop propagator correction

diagrams like in figure 9. As follows from the structure of the loop-corrected propagator

in (4.1) there will be a log correction to Q(2) given by

Q
(2)
log = −d2

(
N12 + N34

)
. (6.7)

From the analysis of the 〈Y Y 〉 correlator in section 4 we know that these loop diagrams

also contribute the log2(t12)+log2(t34) terms (cf. (4.7)) necessary to build up the prefactor

|t12 t34|−2∆ as required by conformal invariance. The coefficient of these terms is given by

γ
(1)
2 = 25

2 −
5
2 = 10 in (4.19). Thus we get for the additional 1-loop contribution to Q(2)

Q
(2)
1 = 10

(
N2

12 + N2
34

)
. (6.8)

Equivalently, this term is found from the 1√
λ
Q(1) term in (6.4) upon the substitu-

tion (4.25). Thus

Q(2) = Q
(2)
log +Q

(2)
0 +Q

(2)
1 = Q

(2)
log +

25

2

(
N12 + N34

)2
+ Q̄(2) ,

Q̄(2) =
5

2

(
N13 + N24 −N14 −N23

)2
. (6.9)

Multiplying (6.4) by |t12 t34|2∆ = 1+ 5√
λ

(N12+N34)+ 25
2(
√
λ)2

(N12+N34)2+. . . (cf. (6.4), (6.3))

we conclude that all N12 and N34 dependent terms cancel out (in particular, log term in (6.7)

does not contribute) so that the leading contribution to GS is given by

GS(χ) = 1 +
1

(
√
λ)2

Q̄(2) +O
(

1

(
√
λ)3

)
= 1 +

1

(
√
λ)2

G
(2)
S (χ) +O

(
1

(
√
λ)3

)
, (6.10)

G
(2)
S = 10 log2(1− χ) . (6.11)
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There is no 1√
λ

term as the leading-order correction (6.5) correspond just to the prefactor

in (6.3). As there is no other “connected” contribution at order 1
(
√
λ)2

the expression

in (6.11) gives the full conformally invariant expression for GS to this order.

To find GT and GA in (6.2) we may use the general crossing relations (2.23), (2.24)

with N = 6 and ∆ given by (4.2), i.e. ∆ = 5√
λ

+ d2

(
√
λ)2

+ . . .. As a result,

GT (χ) =
3

4
+

9

2
√
λ

log
χ2

1−χ
+

3

2(
√
λ)2

(
9log2 χ2

1−χ
+8 log2(1−χ)+

3

5
d2 log

χ2

1−χ

)
+O

(
1

(
√
λ)3

)
, (6.12)

GA(χ) =
6√
λ

log(1−χ)+
6

(
√
λ)2

log(1−χ)

(
4 log

χ2

1−χ
+

1

5
d2

)
+O

(
1

(
√
λ)3

)
. (6.13)

The 1√
λ

terms here originated from the ∆-dependence in (2.23), (2.24). The appearance of

the second anomalous dimension coefficient d2 in (6.12), (6.13) is not surprising: it means

that in order to determine the 1
(
√
λ)2

terms in GABCD(χ) one needs to compute also the

1-loop graphs (bosonic and fermionic ones, cf. figure 3) that contribute not only to ∆ but

effectively also to GT and GS . Similarly, the 1
(
√
λ)3

terms in (6.12), (6.13) will depend not

only on the 1
(
√
λ)3

correction to (6.11) but also on the d3

(
√
λ)3

term in ∆.

It is important to stress that in contrast to the supersymmetric (SO(5) invariant) case

in [11] here the presence of the nA “condensate” in YA implies that the disconnected graphs

are not described just by a generalized free field perturbation theory (cf. appendix A). For

example, the averages over S5 do not factorize: 〈nAnBnCnD〉 6= 〈nAnB〉〈nAnB〉, etc. Thus

even 1√
λ

corrections in (6.12), (6.13) are not those of a free field theory. For example,

setting ∆ = 5√
λ

+ · · · in (A.2) and expanding does not reproduce the single logarithms

proportional to (6.12).

6.2 Order 1

(
√
λ)3

contributions: Dirichlet/Neumann relations

At the next 1
(
√
λ)3

order we get two different contributions: (i) “reducible” contributions

given by tree level diagrams with possible 1-loop or 2-loop propagator corrections; (ii)

“irreducible” connected tree-level contributions where all four points are connected to the

bulk vertex. The 3-loop propagator corrections (like in figure 4(b)) can appear only in the

disconnected parts 〈ζAζAnBnB〉+ 〈nAnAζBζB〉 (see figure 9) and thus contribute only to

the prefactor |t12t34|−2∆ in (6.3) but not to GS .

Non-trivial reducible contributions come from connected tree diagrams with 3 propa-

gators like the one in figure 10 and also from the leading order diagrams in figure 8 with

one of the propagators being “dressed” by 1-loop correction as in figure 3 or figure 9. We

will discuss these reducible contributions in detail in appendix G.

In addition, there is also an “irreducible” connected contribution to (6.1), (6.3)

that comes from the contact tree diagram in figure 11 where all four fields in

〈ζA(t1)ζA(t2)ζB(t3)ζB(t4)〉 are attached to a quartic vertex from L4 in (3.10) The analog of
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−1
2n

Aζ2 −1
2n

Aζ2

−1
2n

Bζ2
nB

Figure 10. “Reducible” tree-level diagram contributing at order 1
(
√
λ)3

.

ζAζA

ζBζB

Figure 11. Contact diagram contributing at order 1
(
√
λ)3

.

it (see figure 2) was the only leading connected contribution (2.33) in the supersymmetric

line case with the Dirichlet bulk-to-boundary propagators [11].

Having one bulk 4-vertex in (3.10) (proportional to
√
λ) and four ζ-propagators (each

bringing a 1√
λ

factor) this connected contribution should scale as 1
(
√
λ)3
G

(3)
S,conn. Note that

the normalization in the supersymmetric case (2.33) was different, so comparing to it below

we shall strip off the 1√
λ

factors. In total, we should find (cf. (6.11), (G.3))

GS = 1 +
1

(
√
λ)2

G
(2)
S +

1

(
√
λ)3

G
(3)
S +O

(
1

(
√
λ)4

)
, (6.14)

G
(3)
S = G

(3)
S,red +G

(3)
S,conn , G

(3)
S,red = G

(3)

S,log2 +G
(3)

S,log3 , (6.15)

where G
(3)

S,log2 and G
(3)

S,log3 are given in (G.9) and (G.17).

Trying to compute G
(3)
S,conn directly one observes that the logarithmic form of the Neu-

mann bulk-to-boundary propagator (3.13) leads to complicated AdS2 integrals. A useful

observation is that applying boundary-point ∂ti derivatives to the contact contribution to

the correlator 〈Y Y Y Y 〉 it is possible to relate the expressions for the integrands with the

differentiated Neumann propagators to the similar ones in the Dirichlet propagator case.

Let us define (see (2.32), (5.4); below ∂µ = (∂t, ∂z), ∂
µA∂µB = z2∂µA∂µB, εµν =

±εtz = ±1; repeated low indices are contracted with δµν)

N′(ta)≡ ∂taN(ta) = 2
ta − t

(t− ta)2 + z2
=

2(ta − t)
z

K1(ta) , (6.16)

N(ta) = log
[
(t− ta)2 + z2

]
, K1(ta) =

z

(t− ta)2 + z2
=

1

2
∂zN(ta), (6.17)

∂µN′(ta) = 2 εµν∂νK1(ta) , ∂µ = (∂t, ∂z) . (6.18)

Using (6.18) we may thus relate the expressions containing bulk-point derivatives of N′(ta)

to the ones with bulk-point derivatives of K1(ta). For example, we get

∂µN′(t1) ∂µN′(t2) = 4 ∂µK1(t1) ∂µK1(t2) . (6.19)
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Equivalently, (6.19) follows simply from the complex coordinate decomposition of K1 and N′

K1 (ta) = − 1

2 i

(
1

w
− 1

w

)
, N′ (ta) = −

(
1

w
+

1

w

)
, w ≡ t− ta + i z , (6.20)

using that ∂µA∂µB = 4∂wA∂w̄B (cf. (D.6)).

From (6.19), we see that the contact diagram associated to the (∂ζ)4 term in (3.10)

contributing to the 4-point function in the Neumann propagator theory is simply propor-

tional to the same diagram in the theory with the Dirichlet propagator. A similar relation

is true for the contributions of the mixed xxY Y 4-derivative vertices in (2.8). There is

also a close relation between the two cases for the contribution of the 2-derivative ζ2(∂ζ)2

vertex in (3.10). Explicitly, one finds (see appendix F)∫
dzdtN′(t1) N′(t2) ∂µN′(t3) ∂µN′(t4) = 16

∫
dzdtK1(t1) K1(t2) ∂µK1(t3) ∂µK1(t4) + ω ,

(6.21)

ω(t1, t2, t3, t4) = −8π

t234

(
1

t13t23
+

1

t14t24

)
, tij = ti − tj . (6.22)

which may be proved by using (6.16)–(6.20) and performing the integrals. The “deficit”

ω-term here corresponds to the non-zero boundary contribution that survives upon manip-

ulating one integral into the other using integration by parts (see (F.4)–(F.7)).

We then arrive at the following symbolic relations between the G-functions appearing

in the corresponding connected contributions to the correlators in (5.2) and (6.1), (6.2) in

the Dirichlet and Neumann cases24

〈xi(t1)xj(t2)Y A(t3)Y B(t4)〉 : ∂t3∂t4Ĝ = −2
1

t234

GD(χ), (6.23)

〈Y A(t1)Y B(t2)Y C(t3)Y D(t4)〉 : ∂t1∂t2∂t3∂t4Ĝ = 4
1

t212 t
2
34

GD(χ) + Ω . (6.24)

Here Ĝ and GD stand for the contact diagram 1
(
√
λ)3

contributions in the Neumann and

Dirichlet cases respectively with all symmetry group factors stripped off before averaging

over nA in the N-case (Ĝ-functions are related to G-functions in (6.2) as in (6.29) below).

For simplicity, in this section shall often omit the label “(3)” on G(3). Ω in (6.24) is the total

contribution of the ω-terms in the relation like (6.21). The basic idea behind (6.23), (6.24)

is that after the differentiation over the boundary points the Neumann propagator contribu-

tions get related to the Dirichlet ones as in (6.19), (6.21). To find the conformally-invariant

solution for the total G we will need to add also the “reducible” contribution as in (6.15)

that will cancel non-invariant terms in Ω.

24While in the D-case it is natural to strip off normalization factors of all 2-point functions in the correlator

in the N-case this is not natural as the 2-point function of Y A expanded in 1√
λ

starts with constant rather

than the tree-level propagator. We may still formally do this but without changing sign, so the factor

associated to the N-propagator in (5.4) will be 2π√
λ
|CN | = 1√

λ
. Finally, when relating the expressions in the

D and N cases we omit the 1√
λ

factors. This formal identification requires the -1 factor in (6.23).
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More explicitly, to compare to the supersymmetric line case with SO(5) scalars in (2.33),

(2.37) one is to replace Y A by ya and postpone the averaging over nA till the end. For the

mixed correlator in (6.23) we will have (cf. (3.16))

GabD = δabGD , ĜAB = PAB Ĝ → GAB =
1

6
δAB G , G = 5 Ĝ . (6.25)

In the massless 4-scalar correlator case, starting with the expression (2.33) in the super-

symmetric line case we are first to replace δab → PAB = δAB − nAnB and K1 = C1K1 →
GN = CNN in the SO(5) version of (2.15) getting (cf. (6.24))

ĜABCD = ĜS(χ)PABPCD + ĜT (χ)

[
PACPBD + PBCPAD − 2

5
PABPCD

]
+ ĜA(χ)

[
PACPBD − PBCPAD

]
, (6.26)

∂t1∂t2∂t3∂t4Ĝc = 4
1

t212 t
2
34

GD,c(χ) + Ωc , c = S, T,A . (6.27)

Here the functions GD,c(χ) are given by the leading-order connected expressions (2.34). Av-

eraging (6.26) over nA according to (3.15), (3.16) we end up with (cf. (6.2) and (2.16)–(2.18))

ĜABCD→ 1

36
GABCD , (6.28)

GABCD =GS δ
ABδCD+GT

[
δACδBD+δBCδAD− 2

6
δABδCD

]
+GA

[
δACδBD−δBCδAD

]
,

GS = 25ĜS , GT =
3

4
ĜS+

126

5
ĜT , GA = 24ĜA. (6.29)

Before turning to the case of 〈Y Y Y Y 〉 let us first demonstrate how the above D/N rela-

tion (6.23) explains the proportionality of the expressions for the leading connected part

of the mixed correlator 〈xi(t1)xj(t2)Y A(t3)Y B(t4)〉 in the supersymmetric (D) (2.38) and

non-supersymmetric (N) (5.16), (5.18) cases. The leading order term in GD is G(1) in (2.38).

To find the corresponding term in GN we may integrate the relation in (6.23).

The double derivative operator in (6.23) has a nice interpretation in terms of the

quadratic Casimir operator of the 1d conformal group (i.e. J2 for SO(1, 2)). Indeed,

t234 ∂t3∂t4 is invariant under the scale transformations, translations, and also the inversion.

When acting on a function of the cross-ratio χ = t12t34
t13t24

it becomes

t234 ∂t3∂t4f(χ) = −Df(χ) , D ≡ χ2 (1− χ) ∂2
χ − χ2 ∂χ, (6.30)

where D is the conformal Casimir operator (see, e.g., [43, 49]). The eigenfunctions of D

are the SL(2, R) conformal blocks (cf. (B.1))

DFh = h(h− 1)Fh , Fh = χh Fh(χ) , Fh ≡ 2F1(h, h, 2h, χ) . (6.31)

From (6.23), (6.25) we have (cf. (2.38))

t234 ∂t3∂t4G(χ) = −DG(χ) = −10GD(χ) . (6.32)
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One can check that

F2 = χ2
2F1 (2, 2, 4, χ) = −12

[
1−

(
1

2
− 1

χ

)
log(1− χ)

]
= 3GD(χ) ,

DGD(χ) = 2GD(χ) .

(6.33)

Thus GD = G(1) in (2.38) is given just by a single conformal block corresponding to the

dimension h = 2. This means that in the supersymmetric line case the only operator that

can appear in the OPE channel 12 → 34 (besides the identity which contributes to the

disconnected part) is the h = 2 singlet ∼ yaya. Integrating (6.32) for G using (6.33) we get

G(χ) = 5GD(χ) + c1 + c2 log(1− χ) , (6.34)

where the last two terms are the zero modes of the Casimir operator D , i.e. a linear

combination of the h = 0 and h = 1 conformal blocks.

Let us argue that this “zero-mode” part is to be omitted, i.e. one should set c1 = c2 = 0.

The leading order term in the small χ expansion of generic G(χ) in (2.10) should be

determined by the minimal dimension of the fields appearing in the corresponding OPE.

In the present case of connected part of G this is the ∆ = 2 operator suggesting that

G(0) = 0. Assuming the symmetry under t3 ↔ t4, i.e. under χ → − χ
1−χ , we get also

G′(0) = 0. Then a (connected part of) G(χ) should have the small χ expansion25

G(0) = G′(0) = 0 . (6.35)

This property is readily checked for GD = G(1) in (2.38) and should hold also for G

in (6.34), implying that c1 = c2 = 0. As a result, we find that G in (6.34) coincides

with the expression in (5.17), (5.18) that we found above by the direct computation in the

Neumann propagator case.

6.3 Contact diagram contribution and GS,T,A functions at order 1

(
√
λ)3

The four-point function 〈Y AY BY CY D〉 in the SO(6) Neumann theory (6.1), (6.2) is ex-

pressed in terms of the three functions Gc (c = S, T,A). The main task is to determine GS
as then GT and GA can be found using the crossing relations (2.23), (2.24) (with N = 6)

GT (χ) = − 3

20

[
GS (χ)− 3χ2∆GS

(
1

1− χ

)
− 3

(
χ

χ− 1

)2∆

GS (1− χ)

]
, (6.36)

GA (χ) =
3

5

[
χ2∆ ĜS

(
1

1− χ

)
−
(

χ

χ− 1

)2∆

ĜS (1− χ)

]
,

∆ =
5√
λ

+
d2(√
λ
)2 +

d3

(
√
λ)3

+ . . .
(6.37)

25This will also apply to the singlet part of the 4-scalar correlator below but will not be true in general

in the T- and A- channels.
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One may try to determine GS by integrating the relation (6.27) of its connected part to

the corresponding function in the Dirichlet theory (2.34)

t212 t
2
34 ∂t1∂t2∂t3∂t4 (GS)conn = 100GD,S(χ) + US , US = t212t

2
34ΩS . (6.38)

The normalization of the US contribution is chosen such that it directly contributes to GS .

Here we restored the label “conn” on GS to indicate that this contribution comes from the

contact connected diagram. By the explicit computation from the 4-vertex in first term

in (3.10) one finds that in the S-channel the total combination ΩS of ω-terms coming from

relations like (6.21) is such that

US(t1, t2, t3, t4) = 40 t212t
2
34

(
1

t212t23t24
− 5

t12t223t24
− 6

t12t23t224

+
1

t212t14t13
− 1

t223t34t13

+
6

t12t214t13
+

2

t23t234t13
+

5

t12t14t213

− 1

t23t34t213

)
. (6.39)

Since US is not conformally invariant, the contact diagram contribution to GS is also not

just a function of χ so we cannot simply replace t212 t
2
34 ∂t1∂t2∂t3∂t4 in (6.38) by the square

of the Casimir operator D (6.30). However, the conformal invariance is restored in the

total expression for GS , i.e. once we add the “reduced” diagram contributions as in (6.15).

Indeed, the expression for t212 t
2
34 ∂t1∂t2∂t3∂t4 applied to the reduced part (GS)red is given

by the sum of (G.11) and (G.18). As a result, we find that non-invariant terms in (G.18)

cancel against those in (6.39) and we are left with

t212 t
2
34∂t1∂t2∂t3∂t4 (GS)conn = D2(GS)conn = 100GD,S(χ)+RS(χ) , (6.40)

GS = (GS)conn+(GS)red , (GS)red = (GS)log2 +(GS)log3 , (6.41)

RS = 8d2

[
χ2+

χ2

(1−χ)2

]
+320

χ2

(1−χ)2

([
1+(1−χ)2

](
1+

1

2
logχ

)
− 1

2
log(1−χ)

)
. (6.42)

Here RS is the combination of US with the contributions (G.11), (G.18) of the “reduced”

terms in which all non-invariant terms happen to cancel out. The d2 term in (6.42) is the

contribution of the log2 reduced term in (G.11); as its contribution to the invariant part

of GS is known already (see (G.10)) in what follows we will simply omit it, concentrating

on other invariant terms in GS solving (6.40).

We may formally split (GS)conn into the sum GS + G̃S of the solution of D2GS =

100GD,S(χ) where GD,S = G
(1)
S in (2.34) and the solution of D2G̃S = RS(χ) where RS is

given by (6.42),

(GS)conn = GS + G̃S , D2GS = 100GD,S(χ) , D2G̃S = RS(χ) . (6.43)
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Explicitly, one finds that the most general solution for G̃S may be written as26

G̃S = −320 Li3(1− χ) + 320 Li2(1− χ) log(1− χ) + 160 Li2(χ) log(1− χ)

− 80

3
log3(1− χ) + 240 logχ log2(1− χ) +

4∑
n=1

cnψn(χ) , (6.44)

ψ1 = 1, ψ2 = log(1− χ), ψ3 = logχ , ψ4 = Li2(χ) +
1

2
logχ log(1− χ) , (6.45)

where cn are constants multiplying the zero modes ψn(χ) of the D2 operator (cf. (6.34)).

Expanding (6.44) for small χ we get

G̃S = [c3 logχ+ c1 − 320ζR (3)] +

(
c4 − c2 −

1

2
c4 logχ

)
χ

+

[
1

4
c4 −

1

2
c2 − 80 +

(
80− 1

4
c4

)
logχ

]
χ2 +O(χ3) . (6.46)

Imposing the condition (6.35) fixes

c1 = 320ζR(3) , c2 = c3 = c4 = 0 . (6.47)

Similarly, we may attempt to solve the equation for GS(χ) in (6.43) which has a more com-

plicated source term (cf. (2.34)) and try to constrain the zero-mode freedom by imposing

the 3↔ 4 crossing symmetry condition on the total function (cf. (2.19), (2.20))

GS (χ) = GS

(
χ

χ− 1

)
, (6.48)

and also the condition (6.35). A somewhat complicated structure of ψ4 in (6.45) suggests

that finding a correct analytic continuation of GS(χ) out of the perturbative region χ→ 0

may be non-trivial.27

To avoid these issues let us start from the very beginning and consider not the fourth

derivative (as in (6.27)), but just the second derivative of the singlet correlator

∂t1∂t2〈Y A(t1)Y A(t2)Y B(t3)Y B(t4)〉 . (6.49)

Computing it using the relations between the N and D propagators like (6.18) we may then

integrate the resulting analog of (6.23), i.e. follow the same approach as described above

in the case of the mixed correlator 〈xxY Y 〉.
26The appearance of Lin functions here (absent in the “reduced” log3 contribution in (G.17)) should be

attributed to the contribution of the Ω-part of the contact diagram contribution to RS : for example, the 4

times integrated expression of the ω in (6.22) can be seen to be given by a combination of the polylogarithmic

functions.
27A possible solution of the analytic continuation problem may be based on the following relations

D2 [f(1− χ)] =
χ2

(1− χ)2

[
D2f(χ)

]
χ→1−χ , D2

[
f

(
1

1− χ

)]
= χ2 [D2f(χ)

]
χ→ 1

1−χ
.

Indeed, to determine, for instance, f( 1
1−χ ) from the solution to D2f = g, one simply writes D2[f( 1

1−χ )] =

χ2 g( 1
1−χ ). If the r.h.s. admits a simple analytic continuation (e.g. using the log(· · · )→ log | · · · | rule) under

which it keeps essentially the same complexity, this will then readily give an expression for f( 1
1−χ ) after

the integration.
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Our strategy will be to find the invariant contribution to GS (freely doing integrations

by parts and assuming that all non-invariant terms from boundary terms cancel against the

“reduced” contributions as discussed above). A consistency test will be that the resulting

function will indeed satisfy the correct 4-derivative equation D2GS = 100GD,S(χ) in (6.43).

Given the connected correlator with 4-vertices from (3.10) (see figure 11), applying

∂t1∂t2 to it we will get various contractions with two of the four bulk-to-boundary Neumann

propagators (5.4), (6.13) differentiated over the boundary point. For example, the 4-

derivative vertices in (3.10) will lead to (cf. (6.21))

∂µN′(t1)∂µN′(t2)∂νN(t3)∂νN(t4), etc. (6.50)

Using (6.18) or ∂µN′ = 2 εµν∂νK1 we can replace N′ with K1 and also apply the relations

similar to (5.8), i.e.

∂K1(t1) · ∂K1(t2) = K1(t1)K1(t2)− 2 t212 K2(t1)K2(t2) , (6.51)

∂K1(t1) · ∂N(t2) = −2 zK2(t1) + 2 t212 K2(t1) K1(t2). (6.52)

This allows us to effectively replace all logarithmic N factors by the Dirichlet functions

Kn(t, ta; z) =
[

z
(t−ta)2+z2

]n
, (cf. (2.30)) so that the resulting integrals over the AdS2 bulk

point become the standard ones (see appendix C).

There is also another type of contractions coming from the 2-derivative vertex in (3.10):

after applying ∂t1∂t2 to them we get integrals
∫
dtdz(· · · ) like (6.21) with the integrands

of the three types

V1 = N N ∂µN′ ∂µN′, V2 = N′N′ ∂µN ∂µN, V3 = N N′ ∂µN ∂µN′. (6.53)

We can simplify these using �N = �N′ = �K1 = 0 (here � = ∂µ∂µ = ∂2
t + ∂2

z ) and formal

integration by parts. Then we get28 V1 = 4GNGN∂µK1∂µK1 → 4∂µGN∂µGNK1K1, and we

can use (5.8) to eliminate N in terms of K1. V2 in (6.53) can be also reduced to the V1-type

term: V2 = N′N′∂µN∂µN → ∂µN′∂µN′NN. The same is also true for V3 = NN′∂µN∂µN′

(using the 1↔ 2 and 3↔ 4 symmetry).

As a result, we find that the second derivative of GS appearing in (6.49) is given by

(see (5.11) and (C.5) for the expressions for the T and D functions)29

∂t1∂t2GS = − 1

2π

[
− 400t213t

2
23 T2,2,2(t1, t2, t3)− 400t214t

2
24 T2,2,2(t1, t2, t4) +

150πt234

t213t
2
24

D1,1,1,1

−
60π

[
(t213 − 7t14t13 + t214)t212 + 5t13t14(t13 + t14)t12 − 5t213t

2
14

]
t234

t413t
4
24

D2,2,1,1

]
.

(6.54)

28Here we use that for the harmonic functions (�Hi = 0) one has H1H2∂µH3∂µH4 = 1
2
H1H2�(H3H4)→

1
2
�(H1H2)H3H4 = ∂µH1∂µH2H3H4 where we dropped a total derivative term.
29In obtaining the expression (6.54) we included the contributions of diagrams with the − 1

2
nA ζ2 term

in Y A at the points t3 or t4 (like in figure 7 where points xi are now replaced by Y A). This amounts to a

subtraction of contributions at the coinciding points completely analogous to that in (5.9).
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Here we again put bar on GS to indicate that this connected contribution of the contact

diagram is computed by formally discarding boundary terms while integrating by parts.

Using (5.12), (C.5) gives (cf. (6.30))

−DGS(χ) =−10

[
χ2−10χ+10

χ−1
− (χ2−10χ+10)χ2

(χ−1)2
logχ+

χ3−8χ2+5χ−10

χ
log(1−χ)

]
= 25

(
4logχ− 47

15

)
χ2+25

(
4log χ− 17

15

)
χ3+O(χ4) . (6.55)

Integrating this as in (6.32), (6.34) and applying the crossing constraint (6.48) and the

condition (6.35) of regularity at χ→ 0 we get30

GS (χ) = −240

[
Li3 (χ) + Li3

(
χ

χ− 1

)]
+ 50

[1

2
− 1

χ
− 1

5
χ+

8

5
Li2(χ)

]
log(1− χ)

+ 40

[
log3(1− χ)− 1

4

χ2

1− χ
logχ− log2(1− χ) logχ

]
− 50 (6.56)

= −50
(

logχ− 137

60

)
χ2 +O(χ3) .

We have fixed the integration constant to zero using (6.35).31 A non-trivial check of (6.56) is

that applying D2 it does satisfy the second equation in (6.43) with GD,S(χ) given by (2.34).

It is interesting to note that despite the relative simplicity of the ζ2(∂ζ)2 vertex con-

tribution to the (6.55) (given by the term −80
[
χ2

χ−1 logχ − χ log(1 − χ)
]

on the r.h.s.) it

is this vertex that produces the most complicated Lin dependent part in GS(χ) in (6.56)

while the contribution (GS)(∂ζ)4 of the (∂ζ)4 vertex is similar in structure to the expression

in (2.34) in the Dirichlet theory case:

(GS)(∂ζ)4 = −50 + 50

(
1

2
− 1

χ
− 1

5
χ

)
log(1− χ)− 10

χ2

1− χ
logχ . (6.57)

The total expression for the 1
(
√
λ)3

term in GS(χ) in (6.14) is given by the sum of G̃S(χ)

in (6.44), (6.47) and GS(χ) in (6.56) and also the reducible d2-contribution in (G.10) (cf.

30 Let us note two useful relations:

Li2(1− χ) =
π2

6
− log(1− χ) logχ− Li2(χ),

Li3(1− χ) =
π2

6
log(1− χ) +

1

6
log3(1− χ)− 1

2
log2(1− χ) logχ+ ζR(3)− Li3(χ)− Li3

(
χ

χ− 1

)
.

31This condition is natural as the connected part of 〈Y A(t1)Y A(t2)Y B(t3)Y B(t4) should vanish for t12 → 0

and t34 → 0 (implying χ → 0) as we have Y AY A = 1 at the coincident points. Thus in (6.1) we should

have GS(χ→ 0)→ 1, i.e. the connected part of GS should vanish at χ = 0.
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also (6.42)), i.e. explicitly

GS = 1 +
10(√
λ
)2 log2 (1− χ) +

1(√
λ
)3G

(3)
S +O

 1(√
λ
)4

 , (6.58)

G
(3)
S = 80

[
Li3 (χ) + Li3

(
χ

χ− 1

)
− Li2 (χ) log (1− χ)

]
+ 40 log

χ

1− χ
log2 (1− χ)

− 10
χ2

1− χ
logχ+ 5

(
5− 10

χ
− 2χ

)
log (1− χ)− 50 + 4 d2 log2 (1− χ) (6.59)

=

(
30 logχ+

205

6
+ 4d2

)
χ2 +O

(
χ3
)
.

Let us now compute the 1
(
√
λ)3

terms in the GT and GA functions (complementing the order
1

(
√
λ)2

expressions in (6.12), (6.13)) using the crossing relations (6.36), (6.37). As a first

step, let us replace (6.59) by the following improved form that is equivalent to (6.59) for

0 < χ < 1 and represents its real continuation for χ > 1 (cf. footnote 30)

G
(3)
S = −80 Li3 (1− χ) +

[
80Li2(1− χ)− 5(2χ2 − 5χ+ 10)

χ

]
log |1− χ|+ 10

χ2

χ− 1
logχ

− 80

3
log3 |1− χ|+ 80 logχ log2 |1− χ|+ 10 [8ζR(3)− 5] + 4 d2 log2 |1− χ|. (6.60)

Note that using this expression we can consider the analytic continuation to the thermal

out of time order correlators, following the procedure described in section 2.4. It is easy

to see that the dominant contribution in the limit relevant for chaos comes again from

the term ∼ χ−1 log(1− χ) in (6.60), leading to a maximal Lyapunov exponent. This term

originates, in fact, just from the “Nambu string” (∂ζ)4 vertex contribution (6.57) (and not

from the S5 sigma model vertex ζ2(∂ζ)2 in (3.10)), in full analogy with what happened

also in the supersymmetric line case (cf. last term in G
(1)
S in (2.34)).

Applying the crossing relations (6.36), (6.37) we can use (6.60) to get the following

(real) expressions for GT and GA that are valid in the range 0 < χ < 1 and depend also

on the subleading coefficients in ∆ in (4.2)

G
(3)
T = 48Li3(1−χ)+log(1−χ)

[
−12Li2 (1−χ)+36Li2 (χ)−

3
(
17χ2−11χ+1

)
2χ

−324log2χ

]

+
3
(
17χ2−21χ+21

)
2(χ−1)

logχ−83log3 (1−χ)+216log3χ+294logχ log2 (1−χ) (6.61)

+
3

2
[16ζR (3)−25]−6π2 log (1−χ)+

3

5
d2

[
9log2

(
χ2

1−χ

)
+8log2 (1−χ)

]
+

9

10
d3 log

(
χ2

1−χ

)
,
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G
(3)
A = 48[Li3 (1−χ)+2Li3 (χ)]+log(1−χ)

[
48Li2 (χ)−24χ+192log2χ+3

]
+

[
24(χ−2)χ

χ−1
−96Li2 (χ)

]
logχ+84log3 (1−χ)−192logχ log2 (1−χ)−48ζR (3)

+
48

5
d2 log (1−χ) log

(
χ2

1−χ

)
+

6

5
d3 log (1−χ) . (6.62)

The small χ expansions of these expressions read (cf. (6.59))

G
(3)
T = 216 log3 χ+

108

5
d2 log2 χ+

(
−63

2
+

9

5
d3

)
logχ+ 72ζR (3)− 36

+

[
324 log2 χ+

108

5
d2 logχ− 63

4
+

9

10
d3

]
χ

+

[
162 log2 χ+

(
54

5
d2 +

513

2

)
logχ+

51

5
d2 +

23

4
+

9

20
d3

]
χ2 +O

(
χ3
)
, (6.63)

G
(3)
A =

[
−192 log2 χ+

(
−96

5
d2 − 48

)
logχ+ 93− 6

5
d3

]
χ

+

[
−96 log2 χ+

(
−48

5
d2 − 216

)
logχ− 48

5
d2 +

45

2
− 3

5
d3

]
χ2 +O

(
χ3
)
. (6.64)

A direct computation of G
(3)
T and G

(3)
A which is not based on the crossing relations but

follows the same approach as used above to find G
(3)
S is presented in appendix H. Up to the

Casimir operator zero mode terms (cf. (6.45)) that are not, in general, determined in the

approach based on integrating the relations like (6.24) the resulting expressions are found

to be equivalent to (6.61) and (6.62).

The reason why this ambiguity was not present in the case of G
(3)
S (or, equivalently,

was fixed by the condition (6.35)) can be understood from the OPE constraints: in the

singlet channel the only non-derivative operator (with dimension O( 1√
λ

)) that can appear

in the exchange is the identity (due to Y AY A = 1), implying GS(χ) = O(χ2). At the same

time, non-singlet Y AY B operators can appear in the OPE of GT and GA.

Finally, let us note that the resulting expressions for G
(3)
S,T,A in (6.60), (6.61), (6.62)

depend on two subleading coefficients d2 and d3 in the scalar anomalous dimension (4.2)

that receive contributions from the fermion loops and are yet to be determined.

6.4 OPE and anomalous dimensions

Let us now discuss the consistency of the expressions for the GS,T,A functions with the OPE

and extract the anomalous dimensions of composite operators appearing in the intermediate

channels as was done in the supersymmetric case in [11] (see (2.35)–(2.36) and appendix B).

Let us assume the following conformal-block expansion (cf. (2.11), (B.1))

Gc =

{
c0 χ

h0 Fh0 + c2 χ
h2 Fh2 + . . . , c = S, T,

c1 χ
h1 Fh1 + c3 χ

h3 Fh3 + . . . , c = A,
(6.65)

where

cn = c(0)
n + c(1)

n

1√
λ

+ c(2)
n

1

(
√
λ)2

+ . . . , hn = n+ γ(1)
n

1√
λ

+ γ(2)
n

1

(
√
λ)2

+ . . . . (6.66)
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Comparing (6.10), (6.11), (6.59) with (6.65) we find in the S-channel:

h0,S = 0 , c0,S = 1 +O
(

1

(
√
λ)4

)
,

h2,S = 2 +
3√
λ

+ · · · , c2,S =
10

(
√
λ)2

+

(
205

6
+ 4 d2

)
1

(
√
λ)3

+ · · · ,

h4,S = 4− 2√
λ

+ · · · , c4,S =
1

6 (
√
λ)2

+

(
24

5
+

1

15
d2

)
1

(
√
λ)3

+ · · · . (6.67)

Here d2 is the subleading coefficient in ∆ in (4.2). h0 = 0 should correspond to the identity

operator (YAYA = 1), while h2 to the YA∂
2
t YA operator. Similarly, we get from (6.63)

h0,T =
12√
λ

+
12d2

5

1

(
√
λ)2

+
(
−42+

12

5
d3

)
1

(
√
λ)3

+· · · , c0,T =
3

4
−36[1−2ζR(3)]

1

(
√
λ)3

+· · · ,

h2,T = 2+
171

17

1√
λ

+· · · , c2,T =
51

2

1

(
√
λ)2

+
(
−2483

8
+

51

5
d2

)
1

(
√
λ)3

+. . . , (6.68)

h4,T = 4+
86

17

1√
λ

+· · · , c4,T =
17

40

1

(
√
λ)2

+
(

1893

200
+

17

100
d2

)
1

(
√
λ)3

+· · · ,

and from (6.64)

h1,A = 1+
8√
λ

+
(

8+
8

5
d2

)
1

(
√
λ)2

+· · · , c1,A =− 6√
λ
− 6d2

5

1

(
√
λ)2

+
(

93− 6

5
d3

)
1

(
√
λ)3

+· · · ,

h3,A = 3+
6√
λ

+· · · , c3,A =−8

3

1

(
√
λ)2
−
(

368

9
+

16

15
d2

)
1

(
√
λ)3

+· · · , (6.69)

h5,A = 5− 1√
λ

+· · · , c5,A =− 12

175

1

(
√
λ)2
−
(

16997

6125
+

24

875
d2

)
1

(
√
λ)3

+· · · .

We have found that the general form of the 1√
λ

term in the anomalous dimensions in (6.67),

(6.68), (6.69) is as in (6.66), i.e. hn,c = n+ γ
(1)
n,c

1√
λ

+ · · · , with

γ
(1)
n,S =

{
0, n = 0,

4− 1
2 n (n− 1), n = 2, 4, 6, . . . ,

γ
(1)
n,T =

{
12, n = 0,
188
17 −

1
2 n (n− 1), n = 2, 4, 6, . . . ,

γ
(1)
n,A =

{
8, n = 1,

9− 1
2 n (n− 1), n = 3, 5, 7, . . . ,

(6.70)

The dependence on n is the same in all three channels (apart from the “special” bottom

states n = 0 for c = S, T and n = 1 for c = A). This was also true in the supersymmetric

case [11]. In fact, the large n behaviour of γ
(1)
n is the same in the supersymmetric and the

non-supersymmetric case

hn�1 = n− n2

2
√
λ

+ . . . . (6.71)

This universality (independence of boundary conditions on S5 scalars) should be consistent

with possible semiclassical explanation of this large n scaling (see also (5.22) and comments

below it).

In the T-channel the OPE coefficients with n > 0 are subleading in 1√
λ

, because

they come from 3-point functions like 〈Y (t1)Y (t2)(Y {A∂nt Y
B})(t3)〉 which for n > 0 do
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not have an order-zero part. At order 1√
λ

all the higher powers of χ in GT in (6.12)

agree with the OPE cnχ
∆nFn containing only the n = 0 term (see also appendix I). This

means that the OPE coefficients with n > 0 start at 1
(
√
λ)2

. Indeed, we would get at least

two ζ-propagators (each with 1√
λ

) in 〈Y (t1)Y (t2)(Y ∂nt Y )(t3)〉 for n ≥ 2. The anomalous

dimension of Y {A∂nt Y
B} should be 12√

λ
+ · · · as expected from the analysis of the two

point function (cf. (4.6)). Note that the dn corrections to the anomalous dimensions in

the previous results are always encoded by a factor 1 + d2
5

1√
λ

+ d3
5

1
(
√
λ)2

+ . . . correcting

the leading order. This is equal to the relative subleading corrections to ∆ in (4.2). This

follows from the universal “dressing” of the ζ-propagator (cf. also the expression for h2

in (5.21)) at leading order in the coefficients dn and is a feature that is not expected to

hold at higher orders.

Similar comments apply to the S and A channels. The lowest-dimension operator

appearing in the A channel is Y [A∂tY
B] which, according to (6.69), has h1,A = 1+ 8√

λ
+ . . .

and c1,A = − 6√
λ

+ . . . .32

Another consistency check is possible using the expressions (H.7), (H.8) for the “re-

ducible” 1
(
√
λ)3

contributions in the T and A channels. The lowest order the operator

contributing to the OPE expansion (6.65) in the T-channel has h0,T = 12√
λ

+ . . . . This

means that we should find a peculiar contribution 216
(
√
λ)3

log3 χ coming from the expansion

of c0,T χ
h0,T = 3

4 χ
12√
λ

+...
. There are no such log3 χ terms in the Gc functions correspond-

ing to the connected diagram contribution. In fact, this contribution is provided by the

G̃T function (H.7) that complements GT to the full GT like in the S-channel in (6.43):

it contains the required log3 χ term in its χ → 0 expansion in (6.63). Similarly, the A-

channel expression (6.64), (H.8) contains the term − 192
(
√
λ)3

χ log2 χ which is precisely the

one appearing in the expansion of c1,Aχ
h1,A = − 6√

λ
χ

1+ 8√
λ

+...
, see (6.69).
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∫
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T (Y ) = CA1...AJ Y
A1 · · ·Y AJ , and then its anomalous dimension operator (entering the condition of this

being a marginal perturbation) is the scalar Laplacian on S5 (see, e.g., [3, 50]). If instead one considers the

perturbation by the operator Y [A∂tY
B], i.e.

∫
dtFABY

A∂tY
B ≡

∫
dtVA(Y )∂tY

A, where FAB is antisym-

metric then one gets a special case of the boundary vector perturbation for which the anomalous dimension

operator is the Maxwell one or the vector Laplacian on S5 (the above VA is transverse). The eigenvalues

of the latter on Sd are λJ = J (J + d− 1) + d− 2 giving +8 for d = 5 and J = 1.
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A Four-point correlators of generalized free fields

Assuming that O∆(t) is represented by a free field and normalized so that

⟪O∆(t1) O∆′(t2)⟫ =
δ∆,∆′

(t12)2∆
, (A.1)

and doing three separate contractions one finds for the correlator in (2.10)

⟪O∆(t1)O∆(t2)O∆(t3)O∆(t4)⟫ =
1

(t12t34)2∆
G(χ) , G = 1 +χ2∆ +

χ2∆

(1− χ)2∆
. (A.2)

This can be checked against (2.11) by taking into account that the exchanged fields are the

identity operator and the composites

[O∆O∆]2n ∼ O∆∂
2n
t O∆, h = 2∆ + 2n, n = 0, 1, . . . , (A.3)

with the OPE coefficients given by (see, e.g., [51, 52])

c∆,∆;2∆+2n =
2 [Γ(2n+ 2∆)]2Γ(2n+ 4∆− 1)

[Γ(2∆)]2Γ(2n+ 1)Γ(4n+ 4∆− 1)
. (A.4)

One can show that the +1 in (A.2) comes from the identity, while the rest comes from the

tower of operators in (A.3). Also, 1 + 1
(1−χ)2∆ =

∑∞
n=0 c∆,∆;2∆+2n χ

2n
2F1(2∆ + 2n, 2∆ +

2n, 4∆ + 4n, χ). Similarly, in the case of two different dimensions (2.12) one gets

⟪O∆1(t1)O∆2(t2)O∆1(t3)O∆2(t4)⟫ =
1

t2∆1
13 t2∆2

24

=
1

(t12t34)∆1+∆2

∣∣∣∣ t24

t13

∣∣∣∣∆12

G(χ) ,

G = χ∆1+∆2 .

(A.5)

Here we assumed that ∆1 6= ∆2 so that (A.2) is a not a limit of (A.5). The form of

G = χ∆1+∆2 here can again be explained in terms of the fusion O∆1 +O∆2

h→ O∆1 +O∆2

leading to the composite operators

[O∆1O∆2 ]n ∼ O∆1∂
n
t O∆2 , h = ∆1 + ∆2 + n, n = 0, 1, . . . , (A.6)

with the OPE coefficients

c∆1,∆2;∆1+∆2+2n =
(−1)nΓ(n+ 2∆1)Γ(n+ 2∆2)Γ(n+ 2∆1 + 2∆2 − 1)

Γ(2∆1)Γ(2∆2)Γ(n+ 1)Γ(2n+ 2∆1 + 2∆2 − 1)
. (A.7)

B Anomalous dimensions from OPE in supersymmetric case

Here we recall how the anomalous dimensions may be extracted from the OPE expansion

of the G(χ) function in (2.11) on the example of the symmetric traceless tensor part in

the supersymmetric line case following [11]. The strong-coupling expansion of the 5-scalar

four-point function (2.33) leads to (cf. (2.11))

G
(0)
T (χ) +

1√
λ
G

(1)
T (χ) + · · · =

∑
h

chχ
hFh(χ), Fh(χ) = 2F1(h, h, 2h, χ), (B.1)

hn = 2 + 2n+
1√
λ
γ

(1)

[ΦΦ]T2n
+ . . . , ch = c

(0)

ΦΦ[ΦΦ]T2n
+

1√
λ
c

(1)

ΦΦ[ΦΦ]T2n
+ . . . . (B.2)
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Comparing the leading order term with the free-field result (A.2), (A.4), we obtain

c
(0)

ΦΦ[ΦΦ]T2n
=

[Γ(2n+ 2)]2Γ(2n+ 3)

Γ(2n+ 1)Γ(4n+ 3)
. (B.3)

To get the subleading order correction we use

χh = χ
2+2n+ 1√

λ
γ(1)

= χ2+2n

(
1 +

1√
λ
γ(1) logχ+ . . .

)
, (B.4)

and the general inversion formula

∞∑
n=0

cn χ
2+2n F2+2n(χ) = f(χ) → cn =

∮
dχ

2π i
χ−3−2nF−1−2n(χ) f(χ) . (B.5)

As a result,

γ
(1)

[ΦΦ]T2n
=
[
c

(0)

ΦΦ[ΦΦ]T2n

]−1
∮

dχ

2π i
χ−3−2nF−1−2n(χ)

[
G

(1)
T (χ)

]
logχ

= −3n− 2n2. (B.6)

One can compute in a similar way the correction to the OPE coefficients [11].

C AdS contact integrals

The building block for AdSd+1 diagrams with a 4-point contact term like in (2.33) is the

D-function (see, e.g., [53–55])

D∆1,∆2,∆3,∆4(x1, x2, x3, x4) =

∫
dz ddx

zd+1

4∏
n=1

K∆n(z, x;xn) , (C.1)

where K∆ was defined in (2.30). A useful identity is

gµν∂µK∆1(z, x;x1) ∂νK∆2(z, x;x2)

= ∆1∆2

[
K∆1(z, x;x1)K∆2(z, x;x2)− 2x2

12 K∆1+1(z, x;x1)K∆2+1(z, x;x2)
]
, (C.2)

where ∂µ = (∂z, ∂r) (r = (0, i)) and gµν = z2δµν . It is useful to replace D functions

by D functions that depend on the conformally invariant ratios u = x12x34
x13x24

, v = x14x23
x13x24

(Σ ≡ 1
2

∑
n ∆n)

D∆1,∆2,∆3,∆4 =
πd/2Γ(Σ− d

2
)

2Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)

x
2(Σ−∆1−∆4)
14 x

2(Σ−∆3−∆4)
34

x
2(Σ−∆4)
13 x2∆2

24

D∆1,∆2,∆3,∆4(u,v),

D∆1,∆2,∆3,∆4(u,v) =

∫
d3αδ

(
3∑
i=1

αi−1

)
α∆1−1

1 α∆2−1
2 α∆3−1

3
Γ(Σ−∆4)Γ(∆4)

(α1α3+α1α2u+α2α3v)Σ−∆4
.

(C.3)
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Specializing to AdS2 or d = 1 where u = χ2, v = (1− χ)2, one can prove that

D∆1,∆2,∆3,∆4 =
Γ(∆1) Γ(∆4) Γ

(
∆1+∆2+∆3−∆4

2

)
Γ
(−∆1+∆2+∆3+∆4

2

)
Γ(∆1+∆2+∆3+∆4

2 )
(C.4)

× χ−
∆1+∆2−∆3−∆4

2 (1− χ)−∆1−∆2−∆3+∆4

×
∫ ∞
−∞

dτ e−τ
∆1−∆2+∆3−∆4

2 (eτ + χ)∆1−∆4
2F1

×
(

∆1,
∆1 + ∆2 + ∆3 −∆4

2
,

∆1 + ∆2 + ∆3 + ∆4

2
,− 4χ

(1− χ)2
cosh2 τ

2

)
.

In particular, we get (assuming 0 < χ < 1)

D1,1,1,1 = −2 logχ

1− χ
− 2 log(1− χ)

χ
,

D1,1,2,2 =
χ2 log(χ)

3(χ− 1)2
− 1

3(χ − 1)
− (χ+ 2) log(1− χ)

3χ
,

D1,2,2,1 =
log(1− χ)

3χ2
+

1

3(χ− 1)2χ
− (χ− 3) log(χ)

3(χ− 1)3
,

D2,2,1,1 = −(χ+ 2) log(1− χ)

3χ3
− 1

3(χ− 1)χ 2
+

log(χ)

3(χ− 1)2
,

D1,2,1,2 = −(2χ+ 1) log(1− χ)

3χ2
+

1

3(χ− 1) χ
+

(2χ− 3) log(χ)

3(χ− 1)2
,

D2,1,2,1 = −(2χ+ 1) log(1− χ)

3χ2
+

1

3(χ− 1) χ
+

(2χ− 3) log(χ)

3(χ− 1)2
,

D2,1,1,2 =
(χ− 1)2 log(1− χ)

3χ2
+

1

3χ
− (χ− 3) log(χ)

3(χ− 1)
,

D2,2,2,2 = −2(χ2 − χ+ 1)

15(χ− 1)2χ2
+

(2χ 2 − 5χ+ 5) log(χ)

15(χ− 1)3
− (2χ2 + χ+ 2) log(1− χ)

15χ3
. (C.5)

D Green’s functions for 2d massless scalar

In this appendix we discuss the form of 2d massless scalar propagator with Neumann

boundary conditions on a space with half-plane or disc topology (with AdS2 being a spe-

cial case).

It is useful first to recall the case of compact 2d surface with no boundary (i.e. sphere

topology). The Laplace-Beltrami operator −D2 = − 1√
g ∂µ(

√
g gµν∂ν) has eigenvectors

−D2un = λ2
n un with

∫
d2σ
√
g unum = δnm and

∑
n un(σ)un(σ′) = 1√

g δ
(2)(σ − σ′). Sepa-

rating the constant zero mode u0(σ) = 1√
V

we get for the Green’s function (see, e.g., [56])

G(σ, σ′) =
∑
n>0

1

λ2
n

un(σ)un(σ′), −D2G(σ, σ′) =
∑
n>0

un(σ)un(σ′) = δ(2)(σ, σ′)− 1

V
,

(D.1)

where δ(2)(σ, σ′) = 1√
g δ

(2)(σ − σ′).
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In conformally flat coordinates ds2 = e2ρ dw dw the Green’s function formally should

not depend on the conformal factor; assuming plane topology it may still enter via a

(covariant) UV cutoff ε ≡ εUV introduced as

G(w,w′) = − 1

4π
log
(
|w − w′|2 + ε2 e−ρ(w)−ρ(w′)

)
. (D.2)

For a sphere topology a natural counterpart of this expression is

G(w,w′) = − 1

4π
log[s2(w,w′) + ε2] , s2(w,w′) = eρ(w)+ρ(w′) |w − w′|2 . (D.3)

In critical string theory in Polyakov approach [57] the dependence on conformal factor

should completely cancel out in the expressions for on-shell scattering amplitudes (see,

e.g., [58]).33

Similarly, for the critical string on a world sheet with a boundary (with, e.g., half-plane

topology) the standard massless propagator can be found using the method of images

GD,N(w,w′) = − 1

4π

[
log |w − w′|2 ∓ log |w − w′|2

]
, (D.4)

where the ∓ signs correspond to the Dirichlet (D) and Neumann (N) boundary conditions.

Introducing a covariant UV cutoff like in (D.2) gives (see also [60])

GD,N(w,w′) = − 1

4π

[
log
(
|w − w′|2 + ε2 e−ρ(w)−ρ(w′)

)
∓ log |w − w′|2

]
. (D.5)

This is true on a half-plane with any conformal factor. In the special case of AdS2

ds2 =
1

z2
(dt2 + dz2) =

dwdw

(Imw)2
, w = t+ i z , (D.6)

we get from (D.5) (cf. (3.12))

AdS2 : GD,N(t,z; t′,z′) =− 1

4π

[
log
[
(t−t′)2+(z−z′)2+ε2z z′

]
∓log

[
(t−t′)2+(z+z′)2

]]
.

(D.7)

The bulk-to-boundary propagators are obtained by taking z = ε → 0 (ε = εIR is an

IR cutoff):

GD(t, z; t′, ε) = εK(t, z; t′) +O(ε2), K(t, z; t′) =
1

π

z

(t− t′)2 + z2
, (D.8)

GN(t, z; t′, ε) = − 1

2π
log
[
(t− t′)2 + z2

]
+O(ε). (D.9)

In the Dirichlet case we obtain the standard bulk-to-boundary propagator (2.30) in AdS2;

the extra ε factor may be absorbed into a rescaling of boundary fields. In the Neumann case

the rescaling is not needed (consistently with the free boundary fields being dimensionless)

and we recover (5.4).

If the Weyl invariance of the theory is not manifest (like in the expansion of the Nambu

action) we may use instead a covariant approach specific to a particular 2-space. For a

33It survives in general in sigma model partition function [59].
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homogeneous space like a half-sphere or AdS2 it is natural to represent the propagator in

terms of the geodesic distance s(σ, σ′). Then in conformally flat coordinates for a half-plane

topology (ds2 = e2ρdwdw′) we get

GD,N(w,w′) = − 1

4π

[
log s2(w,w′)∓ log s2(w,w′)

]
, (D.10)

where the covariant bulk UV cutoff may be introduced as in (D.3) by s2(w,w′) →
s2(w,w′) + ε2. In the AdS2 case we then get explicitly for the Neumann case34

GN(t, z; t′, z′) = − 1

4π

[
log

(t− t′)2 + (z − z′)2

2zz′
+ log

(t− t′)2 + (z + z′)2

2zz′

]
. (D.11)

Note that the normal derivative of GN is constant at z = 0, instead of being zero as for the

naive Neumann boundary conditions. In fact, the natural Neumann boundary condition

on a massless scalar here is ∂nϕ
∣∣∣
z=0

= h = constant: near the boundary ϕ(z → 0) =

h log z + . . . which is consistent with ϕ ∼ az∆ + · · · when ∆ → 0. A closely related

discussion of the Neumann function for AdS2 may be found in [61].35

In bosonic model where power divergences do not automatically cancel out results

for correlators involving derivatives of the Green’s function at coinciding points in general

depend on regularization scheme. In the case of string sigma model that scheme should be

fixed so that to preserve underlying (target-space) symmetries of the theory. For example,

the second derivative at coinciding points gµνDµD
′
νG(σ, σ′)

∣∣
σ=σ′

depends on the choice of

UV regularization as discussed, e.g., in [56, 62]. Using spectral or heat kernel regularization

G(σ, σ′; ε) =
∑

n>0
1
λ2
n
un(σ)un(σ′) e−ε λ

2
n , one finds in conformally-flat coordinates (in the

absence of the boundary)

∂µG(σ, σ′; ε)
∣∣
σ=σ′

=
1

4π
∂µρ(σ), (D.12)

∂µ∂
′
µG(σ, σ′; ε)

∣∣
σ=σ′

=
e2ρ(σ)

4π ε
+

a

4π
∂2ρ(σ)− e2ρ(σ) u2

0 , (D.13)

where u2
0 = 1

V and a = 2
3 . The coefficient a of the ∂2ρ in ∂a∂

′
aG is regularization dependent:

it becomes a = 1 in dimensional regularization and is a = 0 if one uses the covariant Green’s

function on S2 (see [56]). It is a particular (dimensional regularization or equivalent)

scheme that leads to results consistent with string theory symmetries in the 2-sphere case

(see, e.g., [63, 64]).

Similar expressions are found in the presence of the boundary. Using that for AdS2

ρ = − log z, z2∂µ∂µρ = 1 (and ignoring the first and the last term in (D.13)) the coefficient

34Notice that here for the separated points (when the delta-function is zero) we get −D2GN =

−z2∂a∂aGN = 1
2π

. This may be interpreted as in (D.1) as a consequence of projecting out the con-

stant zero-mode contribution present for the Neumann boundary conditions: indeed, this expression is in

agreement with (D.1) after taking into account that the regularized volume of AdS2 with the S1 boundary

is V = −2π.
35In [61] one finds equivalent expressions: in global AdS2 coordinates ds2 = dr2 + sinh2 rdφ2 the geodesic

distance s(r, φ; r′, φ′) satisfies cosh s = cosh r cosh r′− sinh r sinh r′ cos(φ−φ′) and then GD = − 1
4π

log u
u+1

and GN = − 1
4π

log[u(u+ 1)] where u = sinh2 s
2
, u+ 1 = cosh2 s

2
, etc. Here again ∂nGN tends to a constant

at the boundary, see eq. (5.21) of [61].
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a = 1 of ∂2ρ term in (D.13) corresponds to k = 1 choice in (4.11).36 At the same time, as

discussed in [64], in the boundary case a more natural option is to keep only the last term

in the analog of (D.13). Then (with VAdS2 = −2π) we get

e−2ρ∂µ∂
′
µGN(σ, σ′; ε)

∣∣
σ=σ′

=
1

2π
, (D.14)

which corresponds to k = 2 choice in (4.11) that we used in (4.19).

E Equivalence of different parametrizations of S5

The quartic Lagrangian (2.9) used in the supersymmetric line case [11] corresponds to

the parametrization of S5 defined in (1.8). At the same time, in the discussion of the

non-supersymmetric case in section 3 we used a different parametrization (3.8) with the

corresponding Lagrangian in (3.10). Choosing there na = 0, n6 = 1(a = 1, . . . , 5) and

renaming ζa → ya the two Lagrangians become special cases of the following family

L4 = r1 y
byb (∂ya · ∂ya) + r2 y

a yb (∂ya · ∂yb) +O
(
(∂y)4)) (E.1)

where (2.9) corresponds to r1 = −1
4 , r2 = 0 and (3.10) — to r1 = 0, r2 = 1

2 . That the two

cases are related by a field redefinition is reflected in the fact that if we integrate by parts

and ignore the term proportional to the ya equations of motion (�ya = 0) then the quartic

Lagrangian becomes the same — depending on the combination r1− 1
2r2 which is equal to

−1
4 in both cases:

L4y =

(
r1 −

1

2
r2

)
ybyb (∂ya · ∂ya) +O

(
(∂y)4)) . (E.2)

Explicitly, ya yb (∂ya ·∂yb) = 1
4∂(y2) ·∂(y2)→ −1

4y
2�(y2) = −1

2 (y2)(∂y ·∂y)+O(�y). One

can check that field redefinitions leave boundary (“on-shel”) AdS correlators invariant: the

correlator (2.33) computed starting directly with (E.1) depends only on r1 − 1
2 r2, i.e. is

the same as the one corresponding to (E.2).

F Neumann/Dirichlet relations for bulk integrals

Let us provide some details of the proof of the relations leading to (6.23), (6.24).

To show (6.23) let us note that the contribution of the contact vertex in (2.8) to the

mixed correlator involves the following integral (here contractions are with flat metric in

(t, z) space and
∫
≡
∫∞

0 dz
∫∞
−∞ dt)

IN =
1

4
I

(1)
N − 1

2
I

(2)
N , (F.1)

I
(1)
N =

∫
∂µK2(t1) ∂µK2(t2) ∂νN′(t3) ∂νN′(t4),

I
(2)
N =

∫
∂µK2(t1) ∂νK2(t2) ∂µN′(t3)∂νN′(t4).

36This follows also directly from (D.7) as well as (D.11) supplemented with the ε-regularization term.
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Denoting by I
(k)
D similar integrals with N′ → K1, we using the identity in (6.18)

I
(1)
N = 4 I

(1)
D , I

(2)
N = 4

∫
∂µK2(t1) ∂νK2(t2) εµρενλ∂ρK1(t3) ∂λK1(t4) = 4

(
I

(1)
D − I(2)

D

)
.

(F.2)

As a result, (F.1) becomes

IN = −I(1)
D + 2 I

(1)
D = −4 ID. (F.3)

This gives the relation in (6.23) after dividing by the ratio of the factors in the propagators

C1/CN = −2 (cf. (2.32), (5.4)).

The contribution of the (∂ζ)4 vertex in (3.10) to 〈Y Y Y Y 〉 in the Neumann case involves

the integral

JN =

∫
N′(t1) N′(t2) ∂µN′(t3) ∂µN′(t4) = 4

∫
N′(t1) N′(t2) ∂µK1(t3) ∂µK1(t4) , (F.4)

where the second equality follows again from (6.19). Now using that �N′ = 0 and �K1 = 0

(� = ∂µ∂µ) and formally integrating by parts one finds that

JN = 2

∫
N′(t1) N′(t2)�[K1(t3) K1(t4)]→ 2

∫
�[N′(t1) N′(t2)] K1(t3) K1(t4)

= 4

∫
∂µN′(t1) ∂µN′(t2) K1(t3) K1(t4) = 16

∫
∂µK1(t1) ∂µK1(t2) K1(t3) K1(t4)

→ 16

∫
K1(t1) K1(t2) ∂µK1(t3) ∂µK1(t4) . (F.5)

It turns out that, in fact, the z = 0 boundary term is non-zero and is given by Ω in (6.22).

Namely, using AdS2 covariant form of the integrands we have for the difference of (F.4)

and (F.5)

Ω =

∫ ∞
0

dz

z2

∫ ∞
−∞

dt
[
N′(t1) N′(t2) ∂µN′(t3) ∂µN′(t4)− 16 K1(t1) K1(t2) ∂µK1(t3) ∂µK1(t4)

]
.

(F.6)

The integrand here is a rational function of z, t. The integral over t can be done by

computing the residues at t = ta + i z (a = 1, 2, 3, 4). The result is a rational function of z

(and ta) that can be integrated over z explicitly. Finally, we get37

Ω(t1, t2, t3, t4) = −8π
t13 t23 + t14 t24

t13 t23 t14 t24 t234

. (F.7)

37For example, choosing t1 = 0, t2 = 1, t3 = −1, t4 = 2, one finds

Ω =

∫ ∞
0

dz

∫ ∞
−∞

dt
16(t2 − t− z2)

[
t4 − 2t3 + t2(2z2 − 3)− 2t(z2 − 2) + z4 − 13 z2 + 4

]
(t2 + z2)(t2 − 4t+ z2 + 4)2(t2 − 2t+ z2 + 1)(t2 + 2t+ z2 + 1)2

= −16π

∫ ∞
0

dz
z(256z8 − 2624z6 − 4192z4 + 812z2 + 999)

(z2 + 1)2 (4z2 + 1)2(4z2 + 9)3
= −8π

9
.

.
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G “Reducible” contributions to GS at order 1

(
√
λ)3

Here we shall consider the 1
(
√
λ)3

correction to GS ≡ GN,S in (6.3), (6.14) coming from the

“reducible” diagrams (tree level plus loop corrections to the ζ-propagators, cf. figure 9 and

figure 10). This is part of the total G
(3)
S in (6.14) which is the direct analog of the 1

(
√
λ)2

term in (6.11).

According to the definition in (6.3), (6.4)

GS = |t12t34|2∆ 〈Y A(t1)Y A(t2)Y B(t3)Y B(t4)〉 = 1 +

∞∑
n=1

1

(
√
λ)n

G
(n)
S , (G.1)

〈Y A(t1)Y A(t2)Y B(t3)Y B(t4)〉 = 1 +
∞∑
n=1

1

(
√
λ)n

Q(n) . (G.2)

At order 1
(
√
λ)2

, the contributions to 〈Y AY AY BY B〉 are given by the sum of the expres-

sions in (6.4), (6.6), (6.8), (6.9) and after the extracting the contribution of the prefactor

|t12t34|−2∆ we have found G
(2)
S in (6.11).

In general, the total expression G
(3)
S will be given by the sum on the “reducible” and

“connected” (bulk contact, see figure 11) diagram contributions

G
(3)
S = G

(3)
S,red +G

(3)
S,conn , G

(3)
S,red = G

(3)

S,log2 +G
(3)

S,log3 , (G.3)

with the “reducible” contribution being the sum of the terms G
(3)

S,log2 and G
(3)

S,log3 containing

products of two and three log tij factors respectively. It is the total expression G
(3)
S that

should be conformally invariant. Our aim below will be to compute G
(3)
S,red.

The 1
(
√
λ)3

contributions to (G.2) will come from: (i) tree diagrams (given by products

of three ζ-propagators as in figure 10), and (ii) diagrams with loops corresponding to the ζ-

propagator “self-energy” corrections (cf. figure 3).38 The tree diagrams will give 1
(
√
λ)3

log3

terms while the ones with loop corrections will give also 1
(
√
λ)3

log2 terms.

To find G
(3)
S will then need to multiply the resulting expression for (G.2) by (see (4.2))

|t12t34|2∆ = 1 +

[
5√
λ

+
d2

(
√
λ)2

+
d3

(
√
λ)3

+ . . .

]
(N12 + N34)

+

[
25

2 (
√
λ)2

+
5d2

(
√
λ)3

+ . . .

]
(N12 + N34)2

+

[
125

6 (
√
λ)3

+ . . .

]
(N12 + N34)3 + . . . , Nij ≡ log(t2ij) , (G.4)

38One can see that a diagram with a bulk fermionic loop and three ζ-propagators attached to it gives

zero contribution as one of the legs will be contracted with nA.
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and extract the order 1
(
√
λ)3

term. Multiplying 1 + 1√
λ
Q(1) + 1

(
√
λ)2

Q(2) + 1
(
√
λ)3

Q(3) + . . .

by (G.4) and using the expressions in (6.5), (6.9) gives

G
(3)
S = d2(N12 + N34)Q(1) + 5d2(N12 + N34)2

+
125

6
(N12 + N34)3 +

25

2
(N12 + N34)2Q(1) + 5(N12 + N34)Q(2) +Q(3) (G.5)

= −5 d2(N12 + N34)2 +
125

6
(N12 + N34)3 + 5(N12 + N34)Q̄(2) +Q(3) , (G.6)

where we used that Q(1) = −5(N12 + N34) in (6.5) and Q(2) = Q
(2)
log + 25

2 (N12 + N34)2 + Q̄(2)

where Q
(2)
log = −d2(N12 + N34), see (6.7), (6.9). Note that the d2-dependent terms in the

first line of (G.5) cancelled out. Also, some terms in Q(3) which come from disconnected

diagrams involving “dressed” 12 and 34 propagators will cancel in (G.6) (like that happened

in G
(2)
S in (6.9), (6.11)).

As was mentioned at the beginning of section 6.2, the log contribution to Q(3) from

the 2-loop propagator correction should cancel against the d3

(
√
λ)3

term in (G.4) so let us

consider the log2 contributions to Q(3). These may come from the tree diagrams with

two propagators in figure 8 where one of the propagators replaced by the 1-loop corrected

one corresponding to the d2 log term in (4.1). The log2 terms may thus be obtained by

the replacement

Nij →
(
1 +

d2

5
√
λ

)
Nij (G.7)

in the expression for Q
(2)
0 in (6.6). At the same time, no additional contributions should

come from diagrams in figure 9 as they are already accounted for in the ∆-dependent terms.

As a result, we get the following log2 contribution to Q(3)

Q
(3)

log2 = d2

[
5(N2

12 + N2
34) + 10N12N34 +

(
N13 + N24 −N14 −N23

)2]
. (G.8)

Substituting this into (G.6) we end up with the log2 term in G
(3)
S

G
(3)

S,log2 = d2

[
− 4 (N2

12 + N2
34) +

(
N13 + N24 −N14 −N23

)2]
= d2

[
− 4 (N2

12 + N2
34) + 4 log2(1− χ)

]
.

(G.9)

While the first term here depending separately on 12 and 34 pairs of points is not con-

formally invariant, the second is — it is, in fact, the same as in (6.9), (6.11). While the

non-invariant part of (G.9) should cancel in the total combination in (G.3), this invariant

part will simply combine with G
(2)
S in (6.11) as

1

(
√
λ)2

G
(2)
S +

1

(
√
λ)3

G
(3)

S,log2 →
[

10

(
√
λ)2

+
4d2

(
√
λ)3

]
log2(1− χ) . (G.10)

Note also that under the four derivatives over ti only the second term in (G.9) con-

tributes, i.e.

t212t
2
34 ∂t1∂t2∂t3∂t4G

(3)

S,log2 = 8 d2

(
t212t

2
34

t213 t
2
24

+
t212t

2
34

t223 t
2
14

)
= 8d2

[
χ2 +

χ2

(1− χ)2

]
(G.11)
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(a)

− 1
2
ζ2 nA − 1

2
ζ2 nA

ζB ζB

t1 t2

t3 t4
(b)

− 1
2
ζ2 nA − 1

2
ζ2 nA

− 1
2
ζ2 nB nB

(c)

− 1
2
ζ2 nA − 1

2
ζ2 nA

ζB ζB

(d)

− 1
2
ζ2 nA − 1

2
ζ2 nA

ζB ζB

Figure 12. Tree-level diagrams (and similar ones obtained by permutations) contributing to (G.12).

is conformally invariant.

Let us now turn to the more non-trivial log3 contribution to (G.2) at order 1
(
√
λ)3

. One

finds from the tree diagrams in figure 12 (cf. (6.4)–(6.6))

Q
(3)
1 =− 25

2

(
N2

12N34 + N12N2
34

)
+ 5
[
N12(N13N23 + N14N24) + N34(N13N14 + N23N24)

]
− 5
(
N12N14N23 + N34N13N24)− 5(N12N13N24 + N34N14N23

)
. (G.12)

The first bracket comes from (a) in figure 12 and its analog; the second bracket comes from

4 diagrams of type (b) (which is same as figure 10); the third bracket comes from (c) and

its analog; the fourth comes from (d) and its analog.

To (G.12) we should add also the contributions of loop diagrams, i.e. the terms coming

from the same diagrams as the lower order terms in (6.4) where the ζ-propagators are

replaced by the ones containing “self-energy” corrections (see figure 3, figure 4, figure 9).

The 2-loop corrections to the propagator in figure 4 should produce the analog of the γ
(2)
3

term in (4.7), (4.26)

Q
(3)
2 = −65

6
(N3

12 + N3
34) . (G.13)

Other 1
(
√
λ)3

terms coming from 1-loop corrections to propagators in the order 1
(
√
λ)2

tree

diagrams in figure 8 can be generated from Q(2) in (6.6) by the substitution (4.25) or

Nij → Nij − 2√
λ

N2
ij :

Q
(3)
3 =−10

(
N3

12+N3
34

)
−50(N2

12N34+N12N2
34)−10(N3

13+N3
14+N3

23+N3
24

)
+10

(
N2

13N14+N13N2
14+N2

23N24+N23N2
24+N2

13N23+N13N2
23+N2

14N24+N14N2
24

)
−10

(
N2

13N24+N13N2
24+N2

14N23+N14N2
23

)
. (G.14)

The total 1
(
√
λ)3

term in (G.2) is then given by the sum of (G.12), (G.13) and (G.14)

Q
(3)

log3 =Q
(3)
1 +Q

(3)
2 +Q

(3)
3 =−125

6
(N12+N34)3+Q̄(3) , (G.15)

Q̄(3) = 5
[
N12(N13−N14)(N23−N24)+N34(N13−N23)(N14−N24)

]
−10

[
(N13−N14)(N13+N14)+(N24−N23)(N24+N23)

]
(N13−N14+N24−N23) .

(G.16)
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To compute the corresponding log3 term in G
(3)
S we need to substitute this into (G.6). As

a result (using (6.5), (6.9))

G
(3)

S,log3 = 5(N12 + N34)Q̄(2) + Q̄(3) =
25

2
(N12 + N34)(N13 + N24 −N14 −N23)2 + Q̄(3) .

(G.17)

Thus most of the terms with N12 and N34 cancelled out (as expected as they correspond

to “factorized” contributions of dressed propagators connecting points 12 and 34) but in

contrast to their complete cancellation at order 1
(
√
λ)2

in (6.11) here the terms linear in

N12 and N34 survive. This is not surprising as Q̄(3) contains them in the “irreducible”

contributions of diagrams like (b), (c), (d) in figure 12 and as they may appear also in the

product of the linear term (N12+N34) in the expansion of the prefactor and the “irreducible”

Q̄(2) part of 1
(
√
λ)2

term corresponding to the diagrams (c), (d), (e) in figure 8.

Like G
(3)

S,log2 in (G.9) the expression for G
(3)

S,log3 in (G.17) is not conformally invariant

by itself.39 The conformal invariance should be restored in the total expression (G.3),

i.e. after adding the contribution G
(3)
S,cont of the contact bulk contribution discussed in

sections 6.2 and 6.3. An indication that this is indeed what happens is that the operator

t212t
2
34∂t1∂t2∂t3∂t4 applied to G

(3)
S,cont+G

(3)

S,log3 gives indeed a conformally invariant expression

depending only on χ. To demonstrate this (see section 6.2) we will need the following

expression that follows directly from (G.16), (G.17) (cf. (G.11))

t212t
2
34∂t1∂t2∂t3∂t4G

(3)

S,log3 = 40t212t
2
34

(
4

t212t14t23
+

4

t12t214t23
− 5

t212t23t24
+

5

t12t223t24
+

4

t214t23t34

− 5

t214t24t34
− 4

t14t223t34
− 5

t14t224t34
− 4

t12t14t223

+
8

t214t
2
23

+
5

t12t23t224

+
4

t14t23t234

− 5

t14t24t234

− 5

t212t14t13
+

4

t212t24t13

+
5

t223t34t13
+

4

t224t34t13
− 5

t12t214t13
− 4

t12t224t13
− 5

t23t234t13

+
4

t24t234t13
− 5

t12t14t213

+
4

t12t24t213

+
5

t23t34t213

− 4

t24t34t213

)
+160

[
χ2(1+logχ

)
+

χ2

(1−χ)2 log
χ

1−χ

]
. (G.18)

The terms in the last line are conformally invariant while other non-invariant parts of other

terms will cancel against non-invariant terms coming from G
(3)
S,cont.

H Direct computation of GT and GA functions at order 1

(
√
λ)3

In section 6.3 we computed the function G
(3)
S by a direct diagram computation com-

bined with integration of the relation (6.38) or (6.55) and obtained the final result (6.59).

39For example, it is easy to see the absence of scale invariance: under Nij → Nij + ` the second line

in (G.16) is invariant while the first changes by 5`[(N13−N14)(N23−N24)+(N13−N23)(N14−N24)]; the second

by −20`(N13 +N24−N14−N23)2; the variation of the term with Q̄(2) in (G.17) is 25`(N13 +N24−N14−N23)2

and in total δG
(3)

S,log3 = 5`
[
(N13 −N14)(N23 −N24) + (N13 −N23)(N14 −N24) + (N13 + N24 −N14 −N23)2

]
.
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The expressions for G
(3)
T and G

(3)
A in (6.2) we found using the crossing symmetry rela-

tions (6.36), (6.37) and led to (6.61), (6.62). In this appendix, we will discuss a direct

computation of G
(3)
T and G

(3)
A based on the same approach as used for G

(3)
S . This will

provide a useful check of (6.61), (6.62) and is also of technical interest.

To find the ĜT function (related to GT as in (6.29)) we start from the corresponding

combination of contractions of ĜABCDN (see (2.17))

ĜT =
1

56

(
ĜABABN + ĜABBAN − 2

5
ĜAABBN

)
. (H.1)

We have checked that as in the case of GS in section 6.3 the expression for the square of

the conformal Casimir operator D2 applied to the total (contact diagram plus “reducible”)

contribution to ĜT or ĜA is conformally invariant, i.e. non-invariant parts of boundary

terms from integrating by parts in bulk integrals cancel against the non-invariant parts of

“reducible” diagram contributions.

A straightforward computation of ∂t1∂t2ĜT gives (adding bar as in (6.54), (6.55) to

indicate that we have used formal integration by parts)40

t212 ∂t1∂t2 ĜT = −D ĜT =
χ2

1− χ
− χ (χ+ 2) log(1− χ) +

χ4

(1− χ)2
logχ . (H.2)

Integrating, we obtain

ĜT = c1T + c2T log(1− χ) + 6 Li3(χ) + 6 Li3

(
χ

χ− 1

)
− 2 Li2(χ) log(1− χ)

− log3(1− χ) + logχ log2(1− χ)− χ2

1− χ
logχ− χ log(1− χ) . (H.3)

Here the first two terms are the possible 0-mode contribution as, e.g., in (6.34). A non-

trivial consistency check is that the analog of (6.43) (cf. (6.27), (6.38)) is satisfied, i.e.

D2 ĜT (χ) = 4GD,T (χ) where GD,T (χ) is given by (2.34).

In the case of D ĜA it turns out that we cannot express the structure V3 in (6.53) in

terms of the Dirichlet Kn functions only so we go back to solving the analog of (6.27), (6.38),

i.e. D2ĜN,A = 4GD,A with GD,A from (2.34). From the explicit expression for the operator

D in (6.30), one can check that the solution f of the equation Df = g obeys

f ′(χ) =
c2

1− χ
+

1

1− χ

∫ χ

0

dχ′

χ′2
g(χ′) . (H.4)

Integrating (H.4) for f = DĜN with g = 4GD,A or 4G
(1)
A (χ) from (2.34) and including the

zero-mode terms we get41

D ĜA = 8 Li2(χ)− (χ− 2)(χ2 − 2χ+ 2)χ

(χ− 1)2
logχ+

[
3 + (1− χ)2 + 4 logχ

]
log(1− χ)

+
(χ− 2)χ

χ− 1
+ c1A + c2A log(1− χ) . (H.5)

40Note that the expression for DĜT is correctly invariant under 3 ↔ 4 exchange (χ → χ
χ−1

) upon the

assumed replacement log(1− χ)→ log |1− χ|, logχ→ log |χ|.
41The application of (H.4) in the case of g = 4GD,S or g = 4GD,T requires only elementary integrations

and the result is precisely (6.55) and (H.2).
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We can impose the last relation in (2.20) to show that c1A = 0 (the operator D commutes

with the crossing transformation χ → χ
χ−1). Instead of directly integrating (H.5) we may

find ĜA order by order in small χ expansion (and again applying also (2.20)). This gives

the following expression depending on the two free zero-mode parameters c2A, c3A

ĜA = χ [(6− c2A) logχ+ c3A] + χ2
[(

3− c2A

2

)
logχ− c2A

2
+
c3A

2
+ 3
]

+ χ3

[(
22

9
− c2A

3

)
logχ− 4c2A

9
+
c3A

3
+

37

18

]
+ χ4

[(
13

6
− c2A

4

)
logχ− 3c2A

8
+
c3A

4
+

14

9

]
+ . . . (H.6)

The total expressions for the 1
(
√
λ)3

terms in the functions GT and GA are given by the

sums of the “connected” G-expressions computed using (6.29) added to the analogs of G̃S
in (6.43), (6.44). The explicit expressions for the 1

(
√
λ)3

terms in the latter are found to be

G̃T = 96
[
2 Li3(1− χ) + Li2(χ) log(1− χ)

]
− 83 log3(1− χ) + 216 log3 χ

+ 354 logχ log2(1− χ)− 324 log2 χ log(1− χ) (H.7)

= 216 log3 χ+ 192 ζR(3) + (324 log2 χ− 32π2)χ

+ (162 log2 χ+ 258 logχ+ 48− 16π2)χ2 + · · · ,

G̃A = 96
[
2Li3(1− χ) + 4 Li3(χ)− 2 Li2(χ) logχ+ Li2(χ) log(1− χ)

]
+ 84 log3(1− χ)− 144 logχ log2(1− χ) + 192 log2 χ log(1− χ)

= 192 ζR(3) + (−192 log2 χ− 192 logχ+ 384− 32π2)χ+ . . . , (H.8)

where we omitted for simplicity the d2 and d3 dependent contributions coming from the

loop corrections to the propagators in the “reducible” contributions.42

The final expressions for G
(3)
T and G

(3)
A can be shown to be equivalent to (6.61)

and (6.62) up to the zero mode contributions. In particular, the latter account for the

fact that the small χ expansions in (6.63), (6.64) do not start at order O(χ2), consistently

with the OPE analysis in section 6.4.

I 3-point function 〈Y Y [Y Y ]〉

In considering the OPE decomposition of 4-point Y -scalar correlator in (6.65) in the T-

channel (6.68) one finds the contribution of the traceless symmetric operator Y {A∂nt Y
B}

(cf. also appendix B). For n = 0 its dimension is ∆0 = 12√
λ

+ . . . and the OPE coef-

ficients should be proportional to the square of the coefficients in the 3-point function

〈Y A(t1)Y B(t2) [Y {CY D}](t3)〉 Introducing a complex null 6-vector uA (u2 = 0) we have

42Note that in contrast to G
(3)
S the functions G

(3)
T and G

(3)
A can receive (in agreement with (6.61), (6.62))

the contributions proportional to the coefficient d3 of the 2-loop correction (cf. figure 4(b)) in the 2-point

function or ∆ in (4.2): these come from diagrams like in figure 9 where the two points carry indices other

than A and B, i.e. from contractions like 〈ζAnBζCnD〉, etc., that do not contribute to the prefactor in (6.1).
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(u · Y )2 = Y {AY B}uAuB so that we may consider the equivalent correlator

〈Y A(t1)Y B(t2) [u · Y (t3)]2〉 = T (t1, t2, t3)uA uB ,

T (t1, t2, t3) =
c112

|t12|2∆−∆0 |t23|∆0 |t13|∆0
,

(I.1)

∆ =
5√
λ

+ . . . , ∆0 =
12√
λ

+ . . . , c112 = c
(0)
112 +

1√
λ
c

(1)
112 + . . . . (I.2)

Its form is fixed by the SO(6) and conformal invariance. To order 1
(
√
λ)2

we find from tree-

level contributions with one or two boundary-to-boundary propagators N12 = log(t12)2

(cf. (5.4))

Ttree =
1

24

[
1 +

1√
λ

(N12 − 6N13 − 6N23) (I.3)

+
1

(
√
λ)2

(
5

2
N2

12 − 6N13N12 − 6N23N12 + 6N2
13 + 6 N2

23 + 36N13N23

)
+ . . .

]
.

1-loop “self-energy” corrections (as in figure 3) to the ζ-propagator are taken into account

(to the leading log order) by the replacement (4.25). This gives

Ttree+loop =
1

24

[
1+

1√
λ

(N12−6N13−6N23) (I.4)

+
1

(
√
λ)2

(
1

2
N2

12−6N13N12−6N23N12+18 N2
13+18N2

23+36N13N23

)
+. . .

]
.

Using that

|t12|2∆−∆0 |t23|∆0 |t13|∆0 = 1 +
1√
λ

(−N12 + 6N13 + 6N23)

+
1

(
√
λ)2

(
N2

12

2
− 6N13N12 − 6N23N12 + 18 N2

13 + 18N2
23 + 36N13N23

)
+ . . . , (I.5)

we find that c112 does not receive 1√
λ

and 1
(
√
λ)2

corrections

c112 =
1

24
+O

(
1

(
√
λ)3

)
. (I.6)

Notice that (I.4) differs from (I.5) just in the sign of the 1√
λ

correction, i.e. it is the inverse

of the exponential expansion in (I.5).
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[10] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP

04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

[11] S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS2/CFT1, Nucl.

Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

[12] M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing

Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].

[13] S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in N = 4 SYM:

Localization, Defect CFT and Integrability, JHEP 05 (2018) 109 [Erratum ibid. 11 (2018)

123] [arXiv:1802.05201] [INSPIRE].

[14] M. Kim and N. Kiryu, Structure constants of operators on the Wilson loop from integrability,

JHEP 11 (2017) 116 [arXiv:1706.02989] [INSPIRE].

[15] N. Drukker, I. Shamir and C. Vergu, Defect multiplets of N = 1 supersymmetry in 4d, JHEP

01 (2018) 034 [arXiv:1711.03455] [INSPIRE].

[16] D. Correa, M. Leoni and S. Luque, Spin chain integrability in non-supersymmetric Wilson

loops, JHEP 12 (2018) 050 [arXiv:1810.04643] [INSPIRE].

– 55 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2007/11/068
https://arxiv.org/abs/0710.1060
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1060
https://doi.org/10.1007/JHEP10(2011)059
https://arxiv.org/abs/1104.5077
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5077
https://doi.org/10.1007/JHEP03(2018)131
https://arxiv.org/abs/1712.06874
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06874
https://doi.org/10.1016/S0550-3213(00)00183-8
https://doi.org/10.1016/S0550-3213(00)00183-8
https://arxiv.org/abs/hep-th/0002106
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002106
https://doi.org/10.1088/1126-6708/2006/07/024
https://arxiv.org/abs/hep-th/0604124
https://inspirehep.net/search?p=find+EPRINT+hep-th/0604124
https://doi.org/10.1088/1126-6708/2008/02/092
https://doi.org/10.1088/1126-6708/2008/02/092
https://arxiv.org/abs/0712.4112
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.4112
https://doi.org/10.1007/JHEP06(2011)131
https://arxiv.org/abs/1105.5144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5144
https://doi.org/10.1007/JHEP06(2012)048
https://arxiv.org/abs/1202.4455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4455
https://doi.org/10.1088/1751-8121/aa7db4
https://arxiv.org/abs/1703.03812
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.03812
https://doi.org/10.1007/JHEP04(2016)091
https://doi.org/10.1007/JHEP04(2016)091
https://arxiv.org/abs/1601.02883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02883
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://arxiv.org/abs/1706.00756
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00756
https://doi.org/10.1007/JHEP12(2017)055
https://arxiv.org/abs/1710.07325
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07325
https://doi.org/10.1007/JHEP05(2018)109
https://arxiv.org/abs/1802.05201
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.05201
https://doi.org/10.1007/JHEP11(2017)116
https://arxiv.org/abs/1706.02989
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02989
https://doi.org/10.1007/JHEP01(2018)034
https://doi.org/10.1007/JHEP01(2018)034
https://arxiv.org/abs/1711.03455
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03455
https://doi.org/10.1007/JHEP12(2018)050
https://arxiv.org/abs/1810.04643
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.04643


J
H
E
P
0
5
(
2
0
1
9
)
1
2
2

[17] P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP 10

(2018) 077 [arXiv:1806.01862] [INSPIRE].

[18] M. Beccaria and A.A. Tseytlin, On non-supersymmetric generalizations of the

Wilson-Maldacena loops in N = 4 SYM, Nucl. Phys. B 934 (2018) 466 [arXiv:1804.02179]

[INSPIRE].

[19] L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in N = 2 Conformal

Theories, Phys. Rev. Lett. 121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].

[20] S. Giombi and S. Komatsu, More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect

OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys. A 52 (2019) 125401

[arXiv:1811.02369] [INSPIRE].

[21] N. Kiryu and S. Komatsu, Correlation Functions on the Half-BPS Wilson Loop:

Perturbation and Hexagonalization, JHEP 02 (2019) 090 [arXiv:1812.04593] [INSPIRE].

[22] D. Mazac and M.F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D

S-matrices, JHEP 02 (2019) 162 [arXiv:1803.10233] [INSPIRE].
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