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Human cytomegalovirus pUL97 kinase induces global changes
in the infected cell phosphoproteome
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Abstract

Replication of human cytomegalovirus is regulated in part by cellular kinases and the single viral
Ser/Thr kinase, pUL97. The virus-coded kinase augments the replication of human
cytomegalovirus (HCMV) by enabling nuclear egress and altering cell cycle progression. These
roles are accomplished through direct phosphorylation of nuclear lamins and the retinoblastoma
protein, respectively. In an effort to identify additional pUL97 substrates, we analyzed the
phosphoproteome of SILAC-labeled human fibroblasts during infection with either wild-type
HCMYV or a pUL97 kinase-dead mutant virus. Phosphopeptides were enriched over a titanium
dioxide matrix and analyzed by high resolution mass spectrometry. We identified 157
unambiguous phosphosites from 106 cellular and 17 viral proteins whose phosphorylation
required UL97. Analysis of peptides containing these sites allowed the identification of several
candidate pUL97 phosphorylation motifs, including a completely novel phosphorylation motif,
LXxSP. Substrates harboring the LxSP motif were enriched in nucleocytoplasmic transport
functions, including a number of components of the nuclear pore complex. These results extend
the known functions of pUL97 and suggest that modulation of nuclear pore function may be
important during HCMV replication.
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1 Introduction

Human cytomegalovirus (HCMV) modulates its host cell to promote viral replication and
subvert antiviral responses. This includes critical changes to intracellular trafficking,
metabolism, and signaling (reviewed in [1]). Altered cellular kinase activity contributes to
virus-mediated changes in each of these areas, and HCMV-encoded proteins modulate many
cellular kinases. HCMV infection initiates major changes in total cellular phosphorylation
patterns [2] and many HCMV proteins are themselves phosphorylated [1]. HCMYV infection
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alters or requires the activity of a number of cellular kinases, including MAPK, PI3K, PKC,
CDK1, and mTOR [3-12].

The HCMV-encoded kinase, pUL97, alters the phosphorylation dynamics of infected cells.
Its activity is directed towards both small molecules and protein serine and threonine
residues. Importantly, pUL97 phosphorylates ganciclovir (or the related pro-drug
valganciclovir) leading to production of an active nucleoside analog which competitively
inhibits the HCMV viral polymerase [1]. Ganciclovir is the standard of care for acute
HCMV infection and prophylaxis. Resistance to ganciclovir occurs in some 5-30% of
patients who undergo prolonged anti-HCMV therapy, and of these approximately 80% are
mutations in pUL97 that inhibit its ability to phosphorylate ganciclovir [13]. Thus, pUL97 is
an important player in HCMV therapeutics.

The pUL97 kinase is known to phosphorylate multiple cell-coded protein targets, including
nuclear lamins to facilitate nuclear egress of virus capsids [3, 14, 15], the retinoblastoma
protein to promote changes in cell cycle [16, 17], elongation factor 1 delta [18], and the C-
terminus of RNA polymerase 11 [19]. Furthermore, pUL97 is incorporated into virions [20],
possibly in association with the HCMV pUL83 protein [21]. Its virion localization suggests
that it may phosphorylate virion components as well as cellular targets upon entry into a
newly infected cell. pUL97 is classified as “augmenting” for laboratory growth of HCMV
[22, 23]. That is, deletion or inactivation of pUL97 results in decreased yield of virus
produced, but the gene or its product is not strictly essential. The primary defect appears to
lie in nuclear egress; a kinase-dead point mutant, UL97-K355Q [24], accumulates viral
capsids in the nucleus [25]. However, pUL97 also auto-phosphorylates [26] and
phosphorylates UL44, the vDNA polymerase [25, 27]. Additionally, pUL97 interacts with
and may phosphorylate pUL69, a viral factor involved in mRNA export from the nucleus to
cytoplasm [28]. Thus pUL97 contributes to several aspects of the HCMV replication cycle.

A recent study identified dozens of additional cellular substrates for pUL97 using an in vitro
phosphorylation assay [29]. Clearly, then, the full range of pUL97 functions during HCMV
infection have not been fully characterized. To more comprehensively define pUL97
substrates and downstream effects during active infection, we used SILAC labeling and
phosphopeptide enrichment strategies coupled with high-resolution tandem mass
spectrometry to globally quantify relative changes in phosphopeptides and phosphosite
occupancy over a time course of infection. Our results identify signatures of UL97-
dependent signaling pathways, novel substrates and phosphosites, and several candidate
kinase motifs which may mediate the effects of UL97 during HCMV replication.

2 Materials and methods

2.1 Cell Culture, SILAC Labeling, and HCMV Infection

MRC5 human lung fibroblasts (ATCC #CCL-171) were maintained in DMEM with 4.5 g/L
glucose (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) in a humidified
incubator at 37°C with 5% CO». Cells were cultured for five passages in SILAC medium
supplemented with 10% dialyzed FBS to obtain near-uniform (>99%) labeling in accordance
with published methods [30]. SILAC medium was prepared by dissolving the components of
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DMEM except for lysine and arginine, and then supplementing with either “light” isotope
lysine and arginine (Sigma-Aldrich) or uniformly 13C and 1°N-labeled lysine (U-13Cg, 15N,;
A8 Da) and arginine (U-13Cg, 15N,4; A10 Da) (Cambridge Isotope Laboratories) for the
“heavy” labeling condition. Light- and heavy-SILAC labeled cells were infected with
pUL97-expressing or pUL97-deficient viruses. The HCMV strain AD169 derivatives,
UL97-K355Q and its revertant UL97-Q355K, were the generous gift of Dr. Donald Coen
(Harvard Medical School), and have been previously described [16]. Stocks of HCMV were
grown in MRCS5 cells in roller bottles and viral titers were determined by 50% tissue culture
infectious dose (TCIDsg) assay.

2.2 Sample Harvest

Following the temporal cascade of HCMV gene expression and modulation of host cell
biology [1], samples were harvested at 24 h, 48 h, and 72 h time points post infection.
Culture medium was aspirated and cells were washed quickly in ice-cold phosphate-buffered
saline. Cells were lysed in situ in 4% SDS, 100 mM Tris pH 8, 5 mM DTT containing
Complete™ protease inhibitor cocktail (Roche), 1mM sodium fluoride, 10 mM sodium
pyrophosphate, 1mM sodium orthovanadate, and 1mM beta-glycerophosphate phosphatase
inhibitors, followed by boiling for 10 min and clarification by centrifugation at 14,000 g for
10 min. Total protein content of each sample was determined using the BCA protein assay
kit (ThermoFisher Scientific). Equal amounts of total protein from the heavy and light
samples of each point were mixed, flash-frozen in liquid nitrogen, and stored at —80°C until
further processing.

2.3 Peptide Preparation

Pooled heavy and light protein samples were subjected to buffer exchange, thiol reduction,
alkylation, and trypsin digestion using the FASP procedure [31]. To achieve 2D and 3D LC-
MS, resultant peptide samples were subjected to up-front fractionation either by strong
cation exchange (SCX) chromatography (for the 24 h sample) or by isoelectric focusing
electrophoresis (for the 48 h and 72 h samples). SCX chromatography was accomplished
using STAGE-tips [32] employing Empore™ SCX-functionalized disks (3M,Saint Paul,
MN) and a step-gradient elution of increasing potassium phosphate salt (increasing ratios of
Buffer B to Buffer A; Buffer A: 7mM KH2PO4, pH 2.65, 30% ACN; Buffer B: 7TmM
KH2PO4, 350mM KCI, pH 2.65, 30% ACN). IEF was achieved by dilution of FASP
peptides directly into IEF buffer and subjecting them to electrophoresis on an OffGel
apparatus (Agilent) according to manufacturer’s protocols, using 24cm pH 3-10 IPG strips
(GE Healthcare), followed by the collection of 12 peptide pools of differing pl. Peptide
fractions were desalted using C18 reversed phase STAGE-tips and subjected directly to MS
analysis. Additionally, peptide fractions were subjected to phosphopeptide enrichment by
titanium dioxide affinity solid-phase extraction [33], followed by C18 reversed phase
STAGE-tip cleanup and MS analysis.

2.4 Mass Spectrometry Data Acquisition

Peptide fractions were subjected to reverse-phase nano-LC-MS and MS/MS performed on a
nano-flow capillary high-pressure UPLC system (Nano Ultra 2D plus, Eksigent) coupled to
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an LTQ-Orbitrap™ hybrid mass spectrometer (ThermoFisher Scientific), outfitted with a
NanoMate ion source robot (Advion). Sample concentration and desalting were performed
online using a trapping capillary column (150 pm x 4 cm, packed with 3 pm 100 A Magic
AQ C18 resin, Michrom, Auburn, CA) at 4uL/min for 7 min, while separation was
conducted on an analytical capillary column (75um x ca. 25cm, packed with 1.7pm, 130 A
C18 BEH resin; Waters, Billerica, MA) under a linear gradient of A and B mobile phase
solvents (Solvent A: 3% acetonitrile/0.1% formic acid/0.1% acetic acid; Solvent B: 97%
acetonitrile/0.1% formic acid/0.1% acetic acid; gradient from 8%-25% B) over 70, 180, or
300 min at a flow rate of ca. 0.4uL/min. Electrospray ionization was carried out using the
NanoMate ion source at 1.74 kV, with the LTQ heated capillary at 200°C. Full-scan mass
spectra were acquired in the Orbitrap in positive-ion mode over the range of m/z 335-1800
at a resolution of 60,000. MS/MS spectra were simultaneously acquired using the LTQ for
the seven most abundant multiply charged species in the full-scan spectrum having signal
intensities >2000 NL. Dynamic exclusion was set such that MS/MS was acquired only once
for each species over 120 sec. All spectra were recorded in profile mode. Mass accuracy of
the data remained typically within 0-6ppm of the external calibrants for the duration of the
analysis. All raw LC-MS data generated in this study has been made publicly available
through the Chorus project (chorus.org), as project number 745, accessible for download
through the following URL.: https://chorusproject.org/anonymous/download/experiment/
653aeefe3fbb401c9dd240814c3d6d8f.

2.5 Peptide Identification and Quantification

SILAC MS peak pair quantitation and peptide assignments to tandem MS were
accomplished using ProteomeDiscoverer™ software (v. 1.4, ThermoFisher Scientific),
employing a Mascot™ database search node (v. 2.5, Matrix Science, London, UK) and the
Percolator node [34] for empirical peptide false discovery rate (FDR) minimization. MS/MS
data were searched against a database consisting of the SwissProt human proteome (ed. Nov
12, 2014) concatenated to the UniProt HCMV AD169 proteome. Accommodation for both
light and heavy (KA8 Da, RA10 Da) peptide assignments was enabled as a quantitation
parameter in the Mascot™ node. The analysis of both non-enriched and phosphopeptide-
enriched samples enabled the generation of a database of high confidence protein
assignments for each time point, which we further employed as the templates for the
assignment of phosphopeptides. Thus, to determine the proteins present with high
confidence in each time point sample, searches were initially conducted using the
parameters of trypsinolysis with < 2 missed cleavages, a precursor mass error window of
+10ppm, a fragment mass error window of 1.2 Da, fixed cysteine carbamidomethylation
with variable methionine oxidation and N-terminal protein acetylation. Proteins defined by
all unique peptides identified within an FDR of 1% (through reversed database search via
the Percolator node) were ascribed as high confidence, and new databases containing only
these proteins were generated for each time point. Phosphopeptide assignment was
conducted using these time point sample-specific high-confidence protein databases as
templates, and the altered parameters of trypsinolysis with < 3 missed cleavages, variable
phosphorylation on serine, threonine, and tyrosine, along with variable methionine oxidation
and N-terminal protein acetylation, and fixed cysteine carbamidomethylation.
Phosphopeptide assignments were similarly constrained to a 1% FDR using Percolator.
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Positional confidence scoring for phosphosite assignments was accomplished using a
PhosphoRS node [35]. SILAC ratio quantification was achieved using the Precursor lon
Quantifier node tailored to detect light and heavy (KA8 Da, RA10 Da) peak pairs. Baseline
signal values were employed in place of missing peaks to capture single peak species in
peptide SILAC ratios, with a limit on the H/L of a maximum of 100 and minimum of 0.01.

2.6 Statistical analyses, motif analyses, and functional/interaction network annotation

3 Results

To correct for any initial inequalities in heavy and light sample mixing, all SILAC ratios
were normalized within each time point by setting the median ratio to 1. Protein SILAC
ratios were calculated as the median values of the ratios for the unmodified, unique peptides
ascribed to those proteins. SILAC ratios for key peptides of interest were confirmed by
manual inspection of summed mass spectra spanning the peaks of peptide chromatographic
elution using Xcalibur Software (ThermoFisher Scientific). Statistical modeling of SILAC
ratios was performed using R [36] and the fitdistrplus [37] and gamlss [38] packages.
Peptide modifications other than phosphorylation were stripped from all peptides in order to
facilitate comparison of phosphosite occupancy. Redundant peptides caused by modification
stripping were averaged geometrically. Standard deviations and samples humbers for these
cases are listed in Supporting Information Table S2. Phosphopeptide ratios were log2
transformed and corrected by subtracting the log2 protein ratio from the total protein SILAC
ratios [39, 40], and 4-parameter Johnson parameters were determined by maximum
likelihood estimation. The fitted parameters were used to determine the Johnson cumulative
distribution function and extract p-values. Peptides containing phosphosites with a
PhosphoRS probability < 0.70 and > 0.11 were considered ambiguously localized, whereas
phosphosites with a PhosphoRS probability = 0.70 were considered unambiguous. Peptides
and their parent proteins containing ambiguous phosphosites were used for ontology
analysis, since such proteins can be considered putative UL97 targets although their precise
phosphorylation sites cannot be determined. However, only unambiguous phosphorylation
sites were used for phosphorylation motif analysis in order to eliminate false positives.

Motif analysis was done with Motif-X [41, 42] and MMFPh [43]. In both cases the
“foreground” dataset consisted of pooled, corrected, phosphopeptide ratios greater than 2.0
from all three time points sampled. Relevant Motif-X parameters were: width=13,
occurrences=20, significance=0.000001,background=IPI Human Proteome. Relevant
MMFPh parameters were: analysis type= complete, width=13, min occurrences=10-30%,
significance=1075, background=SWISS Human Proteome.

Interaction network analysis was performed using Cytoscape [44], Cluego [45] and
Cluepedia [46].

3.1 Experimental design

We used SILAC to facilitate quantitative comparisons of protein and phosphopeptide
abundances by mass spectrometry (Fig. 1A). This method has been shown to yield accurate
peptide ratios over a broad dynamic range, although some ratio compression occurs at
extreme ratios. MRC-5 primary human fibroblasts exhibited >99% labeling of lysine and
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arginine residues after five passages in SILAC media, consistent with previously reported
labeling efficiencies [30]. Light- or heavy-labeled MRC-5 cells were infected with HCMV
at a multiplicity of 3 TCIDgg/cell, which is projected to infect >95% of cells. Cells received
either the kinase-dead UL97 mutant, UL97-K355Q, or a wild-type revertant, UL97-Q355K
[16], (hereafter referred to as UL97mut and UL97wt, respectively). At selected time points
following infection, tryptic peptides were prepared from pooled protein isolated from heavy
and light populations of infected cells, fractionated by strong cation exchange
chromatography or isoelectric focusing, and subjected to phosphopeptide-enrichment using
TiO, chromatography, prior to tandem mass-spectrometry analysis. Relative expression
ratios in the UL97wt vs. UL97mut samples were determined by measuring the relative
intensities of SILAC peak pairs in the MS1 signals, for each positively identified peptide
(Fig.1B; shown here for a pUL53 peptide, one of the substrates identified as strongly
positively influenced by pUL97). All ratios are expressed as UL97wt/UL97mut throughout
the analysis. Peptides were identified by their MS2 fragmentation and peptide spectral
matching (see Materials and Methods). A representative MS2 spectral match, from the
pUL53 SILAC pear pair shown in Fig. 1B, demonstrating unambiguous identification and
phosphosite localization is shown in Fig. 1C.

HCMV, like many other viruses, expresses genes and modulates various aspects of cell
biology in a temporal cascade [1]. In order to capture the temporal component of pUL97
phosphorylation we sampled the pUL97 phosphoproteome at 24, 48, and 72 hours post-
infection (hpi), corresponding to the phases of early gene expression, initiation of late gene
expression, and initiation of virion release, respectively. Though pUL97 is incorporated into
virions [20], we anticipated that most of the pUL97-dependent changes would occur at the
later time points post-infection because virion-associated pUL97 is likely to be much less
abundant than newly synthesized pUL97. It is expressed with early kinetics [47], so we
anticipated that the key pUL97-inuduced changes in phosphorylation would begin to occur
starting at ~24hpi.

In order to identify differentially regulated phosphopeptides in our study, we employed a
two-tier search strategy on our combined phospho-enriched and non-enriched sample
datasets: following the assumption that authentic phosphopeptdes can be expected to be
derived from proteins identified via their non-phosphorylated peptides, we first identified
the proteins present in our samples at each time point with high confidence (<1% FDR at the
peptide level) by their non-phosphorylated peptide matches, and at the same time, derived
their SILAC ratios. Then, we employed these high-confidence empirical proteomes as
templates for assigning phosphopeptides authentically present in our samples. This strategy
allowed a comprehensive characterization of phosphopeptides, quantification of their
SILAC ratios, and quantification of the median SILAC ratios of their underlying unmodified
protein templates.

At each time point, phosphopeptide ratios were log transformed and corrected for cognate
protein level changes in order for phosphosite occupancy to be accurately determined [39].
Phosphopeptides without corresponding experimental protein ratios were omitted from
further analysis. This correction modified the apparent phosphopeptide ratios of a small, but
substantial, number of phosphopeptides (Fig. 2A). The resulting dataset yielded 525
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phosphopeptides at 24 hpi, 1593 at 48 hpi, and 1462 at 72 hpi (Fig. 2A and Supporting
Information Table S1).

To assess the data quality, the corrected ratio distributions were then modeled by
distribution fitting. Ratio distributions were narrow, symmetrical, and found to fit extremely
well to a 4-parameter Johnson distribution (Fig. 2B). The modeled Johnson parameters and
their corresponding cumulative distribution function were then used to assign p-values to
each variate. At 24 and 48hpi, a right-sided p-value of 0.05 corresponded to roughly 2-fold
change in peptide abundance, indicating that 95% percent of the peptides showed less than
50% reduction in phosphorylation levels upon inhibition of pUL97 activity. However, at 72
hpi the 2-fold and p0.05 thresholds diverged, with ~13% of peptides showing < 50%
reduction in phosphorylation levels. This suggests a pulse of increased pUL97 activity
occurs late during infection, which is consistent with the known function of pUL97 in
nuclear breakdown during capsid egress commonly observed between 48 and 72 hpi [48-
50].

3.2 Comparison of the current data set to previously identified pUL97 substrates

We identified regulated phosphopeptides from the known pUL97 substrates RB1 [16],
LMNA [51, 52], UL44 [52], pUL53 [53], and UL69 [54]. Each of these was identified via at
least one phosphopeptide that was = 2-fold less abundant in the kinase-dead virus infection
than in the wild-type infection. We also observed the known pUL97 auto-phosphorylation
site S180 [26] at all three times after infection that were assayed. This pUL97 phosphosite,
as well as T177 and a site at the N-terminus likely to be S13 (PhosphoRS probabilities for
S11, S13, and T16 are 16.9%, 59.1%, and 16.9%, respectively), showed > 10-fold lower
abundances in UL97mut-infected cells, suggesting T177 and S13 may be novel auto-
phosphorylation sites. These results validate our SILAC approach and lend confidence to the
newly identified pUL97 substrates. We did not, however, identify regulated
phosphopeptides from RNA polymerase 11 or HDAC1, also known pUL97 substrates [55,
56]. Therefore, the list of pUL97 substrates we have generated is by no means complete.
Importantly, we now assign specific residues as candidate pUL97 target sites on
approximately 100 previously unidentified cellular and viral substrate proteins, as well as
the known substrates mentioned above (Tables 1 & 2; Supporting Information Table 2).

We also compared our data to the list of putative pUL97 substrates identified by in vitro
protein chip analysis [29]. Of the 276 proteins from this study that we could convert to
UniProt accessions, only 29 were identified in our SILAC dataset, and of those only 4
(coded by NUP133, EP400, PDS5A, and ZY X) showed a 50% or greater decrease in
phospho occupancy upon mutation of pUL97. The source of this incongruity between the
earlier in vitro data and our in vivo data is presently unclear, potentially attributable to
numerous factors. However, we would argue that in vivo data is likely to represent a more
accurate landscape of relevant biological pUL97 activity, since it reflects the combinatorial
effects of all of the cellular and viral signaling pathways modulated during infection.
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3.3 Phosphomotif analysis

pUL97 has previously been shown to recognize substrates containing arginine or lysine in
the +5 position after a serine or threonine [57]. This S/TxxxxK/R motif was deduced more
than a decade ago by performing in vitro phosphorylation experiments with purified pUL97
and candidate substrate proteins, most significantly histone H2B, which is not known to be a
physiological pUL97 substrate. We hypothesized that peptides from our SILAC phospho-
proteome with high UL97wt/UL97mut ratios might provide a more robust and unbiased
dataset for in silico phospho motif analysis, and thereby provide complementary evidence
for the S/TxxxxK/R motif and/or identify novel kinase motifs specific to pUL97. To test this
hypothesis, we extracted all quantified phosphopeptides showing 2-fold or greater
unambiguous phosphosite occupancy reduction in UL97mut-infected cells, across all three
time points assayed (Tables 1 and 2; unambiguous sites only). These peptides were input
into Motif-X [41] and MMFPh [58] as the “foreground” dataset and analyzed for motif
enrichment versus peptides from the entire human genome (“background”). Both tools were
able to identify two common enriched motifs, SP and LxSP, while MMFPh also identified
SxxK with a slight preference for Pro in the +1 position (Fig. 3A). Both tools scored the
LxSP motif highest, which had a Motif-X enrichment of >30-fold, followed by the lower
complexity SP motif, whose score was penalized due to its low complexity (and thus higher
frequency in the background dataset), but was present in the highest number of peptides
(~30-40% depending on the engine used). Four peptides from the proteins COG4, TPD54,
TRIPC, and pp150 contained both an LxSP and SxxK motif (and necessarily an SP motif;
Fig. 3B, Tables 1 & 2). Neither tool identified the previously identified S/TxxxxK/R motif,
although the SxxK motif is conspicuously similar.

Interestingly, the minimal pUL97 kinase motif, SP, is the same as the minimal motif for the
CDK1-coded protein, cyclin-dependent kinase 1 (Cdk1) [59], and the SxxK motif,
especially considering the preference for Pro in the +1 position, closely resembles the full
Cdk1 motif [S/T]PX[RK]. However, to our knowledge, the LxSP motif appears to be novel,
having no significant similarity to any motif in the Human Protein Reference Database [60].

Our foreground dataset contained several peptides with phospho-Tyrosine (pY; see Table 1)
sites that changed upon removal of pUL97 function. This set of peptides lacks the
complexity required to extract enriched motifs. Nonetheless, since there is no evidence for
pUL97 Tyr kinase activity, we interpret changes in pY occupancy as an indirect
consequence of removing pUL97 activity.

3.4 Substrate functional classification

To identify related components and pathways that were affected by pUL97 kinase activity,
we performed gene ontology (GO) enrichment and protein association network analysis on
the same peptides used for motif analysis. For this analysis we used the programs ClueGO
[45] and CluePedia [46] which first create an association network of enriched GO terms, and
then overlay a STRING [61] protein-protein interaction network in order visualize
functional relatedness. ClueGO analysis of all =2-fold upregulated peptides revealed one
dominant enrichment node containing GO terms related to nuclear envelope and lamina
breakdown, RNA transport, and mitosis (Figs. 3C & 3D). Tightly grouped within the
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STRING sub-network is a cluster of nuclear pore proteins (encoded by NUP133, NUP35,
NUP98, NUP153, RANBP2, and AHCTF1), with smaller peripheral clusters of nuclear
lamina proteins (LMNA, LMNBZ1), cell cycle related proteins (CDK1, RB1, ARHGEF2,
PAK?2), ribosomal proteins (RPL12, RPL4, RPL18), splicing factors (SRSF9, SF3B2) and
RNA transport proteins (FYTTD1/UIF, THOC2, SARNP). Interestingly, the novel LxSP
motif was contained in 5 of 6 nuclear pore related proteins (Nup133, Nup35, Nup98,
Nup153, AHCTF1) and 2 of 3 ribosomal proteins (RPL4, RPL18) analyzed in this ontology
network.

Phosphorylation of nuclear pore and lamina proteins is thought to contribute to breakdown
of the nucleus during mitosis (reviewed in [62]). pUL97 has been shown to mimic this
process late during HCMV infection in order to facilitate capsid egress from the nucleus
[48-50]. The effect of pUL97 on the ribosomal proteins identified is undocumented and
unclear, although it is possible that they regulate translation of a select subset of MRNAs
beneficial to the virus. As discussed below, removal of pUL97 activity had a fairly modest
effect on global steady state protein levels. This suggests that pUL97 phosphorylation of
ribosomal proteins may be involved in a very specific form of translational regulation. The
identification of enriched RNA transport and splicing functions in the list of putative pUL97
substrates suggests a direct role in RNA post-transcriptional processing and translation. In
particular, identification of putative phosphosites in several members of the TRanscription-
EXport (TREX) [63] complex (SARNP, THOC2, FYTTD1/UIF) suggests an expanded role
for pUL97 in coupled mRNA transport beyond its known ability to regulate pUL69/ICP27
(see “Discussion”).

Overall, the features of the pUL97 functional network suggest that pUL97 mediates
pleiotropic activities that affect mMRNA splicing and transport, translation, nuclear
organization, and the cell cycle.

3.5 Analysis of viral phosphopeptides

3.6 Cdk1

Peptides from 17 HCMV-coded proteins exhibited a >2-fold increase in S/T phosphorylation
(Table 2). The SP phosphorylation motif was present in peptides corresponding to four viral
proteins (pUL24, pUL32, pUL82 and pUL123), the SxxK motif was present in three viral
proteins (pUL32, pUL57and pUL83) and the LxSP motif was not found in any viral protein.
The direct interaction of pUL97 with pUL83 [21] provides support for the view that SxxK is
a target of the viral kinase. Several of the viral proteins identified in our analysis have been
identified as pUL97 targets previously, including pUL44 [52, 64], pUL53 [48], pUL69[54],
and pUL97 itself [26, 65, 66]. To the best of our knowledge, the remaining 14 viral proteins
that identified here have not been shown previously to be phosphorylated either directly or
indirectly by pUL97. The role of these phosphorylation events in the viral lifecycle remains
to be investigated.

One critical question arising from our motif analysis is whether the phospho sites identified
in our proteomics experiments are direct pUL97 substrates or indirect substrates of one or
more secondary kinases regulated downstream of pUL97. The novelty of the LXSP motif
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supports the idea that peptides containing these sites are directly phosphorylated by pUL97,
as no other known kinase has been shown to have this specificity for LxSP substrates. On
the other hand, the overlap between the SP and SxxR motifs with the known CDK1 motifs
raises the possibility that pUL97 might be exclusively or partially working through Cdk1.
The majority of proteins in our foreground motif search dataset are not known to be targets
of Cdk1, although several are, such as the proteins encoded by RB1, NUP153, LMNA, and
LMNB1 [59]. Furthermore, three phospho peptides from Cdk1 itself containing the sites
pT14+pY15, pY15, and pT161 were present in our SILAC data (Table 3). None were
identified at 24 hpi, all three were present at 48 hpi, and one was identified at 72 hpi.
Interestingly, at 48 hpi phospho occupancy at all three peptides remained unchanged in the
UL97mut compared to UL97wt sample. However, at 72 hpi, occupancy at Y15 decreased
dramatically (~7-fold) in the UL97mut sample. Phosphorylation of Cdk1 at Y15 has been
shown to inhibit Cdk1 kinase activity, as well as entry into mitosis [67, 68]. Phosphorylation
at this site is likely indirect since there is no evidence that pUL97 has intrinsic tyrosine-
kinase activity. Therefore, Cdk1 may be inactivated by pUL97 late after infection, which is
consistent recent results showing that Cdk1 inhibitors do not prevent nuclear lamina
disruption and viral egress during HCMV infection [49].

3.7 Protein level changes induced by pUL97

In order to uncover addition pathways regulated by pUL97, we analyzed total protein
changes induced by pUL97mut in our SILAC dataset. Like the phosphopeptides, protein
ratios at each time point were median normalized and modeled as Johnson distributions (Fig.
4A). The 24 hpi distribution showed a significant negative skew which was not apparent at
48 and 72 hpi. One interpretation of the skewedness is that pUL97 globally destabilizes
proteins and therefore when UL97 activity is removed protein abundances increase.
However, since there is no other evidence that this is the case, we interpret this result as an
unexplainable systematic bias in the 24h dataset. We therefore performed a functional
analysis only on upregulated ratios, across all time points. At each time point the protein
ratio distributions were narrower than the phosphopeptide distributions, with ~95% of the
ratios being < 1.5-fold. Therefore, rather than using a right-sided p-value of 0.05 we opted to
use an empirical 2-fold significance cutoff. We then extracted all of the proteins with
UL97wt/UL97mut ratios of 2-fold or greater (Supporting Information Table S3), pooled the
proteins from all time points and performed ClueGO/CluePedia analysis.

The resulting ontology network showed one primary enrichment node, with four smaller
peripheral nodes (Figs. 4B and C). The primary node contained a cluster of five mini-
chromosome maintenance (MCM) proteins. The peripheral nodes were enriched in several
G1/S and M-phase cell-cycle related proteins (coded by CCNB1, CDKN2C, CENFP, RB1),
and functions including spindle organization (TPX2, AURKA), DNA replication (TOP2A,
PCNA), and nucleotide biosynthesis (RRM1, RRM2, TYMS, TK1). MCM proteins form a
hexameric DNA helicase complex that is essential for initiation of cellular DNA pre-
replication complexes (reviewed in [69]). All of the five MCM proteins identified showed
~2-fold steady-state protein increases in the presence of functional pUL97 at all time points.
This result is curious and difficult to interpret since several recent studies have all indicated
that MCM proteins are inhibited during HCMV replication in order to shut-down cellular
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DNA replication and redirect resources towards viral DNA replication, which does not
require MCM-helicase activity [70-72]. Given these results it is unclear why pUL97 appears
to stabilize MCM proteins, and we conclude that this stabilization is likely an indirect effect
of pUL97’s Cdk-like activity. Most of the other increases in pUL97-mediated cellular
proteins identified in this network are relatively modest (2-3 fold) and occur late in
infection, also echoing pUL97’s Cdk-like activities. Only 12 viral proteins changed more
than 2-fold at one of the sampled time points (Supporting Information Table S3), and no
viral protein changed more than 3-fold at any time. Additionally, no viral protein showed
elevated ratios at more than one time point.

These data suggest that UL97 has little effect on cellular and viral steady-state protein levels
and what little effect it does have is likely an indirect consequence of its cell-cycle
regulatory activity.

4 Discussion

By mapping the phosphoproteome of cells infected with wild-type or UL97 kinase-dead
virus, we have identified suites of changes that can be attributed to the catalytic activity of
pUL97. pUL97 activity is required for global changes in the phosphorylation state of both
cellular and viral proteins. The pUL97 phospho-proteome extends our previous knowledge
about HCMV and its kinase by assigning specific residues to the phosphorylation of >100
pUL97 substrate proteins. Furthermore, it identifies several putative pUL97 substrate motifs
and highlights the similarity between the pUL97 minimal consensus sequence and that of
Cdk1.

As UL97 has been shown to functionally complement Cdk1 [16] and its phosphorylation
motif overlaps with that of Cdk1, it is possible that the changes in phosphosite occupancy
we observed within infected cells are largely the consequence of pUL97 activating Cdk1.
Two facts argue against this. First, pUL97 phosphosites showed enrichment in a novel motif
LxSP, which appears in most of the regulated nuclear pore peptides (Table 1). As far as we
can tell this kinase specificity is novel and suggests that, minimally, changes in LxSP
containing peptides reported here represent bona fide pUL97 targets. Second, pUL97
mediates phosphorylation of Cdk1 at Y15 late after infection, which is a known Cdk
inactivating modification [67, 68]. These facts strongly suggest that at least some of the
phosphosites we have identified are true pUL97 substrates. Nonetheless, it will be important
to validate these new substrates in the presence of Cdk inhibitors, as has been done
previously for pUL97-mediated phosphorylation of UL50 and UL53 during capsid egress
[49]. Additionally, in vitro phosphorylation assays with recombinant pUL97 and LXxSP-
containing peptides will be necessary to confirm pUL97-mediated phosphorylation of the
LxSP and SxxK motifs.

UL97-regulated LxSP-containing peptides were enriched in nuclear pore and ribosomal
proteins. Nuclear pore complexes mediate transit of HCMV viral DNA into the nucleus as
incoming capsids dock at the outer nuclear membrane. Viral DNA transits through the
central channel of the nuclear pore. It is possible that virion associated pUL97, which enters
with the virus, facilitates this process by phosphorylating nuclear pore proteins, however the
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early Kinetics (i.e. not immediate-early) of de novo pUL97 expression suggest that the viral
kinase is modifying nuclear pores for other reasons. Consistent with this idea, we observed
significant increases in nuclear pore protein phosphosite occupancy in UL97wt samples up
to 72hpi.

Since pUL97 has known roles in nuclear lamina dissolution during HCMV capsid egress, it
is tempting to speculate that its activity towards nuclear pore complexes might facilitate
egress. However, no evidence exists supporting the view that nuclear pores are involved in
capsid egress. Rather, an overwhelming body of evidence from several different herpes
viruses suggests that capsids transit through the perinuclear space via envelopment at the
inner nuclear membrane and subsequent budding at the outer nuclear membrane (reviewed
in [73] and [74]). pUL97 contributes to early steps of this process by phosphorylating and
destabilizing nuclear lamina proteins [16, 51, 75], which normally occlude access to the
inner nuclear membrane, and the viral proteins pUL53 and pUL50, which are pUL97
substrates thought to potentiate primary envelopment [50].

Importantly, a dominant negative Lamin A mutant has recently been shown to complement
pUL97 deficiency [49], arguing strongly that lamins are the primary targets of pUL97
facilitating viral egress, not nuclear pores. Additionally, HCMV capsids are generally
thought to be too large to be transported through the nuclear pore complex. Little is known
about the function of nuclear pore proteins during the later stages of HCMV infection. The
function of nuclear pore complexes has been investigated during herpes simplex virus type 1
(HSV-1) infection but is incompletely understood. During HSV-1 infection nuclear pore
complexes swell and their numbers increase [76], yet transport and selectivity through these
distended pores appears to remain intact [77]. Recent experiments with the HSV-1
immediate-early protein ICP27 suggest that direct binding of ICP27 to nuclear pore proteins,
in particular NUP62, may be involved in selective viral mMRNA export from the nucleus
[78]. The HCMV ICP27 homolog, pUL69, mediates the selective export of HCMV mRNAs.
pUL97 can phosphorylate pUL69 in vitro and increases its RNA transport efficiency [54].
One pUL97-regulated phosphosite was identified in pUL69 in our study, a phospho-
Tyrosine at amino-acid 151. This site is unlikely to be a direct substrate of pUL97, which is
not known to have pY activity, and we therefore conclude that either this phosphorylation is
indirect or other that bona fide pUL97 sites in pUL69 were missed. Rather than binding of
nuclear pore complexes, pUL69-mediated selective RNA transport is thought to occur
through interaction with components of the TRanscription-EXport (TREX) complex,
particularly the DEAD-Box RNA Helicase UAP56 [79, 80]. The mammalian TREX
complex is composed of UAP56, the adaptor protein ALY, and several THO proteins
referred which form the THO transcription elongation sub-complex [63, 81]. Although the
molecular details are not completely understood, ICP27 homologs from several herpes
viruses, including KSHV, EBV, HSV-1, and HCMV are thought to promote the selective
export of intronless viral mMRNASs by directly interacting with and subverting TREX
complex proteins (for review see[82]).

Interestingly, we observed decreased phosphorylation of three TREX proteins when pUL97
activity was abrogated, the core THO component THOC2 [81], SARNP/CIP29 [83], and the
UAP56 interacting protein FYTDD1/UIF1 [84]. Further examination of pUL97 mediated
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phosphorylation of TREX complex proteins during HCMV replication will be required to
determine the exact role of TREX components in viral mMRNA transport. However, our data
suggest that pUL97 may have a broader role in mediating the selective translation of viral
MRNAs than previously appreciated. Rather than simply phosphorylating the viral export
factor pUL69, pUL97 may be a master regulator of selective viral RNA transport and
translation, phosphorylating (and thereby regulating) a continuum of cellular and viral
proteins from the transcription-transport machinery, to nuclear pore proteins, to specific
ribosomal subunits. This is in addition to the known functions of pUL97 in cell cycle
regulation and nuclear envelope remodeling, which we also confirmed as significantly
regulated pathways in our dataset.

The specific role of nuclear pore phosphorylation by pUL97 during HCMV replication is
unclear, but we speculate that it could be involved in the later steps of UL69/TREX
mediated RNA transport. Alternatively, pUL97 phosphorylated nuclear pores might be
involved in herpesvirus capsid egress. Indeed, it has been proposed that nuclear pores can
serve as docking receptors for capsid fusion with the inner nuclear membrane during HSV-1
infection [85]. Further experiments will be required to test these possibilities, as well as
define the exact function of each putative pUL97 phosphorylation site. Nonetheless, this
work provides a robust framework upon which to initiate such studies and identifies TREX,
nuclear pore, and ribosomal proteins as candidate pUL97-regulated pathways for further
analysis.

To the best of our knowledge this work represents one of the first global phosphoproteome
characterizations of signaling by a viral enzyme. This work extends our previous knowledge
about HCMV and UL97 by assigning specific residues to the phosphorylation of known
UL97 substrates. We view these sites as potential fertile ground for future functional
characterization.

From the perspective of the virus, signaling is likely important to establish a host cell
environment that is favorable to viral replication and evades immune surveillance. From a
clinical perspective, we propose that these signaling signatures may be biomarkers and lend
insight into signaling synergies that contribute to essential steps of the viral replication
program. Identifying and disrupting such steps could suggest novel strategies for therapeutic
intervention. For example, if pUL97 phosphorylation of a cellular factor is essential to the
virus, a drug which blocks or serves as a decoy target might be useful clinically. Disrupting
host-pathogen kinase interactions has been touted as a novel antiviral strategy (reviewed in
[86] and [87]).

Other studies of viral phosphopeptides have focused on virions [88, 89], rather than on the
complex milieu of infected cells. We project that expansion of this technology will identify
signatures and essential signaling events required for replication of a range of viruses.
Application of SILAC technology to the study of host-pathogen interactions is an exciting
tool for uncovering patterns and actions of viruses.
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Experimental design and validation. (A) SILAC workflow for enriching phosphopeptides.
(B) Representative MS1 spectrum of a pUL53 phosphopeptide showing relative abundances

Proteomics. Author manuscript; available in PMC 2016 June 01.

of heavy and light SILAC precursor ions. (C) Corresponding MS2 spectrum showing b- and
y- fragment ions used for precursor ion sequence identification and phosphosite mapping.
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Figure2.
Phosphopeptide data and ratio modeling. (A) Scatterplots comparing corrected and

uncorrected phosphopeptide ratios. (B) Phosphopeptide ratio distributions and fitting. Solid
red line; density plot of Johnson distribution fitted by maximum likelihood estimation.
Dashed red line; 2-fold significance threshold. Dashed green line; p0.95 significance
threshold.
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Figure 3.
Putative UL97 kinase motifs and pathway analysis. (A) Enriched phosphorylation motifs

and statistics. All significantly regulated peptides (=2-fold [UL97wt/UL97mut]) across all
time points were analyzed non-redundantly using Motif-X [41, 90] and MMFPH [43]. (B)
Euler diagram displaying overlap of enriched phosphorylation motifs in all phosphopeptides
showing 2-fold or greater occupancy decrease upon mutation of pUL97. Note that the
numbers of peptides in each class differ from those identified by Motif-X and MMFPH as
these tools discard all peptides absent from their background databases. (C) Selected
ontology terms enriched in putative pUL97 substrates. This list is a subset of the full list of
ontology terms used to construct the network in panel D. All enriched ontology terms, their
p-values, and constituent proteins are listed in Supporting Information Table S4. (D)
Cluego/Clupedia ontology and STRING network. Hexagonal nodes represent significantly
enriched gene ontology terms (p>0.005). Circular nodes represent proteins. Connecting lines
(edges) indicate interrelatedness. Multicolored lines connecting proteins highlight different
STRING protein-protein interaction evidence codes. Stars indicate that a protein contains an
LxSP phosphorylation motif.
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