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Moiré superlattices in two-dimensional (2D) van der Waals (vdW) heterostructures provide 

an efficient way to engineer electron band properties. The recent discovery of exotic 

quantum phases and their interplay in twisted bilayer graphene (tBLG) has built this moiré 

system one of the most renowned condensed matter platforms (1-10). So far the studies of 

tBLG has been mostly focused on the lowest two flat moiré bands at the first magic angle θm1 

~ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report 

an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic 

angle θm2 ~ 0.5°, which cannot be explained without considering electron-election 

interactions. With high magnetic field magneto-transport measurements, we further reveal 

a qualitatively new, energetically unbound Hofstadter butterfly spectrum in which 

continuously extended quantized Landau level gaps cross all trivial band-gaps. The 

connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the 

multiple moiré bands. Overall, our work provides a new perspective for understanding the 

quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands. 

 

Twisted bilayer graphene (tBLG) has emerged as a rich platform to study strong correlations (1), 

superconductivity (2-8), magnetism (9) and band topology (10). Stacking two graphene sheets with 

a slight rotation by an angle θ creates a moiré super potential. The renormalized bands have C6z, 

C2x rotational symmetries, and time reversal symmetry T. This leads to decoupled valleys (11) and 

the formation of a mini moiré Brillouin zone (Fig. 1A) with two Dirac cones with identical helicity 

(Fig. 1B), which makes the resulting two lowest moiré bands at each valley topologically different 
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from the two π bands in monolayer graphene in which the total helicity vanishes. They carry a 

nonzero Dirac helicity 𝜂 = ±2 (Fig. 1B), which  is protected by C2zT symmetry. These attributes 

prohibit the construction of local symmetric Wannier functions, so defining the nontrivial topology 

of tBLG (12-15).  

 

The magic angles in tBLG are a series of well-defined twist-angles for which the moiré bands are 

predicted to become ultra-flat (11). While the tBLG at θm1 ~ 1.1° is already extensively studied, 

tBLG at well-defined smaller magic angles (i.e. θm2 ~ 0.5°), in which inhomogeneity of moiré 

patterns is much more sensitive to twist angle fluctuations (16), has so far rarely been 

experimentally investigated. Since tBLG at θm2 offers an exceedingly large moiré unit cell, it gives 

rise to a multitude of closely packed flat moiré bands. Crucially, the moiré wavelength for tBLG 

at θm2 of λ ~ 30nm is much larger than for θm1 tBLG or for graphene/hBN moiré superlattices, and 

hence inducing one magnetic flux per unit cell, required to obtain a Hofstadter butterfly, can be 

easily achieved at much lower fields (~ 6 times) (17-19). Together these characteristics make tBLG 

at θm2 an ideal platform to explore multiple moiré bands and their Hofstadter butterfly spectra 

which are rendered with interactions and novel band topology.  

 

In this article, we present magneto-transport measurements of tBLG devices, with θ close to the 

predicted second magic angle θm2 ~ 0.5°. Our tBLG device is encapsulated with 

crystallographically non-aligned insulating layers of hexagonal boron nitride (hBN) and its carrier 

concentration n is capacitively controlled by an underlying graphite layer (Fig. 1D), and calibrated 

with quantum oscillations in out-of-plane magnetic field B⊥ (SM Methods). Fig. 1F-G show the 

evolution of the longitudinal resistance Rxx and the Hall density nH as a function of n. Rxx exhibits 

peaks and nH sign changes at equally spaced, integer multiples of 𝑛𝑠, 𝑛 = 𝑠𝑛𝑠 , and mark the 

transitions between the individual bands. The resistance peaks are strongly enhanced by a small 

B⊥-field (Fig. 1E) and develop thermally activated, gapped behavior (SM Fig. S2-4), but are 

insensitive to parallel B-field (Fig. S5). This suggest an orbital origin and agrees with the fact that 

small B⊥-fields can gap out the C2zT protected Dirac nodes or increase a small band gap.  

 

The non-interacting band structure of tBLG around θm2 contains eight strongly convoluted 4-fold 

spin-valley degenerate low-energy flat-bands (Fig. S10B). To account for interaction effects in the 

flat-bands, we perform Hartree-Fock calculations including Coulomb interactions with random 

seeds, which allow for spontaneous symmetry breaking (SM Sec. 5). These show that Coulomb 

interactions spontaneously break C3z, while preserving the C2zT symmetry. As a direct 

consequence, the moiré bands separate above and below the Fermi energy EF, and become almost 

non-overlapping except for point-like connections.  

 

This is seen in Fig. 1C (for EF at the charge neutrality point (CNP), 𝑠 = 0) and in Fig. S10A (for 

EF at integer band fillings 𝑠 = 1, 2, 3, 4), which show the Hartree-Fock moiré bands in one valley 

of θ = 0.45° tBLG. Here, each separate band remains 4-fold degenerate and can intake 𝑛𝑠 = 4/Ω𝑚 

carriers, where Ω𝑚 is the area of the moiré unit cell. The carrier density can be expressed by integer 

multiples of band fillings 𝑠𝑛𝑠 , which defines the integer band filling factor 𝑠 ∈ ℤ . For 𝑠 =
0, ±1, ±3, ±4, the band structure is semi-metallic with two Dirac points per spin per valley at EF, 

while for filling 𝑠 = ±2, a small indirect gap occurs. In particular, we find that the helical Dirac 

nodes at the CNP, which are responsible for the nontrivial topology, are quite robust for both 
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interacting and non-interacting calculations, although they may deviate from high symmetry points 

due to C3z symmetry breaking. 

 

We compare the Hartree-Fock spectrum with transport measurements of a tBLG device with θ ~ 

0.45°, and find good agreement with its non-overlapping bands picture. The experimentally 

resolved peaks in Rxx (equally spaced at 𝑛 = 𝑠𝑛𝑠) and the sharp interband transitions in nH indicate 

that the bands are non-overlapping, either semi-metallic or separated by small gaps (SM Fig. S2A), 

in good agreement with the Hartree-Fock calculations. Since the studied devices have θ close to 

the predicted second magic angle θm2 ~ 0.5°, these findings support the existence of flat bands and 

strong electronic interactions.  However, we do not yet observe correlation driven insulating states 

as in the case of tBLG at θm1. This may be due to suppression of the on-site Coulomb energy for a 

larger moiré wavelength (∼ 10meV for dielectric constant 𝜖 ∼ 5 ), the larger noninteracting 

bandwidths (~10meV), and the close energetic proximity of the flat-bands. 
 

When the B⊥-field is increased further (Fig. 2A), Landau levels (LL) develop within the individual 

bands, and form gaps with nonzero Chern numbers (𝐶 = 4, 8, 12 … due to spin/valley degeneracy), 

which manifest themselves as dips in Rxx (blue). These dips trace back to the band-edges at integer 

fillings 𝑛/𝑛𝑠 = 𝑠 at zero B⊥ = 0T and follow a well-defined slope dn/dB⊥ = 𝐶e/h in the n-B⊥ phase 

space, where e is the electron charge, h is Planck’s constant. Above B⊥ > 8T robust quantum Hall 

states develop, with Rxx ~ 0Ω, and with quantized plateaus in the Hall resistance of Rxy ~ h/Ce2 

(Fig. 2C). In contrast, all trivial band-gaps have 𝐶 = 0 and emerge from B⊥ = 0T without a slope 

in dn/dB⊥ = 0. These gaps are identified by Rxx peaks (red) that follow straight vertical lines in the 

n-B⊥ phase space. For clarity, we highlight the most pronounced gaps from Fig. 2A in Fig. 2B. 

 

These findings indicate the formation of a fractal Hofstadter spectrum. The trajectories of the 

trivial band-gaps and the topological LL gaps have a dense set of intersections at which only one 

of the gaps survives. The intersections occur at well-defined magnetic fields B⊥ ~ 2.25T 

(𝜙 ~ 𝜙0/2), B⊥ ~ 4.5T (𝜙 ~ 𝜙0) and B⊥ ~ 9T (𝜙 ~ 2𝜙0), where 𝜙 =  𝐵⊥Ω𝑚 is the magnetic flux 

per moiré unit cell, and 𝜙0 = h/e is the magnetic flux quantum. The LL gaps in the n-B⊥ diagram 

occur along lines that are described by the Diophantine relation, 𝑛 𝑛𝑠⁄ = 𝐶𝜙/4𝜙0 + 𝑠. This is 

further confirmed by Rxy versus n measurements in the quantum Hall regime at B⊥ = 15T (Fig. 2C), 

which show a non-monotonic evolution of the plateaus, consistent with the development of 

Hofstadter gaps within different moiré bands.  

 

We denote the features of the Hofstadter gaps by (𝐶, 𝑠), which have Chern number 𝐶 and emerge 

from the band edges at filling 𝑛 = 𝑠𝑛𝑠. The fan diagram is dominated by a series of zero field 

single particle band-gaps (0, s), and by Hofstadter gaps (±4, 𝑠), (±8, 𝑠), which are strikingly not 

confined within the moiré band from which they emerge (at B⊥=0), but continuously extend into 

the higher lying moiré bands at high B⊥, and cross all (0, 𝑠) band-gaps. For example, the (±4, 0) 

gaps that are emerging from the CNP (blue diagonal lines), extend indomitably through several 

higher moiré bands, interrupting all band gaps (0, 𝑠) at carrier densities 𝑛 = ±𝑠𝑛𝑠 (red vertical 

lines). The observed Hofstadter spectrum is qualitatively distinct from that of topologically trivial 

bands. 

 

We highlight the differences by comparing typical Hofstadter spectra of topologically trivial and 

non-trivial bands (Fig. 3A-B). For separated topologically trivial bands, the Hofstadter spectrum 



4 

 

is confined within the energy bandwidth of each band. As B⊥ increases, LLs from the band-top and 

band-bottom move towards the middle of the band and are annihilated around its center. This 

evolution of LLs in B⊥ field defines an energetically bounded Hofstadter butterfly, where the LL 

spectra in one band are not connected to those of other bands (while one can devise trivial band 

structures with a connected spectrum, they are not generic). This is in stark contrast to the 

Hofstadter butterfly which is formed from topologically non-trivial bands (Fig. 3B). In all 

generality, the Hofstadter spectrum of a topological band is not energetically confined to the 

bandwidth of the band and can propagate until it connects to the Hofstadter spectrum of another 

band, which trivializes the total band topology (14, 20).  

 

Such a topologically non-trivial, unbound and connected Hofstadter butterfly spectrum is clearly 

present in the demonstrated θ = 0.45° tBLG device, as well as in several other devices with θ = 

0.3° - 0.5° (SM Sec. 3). Fig. 3C displays a zoom-in of the dashed region in Fig. 2A, and highlights 

the interplay between the trivial band-gaps (0, s) (red) and the Hofstadter gaps (±4, 0) (blue), 

where (0, ±2) are clearly interrupted by (±4, 0) at B⊥ ~ 9T (𝜙/𝜙0 = 2). Similarly (0, ±1) are 

interrupted by (±4, 0) at B⊥ ~ 4.5T (𝜙/𝜙0 = 1). These interruptions indicate the closing of the 

(0, ±𝑠) band-gaps between two neighboring bands, when their fillings coincides with that of the 

(±4, 0) LL gaps. This connects the Hofstadter spectra of the lowest two moiré bands with the 

spectra of all higher moiré bands, which is a direct evidence of the nontrivial topology of tBLG, 

and is in agreement with the theoretical predictions in Ref.(14, 20). 

 

The experimentally obtained unbounded and connected Hofstadter spectrum is in good agreement 

with the theoretically calculated Hofstadter spectrum for low n (|𝑛/𝑛𝑠| < 3) (Fig.3D and MS Fig. 

S12B). It is calculated with a tBLG continuum model at θ = 0.45°, which includes broken C3z 

symmetry due to strain or Hartree-Fock mean fields (SM Sec. 6), to realistically mimic a strain 

reconstructed tBLG device.  We find that the calculated (±4, 0) gaps continuously extend to the 

higher bands as expected. Moreover, experimentally we observe reemerged (0,0) and (0, ±1) gaps 

at 𝜙 > 𝜙0, and (0, ±2) gaps in the range 𝜙0 < 𝜙 < 2𝜙0, which match the  calculations only if C3z 

breaking is considered (SI Fig. S12). However, the observed Hofstadter spectra at high doping 

densities (|𝑛/𝑛𝑠| > 3) show deviations from the theoretical calculations. Theoretical calculations 

predict a series of (4, 𝑠) and (−4, −𝑠) gaps (𝑠 = 1,2,3, ⋯) at 𝜙 > 𝜙0 in addition to the (±4,0) gaps, 

while experimentally this region is dominated by the (8,1) and (−8, −1) gaps, and only a (4,1) gap 

occurs at 𝜙 > 3𝜙0. This discrepancy may have its origins in the non-negligible role of interactions 

in the flat-bands, which may considerably affect the Hofstadter spectrum of tBLG at large doping 

densities. In SM Sec. 6, we show that the inclusion of an electron doping induced Hartree term in 

the Hofstadter spectrum calculation suppresses the (4, 𝑠) gaps, which suggests that interactions 

may be responsible for their experimental absence.  

 

One possible origin of the nontrivial unbound Hofstadter butterfly is the single-particle fragile 

topology hosted by the lowest two moiré bands of each spin and valley in tBLG (theoretically 

predicted and characterized by the C2zT protected nonzero Dirac helicity 𝜂 = ±2 at the CNP) (12-

14). This fragile topology is further enhanced into a stable topology if the particle-hole symmetry 

of tBLG is preserved, which is robust against adding trivial particle-hole symmetric pairs of bands 

(15). It is theoretically shown that the Hofstadter spectrum of the lowest two topological moiré 

bands of tBLG is always connected with the spectrum of the higher moiré bands at sufficiently 

strong magnetic fields (up to infinity) (14) (although not universally protected by C2zT (20), see 
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SM Sec. 4). For a wide range of twist angles (including those studied in this paper), the (±4,0) 

LL gaps are predicted to extend from the lowest two moiré bands to all the higher bands, forcing 

their Hofstadter spectra to be connected at 𝜙/𝜙0 = 1(14). Accordingly, the band gap between two 

bands with connected Hofstadter spectra will close when the connection happens. We note that the 

flat moiré bands in tBLG can also develop correlated states of different stable topologies breaking 

C2zT, for instance, Chern insulators at the first magic angle, which is driven by interactions and 

stabilized by finite magnetic fields (21-26).  At this point our results cannot radically rule out the 

possibility that either type of topology, C2zT-preserved fragile topology or C2zT-broken stable 

topology, is responsible for the connected Hofstadter spectra. The absence of correlated states in 

our experiment and the unbroken C2zT symmetry in our Hartree-Fock calculations, however, 

suggest the former is more likely. 

 

In summary, we have reported a systematic magneto-transport study of tBLG close to θm2. Our 

results show a) multiple well-isolated flat moiré bands in tBLG at θm2, which cannot be explained 

without considering interactions; b) that tBLG is a highly tunable platform to study the Hofstadter 

butterfly, where the band topology can manifest itself qualitatively (trivial or nontrivial); c) that 

interaction effects play a clear role in tBLG Hofstadter spectra that merit further exploration. 
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Fig. 1. Multiple moiré bands with non-zero helicity in θ = 0.45° tBLG. (A)  Mini moiré 

Brillouin zones are defined by two Dirac cones with a total Dirac helicity 𝜂 = ±2. (B) Non-zero 

total Dirac helicity in the lowest two moiré bands inside of one valley. (C) Hartree-Fock band 

structure calculations of 0.45° tBLG with Coulomb interaction show multiple moiré bands, which 

are separated at the Fermi energy EF. (D) Schematic of the hBN encapsulated θ = 0.45° tBLG 

device with a graphite bottom gate. (E) Color plot of the longitudinal resistance Rxx vs. carrier 

density n and out-of-plane magnetic field B⊥. (F) Rxx vs. n at different temperatures and B⊥ = 450 

mT. Insert displays the AFM image of a typical tBLG device. (G) Hall carrier density nH = -

B⊥/(eRxy) as a function of gate induced carrier density n. measured at B⊥ = 500 mT. 
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Fig. 2. Unbounded and connected Hofstadter butterfly spectrum. (A) Hofstadter spectrum of 

the θ = 0.45° tBLG device, revealed by the color plot of Rxx vs. carrier density n and B⊥. (B) 

Schematic identifying visible LL gaps from (A). Vertical solid lines indicate single particle band-

gaps (0, s) between the moiré bands, and diagonal solid lines indicate Hofstadter LL gaps (𝐶, 𝑠), 

which emerge from the band edges. (C) Longitudinal conductance 𝜎𝑥𝑥 and Hall conductance |𝜎𝑥𝑦| 

vs. 𝑛, measured at 𝐵⊥ = 15T, show robust quantum Hall states with a non-monotonic evolution 

with n, as expected from the Diophantine relation.  
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Fig. 3. Hofstadter butterflies with nontrivial topology. (A-B) Examples of Hofstadter spectra 

(left) and corresponding gap schematics (right) of two topologically trivial (A) and non-trivial 𝐶 =
±1  (B) bands. The topological Hofstadter spectrum shows distinct features, as its bands are 

connected at 𝜙/𝜙0 = 1, and the 𝐶 = 0 band gaps are closed. Both (A) and (B) are calculated for 

tight-binding models (see SM Sec. 9). (C) Zoom-in on the Hofstadter spectrum in Fig. 2A-B. The 

(±4, 0) LL gaps continuously extend into the higher lying moiré bands and interrupt the (0, ±1) 

and (0, ±2) band-gaps, showing the main signatures of the topological Hofstadter spectrum. (D) 

Calculated Hofstadter spectrum of θ = 0.45° tBLG shows good agreement with experiment (C).  
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Materials and Methods 

 

Device fabrication  

The hBN/tBLG/hBN/graphite stacks were exfoliated and assembled using a van der Waals 

assembly technique. Monolayer graphene, thin graphite and hBN flakes (~10 nm thick) were first 

exfoliated on SiO2 (~300 nm)/Si substrate, followed by the “tear and stack” technique with a 

polycarbonate (PC)/polydimethylsiloxane (PDMS) stamp to obtain the final 

hBN/tBLG/hBN/graphite stack. The separated graphene pieces were rotated manually by the twist 

angle ~1º. We purposefully chose a larger twist angle during the heterostructure assembly due to 

the high risk of relaxation of the twist angle to the random lower values. To increase the structural 

homogeneity, we further carried out a mechanically cleaning process to squeeze the trapped blister 

out and release the local strain. We did not perform subsequent high temperature annealing to 

avoid twist angle relaxation. We further patterned the stacks with PMMA resist and CHF3+O2 

plasma and exposed the edges of graphene, which was subsequently contacted by Cr/Au (5/50 nm) 

metal leads using electron-beam evaporation (Cr) and thermal evaporation (Au). 

 

Measurement 

Transport measurements were carried out in a refrigerator with a base temperature of 1.3K 

and up to 16T magnetic field. All the data without specific notification was measured at the base 

temperature. Standard low-frequency lock-in techniques were used to measure the resistance Rxx 

and Rxy with an excitation current of ~10 nA at a frequency of 19.111Hz. A global gate voltage 

(+20 V) through Si/SiO2 (~300 nm) is applied to reduce the contact resistance by tuning the charge 

carrier density separately in the device leads. 

 

Twist angle extraction  

The twist angle 𝜃  is deduced from the area of the moiré unit  Ω𝑚  given by Ω𝑚 =

√3𝑎2/4(1 − cos 𝜃) , where 𝑎  is the lattice constant of graphene. Ω𝑚  is extracted with two 

independent methods. 

Method 1: Gate induced carrier density is first calibrated with LLs. The carrier density of LL 

fanning out from CNP with total Chern number 𝐶 strictly follows 𝑛 = 𝐶eB/h. Here we use LL 

with index 𝐶 = 8 to calibrate the carrier density. The area of moiré superlattice Ω𝑚 = 4 𝑛𝑠⁄  where 

𝑛𝑠 is the carrier density of a completely filled moiré band.  

Method 2: The Hofstadter butterfly is also used to extract Ω𝑚. When the magnetic flux per moiré 

unit cell given by 𝜙 = 𝐵Ω𝑚 equals to the magnetic flux quantum 𝜙0 = ℎ 𝑒⁄  (ℎ, Planck’s constant; 

e, magnitude of the electron charge), the Hofstadter spectrum will exhibit fractal signature (i.e. B 

∼ 2.25T, B ∼ 4.5T and B ∼ 9T corresponding to 𝜙 = 𝜙0 2⁄ , 𝜙 = 𝜙0 and 𝜙 = 2𝜙0, respectively). 

The moiré area Ω𝑚 can be described by Ω𝑚 = 𝜙0 𝐵0⁄  (𝐵0 is the magnetic field corresponding to 

𝜙 = 𝜙0) where the straight lines of LL gaps in the n-B plot cross each other at integer band fillings. 
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Supplementary Text 

1. Device information 

We have measured devices with four different twist angles [D1-1 (0.45°), D1-2 (0.44°), D2 (0.38°) 

and D3 (0.34°)]. Fig. S1 shows optical microscope images of corresponding stacks and devices. 

 

2. Gap opening at low magnetic field 

Fig. S2 shows the temperature dependent Rxx vs. n measured at different magnetic field B⊥. At 

zero magnetic field, all integer filling states exhibit a metallic behavior (Fig. S2A). Interestingly, 

at finite B⊥, these states start becoming thermally activated, showing an insulating behavior (Fig. 

S2B-D). As shown in Fig. S3, the gap values are extracted by fitting Rxx~exp (∆/2kT) temperature 

activated behavior for all integer filling states. We further demonstrate the evolution of gaps with 

magnetic field B⊥ (Fig. S4) for these state. All these gaps increase when magnetic field B⊥ becomes 

large until quantum Hall regime starts to dominate the transport. To understand the magnetic field 

induced metal-insulator transition in tBLG better, we have further measured the device D1-1 with 

tilted magnetic field (Fig. S5). By comparing Fig. S5a and Fig. S5B, we have found that the 

resistivity of all integer filling states is only sensitive to the perpendicular component of magnetic 

field. Our results indicate that it is orbital effect instead of spin that leads to the gap opening here. 

This is consistent with the fact that the Dirac nodes at a certain integer filling (if semi-metallic) 

are protected by a C2zT symmetry which does not act on spin (where T is the spinless time-reversal 

operator which does not act on spin) (13). Since in-plane field only acts on spin, it cannot gap out 

the Dirac nodes in the semimetallic case. In the case where the system has no Dirac nodes but a 

small gap, a small B⊥ would produce Landau levels and enlarge the gap, while an in-plane field 

shifts the spin up and down (pointing in-plane) bands oppositely and thus generically reduces the 

gap, which is also consistent with our experimental observation 

 

3. Hofstadter butterfly of tBLG with different angles 

In Fig. S7-8, we demonstrate magneto-transport results of three more devices (D2 0.38°, D3 0.34° 

and D1-2 0.44°). Similar with the spectrum shown in Fig. 2 in main text, all samples we have 

measured exhibit robust unbounded and connected features in Hofstadter spectrum. As shown 

continuous extension of LLs from the CNP to higher moiré bands shows a clear evidence of 

nontrivial band topology of tBLG, which otherwise would be obstructed. Similar with D1-1 shown 

in main text, (4, 0), (−4, 0), (8, 1) and (−8,−1) LL gaps are still dominant in the Hofstadter 

spectrum and crossing several moiré bands, giving an unbounded and connected Hofstadter 

butterfly in all devices. Some 𝐶 = 0 gaps also reappear in magnetic field, i.e. the (0, 0) gap starts 

to appear when the magnetic flux through one moiré unit cell is close to half quantized value 𝜙0 2⁄ , 

whereas (0, ±1) gaps reappear when the magnetic flux is above 𝜙0. We find that (0, ±1) gaps in 

all measured samples are interrupted by (±4, 0) gaps that are emerging from the CNP. Moreover, 

(0,±2) gaps in device D2 and (0,−2) in device D1-2 also reappear above 𝜙0 and are further 

interrupted by (±4, 0) gaps.  

 

4. Hofstadter butterfly of fragile topology 

As demonstrated in Ref (14), the Hofstadter butterfly of the lowest two fragile topological bands 

of the single-valley tBLG continuum model (see SM Sec. 6 for definition) is always connected 

with the Hofstadter spectra of the higher bands at certain nonzero magnetic fluxes per moiré unit 

cell, which can be understood as the fingerprint of the fragile topology (this is specifically true for 
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the tBLG continuum model here; see the last paragraph of this section for a brief discussion of 

generic C2zT fragile topology models). For large enough twist angles (> 2∘), the perturbation 

analysis in Ref (14) shows that the Dirac helicity 𝜂 = 2 at each graphene valley (which gives the 

fragile topology of the lowest two tBLG moiré bands) leads to two Chern gaps (±4,0) (counting 

the 4-fold spin-valley degeneracy) extending from the lowest two moiré bands to all the higher 

bands, which interrupts all the moiré band gaps (0, 𝑠) at nonzero integer fillings 𝑠 = 𝑛/𝑛𝑠. As a 

result, the Hofstadter butterflies of all the moiré bands are connected together at nonzero magnetic 

fields. Numerical calculations in Ref (14) show that in a vast range of twist angle and relaxation 

parameter (see SM Sec. 6 for definition) including the parameters for the tBLG samples in our 

experiment, the Hofstadter spectrum of the lowest two moiré bands is connected with the spectrum 

of the higher bands at nonzero magnetic fluxes no larger than 𝜙/𝜙0 = 1. 

 

Here we also show in Fig. S9 (replotted from Ref (14)) the calculated Hofstadter butterfly for the 

ten-band tight-binding model for tBLG (single spin and single valley) proposed by Ref (12), which 

faithfully characterize the fragile topology of the tBLG continuum model. In Fig. S9, we have 

multiplied all the Chern numbers of the Hofstadter gaps of the tight-binding model by 4, 

accounting for the 4-fold spin-valley degeneracy. One can clearly see that the Hofstadter spectrum 

of the lowest two bands is connected with the higher Hofstadter spectra at 𝜙 = 𝜙0, and the first 

moiré band gap (0, ±1) are interrupted by the Chern gaps (±4,0) from the CNP which extend all 

the way to higher bands. 

 

We note that depending on twist angle and the relaxation parameter, the lowest two moiré bands 

are not always gapped from the higher bands at zero magnetic field (in the absence of interactions). 

When there is no gap from the higher bands at zero magnetic field (for example, in the range of 

angles we study in this paper), the fragile topology of the lowest two moiré bands is in principle 

ill-defined. However, it is shown in  previous work (13) that in all the tBLG parameter (twist angle) 

range where the lowest two moiré bands are gapped from the higher bands, the lowest two moiré 

bands are fragile topological. This shows that the gap closing and reopening between the lowest 

two moiré bands and the higher moiré bands in the entire tBLG parameter range do not alter the 

fragile topology of tBLG, and the Dirac helicity 𝜂 = 2 of each graphene valley at the CNP remains 

robust. As a result, for angles where the lowest two moiré bands are gapless with the higher bands, 

we find the fingerprint of the fragile topology, that the Hofstadter spectra of the lowest two moiré 

bands and the higher moiré bands are connected at nonzero magnetic field, remains unchanged. 

 

We also note that, in a generic symmetry analysis, a model with two fragile topological bands 

protected by C2zT symmetry could have their Hofstadter butterfly disconnected with that of the 

other bands, due to the T symmetry breaking in the zero field model (20). However, the 

disconnection of the Hofstadter butterfly requires a large enough T symmetry breaking; the C2x 

C2zT symmetry of the graphene model at any magnetic field also allows for Weyl points on the y-

momentum axis. In particular, for the TBG continuum model, by both theoretical and numerical 

analyses, it is shown in Ref (14) that the Hofstadter butterfly connection between the lowest two 

fragile topological bands and the higher bands (in the range of nonzero magnetic fluxes including 

infinity) is stable for all the twist angles and relaxation parameters 0 ≤ 𝑢0 ≤ 1. 
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5. Bandtructure of 0.45° tBLG and Hartree-Fock calculation 

We perform a self-consistent Hartree-Fock (HF) calculation for the continuum model to examine 

the effects of Coulomb interaction between electrons at integer moiré fillings 𝑛 = 𝑁𝑛𝑠 (𝑁 ∈ ℤ) at 

zero magnetic field. We take the Coulomb interaction 

𝐻𝐼 =
1

2
∑

𝑉(𝒒)

𝐴𝑡𝑜𝑡
𝑐𝛼,𝒌+𝒒
† 𝑐𝛼,𝒌𝑐𝛽,𝒌′−𝒒

† 𝑐𝛽,𝒌′
𝛼,𝛽,𝒒,𝒌,𝒌′

 , 

where 𝑉(𝒒) = 2𝜋𝑒2(1 − 𝛿𝒒,𝟎)/𝜖𝑞  is the Fourier transform of Coulomb interaction 𝑒2/𝜖𝑟 

subtracting the background charge, 𝐴𝑡𝑜𝑡  is the total area of the system. 𝑐𝛼,𝒌 is the annihilation 

operator of the Dirac electron of the monolayer graphene at momentum 𝒌 (the plane wave basis), 

and 𝛼 is a shorthand notation for multiple indices: the sublattice 𝑎 = 𝐴, 𝐵, layer 𝑙 = 1,2, spin 𝑠 =
↑, ↓ and graphene valley 𝜂 = 𝐾, 𝐾′ indices (see also SM Sec. 6). The electron eigenstates are given 

by the single-particle mean-field Hartree-Fock Hamiltonian 

𝐻 = 𝐻0 + Σ𝐻 + Σ𝐹 , 
where 𝐻0 is the free continuum model Hamiltonian (see SM Sec. 6). The Hartree term and Fock 

terms take the form 

Σ𝐻 = ∑
𝑉(𝒒)

𝐴𝑡𝑜𝑡
⟨𝑐𝛼,𝒌+𝒒
† 𝑐𝛼,𝒌⟩ 𝑐𝛽,𝒌′−𝒒

† 𝑐𝛽,𝒌′
𝛼,𝛽,𝒒,𝒌,𝒌′

  , 

Σ𝐹 = −[ ∑
𝑉(𝒒)

𝐴𝑡𝑜𝑡
⟨𝑐𝛼,𝒌+𝒒
† 𝑐𝛽,𝒌′⟩𝑐𝛽,𝒌′−𝒒

† 𝑐𝛼,𝒌
𝛼,𝛽,𝒒,𝒌,𝒌′

+ ℎ. 𝑐. ]  , 

where ⟨𝒪⟩ stands for the expectation value of operator 𝒪 from all the occupied electrons for a 

given electron filling 𝑛. We assume there is neither spontaneous translational symmetry breaking 

nor spontaneous polarization of spins and valleys. In general, translational symmetry breaking will 

enlarge the unit cell, and spin/valley polarization will break the 4-fold spin-valley degeneracy, 

both of which may lead to insulating states at non-integer fillings 𝑛/𝑛𝑠. Such non-integer filling 

insulating states are not observed in our experiment (see main text Fig. 1), so we assume translation 

symmetry and spin-valley degeneracy are unbroken. Thus ⟨𝑐𝛼,𝒌
† 𝑐𝛽,𝒌′⟩ is nonzero only if 𝒌 − 𝒌′ =

𝑚1𝒈1 +𝑚2𝒈2 (𝑚1,𝑚2 ∈ ℤ) and 𝛼, 𝛽 belong to the same spin and valley, where 𝒈1 and 𝒈2 are 

the reciprocal vectors of the moiré superlattice.  

 

To perform the self-consistent calculation, we take a moiré momentum lattice cut off of the single-

particle Hamiltonian 𝐻0 so that it contains 146 bands (i.e., is a 146 × 146 matrix) per spin per 

valley. In the first step, we add to 𝐻0 a small Hermitian random matrix 𝐻𝑠𝑒𝑒𝑑 as a seed for all 

possible spontaneous symmetry breakings, and diagonalize 𝐻0 + 𝐻𝑠𝑒𝑒𝑑, after which we calculate 

the expectation values in Σ𝐻 and Σ𝐹 at the desired fixed filling. Then we iteratively diagonalize the 

full Hamiltonian 𝐻 = 𝐻0 + Σ𝐻 + Σ𝐹 (the initial seed is no longer added after the first step) and 

calculate Σ𝐻  and Σ𝐹  at the fixed filling until convergence (until the total Hartree-Fock energy 

𝐸𝐻𝐹 = ⟨𝐻0 +
1

2
(Σ𝐻 + Σ𝐹)⟩ changes less than 0.01meV in one step). In the calculation of Fig. 1C 

and Fig. S10, we take 
|𝒈1|𝑉(𝒈1)

√3
= 10meV, relaxation parameter 𝑢0 = 0.3 (see SM Sec. 6), and add 

the random initial seed 𝐻𝑠𝑒𝑒𝑑 to allow for spontaneous symmetry breakings. 

 

Our Hartree-Fock calculations for integer fillings 𝑛 = 𝑁𝑛𝑠  with an initial Hermitian random 

matrix symmetry breaking seed 𝐻𝑠𝑒𝑒𝑑 show that the C3z symmetry is spontaneously broken, but 
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C2zT is preserved. The Hartree-Fock band structures and the density of states for 𝑁 = 0,1,2,3,4 

are shown in Fig. S10A and Fig. S11, respectively. For fillings 𝑛/𝑛𝑠 = 0,1,3,4, we find the band 

structures are semimetallic with 2 Dirac points at the Fermi energy. For filling 𝑛/𝑛𝑠 = 2, the band 

structure has a small indirect gap at the Fermi energy. Lastly, we comment that the realistic tBLG 

samples may also have external C3z breakings due to uniaxial strains, as revealed by scanning 

tunneling microscope experiments of tBLG (27-30).  

 

6. Hofstadter Butterfly Calculation 

We calculate the Hofstadter butterfly of the tBLG continuum model, which can be written in real 

space as 

𝐻0 = ∫ 𝑑
2𝒓∑𝑐𝜂,𝑠

† (𝒓)

𝜂,𝑠

(
ℏ𝑣𝝈𝜂 ⋅ (−𝑖∇) 𝑇𝜂(𝒓)

𝑇𝜂†(𝒓) ℏ𝑣𝝈𝜂 ⋅ (−𝑖∇)
) 𝑐𝜂,𝑠(𝒓) , 

where 𝑐𝜂,𝑠(𝒓) = (𝑐𝐴,𝑡,𝜂,𝑠(𝒓), 𝑐𝐵,𝑡,𝜂,𝑠(𝒓), 𝑐𝐴,𝑏,𝜂,𝑠(𝒓), 𝑐𝐵,𝑏,𝜂,𝑠(𝒓))
𝑇

 is the free electron basis 

(𝑐𝑎,𝑙,𝜂,𝑠(𝒓) for an electron in sublattice 𝑎, layer 𝑙 = 𝑡, 𝑏 (for top and bottom), valley 𝜂 (= ±1 for 

K, K’) and spin 𝑠 ), 𝝈𝜂 = (𝜂𝜎𝑥, 𝜎𝑦)  are the Pauli matrices, 𝑇𝜂(𝒓) = ∑ 𝑇𝑗
𝜂
𝑒𝑖𝜂𝒒𝑗⋅𝒓3

𝑗 , and the 3 

matrices 𝑇𝑗 are given by 

𝑇𝑗
𝜂
= 𝑤(

𝑢0 𝑒𝑖2𝜋𝜂(𝑗−1)/3

𝑒−𝑖2𝜋𝜂(𝑗−1)/3 𝑢0
). 

The dimensionless parameter 𝑢0 characterizes the lattice relaxation. It equals to 1 when there is no 

relaxation. For 0.45°, we estimate the relaxation parameter to be 𝑢0 = 0.3 (30, 31), which we use 

in all of our calculations. Because of the presence of C2z symmetry and the absence of spin-orbital 

coupling, the Hofstadter butterflies of all the 2 spins and 2 valleys are identical (excluding the 

Zeeman energy). The Zeeman energy is negligibly small (0 < 𝐸𝑧 < 1.85 𝑚𝑒𝑉 for the magnetic 

field range in the experiment, assuming the 𝑔 = 2) compared to the band energies, which is thus 

ignored in our Hofstadter butterfly calculations. 

 

In real samples, interlayer uniaxial strain may exist which breaks the C3z symmetry of tBLG (more 

information shown in SM Sec. 7). In addition, electron-electron interactions may also 

spontaneously break the C3z symmetry, as our Hartree-Fock calculations show (SM Sec. 5). We 

find the Hofstadter butterfly with a C3z symmetry breaking agrees better with the experimental 

data. In particular, adding C3z symmetry breaking allows us to reproduce the reemergence of the 

(0,0), (0,±1) and (0,±2) gaps at high B⊥ field (𝜙 > 𝜙0), one of the experimental details.  

 

The strain induced breaking of C3z symmetry is shown in SM Sec. 7, where due to strain the moiré 

Brillouin zone vectors 𝒒𝑗 for 𝑗 = 1,2,3 are no longer related to each other via three-fold rotation. 

The resultant moiré Brillouin zone is an irregular hexagon. Alternatively, the effect of the C3z 

symmetry breaking can also be incorporated in the interlayer hopping matrix by changing 𝑇1
𝜂
 into 

𝛾𝑇1
𝜂

 (𝛾  is a dimensionless parameter) while keeping 𝑇2
𝜂

 and 𝑇3
𝜂
.  In our Hofstadter butterfly 

calculations, we use the first approach to properly take strain into account (SM Sec. 7). We have 

verified that the qualitative features of Hofstadter butterfly are the same in both approaches.  

 

Furthermore, to partially include the effect of Coulomb interactions between electrons, we add the 

following term to the Hamiltonian 𝐻0 as an approximate Hartree term: 
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𝐻𝐼 = 𝑈0∫ 𝑑
2𝒓∑(∑𝑒𝑖𝒈𝑗⋅𝒓

6

𝑗=1

)

𝜂,𝒔

𝑐𝜂,𝑠
† (𝒓) 𝑐𝜂,𝑠(𝒓), 

where 𝒈𝑗  are the six smallest reciprocal vectors of the moiré superlattice. Our Hartree-Fock 

numerical calculations at zero magnetic field show this is the leading term in the Hartree potential. 

The coefficient 𝑈0 depends on the electron filling fraction. For electron (hole) doping, 𝑈0 > 0 

(𝑈0 < 0).  
 

The Hamiltonian is diagonalized in the Landau level basis of monolayer graphene |𝑙, 𝑁, 𝑌⟩, where 

𝑁 is the Landau level index, 𝑌 is the guiding center, and we have chosen the Landau gauge. In the 

Landau level basis, the matrix elements of the interlayer tunneling Hamiltonian 𝑇𝜂(𝒓) involves 

the evaluation of the following matrix element: 

⟨𝑡, 𝑁, 𝑌|𝑒𝑖𝒒𝑗⋅𝒓|𝑏,𝑀, 𝑌′⟩ = 𝛿𝑌,𝑌′+𝑞𝑗𝑥ℓ2𝑒
𝑖𝒒𝑗𝑦(𝑌+𝑌

′)

2 𝜒𝑁,𝑀(𝒒), 

 

𝜒𝑁,𝑀(𝒒𝑗) =

{
 
 

 
 𝑒

−(
𝑞𝑗ℓ

2
)
2
√𝑀!

√𝑁!
(
(−𝑞𝑗𝑥 + 𝑖𝑞𝑗𝑦)ℓ

 √2
)

𝑁−𝑀

𝐿𝑀
𝑁−𝑀 (

𝑞𝑗
2ℓ2

2
)      𝑁 ≥ 𝑀

𝑒
−(
𝑞𝑗ℓ

2
)
2
√𝑁!

√𝑀!
(
(𝑞𝑗𝑥 + 𝑖𝑞𝑗𝑦)ℓ

 √2
)

𝑀−𝑁

𝐿𝑁
𝑀−𝑁 (

𝑞𝑗
2ℓ2

2
)      𝑀 > 𝑁.

 

 

 

Here 𝐿𝑀
𝑁  are the associated Laguerre polynomials. Hence the interlayer tunneling in the Landau 

level basis couples a guiding center 𝑌 from one layer to another guiding center 𝑌′ = 𝑌 ± Δ𝑗, where 

Δ𝑗 = 𝑞𝑗𝑥ℓ
2 from the other layer. Here ℓ is the magnetic length. For the C3z symmetric unstrained 

case, as well as for the C3z broken strained case under our choice of strain parameters (which 

constraints 𝑞2𝑥 = −𝑞3𝑥) (SM Sec. 7 and Fig. S13B), the interlayer term can be interpreted as a 1D 

lattice of guiding centers with nearest neighbor hopping and the lattice constant Δ = |𝑞2𝑥|ℓ
2.  

 

Similarly, the Hartree term 𝐻𝐼, couples the guiding center 𝑌 with the guiding centers 𝑌′′ = 𝑌 ±
𝛿𝑗, where 𝛿𝑗 = 𝑔𝑗𝑥ℓ

2within the same layer. The values taken by 𝑔𝑗𝑥are 0,±Δ/ℓ2, ±2Δ/ℓ2. In this 

guiding center chain picture, the Hartree term only further introduces next nearest neighbor 

hopping.  

 

The guiding center chain becomes periodic for the rational flux ratio through the moiré unit cell, 

i.e. when  

𝐴𝑚ℓ
2 = 2𝜋

𝑝

𝑞
 , 𝐴𝑚 = 3√3|𝐾|2(𝜃2 − 𝜈2𝜖)ℓ2, 

For positive integers 𝑝 and 𝑞. Here |𝐾| = 4𝜋/3𝑎0, and 𝜖, 𝑣 are the strain and Poisson ratio [see 

SM Sec. 7]. The above relation for the area of the strained moiré Brillouin zone is only valid for 

the specific strain we have chosen for the purpose of numerical efficiency in Hofstadter butterfly 

calculation. In the limit of no strain one flux through moiré unit cell corresponds to B∼25 θ2 

magnetic field in Tesla. In the guiding center chain picture, the number of orbitals on each guiding 

center site is set by the number of Landau levels kept within a cut-off to obtain convergent result 

for the Hofstadter spectrum. Overall the dimension of the matrix to be diagonalized is (4𝑁𝑐 + 2)𝑞, 
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where the monolayer graphene Landau levels ranging from −𝑁𝑐to 𝑁𝑐 are kept within the cutoff. 

The value of 𝑁𝑐 is set by ∼ 500 𝑚𝑒𝑉 energy window on either side of Dirac point, with some 

variation for smoothing. Rest of the diagonalization procedure follows Bistritzer et. Al (11).   

 

The gaps in the Hofstadter spectrum have associated topological indices (𝜎, 𝑠), where 𝜎 refers to 

the Hall conductivity and 𝑠 is associated with moiré band filling. To calculate these indices, we 

first notice the gaps in the Hofstadter spectrum and calculate the Landau level fulling 𝜈𝐿𝐿 at those 

gaps. Next the Landau level fillings are plotted as function of flux ratio. The gap trajectories plotted 

this way follow simple relation: 

𝜈𝐿𝐿 = 𝜎 + 𝑠
𝑝

𝑞
, 

and the integers 𝜎 and 𝑠 are simply the intercept and the slope of these gap trajectories.  
 

In Fig. S12B-C, we compare the Hofstadter butterflies for 𝑈0 = 0 (corresponding to no doping), 

both of which have a 0.4% strain breaking the C3z symmetry (see SM Sec. 7), and 𝑈0 = 10meV 

(corresponding to electron doping), where one can see the (4, 𝑠) gaps  (with 4-fold degeneracy 

from spin and valley) are suppressed by 𝑈0. This suggest that the absence of (4, 𝑠) gaps for 𝑠 ≥ 2 

(where the sample is electron doped) in the experiment may be due to interaction effects.  

 

7. Uniaxial strain and C3z symmetry 

In general, both graphene layers are likely to experience strain that may be unavoidable during 

fabrication process. The signature of strain is observed in the spectroscopy data at the magic angle, 

where the C3z rotational symmetry broken moiré pattern is observed (26-29). Here we outline the 

procedure to take strain effects into account in our theoretical calculations.  

Let the vectors 𝑲𝑖, (for  𝑖 = 1,2,3) denote the momentum space position of the three 𝐾 valley 

points of a monolayer of graphene, such that: 

𝑲1 = (
|𝑲|
0
) , 𝐾2 =

(

 
−
|𝑲|

2

√3

2
|𝑲|)

 ,𝐾2 =

(

 
−
|𝑲|

2

−
√3

2
|𝑲|)

 , |𝑲| =
4𝜋

√3𝑎0
. 

 

 Rotation of a graphene layer by an angle 𝜃 is generated by the rotation matrix 

𝑅(𝜃) = (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

), 

 

while application of uniaxial strain 𝜖 in a graphene layer along a strain direction at angle 𝜑 from 

𝑥 -axis is generated by the strain tensor 

𝑆(𝜖, 𝜑) = 𝑅(𝜑)−1 (
1 − 𝜖 0
0 1 + 𝜈𝜖

)𝑅(𝜑), 

where 𝜈 = 0.12 is the Poisson ratio of graphene and the sign of 𝜖 dictates compression or stretch. 

 

We consider the tBLG under strain as a two-step process, first, the top and the bottom graphene 

layers are rotated by angles −
𝜃

2
 and 

𝜃

2
 respectively as shown in the Fig. S13A, then independent 

uniaxial strain 𝑆(𝜖𝑡, 𝜑𝑡) and 𝑆(𝜖𝑏 , 𝜑𝑏) are applied to the two layers as shown in the Fig. S13B. 

The hexagonal moiré Brillouin zone is constructed by taking the difference between the new 

positions of the three 𝐾 valley Dirac points of the two layers. 
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𝒒𝑖 = 𝑲𝑖
𝑡 −𝑲𝑖

𝑏 = [𝑆(𝜖𝑡, 𝜑𝑡)𝑅 (−
𝜃

2
) − 𝑆(𝜖𝑏, 𝜑𝑏)𝑅 (

𝜃

2
)]  𝑲𝑖 . 

     

In the limit of zero strain, the three high symmetry moiré vectors 

𝒒1 = (
0

−2𝐾 sin
𝜃

2

) , 𝒒2 = (
√3𝐾 sin

𝜃

2

𝐾 sin
𝜃

2

) , 𝒒3 = (
−√3𝐾 sin

𝜃

2

𝐾 sin
𝜃

2

) , 

shown in right of Fig. S13A are related by C3z rotational symmetry. The resultant moiré Brillouin 

zone is a regular hexagon. 

 

Generally under strain the C3z symmetry is broken and the moiré Brillouin zone is an irregular 

hexagon as shown in the Fig. S13B. For the numerical efficiency in the Hofstadter butterfly 

calculations, we consider the form of strain that deforms the hexagonal moiré Brillouin zone in a 

specific form shown in the Fig. S13C, which still breaks the C3z symmetry. For this specific kind 

of strain deformation, the strain in the top and bottom layer is generated by 𝑆(𝜖, 𝜑) and 𝑆(−𝜖, 𝜑) 
respectively. The strain angle 𝜑  is determined under the following constraints on the moiré 

Brillouin zone vectors 𝒒𝑖: 
𝑞1𝑥 = 0,  𝑞2𝑥 = −𝑞3𝑥,  

𝑞2𝑦 = 𝑞3𝑦 = −
𝑞1𝑦

2
 . 

We note that this way of breaking C3z makes 𝒒1 different from 𝒒2 and 𝒒3. The effect of such a 

deformation on the Hofstadter butterfly is similar to the effect of changing 𝑇1
𝜂
 into 𝛾𝑇1

𝜂
 (𝛾 is a 

dimensionless parameter) while keeping 𝑇2
𝜂

 and 𝑇3
𝜂

, as we have checked numerically. 

Heuristically, this is because enlarging 𝒒1 increases the on-site (momentum site) energy (the Dirac 

fermion term) difference between 𝒌  and 𝒌 + 𝒒1 , which hop with each other by matrix 𝑇1
𝜂

; 

perturbatively, this is similar to reducing the magnitude of 𝑇1
𝜂
 while maintaining the Dirac kinetic 

energy difference (which is proportional to 𝒒1). At zero magnetic field, both ways of breaking C3z 

shift the Dirac points away from 𝐾𝑀 and 𝐾𝑀′ points in a similar way. 

 

8. Landau fan in the large magnetic field limit 

In the large magnetic field limit, both the experiment and the numerical calculation demonstrate 

that the Landau fan is dominated by (4, 𝑠), (8, 𝑠), …, where 𝑠 is an integer. Here we give a 

heuristic understanding of these gaps from the zero twist-angle limit. We note that at zero twist 

angle (assuming AB stacking), there are only two low energy graphene bands which are connected 

by a quadratic Dirac point of helicity 𝜂 = ±2  at each graphene valley (±  signs for original 

graphene valleys K and K’, respectively). So if we view the two graphene valleys as decoupled, 

the Dirac helicity of each AB-stacked graphene valley matches the fragile topology of the tBLG.  

 

The quadratic Dirac point band touching at valley 𝜂 (𝜂 = ±1 for K and K’) of the zero-twist-angle 

bilayer graphene can be effectively described by a 𝑘 ⋅ 𝑝 Hamiltonian ℎ𝐵𝐿𝐺
𝜂 (𝑘) = 𝜂(𝑘𝑥

2 − 𝑘𝑦
2)𝜎𝑥 +

2𝑘𝑥𝑘𝑦𝜎𝑦. In a magnetic field, LLs are developed at the quadratic touching bands at each spin and 

valley, leading to in total 8 degenerate zero mode LLs, and 4-fold degenerate non-zero-mode LLs 

with energies linear in B. As a result, the system with 4-fold spin-valley degeneracy has LL gaps 

denoted by (4𝑡, 0) with 𝑡 = ±1,±2,⋯, where (𝐶, 𝑠) denotes a gap with Chern number 𝐶  and 
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electron filling 𝑠 at zero magnetic field (𝑠 = 0 for CNP). Fig. S14A illustrates such LLs and the 

LL gaps between them, where gap A has Chern number 𝐶 = 4, and gap G has a Chern number 

𝐶 = 8 (counting the 4-fold spin-valley degeneracy). We note that this LL picture is valid because 

we are considering magnetic fields corresponding to negligibly small magnetic fluxes per original 

graphene unit cell; hence, we are not considering the Hofstadter butterfly of the bands of untwisted 

bilayer graphene in the original graphene Brillouin zone. The spectra are therefore well 

characterized by the LLs of the 𝑘 ⋅ 𝑝  quadratic Dirac Hamiltonian ℎ𝐵𝐿𝐺
𝜂 (𝑘)  at two graphene 

valleys, and no Hofstadter physics in the original graphene BZ is expected. 

 

In twisted bilayer graphene, at sufficiently large magnetic field, the Hofstadter spectrum can be 

thought of as adiabatically deformed from the LLs in the untwisted limit (see Fig. S14A-B), during 

which the original LL gaps in the untwisted limit remain open above a certain threshold magnetic 

field. With the two layers twisted relative to each other, a spatially periodic moiré superlattice 

potential arises, and defines a moiré unit cell (at zero magnetic field) of area Ω𝑚. Consider some 

large magnetic flux per moiré unit cell 𝜙 = 𝑝𝜙0, where 𝑝 is an integer (so the moiré superlattice 

translation symmetry is unbroken). Before we turn on the moiré potential, by Streda formula, the 

number of electron states each LL can accommodate per moiré unit cell is 𝑝. Therefore, when the 

moiré potential is turned on, each LL (per spin per valley) in the untwisted limit will split into 𝑝 

subbands. Each subband 𝑗 (1 ≤ 𝑗 ≤ 𝑝) has 𝑛𝑗 = 1 electron state per area Ω𝑚 and may carry some 

Chern number 𝜎𝑗 (∑ 𝜎𝑗
𝑝
𝑗=1 = 1). Fig. S14B gives some illustrative examples of the splitting of the 

first LL (at one spin one valley) into 𝑝 subbands at integer fluxes 𝑝 = 2,3,4,5, and the Chern 

numbers 𝜎𝑗 of the subbands at each flux 𝑝𝜙0 are denoted by the red numbers. We note that here 

we only require 𝑝 to be large enough so that the original LL gaps (e.g., gaps A and G in Fig. S14B) 

are large enough (larger than the typical zero-magnetic-field moiré band widths) and remain open 

as the moiré potential is turned on. In our case of twist angles around 0.5∘, this requires 𝑝 greater 

than 2 or 3.   

 

When the magnetic flux changes, by Streda formula, the number of electron states 𝑛𝑗  per area Ω𝑚 

of a subband 𝑗 at flux 𝑝𝜙0 satisfies 𝑑𝑛𝑗/𝑑𝜙 = 𝜎𝑗/𝜙0.  Therefore, if 𝜎𝑗 ≠ 0, a subband 𝑗 at flux 

𝑝𝜙0 cannot uniquely deform into a subband 1 ≤ 𝑗′ ≤ 𝑝 + 1 at flux (𝑝 + 1)𝜙0, since 𝑛𝑗 = 𝑛𝑗′ =

1. If a subband at flux 𝑝𝜙0  carry a negative Chern number 𝜎𝑗 < 0 , its electron density will 

decrease to zero before or at flux (𝑝 + 1)𝜙0, so it has to merge with another subband. An example 

is the Chern number −1 subband at flux 2𝜙0 in Fig. S14B, which merges with another subband at 

flux 3𝜙0. If a subband at flux 𝑝𝜙0 has a Chern number 𝜎𝑗 > 0, it has to split into 𝜎𝑗 + 1 subbands 

(𝜎𝑗 > 0) as flux increases by 1 (for example, The Chern number 2 subband at flux 2𝜙0 and the 

Chern number 1  subbands at fluxes 3,4,5𝜙0  in Fig. S14B). Therefore, a subband 𝑗  can 

adiabatically sustain itself as a single isolated subband for a wide range of magnetic fluxes only if 

its Chern number 𝜎𝑗 = 0 (e.g., the Chern number 0 subbands in Fig. S14B). Non-zero chern 

number bands have to split at some point as a function of the magnetic field. 

 

These subbands carrying Chern number 𝜎𝑗 = 0, which remain a single isolated subband for a wide 

range of magnetic field, then give rise to the series of gaps (4, 𝑠), (8, 𝑠)…, where (𝐶, 𝑠) denotes a 

gap with Chern number 𝐶 and electron filling 𝑠 = 𝑛(𝜙 = 0)/𝑛𝑠 at zero magnetic field, and 𝑛𝑠 =
4/Ω𝑚 with 4-fold spin-valley degeneracy considered. The reasoning is as follows: 
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First, given that the original LL gaps (in the untwisted limit) remain open in a wide range of 

sufficiently large magnetic field (large magnetic fluxes per moiré unit cell, but still much smaller 

than one magnetic flux per microscopic graphene unit cell), they correspond to (4𝑡, 0) gaps in the 

tBLG (counting the 4-fold spin-valley degeneracy). For example, gaps A and G in Fig. S14B 

correspond to the (4,0) gap (occupying all the zero-mode LLs and below) and (8,0) gap (occupying 

the zeroth and first LLs), respectively.  

 

Then, in the illustrative Fig. S14B, the gaps C, D, E, F are separated with gap A by 1 to 4 Chern 

number 0 subbands, respectively. Accordingly, they correspond to a series of Chern number 4 

gaps (4,1), (4,2), (4,3), (4,4), respectively. In particular, they can remain open over a wide range 

of magnetic fluxes, since the Chern number 0 subbands separating them can remain isolated 

without restriction from the Streda formula. In contrast, gap B (with quantum numbers (0,3)), 
which differs from gap A by a Chern number -1 band at flux 2𝜙0, has to close readily at flux 3𝜙0. 

This shows that the splitting of the first LL by moiré potential would most likely give rise to the 

(4, 𝑠) series of gaps extending over a wide range of fluxes (and similarly (8, 𝑠) for the second LL, 

and higher). For the zero-th LLs, similarly they could develop a Hofstadter spectrum with certain 

(0, 𝑠) gaps remaining open in a wide range of magnetic fluxes at large enough magnetic field. 

Experimental data (main text Fig. 2) and numerical calculation (Fig. S12) show that this can 

happen, e.g., the (0,0) and (±1,0) gaps (after they are interrupted by the (±4,0) gaps). 

 

9. Tight-binding model for Fig. 3A-B 

The Hofstadter butterfly in main text Fig. 3A-B are calculated with the following 2-band tight-

binding model on a 2D square lattice (of lattice constant 1): 

𝐻TB(𝒌) = (𝑀 − cos 𝑘𝑥 − cos 𝑘𝑦)𝜎𝑧 + 𝐴(𝜎𝑥 sin 𝑘𝑥 + 𝜎𝑦 sin 𝑘𝑦) , 

where 𝑀 and 𝐴 > 0 are constants, 𝜎𝑥,𝑦,𝑧 are Pauli matrices in the band basis, and 𝒌 = (𝑘𝑥, 𝑘𝑦) is 

the quasimomentum in the BZ. We note that this model can be viewed as half of the Bernevig-

Hughes-Zhang model (33).  

 

The valence band and conduction band of this model both have Chern numbers 0 if |𝑀| > 2. In 

contrast, when |𝑀| < 2,  the valence band and conduction band have Chern numbers ±𝑀/|𝑀|, 
respectively. Fig. 3A is calculated by setting 𝑀 = 3 and 𝐴 = 2, for which both bands are trivial 

bands with Chern number 0. Fig. 3B is calculated by setting 𝑀 = 1 and 𝐴 = 2, for which the 

valence and conduction bands carry Chern number ±1, respectively. 
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Fig. S1. 

 
 

Fig. S1. Optical microscope images of stacks and devices. Red lines in (A) mark the contact 

pairs which are further labeled as device D1-1 (0.45°). The contact pair indicated by yellow line is 

labeled as D1-2 (0.44°) with measured data shown in Fig. S8B. Device D2 (0.38°) and device D3 

(0.34°) are measured with contact pairs indicated by red lines in (B) and (C), with corresponding 

results displayed in Fig. S7 and S8. The outlines of fabricated Hall bars are demonstrated with the 

white dashed lines. All scale bars are 5m. 
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Fig. S2. 

 

 
Fig. S2. Magnetic field induced metal-insulator transition. Longitudinal resistance Rxx vs. 

carrier density n at various temperatures measured at a magnetic field B⊥ of 0T (A), 0.15T (B), 

0.3T (C) and 0.45T (D). Data is measured from D1-1 (0.45°). 

 

  



 

 

15 

 

Fig. S3. 

 

 
 

Fig. S3. Extraction of gaps in all integer filling states. (A-I) Longitudinal resistance Rxx vs. 

inverse temperature 1/T at various integer fillings n=Nns and B⊥ = 0.45T. The straight dashed lines 

are fits to Rxx ~ exp (∆/2kT) temperature activated behavior. Data is measured from D1-1 (0.45°). 
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Fig. S4. 

 

 
Fig. S4. Gap evolution with B⊥ at all integer filling stages. (A-I) Magnetic field B⊥ dependent 

gaps at various integer fillings n=Nns extracted from Rxx ~ exp (∆/2kT) temperature activated 

behavior. Data is measured from D1-1 (0.45°). 
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Fig. S5. 

 
 

Fig. S5. Rxx vs. carrier density n at various magnetic field. (A) Rxx vs. n at different 

perpendicular magnetic field B⊥. (B) Rxx vs. n at fixed total field B = 0.45T with different tilt 

angles.  Data is measured from D1-1 (0.45°) at a temperature of 1.5K 
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Fig. S6. 

 
 

Fig. S6. Hofstadter butterfly measured from D1-1. Color plot of longitudinal conductivity 

𝜎𝑥𝑥 = 𝜌𝑥𝑥 (𝜌𝑥𝑥
2 + 𝑅𝑥𝑦

2 )⁄  (A) and magnitude of hall conductivity /𝜎𝑥𝑦/= /𝑅𝑥𝑦/  (𝜌𝑥𝑥
2 + 𝑅𝑥𝑦

2 )⁄  (B) 

as a function of carrier density n and B⊥ measured at a temperature of 1.5K. Yellow solid lines 

indicate gaps with different Chern numbers and yellow dashed lines give sight guidance for tracing 

to different moiré bands. Black dashed lines mark the positions of magnetic flux values (𝜙0 2⁄  and 

𝜙0) through the moiré unit cell.  
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Fig. S7. 

 

 
Fig. S7. Hofstadter butterfly spectrum in 0.38° tBLG (D2). (A) Color plot of longitudinal 

resistance Rxx as a function of carrier density n and B⊥. Black and yellow solid lines indicate gaps 

with different Chern numbers and extended dashed lines give sight guidance for tracing to different 

moiré bands. The horizontal dashed lines mark the positions of magnetic flux values (𝜙0 2⁄  and 

𝜙0) through the moiré unit cell. (B) Longitudinal conductivity 𝜎𝑥𝑥 and hall conductivity 𝜎𝑥𝑦 vs. 

carrier density n measured at a maximum magnetic field of 16T. Both (A) and (B) are measured 

at a temperature of 1.5K. 
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Fig. S8. 

  
 

Fig. S8. Hofstadter butterfly spectrums measured from device D3 (0.34°) and D1-2 (0.44°). 

Color plot of longitudinal resistance Rxx as a function of carrier density n and B⊥ measured from 

device D3 (A) and device D1-2 (B). Inserts show optical images and measurement configurations 

of devices D3 and D1-2. Black and yellow solid lines indicate gaps with different Chern numbers 

and extended dashed lines give sight guidance for tracing to different moiré bands. The horizontal 

dashed lines mark the positions of magnetic flux values (𝜙0 2⁄  and 𝜙0) through the moiré unit cell. 

Both (A) and (B) are measured at a temperature of 1.5K. 
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Fig. S9. 

  
Fig. S9. (A) The band structure of the ten-band tight-binding model (one spin one valley) in Ref 

(8) at zero magnetic field. (B) The Hofstadter butterfly of the ten-band tight-binding model, where 

(𝐶, 𝑠) labels a Hofstadter gap with Chern number 𝐶 (counting the 4-fold spin-valley degeneracy) 

and zero-magnetic-field filling 𝑠 = 𝑛/𝑛𝑠 per unit cell. Both figures are replotted from Ref (14). 
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Fig. S10. 

 
 

Fig. S10. Band structures simulation. (A) The band structure of the 0.45° tBLG under the 

Hartree-Fock approximation considering Coulomb interaction 
|𝒈1|𝑉(𝒈1)

√3
= 10 meV between 

electrons (𝑔1: moiré reciprocal vector) at various integer fillings n=Nns, where the Fermi energies 

are indicated with red dashed lines. The 2D band structures are plotted in the diamond (instead of 

honeycomb) moiré Brillouin zone (see the top insert in (A)), and viewed from the side 

perpendicular to the long diagonal of the diamond. For each filling, the C3z symmetry is 

spontaneously broken, and C2zT is preserved, allowing Dirac points away from high symmetry 

points of the moiré Brillouin zone. The first panel for 𝑛 = 0 is also shown in the main text Fig. 

1(C). (B) The non-interacting band structure of tBLG calculated using the continuum model 

(without interaction), and plotted along the moiré Brillouin zone high symmetry lines shown in 

the top insert of (B). The lowest 8 bands are connected among each other by Dirac points, and are 

gapped from higher bands, which is different from the Hartree-Fock interacting band structures in 

(A). 
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Fig. S11. 

 
Fig. S11. Density of states in 0.45° tBLG continuum model with Coulomb interactions between 

electrons considered using the Hartree-Fock method at zero magnetic field, where we assume no 

spin or valley degeneracy breaking. The calculations are done for full moiré band fillings 𝑛 = 𝑁𝑛𝑠. 

The corresponding Hartree-Fock band structures are shown in Fig. S10A. 
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Fig. S12. 

 

 
Fig. S12. Calculated Hofstadter Butterfly of 0.45° tBLG. Hofstadter butterfly of the tBLG 

continuum model (one-spin one-valley) under different Hartree potential and C3z configurations. 

In (B) and (C), a 0.4% strain is considered and C3z symmetry is broken by a single particle term. 

A 10meV Hartree potential is further considered in (C). 𝐶 = ±4 gaps are highlighted with light 

blue color with corresponding numbers denoting different s values. Yellow color in (B) highlights 

C=0 gaps (𝑠 = 0, ±1, ±2) which reappear at high B⊥ field (𝜙 > 𝜙0). 
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Fig. S13. 

 

 
Fig. S13. Strained tBLG. (A) Momentum space of tBLG without strain. The momentum space of 

top layer of graphene rotated rotated by −
𝜃

2
 and top layer rotated by 

𝜃

2
. The momentum difference 

of the Dirac points of the two layers is used to construct the moiré Brillouin zone. (B) The rotated 

top and bottom layers are under independent uniaxial strain. The resultant momentum difference 

between the Dirac points are no longer related by C3z rotation symmetry. (C) The specific choice 

of strained moiré Brillouin zone used in the Hofstadter butterfly calculations.  
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Fig. S14. 

 
Fig. S14. (A) Illustration of the LLs in the untwisted bilayer graphene at nonzero magnetic field. 

Counting the 4-fold spin-valley degeneracy, the LL gap A carries Chern number 𝐶 = 4, and the 

LL gap G has Chern number 𝐶 = 8. At zero magnetic field, all the LL gaps collapse to the CNP. 

(B) Illustration of large magnetic field Hofstadter butterfly of twisted bilayer graphene, which can 

be viewed as the LLs of the untwisted bilayer graphene splitting into moiré subbands, during which 

we assume the LL gaps of untwisted bilayer graphene (e.g., A and G) remain open (above certain 

threshold magnetic field). 𝜙/𝜙0  is the number of magnetic fluxes per moiré unit cell. For 

illustration purpose, only the splitting of the 1st LL is shown, while the splitting of the 0th LLs 

(per spin per valley) are not shown. The red numbers near the dashed vertical lines denote the 

Chern number 𝜎𝑗  of the subbands (per spin per valley) at integer magnetic fluxes (the dashed 

vertical lines). 
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